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The Hall effect, originating from the motion of charged particles in magnetic fields, has deep con-
sequences for the description of materials, extending far beyond condensed matter. Understanding
such an effect in interacting systems represents a fundamental challenge, even for small magnetic
fields. Here we use an atomic quantum simulator where we track the motion of ultracold fermions
in two-leg ribbons threaded by artificial magnetic fields. Through controllable quench dynamics, we
measure the Hall response for a range of synthetic tunneling and atomic interaction strength. We
unveil a universal interaction-independent behavior above an interaction threshold, in agreement
with theoretical analyses. Our system, able to reach hard to compute regimes also demonstrates
the power of quantum simulation for strongly correlated topological states of matter.

Since its first observation in 1879 [I, the Hall effect has
been an extraordinary tool for understanding solid-state
systems [2]. This phenomenon is a macroscopic manifes-
tation of the motion of charge carriers in materials sub-
jected to a magnetic field B, generating an electric field
E, perpendicular to the longitudinal current J, flowing
in the system. At small magnetic field, the Hall coeffi-
cient Ry = E,/(BJ,) permits the extraction of the ef-
fective charge ¢ and carrier density n, as Rg ~ —1/nqg in
conventional conductors. The Hall effect has widespread
applications in metrology and materials science, such as
sensitive measurements of magnetic fields and resistance
standards based on its quantized behavior at large mag-
netic fields [3]. The modern understanding of the Hall ef-
fect establishes it as a manifestation of robust geometric
properties of quantum systems: Fermi-surface curvature
of metals under weak magnetic fields [4, [5], Berry curva-
ture of anomalous Hall systems [6], and topological in-
variants of band insulators [7]. Studies of Hall responses
are ubiquitous in fields addressing topological quantum
matter [§] and synthetic realizations thereof [9] [10].

However, when interactions are present among the car-
riers, understanding the Hall coefficient becomes a the-
oretical challenge. At large field, interactions lead to
the fractional quantum Hall effect [IT], where the quan-
tization of RyB to fractions of h/e? reveals the emer-
gence of elementary excitations with fractional charge
and anyonic statistics [12] [13]. For small field, the con-
nection of Ry with carrier densities and topological in-
variants is lost, leading to numerous attempts [14H21]
to access this quantity. On the experimental side this
complexifies the interpretation of anomalous tempera-
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FIG. 1. Experimental scheme. A synthetic ladder is real-
ized by trapping fermionic '"®Yb atoms in a 1D optical lattice
and coupling their nuclear spins mr = —1/2 and my = —5/2
via two-photon Raman transitions. The position-dependent
phase of the Raman coupling simulates a magnetic field B
with Aharonov-Bohm phase ¢ per unit cell. An atomic cur-
rent is activated by tilting the ladder with an optical gradient,
equivalent to a constant electric field E,. The radius difference
of the green and blue spheres illustrates the leg population
imbalance (Hall polarization) induced by the Hall drift. The
time-dependent longitudinal current J,(7) and the Hall po-
larization Py(7) are measured with time-of-flight imaging and
optical Stern-Gerlach detection, respectively (typical acquisi-
tions are shown below the ladder).
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ture dependence and sign changes of Ry in the normal
phase of cuprates [22, 23], disordered superconducting
films [24] and organic compounds [25] 26]. Numerical
progress has recently allowed a reliable calculation of the
Hall coefficient [27] in a quasi-one-dimensional geometry,
and predicted a threshold of interactions above which
the Hall coefficient becomes interaction-independent and
thus universal.

In this context, ultracold atoms in optical lattices pro-
vide a remarkable opportunity to shed light on funda-
mental aspects of interacting Hall systems, thanks to
their flexibility and controllability. A notable recent ad-
vance was the realization of artificial magnetic fields in
optical lattices, through various schemes including laser-
induced tunneling, Floquet engineering and synthetic di-
mensions [J, 28431]. Until now, these schemes have
been exploited to explore single-particle [32H34] and few-
body [35] phenomena, while the observation of strongly
correlated many-body effects triggered by interactions re-
mains elusive.

In this work, we report on the measurement of the
Hall response in a quantum simulator with strongly in-
teracting ultracold fermions. By controlling the repul-
sion between particles, we obtain experimental evidence
of the universal response predicted at large interaction
strength. We utilize a synthetic dimension to engineer a
two-leg ladder whose plaquettes are threaded by a syn-
thetic magnetic flux ¢ (see Fig.[1)). We monitor the real-
time dynamics of the system following the instantaneous
quench of a linear potential, which tilts the lattice along &
and mimics the action of a longitudinal electric field E,,.
We observe that the combined action of E, and ¢ trig-
gers a longitudinal current J,, accompanied by the Hall
polarization of the system along the transverse direction
P,. Even though the dynamics of J, and P, strongly de-
pend on microscopic ladder parameters, we observe that
a proxy of the Hall coefficient, the Hall imbalance [27]
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converges towards an interaction-independent value, for
large atomic repulsions. Our observations quantitatively
agree with theoretical calculations and confirm the pre-
dictions of Ref. [27]. Our results showcase the importance
of interactions in Hall systems, paving the way towards
the investigation of strongly correlated effects in topolog-
ical phases of synthetic quantum matter.

