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Abstract: When a composite Lindblad system consists of weakly coupled sub-systems with fast
and slow timescales, the description of slow dynamics can be simplified by discarding fast degrees
of freedom. This model reduction technique is called adiabatic elimination. While second-order
perturbative expansion with respect to the timescale separation has revealed that the evolution
of a reduced state is completely positive, this paper presents an example exhibiting complete
positivity violation in the fourth-order expansion. Despite the non-uniqueness of slow dynamics
parametrization, we prove that complete positivity cannot be ensured in any parametrization.
The violation stems from correlation in the initial state.
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1. INTRODUCTION

Quantum systems interacting with a surrounding envi-
ronment are called open quantum systems. Their studies
have attracted considerable attention not only because
perfect isolation of a quantum system is unrealistic, but
also because control and measurement of a target quantum
state are mostly achieved by coupling a target system
to another one. States of an open quantum system are
described by a density matrix, which is Hermitian, unit-
trace, and positive semidefinite. Any operation describing
a physical process should thus preserve those properties.
The condition of positivity is usually replaced by complete
positivity (Nielsen and Chuang (2000)). Complete positiv-
ity is a property of a linear map on matrix spaces. Let Φ
be a linear map Φ : Cn×n → Cm×m and In be the identity
map on Cn×n. Φ is positive when Φ(A) is positive semidef-
inite for all positive semidefinite A, and Φ is completely
positive when Φ⊗Ip : Cn×n⊗Cp×p → Cm×m⊗Cp×p with
the tensor product ⊗ is positive for any positive integer p.
The complete positivity requirement in physics stems from
the fact that a density matrix of an open quantum state
is a reduced one, and the total density matrix including
an environment should also be positive semidefinite. The
complete positivity condition is imposed in deriving a
Linbdlad equation, which has widely been used to simulate
the evolution of open quantum systems. One can show
⋆ This work has been supported by the Engineering for Quantum
Information Processors (EQIP) Inria challenge project, the European
Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No. [884762]),
and French Research Agency through the ANR grant HAMROQS.

that the evolution of a density matrix is governed by a
Lindblad equation if and only if the time evolution map
is a trace preserving completely positive map, also called
a Kraus map, and satisfies the semi-group relation at any
time (Gorini et al. (1976), Havel (2003), Lindblad (1976)).

In this paper, we consider a composite open quantum
system where the total evolution is governed by a Lindblad
equation. The composite system is assumed to consist
of a fast decaying sub-system being weakly coupled to
another system with a slower time scale. In this setting,
the time evolution typically starts with decay of fast
degrees of freedom followed by a slower time evolution
of the remaining slow degrees of freedom. In capturing
the slow dynamics, thus, the fast degrees of freedom can
be discarded. This model reduction technique is known
in quantum physics as adiabatic elimination. One of its
important applications is reservoir engineering, in which
the dissipative dynamics of the slow system is designed by
crafting the coupling. This idea has been used, for instance,
to confine the state of a quantum harmonic oscillator to
the cat qubit manifold (Mazyar et al. (2014)).

For general settings, adiabatic elimination was formulated
using degenerate perturbation theory in (Zanardi et al.
(2016)). Later, Azouit et al. (2017) provided a geometric
picture based on center manifold theory (Fenichel (1979)).
The system according to this theory does feature (exactly)
an invariant manifold (in fact, subspace) corresponding to
slow dynamics, and hence we can view the model reduction
to slow degrees of freedom as trying to approximate this
manifold and the evolution once we would initialize the
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system on it. To formulate the model reduction based on
this picture, we parametrize the degrees of freedom on an
invariant manifold. We then seek to find two maps; one
describing the time evolution of the parameters and the
other assigning the parametrization to the solution of the
Lindblad equation, that is, the density matrix of the total
system. To compute these maps approximately for general
problems, the asymptotic expansion with respect to the
timescale separation is performed. In this way, Azouit
et al. (2017) established a way to compute higher-order
contributions systematically.