Our experiment exploits an ultracold Fermi gas of
173Yb atoms initially polarized in the |F = 5/2, mp =
—5/2) hyperfine state. The atoms are trapped in a one-
dimensional (1D) optical lattice, which allows real tun-
neling between different sites along direction Z. An addi-
tional 2D lattice (not shown in Fig. [1)) freezes the atomic
motion along the orthogonal real-space directions, form-
ing a 2D array of fermionic tubes. By adiabatically ac-
tivating the coherent Raman couplings between nuclear
spin states |mp = —1/2) and |mp = —5/2) (denoted
m = 1,2 respectively), our system realizes a two-leg lad-

der [32], where the nuclear spins act as different sites
along a synthetic dimension 4 (see Fig. . The system is
described by a two-leg version of the interacting Harper-
Hofstadter Hamiltonian

H=— tm Z |:G,;’maj+17m + hC:|
j,m
1,3 [ez’wa;laﬂ + h.c.} +US njangs (2)
J J

()

where Ao 18 the fermionic annihilation (creation) oper-

ator on site (j,m) in the real and synthetic (m = 1, 2)
dimensions, and n; , = a;maj’m. Here, ¢, is the nearest-
neighbor tunneling amplitude and U > 0 is the “on-
rung’ interaction energy between two atoms with dif-
ferent nuclear spin in the same real-lattice site. The
coupling between two spin states tyei‘” is interpreted as
a tunneling along the synthetic dimension, whereby the
position-dependent phase simulates the effect of a static
magnetic flux ¢ threading the ladder; in our experiments
|p] = 0.327. A residual harmonic confining potential
results in an additional term Hgonr, = Vi Zj’m jznjm,
with the confinement strength V, = 0.01¢,,. The atomic
repulsion U is controlled, independently from ¢, and ¢,
by changing the radial confinement of fermionic tubes via
the 2D lattice depth; in order to keep V, constant while
changing U, we added a weak double-well potential along
direction Z, compensating the trapping frequency by ad-
justing the potential barrier between the two wells (see
Supplemental Material for details).

To generate a current along Z, we switch on an opti-
cal gradient Hqyench = —Fs Zj’m Jnjm tilting the ladder
along the real-lattice direction, with F, = 0.5¢,. After
time 7, we measure the particle current J, in the real
dimension and the spin polarization P, in the synthetic
dimension. To perform these measurements, the Raman
coupling is abruptly switched off to freeze the population
along the synthetic dimension. The lattice momentum
distribution in the real dimension n(k, ), normalized to
the total atom number, is then measured with a band-
mapping technique, where the lattice momenta k are ex-
pressed in units of the real-lattice wavenumber ki, = 7/d,
and d = 380 nm is the lattice spacing. We thus access the
current J,, given by

1
To(r) = / sin(rk)n(k, ) dk 3)
-1
In the synthetic dimension, the spin distribution is mea-
sured by performing an optical Stern-Gerlach detec-
tion [36]. This method, based on the spin-dependent
force exerted by a near-resonant laser beam, allows a
spatial separation of the two spin components and the
separate count of the atom number NN, in both of them.
The spin polarization coincides with the transverse (Hall)
polarization P, of the system, which we define as

Py(r) = Ni(7) — Na(r)  N1(0) — No(0)
Y Nl(T)+N2(T) N1(0)+N2(0)
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FIG. 2. Time evolution of the particle current J,, Hall
polarization P,, and Hall imbalance Ay. The experi-
mental data are measured at dimensionless time 7 (in units
of h/ty) for t, = 3.39t, and U = 3.28t,, after applying an
instantaneous tilt E; = 0.5¢;. The values of J, and P, (up-
per plot, respectively red and green) are evaluated by averag-
ing two individual sets of measurements for ¢ = 4+0.327 and
¢ = —0.327, each comprising 10 ~ 15 images at every time
step, and the error bars are obtained with a statistical Boot-
strap method. The values of An (lower plot, blue) are com-
puted from the data in the upper plot according to Eq. ,
and the error bars are obtained with standard uncertainty
propagation. The shaded areas are theoretical predictions ac-
counting for the distribution of atom numbers in the tubes
and experimental temperature uncertainty 1 < T/t, < 2.
They result from a mean-field approximation (MFA, see main
text), where the renormalized tunneling t;j = 5t, is evaluated
through comparison with zero temperature DMRG. The pa-
rameter f;, is introduced to allow meaningful comparison be-
tween MFA and experiment. The gray dashed line indicates
the universal relation Eq. .

This definition evaluates the difference in fractional spin
population with respect to the initial value, with the pop-
ulations N7 (0) and N3(0) measured right before the ap-
plication of the optical gradient. The definition ac-
counts for the small initial population imbalance caused
by residual off-resonant coupling to the nuclear spin state
|mp = +3/2); it can safely be neglected thanks to the
averaging procedure discussed below. We determine the
Hall imbalance Ay from the ratio between the measured
P, and J,, following Eq. .

Figure 2 shows the measured current, polarization and
Hall imbalance as a function of time 7 (defined in units
of ii/t,), for a particular choice of experimental parame-
ters ty, = 3.39t, and U = 3.28t,. We performed identical
measurements with both ¢ = 40.327 and a reversed di-
rection of the synthetic magnetic field ¢ = —0.327, ob-
serving a change of the sign in P,(7). This behavior con-
firms the interpretation of our data in terms of the emer-
gence of a Hall response. We average these two indepen-
dent measurements of {J(7), P,(7)} for ¢ = +0.327 and
{Jz(T), —Py(7)} for ¢ = —0.327, to improve the signal-
to-noise ratio and minimize the effect of the residual off-
resonant coupling to the third state (see Supplemental
Material for details). We observe that the Hall imbalance
Apg (lower panel of Fig. [2)) rapidly approaches a station-
ary regime, with small amplitude deviations around a
limiting value, while the dynamical evolution of J, and
P, remains transient. This fast convergence of Ay is re-
produced by the theoretical model described below, and
conveniently allows us to measure the stationary Hall re-
sponse via quench dynamics.