In the geometric approach, adiabatic elimination includes
a gauge degree of freedom associated with the non-
uniqueness of the parametrization. If the slow dynamics is
parametrized via a density matrix, then one expects as a
physical requirement that the two maps introduced above
should preserve the quantum structure. This expectation
is behind the conjecture made in Azouit et al. (2017);
the authors conjectured the existence of a gauge choice
such that the reduced dynamics is governed by a Lindblad
equation and the assignment is a Kraus map up to any
order of the asymptotic expansion. So far, this has been
proved to be true for general settings up to the second-
order expansion; it was shown in Azouit et al. (2017)
that the evolution equation admits a Lindblad equation
and in Azouit (2017) that there always exists a gauge
choice ensuring the Kraus map assignment. For a two
qubit system, Sarlette et al. (2020) reported an example
supporting the conjecture at any order.

In this paper, however, we refute this conjecture by show-
ing a counterexample. To be more precise, we prove that,
with fourth-order contributions, complete positivity of the
reduced dynamics cannot be ensured, whatever the gauge
choice is. We start by showing that gauge transformation
does not change the spectrum of the time evolution map,
which can be directly computed in a certain gauge choice.
Then, the conjecture is disproved if we can show that there
does not exist a Kraus map which has the same spectrum
as the time evolution map. For qubit systems, such in-
verse eigenvalue problem was solved in Wolf and Perez-
Garcia (2010), where the authors revealed necessary and
sufficient conditions for the existence of a Kraus map. To
exploit their result, we consider an oscillator-qubit system
in which the qubit system is the slow one. In a gauge
choice, this system leads to reduced dynamics described by
a non-Lindblad equation. We then prove the impossibility
of ensuring a complete positive evolution in any gauge
choice. We discuss this complete positivity violation in
terms of the correlation between the fast and slow degrees
of freedom, which imposes a restriction on the initial state
of the reduced system.

The reminder of this paper is organized as follows. Sec.2 re-
views the machinery of adiabatic elimination developed in
Azouit et al. (2017) and shows how gauge transformation
affects the two maps. Sec.3 introduces a qubit-oscillator
system to be investigated. Sec.4 presents our main result.
In Sec.5, we discuss interpretation of the results.

2. ADIABATIC ELIMINATION

Let HA (HB) be the Hilbert space of the fast (slow)
sub-system. The density matrix of the composite system,

HA ⊗ HB, denoted by ρ follows a Lindblad equation,

d

dt
ρ = LA⊗IB(ρ)+ǫIA⊗LB(ρ)+ǫLint(ρ) ≡ Ltot(ρ). (1)

For ξ = A and B, Iξ are the identity superoperators acting
only to operators on Hξ. LA is a Lindbladian acting only
on HA and generally reads

LA = −iH×
A +

∑

k

D[LA,k], (2)

with a Hamiltonian HA and jump operators {LA,k}, all of
which are operators on HA. We have also introduced the
commutator superoperatorH×(•) = H•−•H and the dis-
sipator superoperator D[L](•) = L•L†−(L†L•+•L†L)/2.
We assume that the evolution only with LA exponentially
converges to a unique steady state ρ̄A. In other words,
among the spectrum of LA, the eigenvalue zero is simple
and the other eigenvalues have strictly negative real part.
LB and Lint are superoperators acting on HB and HA ⊗
HB, respectively, and are assumed to contain only Hamil-
tonian terms. ǫ is a non-negative parameter representing
the timescale separation. Physically, LA and LB describe
the internal dynamics of HA and HB , respectively, and
Lint determines how the two sub-systems interact.

As described in the Introduction section, we use a den-
sity matrix to parametrize the degrees of freedom on an
invariant manifold. Let us denote the parametrization by
ρs in general. One possible choice, which has commonly
been used to represent the reduced dynamics, is the partial
trace ρs = trA(ρ) with trA the trace over HA. This choice
plays a central role in the following discussions. For clear
distinction, we denote the partial trace by ρB = trA(ρ)
and general parametrization by ρs.

Once the parametrization is fixed to ρs, we seek to find
the following two maps. One, denoted by Ls, describes
the time evolution of ρs, namely, (d/dt)ρs = Ls(ρs). The
other, denoted by K, assigns ρs to the solution of the
Lindblad equation ρ, ρ = K(ρs). Throughout this paper,
we assume that K and Ls are linear and time-independent
(see below). Since ρ satisfies (1), we obtain

K(Ls(ρs)) = Ltot(K(ρs)). (3)

To compute K and Ls satisfying this relation approxi-
mately, we assume ǫ ≪ 1 and perform the asymptotic
expansions as

K =

∞
∑

n=0

ǫnKn, Ls =

∞
∑

n=0

ǫnLs,n. (4)