According to the theoretical predictions of Ref. [27],
the stationary Hall imbalance for strong interactions
(U > t5) is expected to reach the U-independent uni-

versal value
")
an 5 (5)

Our simulator reproduces this universal behavior (see
Fig. [2| lower panel) despite important differences with
the setup of Ref. [27] (parabolic confinement, non-linear
drive, tubes with different particle occupations and finite
temperatures T ~ ¢,). To explain this remarkable ro-
bustness, we provide a new theoretical analysis. First,
we have performed extensive Density Matrix Renormal-
ization Group (DMRG) [37] simulations at zero temper-
ature (finite-temperature DMRG would be prohibitively
costly). To incorporate the effects of finite temperature,
we resort to a mean-field approximation (MFA) of in-
teractions, which predicts that interactions lead to an
effective increase of the transverse coupling ¢, — ;. For
each value of U, we first find the ¢} which best reproduces
the zero-temperature DMRG real-time simulations of the
current J, and polarization P,. We find a quantitative
agreement between MFA and DMRG, if the MFA po-
larization is multiplied by ¢ /ty; no rescaling is required
for J,. Using this renormalized non-interacting model to
evaluate the effect of finite temperature, we find a solid
quantitative agreement between theory and experimental
data (see Fig. . See Supplemental Material for details
of the theoretical analysis.

To pinpoint the onset of the universal regime, we have
measured the dependence of the Hall imbalance’s sta-
tionary value on the system parameters. We consider
the averaged Hall imbalance (Ay) = (Py(7)/J(7)); in
the time interval 7 € [1,5]. Figure [3|shows the measured
(Ay) for a fixed interaction strength U = 3.28¢, and
different values of the tunneling imbalance t,/t,, con-

te
Ag =22
ty




A t,/ty = 0.45 B ty/ty =1.16 C ty/ty =2.22
4 4 4
0.5 é \ / //'\..’ /
0 / 0 0
\ \ \/
0.0 -4 -4 -4
’ - 0 no-n 0 no-n 0 m
k k k
1.5 1
r C
r Universal Value
~ ]
X
<]
~N
=
e ,
ty=t, b=t
©OExp Data |~ MFA(T>0) |
‘= DMRG(T=0): = MFA(T=0)
L Il L L L L Il L L L L Il

3 4 5
t, It

FIG. 3. Time-averaged Hall imbalance as a function
of synthetic tunneling. The experimental data (main plot,
blue circles) are measured at U = 3.28¢,, and || = 0.327, with
the averaging procedure and error analysis detailed in Fig.
The horizontal and vertical error bars show the experimen-
tal uncertainty in ¢, and the uncertainty resulting from the
time average, respectively. The red solid line is the DMRG
simulation at zero temperature for a fixed atomic interaction
U = 3.28t, and L = 200 rungs, accounting for different tube
occupations. The yellow solid line is the MFA at zero tem-
perature with renormalized t; = ¢, + 0.2U (see main text
and Supplemental Material). The shaded area illustrates the
MFA at finite temperatures 0.5 < T'/t, < 2, and the gray
dashed line indicates the universal relation from Eq. . The
upper plots represent the single-particle energy spectrum e(k)
as a function of the quasimomentum k for different values of
ty/tz (A, B, C in the main plot): the interband gap increases
with ¢, /t,, eventually leading to two separate bands (C). The
color scale represents the population of the m = 1 state.

trolled by changing the Raman beams power. The aver-
aged Hall imbalance (Ay) is small at small synthetic tun-
neling (¢, < t;) and reaches the universal value for
ty/tz 2 2. This transition also exists in non-interacting
systems, where a large transverse hopping ?, opens a
large gap between the two bands of the system, stabi-
lizing a single-band metal, whose Hall imbalance has the
universal value () [27] (see single-particle energy bands
in the top row of Fig. [3] and Supplemental Material).
Since finite temperatures tend to promote particles to the
upper band, we expect the finite temperature (T ~ t,) in
our setup to push the transition to the universal regime
towards larger values of t,/t,. This effect is visible in
Fig. while zero-temperature DMRG predicts a tran-
sition to the universal regime at smaller values of ¢, /t,,
the finite-temperature MFA yields a better quantitative
agreement with the experiment.
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FIG. 4. Time-averaged Hall imbalance as a function
of atomic interaction. The experimental data (blue cir-
cles) are measured at t, = 1.15¢, and || = 0.327, with the
averaging procedure and error analysis detailed in Fig.[2] The
horizontal and vertical error bars show the experimental un-
certainty in U and the uncertainty resulting from the time
average, respectively. The red solid line is the DMRG sim-
ulation at zero temperature for a fixed synthetic tunneling
ty, = 1.15t, and L = 200 rungs, accounting for different tube
occupations. The yellow solid line is the MFA at zero temper-
ature, with the substitution ¢, — tj, = ¢, +0.18 ¢, +0.45-U.
The shaded area illustrates MFA results for finite tempera-
tures 0.5 < T'/t, < 2. The gray dashed line indicates the uni-
versal relation from Eq. , while the dot-dashed line depicts
the result for non-interacting fermions at zero temperature.

Finally, we demonstrate the interaction-driven ori-
gin of the universal Hall response of Eq. . Fig-
ure M illustrates the behavior of the Hall imbalance
(An) upon changing the interaction strength U/t, at a
fixed, nearly isotropic tunneling ¢, = 1.15¢,. We ob-
serve that (Ay) quickly deviates from the non-interacting
value, and approaches the U-independent universal value
2(ty/ty) [tan (¢/2)] ~ 1.1 at large U/t,. In the spirit
of the MFA, this behavior can be partially explained
with the two-band scenario discussed before: interactions
renormalize t, towards an interaction-dependent value
ty > ty, enlarging the gap between the bands. In the
large-U limit the bands are well separated and the high-
est band becomes empty, similarly to what happens in
the large-t, limit (see upper plots in Fig. . Increasing U
thus leads to a robust single-band metallic state charac-
terized by a constant, universal value of Ay [27]. As dis-
cussed above and in the MFA section of the Supplemen-
tal Material, the MFA accounts for finite-temperature
effects, and permits a quantitative comparison between
experiment and theory. Similarly to the transition from
weak to large transverse tunneling described in the pre-
vious paragraph, the finite temperature pushes the tran-
sition towards larger interaction strength, in remarkable
agreement with the experimental data.