When ǫ = 0, the solution of (1) after the decay of the
fast sub-system reads ρ̄A ⊗ trA(ρ(t = 0)), with the initial
density matrix ρ(t = 0). Therefore, the zeroth elements
are given by

K0(ρs) = ρ̄A ⊗ ρs, Ls,0(ρs) = 0. (5)

Higher-order contributions can be computed by substitut-
ing the expansions (4) into (3). Here, we particularly focus
on the computation of Kn in order to introduce the gauge
degree of freedom. The n-th order of ǫ reads

LA ⊗ IB(Kn(ρs)) = ρ̄A ⊗ Ls,n(ρs)− Ln(ρs), (6)

with

Ln(ρs) = (IA⊗LB+Lint)(Kn−1(ρs))−
n
∑

k=1

Kk(Ls,n−k(ρs)).



To solve the linear equation (6) for Kn(ρs), one needs
to invert LA. Note that LA is singular since one of the
eigenvalue is zero. Thus, this linear equation is under-
determined. As shown in Azouit et al. (2017), Kn(ρs) is
determined only up to ρ̄A ⊗ trA(Kn(ρs)) by solving (6).
We introduce the undetermined part, Gn = trA ◦ Kn,
which can be any superoperator on HB. This gauge degree
of freedom is associated with the non-uniqueness of the
parametrization.

From (6), one can compute Kn and Ls,n up to a desired
order. By writing down their forms explicitly, one finds
that Kn and Ls,n+1 depend on G1, . . . , Gn. Therefore, Kn

and Ls,n+1 become, for instance, nonlinear functions of ρs
if so is one of G1, . . . , Gn. To meet the conditions that K
and Ls are linear and time-independent, we assume that
{Gn} have those properties.

From the definition of Gn, we find

ρB = trA(ρ) = trA(K(ρs)) = ρs +G(ρs) (7)

with G =
∑∞

n=1 ǫ
nGn. Notice that this definition of the

gauge superoperator is different from that in Azouit et
al. (2017). In this paper, G = 0 corresponds to the
parametrization via the partial trace ρs = ρB. We further
find the following relation about the gauge dependence;

Lemma 1. Let us denote the gauge dependence of K and
Ls explicitly as KG and LG

s . Then, we have

KG = KG=0 ◦ (IB +G), (8)

and, when (IB +G) is invertible,

LG
s = (IB +G)−1 ◦ LG=0

s ◦ (IB +G). (9)

Proof. For KG, note ρ = KG(ρs) = KG=0(ρB). Substitut-
ing (7) into the rightmost side gives (8). For LG

s , we use
LG=0
s (ρB) = (d/dt)ρB = (d/dt)(ρs + G(ρs)) = LG

s (ρs) +
G(LG

s (ρs)). Comparing the leftmost and rightmost sides
gives LG=0

s ◦(IB+G) = (IB+G)◦LG
s . Thus, when (IB+G)

is invertible, we obtain (9). Q.E.D.

We make three remarks about these results. First, these
relations are results of general basis change and have
nothing to do with the quantum structure. Second, from
G =

∑∞
n=1 ǫ

nGn, the existence of (IB+G)−1 is guaranteed
as long as ǫ≪ 1 such that the truncation at a finite order
is reasonable. Third, (9) means that the spectrum of Ls is
independent of gauge choice. This is expected since decay
rate on an invariant manifold must be independent of the
way its degrees of freedom are parametrized.

As summarized in the Introduction section, Azouit et
al. (2017) conjectured the existence of a gauge choice
leading to reduced dynamics described by a Lindbla-
dian,

∑n
j=1 Ls,j(ρs) = −iH×

s (ρs) +
∑

k D[Ls,k](ρs) with

a Hamiltonian Hs and jump operators {Ls,k}, and as-
signment described by a Kraus map,

∑n
j=1 Kj(ρs) =

∑

kMkρsM
†
k with operators Mk : HB → HA ⊗ HB ,

up to ǫn for any positive integer n. For general settings,
this conjecture has been proved up to n = 2 so far. In
the following sections, we present an example where this
conjecture does not hold true with up to n = 4 terms.