Despite the effectiveness of the MFA picture, we stress
the essential and non-perturbative role played by strong
interactions to reach the universal regime in Fig.[d which



fundamentally differentiates it from the large-¢, limit
(Fig. . Indeed, while strong interactions can be mod-
elled by the MFA using a renormalized ¢;, the universal
regime is reached anyway for Ay = 2 (t,/t,) |tan (p/2)],
and not for Ay = 2 (t,/t;)[tan (¢/2)|. We emphasize
that the observed effect is truly a many-body effect, as
captured by the DMRG calculations. The MFA which
allows to make progress at finite temperatures should be
complemented at later stages with more complete, but
much more difficult, exact finite-temperature studies.

In this experiment we have shown unique many-body
effects triggered by strong interactions in the Hall re-
sponse of a controllable quantum simulator of a two-leg
ladder threaded by a synthetic magnetic flux. Beyond
the clear potential of such experiments to clarify exotic
Hall response of strongly correlated solid-state conduc-
tors, our work paves the way to the investigation of the
exotic transport properties of strongly correlated topo-
logical phases of matter. This cold-atom experiment goes
in unknown territory for theory, as it features strong cor-
relations and finite temperatures, but yet shows full con-
trol of the simulation parameters. An interesting per-

spective resides in investigating synthetic ladders with a
larger number of nuclear spin states, a regime notoriously
difficult to access with current computational techniques.
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S.I. ADIABATIC STATE PREPARATION

The 1™3Yb spin-polarized degenerate Fermi gas (|mp =
—5/2)) with a typical temperature of 0.27F, where Ty is
the Fermi temperature, is loaded into the vertical lat-
tice (Optical Lattice 3, along the direction of gravity)
within 150 ms using an exponential intensity ramp. The
optical dipole trap, in which the atoms are originally con-
fined, is subsequently switched off in 1s. Two horizon-
tal lattices (Optical Lattice 1&2, see Fig. are then
ramped up in the same way as the vertical lattice. The
three lattice depths are set to Vo1 = 4 or 5 E,, and
Vor2 = Vors = 15 E,, where E, = h?/8md? is the re-
coil energy, h is the Planck constant and m is the atomic
mass. The tunneling rate t,/h (either 2 x 171Hz or
27 x 131 Hz) along the fermionic tubes is thus much larger
than the radial tunneling rates (~ 12.96 Hz), which en-
sures the dynamics is only allowed in the shallow lattice
along longitudinal direction #. These independent 1D
fermionic tubes are characterized by an axial harmonic
confinement with a trapping frequency of 27w x 43 Hz,
which originates from the Gaussian intensity profiles of
the 2D red-detuned lattice beams.

In order to keep the same atom number distribution
among the fermionic tubes for different radial confine-
ment strength, the 2D lattice is always adiabatically
ramped up to 15 E,, followed by a rapid linear ramp
to a final lattice depth in 1ms, which is completely
negligible compared with the inter-tube tunneling time
(~ 77.16 ms). The optical dipole potential compensating
the longitudinal trapping frequency (see Section S.IV. for
details) is also switched on linearly in 1ms during the
same time window of the rapid linear ramp of the 2D
lattice, so as to avoid excitations in the longitudinal di-
rection.

After the lattice loading procedure, we switch on the
Raman laser beams with an initial detuning §; = —5 ~
—15kHz and perform an exponential frequency sweep of
the form

1 _ eft/Ttau )

5(t) = & + (8¢ — ;) (1 T (S.1)

where ¢ is chosen to resonantly couple the two nuclear
spin states |mp = —1/2) and |mp = —5/2). The ramp
duration T,giap ranges from 20 ~ 60 ms depending on
the experimental configuration, with T}, ranging from
5 ~ 20ms accordingly. The adiabaticity of the whole
process is verified experimentally by reversing the whole
procedure to recover a spin-polarized Fermi gas.

Optical Lattice 3 ,
Optical Lattice 2 ,

Optical Lattice 1

Double-well Potential

Raman Laser Detuning

J

Optical Gradient

Time

FIG. S1. Sketch of experimental procedure sequence. See
text for details.

S.II. SPIN-RESOLVED DETECTION

After we suddenly switch off the Raman coupling, thus
freezing the population along the synthetic direction g,
all the lattice potentials are exponentially ramped down
in 1.2ms. To measure the Hall polarization P, the two
spin components are separately imaged by exploiting an
optical Stern-Gerlach technique [S1]. This spin-resolved
measurement is implemented by shining a 10 mW circu-
larly polarized laser pulse with a red-detuning of 866 MHz
from the 1Sy —3 Py (F’ = 7/2) transition during the first
1.5ms of the time-of-flight (TOF) period.

S.ITI. OPTICAL GRADIENT

The optical gradient used to induce the current along
the Z direction is realized by a focused laser beam op-
erating at 1112 nm with the atomic cloud center located
at the maximum slope of the Gaussian beam. The exact
value of the optical gradient is determined by a separate
Bloch oscillation measurement as shown in Fig. [S2] with
a spin-polarized Fermi gas in optical lattices at potential
depth VOLl =1.2 Er and VOLZ = VOLS =12 Er.
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FIG. S2. Typical experimental Bloch oscillation. Position of
the peak in the momentum distribution as a function of lattice
hold time t. The red solid line is a fit to the data yielding
a gradient strength around F, = 0.5t,. Experimental TOF
images of the Bloch oscillation at ¢ = 0, 4, 8, 12, 16 ms are
shown in the lower panel.

S.IV. TRAPPING FREQUENCY
COMPENSATION

As mentioned in the main text, the “on-rung” in-
teraction energy U is controlled by tuning the 2D lat-
tice depth. A subsequent issue is that the longitudinal
confinement strength of the fermionic tubes will change
as well. We overcome this by superposing a double-
well potential with adjustable barriers along direction
Z, through which the overall longitudinal trapping fre-
quency can be well adapted for different experimental
configurations.