3. PROBLEM SETTING

We consider an oscillator-qubit system in which the dis-
sipative oscillator system is eliminated. The Hamiltonian
is given by the Jaynes-Cummings Hamiltonian and the
oscillator is coupled to a Markovian environment at finite
temperature. We assume that the qubit is non-dissipative
for simplicity. In the frame rotating with the qubit fre-
quency, we have

LA = −i∆A(a
†a)× + γ(1 + nth)D[a] + γnthD[a†],

ǫLint = −ig(a† ⊗ σ− + a⊗ σ+)
×,

and LB = 0, with the oscillator detuning from the
qubit frequency ∆A, the decay rate γ, the asymptotic
oscillator number in the absence of coupling nth, and
the coupling strength g. a and a† are the annihilation
and creation operators of the oscillator, respectively, and
σ± = (σx ± iσy)/2 with the Pauli matrices {σi}i=x,y,z.
This form of Lindbladian is used as a benchmark when
analyzing oscillator-qubit interacting systems in cavity or
superconducting circuit architecture.

The full spectrum and eigenoperators of LA can be ob-
tained with various methods, such as the third quantiza-
tion (Prosen and Seligman (2010)). Result confirms, as
long as γ > 0, the existence of a unique steady state ρ̄A
given by

ρ̄A =
( nth

1 + nth

)a†a

/trA

[( nth

1 + nth

)a†a]

.

4. RESULTS OF FOURTH-ORDER ADIABATIC
ELIMINATION

The timescale of the oscillator system is characterized
by γ−1, while that of the interaction is |g|−1. Thus,
the timescale separation parameter ǫ reads ǫ = |g|/γ.
Assuming ǫ ≪ 1, we compute up to the fourth-order
contributions. As a result, we obtain the following;

Proposition 2. Up to the fourth-order expansion, Ls for
the partial trace, LG=0

s , reads

LG=0
s = −iω

(4)
B

2
σ×
z

+γ
(4)
− D[σ−] + γ

(4)
+ D[σ+] + γ

(4)
φ D[σz ].

(10)

The coefficients ω
(4)
B , γ

(4)
± , and γ

(4)
φ are real numbers

defined by

ω
(4)
B = Im(b− + b+), γ

(4)
± = 2Re(b±),

and

γ
(4)
φ = −8g4n+n−(3− 6(2∆A/γ)

2 − (2∆A/γ)
4)

γ3(1 + (2∆A/γ)2)3
,

where Re (Im) is real (imaginary) part and b± are

b± =
2g2n±

γ̄
+

8g4n2
±

γ̄3
+

8g4n+n−(1 + 8iγ∆A/|γ̄|2)
γ̄∗|γ̄|2 ,

with n+ = nth, n− = 1 + nth, and γ̄ = γ + 2i∆A.

Proof. From the spectral decomposition, we can evaluate
the Moore-Penrose inverse of LA, with which the linear
equation (6) can be solved for Kn under the condition
trA ◦ Kn = 0 (n > 0). Repeating the computation up
to K3 then gives (10). Q.E.D.



The γ
(4)
± and γ

(4)
φ terms describe the effective qubit de-

cay induced by the coupling to the dissipative oscillator.

On one hand, for small enough |g|/γ , γ
(4)
± are domi-

nated by the second-order contributions given by γ
(2)
± =

4g2γn±/|γ̄|2 > 0, and thus γ
(4)
± > 0. On the other hand,

γ
(4)
φ involves only the fourth-order contribution and

γ
(4)
φ < 0 when

nth > 0 and |∆A|/γ <
√

2
√
3− 3/2 ≃ 0.34,

even if the condition for the asymptotic expansion, |g|/γ ≪
1, holds.

Such negative coefficient does not appear in the second-
order expansion. Before investigating how this affects
complete positivity of the reduced dynamics, let us prove
stability and positivity of the time evolution map;

Corollary 3. For (10), the spectrum of the time evolution
map, exp(LG=0

s t) with t ∈ R≥0, is given by

{1, e−t/T2+iω
(4)

B
t, e−t/T2−iω

(4)

B
t, e−t/T1},

with 1/T1 = γ
(4)
− + γ

(4)
+ and 1/T2 = 1/(2T1) + 2γ

(4)
φ .