To achieve this, similar to what was done in Ref. [S2],
we shine a collimated laser beam (1112nm) onto an
acousto-optic modulator (AOM) which is driven by two
radio-frequency (RF) signals (107.6 MHz and 112.4 MHz,
respectively). The two diffracted beams are then focused
with a lens (focal length 100 mm) to obtain a focused
beam waist around 70 yum. The AOM is placed in the
focal plane of the lens to keep the two beams propa-
gating parallel to each other, and the distance between
the two potential wells (~ 120 ym) is determined by the
frequency difference between the two RF signals. This
double-well potential is final imaged onto the atom clouds
from a direction perpendicular to direction Z, as depicted
in Fig. [S3]A. The main point is to include the potential
barrier between the two wells, which has an anti-trapping
effect to compensate the trapping frequency, along the
1D fermionic tubes. While the measurements of interac-
tion effect on Hall response are carried out at different
2D lattice depths, the light intensity of the double-well
potential is changed accordingly to adjust the barrier in

®

——

120 pm

FIG. S3. Simplified sketch of the double-well setup designed
to compensate the lattice residual harmonic confinement. (A)
Schematics of the setup compensating the longitudinal trap-
ping frequency. A double-well potential is imaged onto the
atom clouds realizing an anti-trapping potential along lon-
gitudinal direction . (B) Zemax OpticStudio® simulation.
Black circles represent the Airy disks due to diffraction limit.
(C) False-color experimental TOF images of the atoms in the
double-well potential (averages of ~ 10 realizations).

the middle, and keep the longitudinal confining strength
V. = 0.01t, unchanged for all different U/t,.

S.V. WEAK OFF-RESONANT COUPLING TO
THE THIRD STATE

The different internal states of '">Yb are coupled
by a two-photon Raman transition, providing coher-
ent controllable couplings between different spin com-
ponents. When the Raman laser detuning makes the
|mp = —5/2) — |mp = —1/2) transition perfectly reso-
nant, the Hamiltonian that describes the Raman coupling
in our experimental system can be expressed as

R 010
Hr=t,[1 0 o |, (S.2)
0 o 283

in the rotating frame after adiabatic elimination of the
excited states, where o = 1.41 and 8 = 2.65. Under this
condition, the population of the third state |mp = +3/2)
which is only weakly coupled to the other two spin states,
is at most a few percent and thus negligible throughout
the experiment. However, this weak off-resonant cou-
pling does have an effect on the following Hall dynamics
when the instantaneous quench of the linear potential oc-
curs, particularly on the quantity of P,. This is verified
in our experiment and further confirmed by the results
of the non-interacting simulations.

Figure shows a non-interacting simulation to illus-
trate the effect of the third state weak coupling and how
we get rid of it by an averaging procedure. The first
two columns show the results of the experimental config-
uration taking into account weak off-resonant coupling



Experimental configuration / ¢=+0.327

Experimental configuration / ¢=-0.327t

Ideal two-leg / ¢=+0.3277

1.0F B 1.0F B 1.0F j i i
m=1 m=1 m=1
— m=2 — m=2 — m=2
= 0.8F — Third state 1 = 0.8F __ Third state 1 =038 1
z z z
§ o6l 1 § o6l ] S 0.6} 1
s kS kS
] 3 3
S 0.4r 1 S 0.4r 1 S 0.4r 1
a a a
£ £ £
& 02) 1 &o2l 1 &2 ]
ool ———— ] Y| Sre—— ] 0.0k ‘ ‘ ‘ ‘ ‘ ]
0 1 2 3 4 5 6 0 1 2 4 5 6 0 1 2 3 4 5 6
T
O.SOE 0.30 0.30F T T T T T B
0.25) 0.25 0.25} TN 1
0.20f 0.20 0.20}
< 0.15] < 0.15 < 015}
0.10} 0.10 0.10}
0.05¢ 0.05 0.05F — Average of exp. case results ]
--- Ideal two-leg result
0.00t 0.00 0.00t . . . . d
3 3

4 5 6 0 1 2 3 4 5 6

0.30 0.30 0.30F
0.25 0.25 0.25F
—0.20 —0.20 — 0.20f
3 3 3
—0.15 —0.15 — 0.15f
0.10 0.10 0.10¢
0.05 0.05 0.050 — Average of exp. case results ]
--- Ideal two-leg result
0.00 0.00 0.00% ]

0.35F j j j j j g

1.2 1.2 1.2F 1
1.0 1.0 1.0f

J08 J08 & o8 \

X x

30° 506 < o6f
0.4 0.4 04l
0.2 0.2 02 — Average of exp. case results ]

- =-=- |deal two-leg result

0.0 0.0

o
-
N
w
»
o
o
=]
-
N

3 4 5 6 0 1 2 3 4 5 6

FIG. S4. Non-interacting simulation results (N = 10, L = 100) for ¢, = 1.15t, and V, = 0.01¢,, following a linear potential
quench of strength i, = 0.5t;. First two columns: results of the experimental configuration (weak off-resonant coupling to the
third state) for ¢ = 40.327 and ¢ = —0.327. Third column: results of an ideal two-leg case for ¢ = +0.327, together with the
average of the results of the experimental case for ¢ = +0.327 and ¢ = —0.327.

to the third state, for ¢ = +0.327 and ¢ = —0.327;
the third column shows the results of an ideal two-leg,
together with the average of the results of the experi-
mental case for ¢ = +0.327 and ¢ = —0.327. As we can
see from Fig. [S4] averaging the results for ¢ = +0.327
and ¢ = —0.327, with the definition of P, brings a

substantial agreement with what is expected in the pure
two-leg case (blue solid vs black dashed lines in the last
plots of rows 2-4), thus neutralizes the effect of weak
coupling to the third state. There are some deviations
at large times, though, when the population of the third
state increases, which is not problematic since we only
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FIG. S5. Number of atoms in fermionic tubes for the typical
total atom number Natom =~ 2.5 x 10%.

focus on the transient dynamics before the third state
population starts to have sensitive effects on the system
dynamics.

S.VI. NUMBER OF ATOMS IN FERMIONIC

TUBES

As it is mentioned in the main text, the resulting po-
tential of two deep orthogonal lattices consists of an array
of independent 1D tubes with residual harmonic confine-
ment. Arising from the Gaussian intensity profiles of the
red-detuned lattice beams, there is a spatially dependent
potential offset for each tube with respect to the central
one. The number of atoms contained in each tube is not
uniform, instead, the larger this potential offset, the less
the number of particles required to fill the tube up to the
Fermi energy of the system.

The number of atoms in different tubes is estimated
from the measured trapping frequencies and the total
atom number Nytom. We perform a numerical zero-
temperature simulation where we treat the lattice confin-
ing potentials as the sum of two harmonic potentials (ra-
dial direction, single-site contributions coming from har-
monic potential energy) and a shallow lattice with resid-
ual harmonic confinement (axial direction, eigenstate en-
ergies obtained from exact diagonalization calculation).
Starting from the center region with the lowest energy,
each lattice site is filled with at most one atom due to
the Fermi statistic, until Nugom is reached.

It is worth noting that the atom number in tubes has
already been determined before we initiate the Raman
coupling, thus we only need to consider free fermions in
this estimation. From result of the simulation we can
easily obtain the atom number distribution among the
2D array of tubes. For the typical total atom number
Natom =~ 2.5 x 10* in the experiment, atoms are dis-
tributed in ~ 1525 tubes with a central tube occupation

of 34 (see Fig. [S5).
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S.VII. ESTIMATION OF TEMPERATURE IN

LATTICES

In this section, we give a temperature estimation of
the system through a thermodynamics approach, where
the local-density approximation (LDA) is applied to a
grand-canonical ensemble. The properties of Raman
coupled two-component fermions trapped in optical lat-
tices are derived, based on the grand-canonical parti-
tion function Z(T,pu) (where T is the temperature in
the lattice and p is the global chemical potential) and
free energy F(T,pn) = —kgT In Z(T, 1), where kg is the
Boltzmann constant. Here, we assume that the lattice
loading procedure is isentropic, meaning the entropy S
is fixed to the value of entropy in the harmonic dipole
trap before lattice loading. For a non-interacting Fermi
gas in harmonic trap, the expression for the entropy is
S = kg NatomT™Trvap/Tr [S3], where Natom is the total
atom number, and the ratio between the temperature in
the trap and the Fermi temperature Trrap /Ty = 0.2 are
both experimentally accessible quantities.

We then apply LDA in which the system is considered
locally at equilibrium. Thus, the grand-canonical free
energy can be written as F\(T,p) = >, F(T,p — Vj),
where Vj is the external potential for a given lattice site j.
Finally we have two coupled equations, from the solution
of which we can obtain the temperature in the lattice

Sy =Z—W‘T3’;‘V) _ N, (83)
Ssmp-vy =3 TN g (s

J J

For a relatively high temperature, the tunneling be-
tween neighbouring lattice sites can be further taken into
account by employing a high-temperature series expan-
sion [S4]. The calculation results show that the temper-
ature in the lattice is 7'~ 1.0 ~ 1.5¢,,.

S.VIII. THEORETICAL ANALYSIS

In this section, we detail the theoretical analysis of our
experimental data. We start by giving some insights into
the universality of the Hall response in the t, > t,
limit by analyzing the non-interacting ladder in the linear
response regime (S.VIIT A]). Using a mean-field approach
(S.VIII B)), we then show that repulsive interactions effec-
tively increase the transverse hopping ¢,, hence reinforc-
ing the robustness of the Hall response. Finally, we give
the details of our time-dependent numerical calculations
(DMRG and mean-field) with realistic experimental con-
ditions, and show the quantitative agreement between
DMRG and mean-field at zero temperature .
This numerical data supports the universal behavior of
the Hall response even in the realistic conditions of the
experiment.



A. Linear response in the non-interacting ladder

We consider the non-interacting ladder, i.e. the Hamil-
tonian with U = 0 on a ladder with L rungs and
periodic boundary conditions a;,, = ajyrm. To cal-
culate the Hall response, we also consider a flux ¢ in-
serted in the ring, which induces a complex hopping term
~ts D im (ei‘z’a}’majH’m +h.c.), and a chemical potential
imbalance v} (n;,1—n;2). We diagonalize the Hamilto-
nian by switching to reciprocal space; the single-particle
spectrum consists of two bands ¢4 (k)

e+ (k) = — 2t cos(k + ¢) cos (%)

. (S.5)
+ \/[m sin(k + ¢) sin (g) + y} +12.

The spectrum is plotted in Fig. [S6JA for the experimental
value of the flux ¢ = 0.327 and different values of ¢, /t,
(¢ =v =0). At t, = 0, the two bands cross at k = 0, £;
a finite transverse hopping (¢, # 0) gaps the two bands at
the crossings. In Fig. [S6/A, we also show the polarization
of the single-particle states in the 4-band by showing
their upper-leg fraction

1 2t, sin(k) sin(p/2)
Pi(k)=5 | 17F
* 2 \/t§ + 412 sin? (k) sin®(/2)

that is their probability to be found in the upper leg. The
bands have thus opposite polarizations and, as we are
going to illustrate, the Hall response drastically enhances
and converges towards the universal regime as soon as the
upper band is emptied.

To derive the Hall response, we follow the approach de-
vised in Refs. [S5] [SO] for the derivation of the Hall con-
stant Ry, which was adapted in Ref. [S7] [S§] to address
the Hall imbalance Ag. In the linear response regime,
the current j, and polarization density p, can be writ-
ten in terms of the ground state susceptibilities to an
infinitesimal flux ¢ and chemical potential imbalance v

1 O(H) 1A

= Y y Py = ’
TR 06 |y, TP T L v |y,

, (S.6)

(S.7)

where the 2¢, factor in the above definition of the current
density is introduced to be consistent with the definition
of the Hall imbalance in the main text, Eq. .

Equation gives the current and the polarization
carried by the non-interacting system via derivatives of
the band spectrum . As we are interested in the
linear response regime, defined by ¢,v — 0, we expand
the current and the polarization in the longitudinal flux
¢ and chemical potential imbalance v. As a consequence,
the Hall imbalance Apy in the linear response and non-
interacting limit is given by [S7, [S8]

A by Zk,s 8@}6]@,5 *Nk,s
H= — = 2t, 3
Jz 14,00 D ks OssCh,s - Mks

 (S8)
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FIG. S6. Exact results for the non-interacting ladder at zero
temperature. (A) Energy spectrum of the non-interacting
ladder (Eq. (S.5)) as a function of the lattice momentum k
and different values of ¢, (t, = 0, 0.3 and 1, thinner to thicker
lines). The color on top of the lines indicates the upper-leg
fraction of the single particle state. We consider the exper-
imental value of the flux ¢ = 0.327, and different values of
the transverse hopping t,. (B) Hall imbalance Ay as a
function of ¢, /t, for different values of the density p = N/2L.
The vertical dashed lines indicate the transition between two
different ground states, whereby the Fermi level crosses both
bands or only one.

where ny ¢ is the probability of occupation of the sin-
gle particle state labeled by (k,s). For instance, in the
grand-canonical ensemble, ny s is the Fermi-Dirac dis-
tribution nkic =1/(ePErs=1) 1), with p the chemical
potential and 8 = 1/T the inverse temperature (we adopt
the standard convention i = kg = 1).

At zero temperature (I' = 0), below half-filling (p <
1/2), one can readily show that the Hall imbalance (S.8)
in the strongly transverse coupling (¢, > t,) limit
reaches the universal value , which we report here

2t
|Ag| = — tan (¢) .
y

2 (.9)

Figure illustrates the progressive convergence of Ay
towards this universal value upon increasing t,. For a



fixed density p, the ground state undergoes a transition
from a regime where both bands are partially filled to a
regime with a single occupied band. Figure [S6B shows
that the convergence towards the universal value is par-
ticularly fast as soon as this transition is crossed.

Notice that the definitions of the current and polariza-
tion densities, j, and p,, given in Eq. , differ from
the experimentally measured quantities, J, and P, de-
fined in Egs. and . When comparing theoretical
calculations to experimental data, averaging over differ-
ent tubes with different particle occupations, see discus-
sion in Sec. [S.VI] has to be taken into account. The
relation between j, and J, reads

L .
Jz:Ntt ij,t,

O' tubes

(S.10)

where L is the system size considered in the calculation,
Niot is the total number of particles in the system, and
Jut is the average current density in the tube ¢. An
analogous relation holds between p, and P,. Notice that
the prefactor L/Nio disappears when taking the ratio
between P, and J,, giving the Hall imbalance Ay, de-
fined in Eq. . For this reason, the universal values (5|
and coincide. For the sake of clarity in the follow-
ing theoretical analysis including interactions and con-
finement, we consider quantities consistent with the defi-

nition (S.7)), and rely then on Eq. (S.10) when comparing

to the experimental data.

B. Stabilization of the universal regime by
interactions — Mean-field analysis

We now analyze the two-leg ladder in the presence
of repulsive interactions of strength U using a mean-
field approximation (MFA). We show that repulsive in-
teractions effectively increase the transverse coupling ¢,
and thus stabilize the universal value of the Hall imbal-
ance ([S.9)).

We consider ¢ = v = 0 and proceed with the mean-
field decoupling of the interaction term in Eq.

L
U njinjo~U» {nm (nj0) +nj0 (nj1) —
j=1 j (S.11)

T, T T T,
;1450\ 450051 ) — Q50051051350 ) |

where we have discarded the constant contributions to
the total energy. If we assume equilibrium (no current
flowing in the system) and that interactions do not lead
to spontaneous breaking of translational invariance, av-
erages do not depend on the lattice rung and leg labels
(j,m). We can thus replace the average local occupations
with the density (n;.,) = p. This substitution leads to
the standard Hartree renormalization of the chemical po-
tential.
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Additionally, we find that interactions also lead to a
renormalization of the transverse hopping ¢,

ty — 15 =ty + U Quu,p, (S.12)

with Q0 = 30;(alga;1)/L = Yy (af gar1)/L. Dis-
cussing the renormalization of ¢, requires a self-consistent
solution of the problem, which would, in any case, remain
a crude approximation, as it would miss the Luttinger
liquid nature of the ground state [S9]. To provide ad-
ditional insight, we evaluate the function {2, s, for the
non-interacting problem (U = 0), which is equivalent to
first order perturbation theory in the interaction U:

4t2 sin?(p/2)
t2 ’
y
(5.13)

o S
Qoup~Qu, = Zi 5l {kp, .

where k7 are the Fermi quasi-momenta of the s = +
band. El[k,r] is the Elliptic function of the first kind:

B [k _ﬂ - \/a/ok ,/sinj(qq) +a

with the properties El[0,—1/a] = 0 and El[k,0] = k.
For the experimentally relevant parameters, ¢ = 0.32,
ty =ty and p < 1/2, kp > k‘ft and thus €, , is a pos-
itive quantity. Thus, at the mean-field level, repulsive
interactions increase the effective transverse coupling be-
tween the chains, and stabilize the universal regime for

Ax (Eq. (S.9)).

(S.14)

C. Time-dependent simulation of the Hall response
with DMRG and mean-field

The experimental conditions lie beyond the limits of
our previous analysis in several ways: the strong drive
E, = 0.5t, is beyond the linear response treatment
of [S.VIITA| and the interaction strength U lies beyond
the perturbative regime explored in [S.VIITB] Moreover,
there is a parabolic confinement potential of strength
V. = 0.01t,, and the temperature is finite. To go be-
yond linear response, we calculate the time-dependent
response of the system (initially prepared in the ground
state of the interacting Hamiltonian Eq. ) to a sud-
den quench of E,. The interactions are taken into ac-
count exactly using zero temperature DMRG, or approxi-
mately using the mean-field approach of [S.VIII B] In both
cases, we use a finite parabolic confinement V, = 0.01¢,,
to match the experimental parameters. After verifying
that mean-field and DMRG results match at zero tem-
perature, we extend our mean-field analysis to finite tem-
peratures, inaccessible to DMRG for meaningfully large
systems. Such analysis allows us to give account of the
experimental observations.
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FIG. S7. Real time evolution of the current (A), polarization density (B) and Hall response Ap (C). We compare DMRG
simulations for different interaction strengths U (dots, where ¢, = t,) with non-interacting systems with properly renormalized

t*

v > ty (MFA represented by thick solid lines, t, = t;), see Eq. (S.12).

Time is expressed in units of 7i/t,. We consider

the experimental situation corresponding to Fig. E[, namely: ¢, = 1.15¢, and V, = 0.01¢,. We prepare the ground state for
N = 30 particles on L = 200 rungs and simulate its evolution following a quench of strength u, = 0.5¢; of a linear potential,

as described in the main text.

1.  Real-time simulation at zero temperature: DMRG
calculations

We use the density matrix renormalization group
(DMRG) algorithm [SI0] to obtain the ground state of
the interacting two-leg ladder Eq. with additional
parabolic confinement potential V,, = 0.01t,. At ¢ = 0,
we quench the linear longitudinal potential from E, = 0
to E, = 0.5t,, and simulate the real-time dynamics of
the system using the time-dependent variational princi-
ple (TDVP) [S11].

The real time evolution of the Hall response for N = 30
spinless fermions on a two-leg ladder of L = 200 rungs is
presented in Fig. [S7] We have verified that all relevant
observables (integrated current L - j, and polarization
L - p,) have converged with respect to L. We have used
a bond dimension x = 200 and a time step §; = 0.1/,
for the time-evolution, which ensure the convergence of
these observables for this system size. This choice of N is
representative of the average occupation of tubes in the
experiment, in particular for large values of U, see also
Fig. [S§

The fact that the system is driven strongly out-of equi-
librium, beyond the linear regime, results in oscillations
of the current and the polarization (for weaker drives
E, ~ 0.01t;, j, and p, increase linearly with time as
observed in Refs. [ST, [S8]). The oscillations are a com-
bined effect of Bloch oscillations and current reversal by
the confinement, and they are damped at longer times
in the presence of interactions. Figure [S7]shows that in-
creasing interactions have a strong and opposite effect on
the real time evolution of the current and of the polariza-
tion. The former is suppressed, while the latter increases
(in absolute value) the larger the interaction strength U.
Both quantities converge towards a limiting curve in the
U > t, limit.

Remarkably, a non-interacting theory with a properly
renormalized value of the transverse coupling t, — &}
quantitatively reproduces the real time evolution of the

current, in agreement with the mean-field predictions of
Section[S.VIII B} as illustrated in Fig.[S7JA. The same ap-
plies for polarization but this case requires additional dis-
cussion. Relying on Egs. and , one can readily
show the suppression of the polarization p, o 1/t, in the
ty > t, limit, for p < 1/2. As a consequence, the effec-
tive increase of ¢, — t; leads to an incorrect suppression
of the polarization which is not observed in DMRG in
the U > t, limit. We thus compensate this suppression
by making the substitution p, — p, - ¢, /ty. Remarkably,
this renormalized polarization qualitatively follows the
exact DMRG evolution, even though it clearly displays
faster oscillations. Additionally, the universal value (5))
of the Hall response Ay is well reproduced by averaging
over the interval T € [1, 5] as illustrated in Fig.

2.  Real-time Hall response at finite-temperature

In the experiment, the temperature is of the order of
the longitudinal hopping T ~ t,. As we saw in the main
text, this finite temperature has a significant influence
on the Hall response in the intermediary regimes of U
and t,, but does not affect the value of the universal Hall
response at large U or large t,/t,. The regime T =~ t,
and L ~ 200 can hardly be accessed with DMRG for the
time scales of experimental relevance. We have there-
fore relied on the good agreement between DMRG and a
properly renormalized non-interacting theory to evaluate
the effect of finite temperature in our system (Figs.
and . We stress that the results from the effective
non-interacting theory should be taken with some pre-
caution, as their agreement with exact calculations has
been demonstrated exclusively for T'= 0 in the previous
paragraph.
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FIG. S8. Time-averaged Hall response as function of ¢, /t, for U = 3.28t, (A) and as function of U/¢, for t, = 1.15¢, (B) for
different number of particles. The light to dark solid lines give the Hall response for N = 1 — 36 particles on L = 200 rungs
in the same condition as Fig. [S7] We also show the averaged results for atom distributions corresponding to a total number
of 20/25/30 thousands atoms in the system. The averages over tubes were performed for the current and the polarization
separately. We then obtained the time-evolution of the Hall response An(7) by taking their ratio, which was then time-
averaged in the time interval 7 € [1, 5], as for the experimental data presented in the main text. The simulation were performed

with DMRG at zero temperature.

3. Aweraging over different number of tubes

We conclude our theoretical analysis of the experimen-
tal observations by discussing the effects that the averag-
ing over different tubes with different atom occupations
may have on the observed behavior of the Hall response.
In Fig. we show the predicted dependence of the aver-
aged Hall imbalance (Ag) (see main text) over the trans-
verse hopping ¢, and the interaction strength U, for dif-
ferent number of atoms from exact DMRG simulations
at zero temperature. We also compare with the averaged

over different tube distributions corresponding to a total
of 20/25/30 thousand atoms, estimated as discussed in
Section [S.VI] The simulations clearly show that the the
dependence of (Ag) over ¢, is much less affected than the
one over the interaction strength U, if we consider dif-
ferent number of particles in the system. The fact that
stronger effects on the particle numbers are observed as
function of the interactions U can be explained by the
fact that interactions are expected to have stronger ef-
fects, the larger the number of particles in the system.
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