Proof. With IB the identity matrix on HB (2-dimensional

identity matrix), the set {IB/
√
2, σx/

√
2, σy/

√
2, σz/

√
2}

is an orthonormal basis with the Hilbert-Schmidt inner
product. Let [LG=0

s ] be the 4× 4 matrix representation of
LG=0
s in this basis. It reads

[LG=0
s ] =









0 0 0 0

0 −1/T2 −ω(4)
B 0

0 ω
(4)
B −1/T2 0

Rz/T1 0 0 −1/T1









,

with Rz = −(γ
(4)
− − γ

(4)
+ )T1, the meaning of which will

become clear below. From this, the spectrum of LG=0
s

is given by {0,−1/T2 + iω
(4)
B ,−1/T2 − iω

(4)
B ,−1/T1}. By

multiplying t and then exponentiating them, we obtain the
above result. Q.E.D.

Since γ
(4)
± > 0 and γ

(4)
± ≫ |γ(4)φ | in the parameter region of

interest, we have T1 > 0 and T2 > 0. Therefore, the time

evolution is stable even when γ
(4)
φ is negative. In addition,

we can show that it preserves positivity;

Corollary 4. For (10), the time evolution map exp(LG=0
s t)

is positive for any t ∈ R≥0.

Proof. Let r(t) = (rx(t), ry(t), rz(t))
⊤ ∈ R3 with the

matrix transpose ⊤ be the Bloch vector , which is related
to the partial trace as ρB(t) = (IB +

∑

i=x,y,z ri(t)σi)/2.

From (10), the evolution of the Bloch vector reads

d

dt
rx(t) = −rx(t)

T2
−ω(4)

B ry(t),
d

dt
ry(t) = −ry(t)

T2
+ω

(4)
B rx(t),

and
d

dt
rz(t) = − 1

T1
(rz(t)−Rz).

From these equations, we find that Rz is the asymptotic
value of rz(t), limt→∞ r(t) = (0, 0, Rz)

⊤. They also lead
to

d

dt
r
2(t) = −2

(

r
2(t)− r2z(t)

T2
+
rz(t)(rz(t)−Rz)

T1

)

.

The partial trace ρB(t) is positive semidefinite if and
only if r2(t) ≤ 1. If (d/dt)r2(t) < 0 with the constraint
r
2(t) = 1 for any t, then we have r

2(t) ≤ 1 and thus the
time evolution map is positive. Substituting r

2(t) = 1 into
the above equation, we obtain

d

dt
r
2(t) =

− 2

∆T

[(

rz(t)−
∆T

2T1
Rz

)2

+ (∆T )2(γ
(4)
− γ

(4)
+ − 4(γ

(4)
φ )2)

]

,

with 1/∆T = 1/T1 − 1/T2 = (γ
(4)
− + γ

(4)
+ )/2 − 2γ

(4)
φ . In

the parameter region of interest, we have γ
(4)
± ≫ |γ(4)φ |.

This leads to ∆T > 0 and γ
(4)
− γ

(4)
+ > 4(γ

(4)
φ )2. Therefore,

(d/dt)r2(t) < 0 whenever r2(t) = 1. Q.E.D.

Now we investigate complete positivity. To judge whether
(10) is in the Lindblad form or not, the following lemma,
which follows from Havel (2003), is sufficient;

Lemma 5. Let H be a Hilbert space and L the superop-
erator on H whose operation is given by

L(•) =
D
∑

α,β=1

Γα,β

[

Aα •A†
β − 1

2
(A†

βAα •+ •A†
βAα)

]

,

with {Aα} being operators on H , a positive integer D,
and a D-dimensional Hermitian matrix Γ. Suppose that
{Aα} are traceless and linearly independent. Then, L is in
the Lindblad form if and only if Γ is positive semidefinite.

Care should be taken when {Aα} are linearly dependent
or have non-zero trace. In that case, Γ being positive
semidefinite is only a sufficient condition for L to be a
Lindbladian, but not necessary in general.

Theorem 6. If γ
(4)
φ < 0 in (10), then LG=0

s is not in the
Lindblad form.

Proof. From Lemma 5 and the fact that σ± and σz are
traceless and linearly independent. Q.E.D.

To be more precise, it is complete positivity of the evolu-
tion that is violated;

Corollary 7. If γ
(4)
φ < 0 in (10), then the time evolution

map exp(LG=0
s t) is not completely positive at non-zero but

infinitesimal time t.

Proof. As shown in Gorini et al. (1976), Havel (2003),
and Lindblad (1976), the generator is in the Lindblad
form if and only if the time evolution map is a Kraus map
and satisfies the semigroup relation at any time. The time
evolution map exp(LG=0

s t) satisfies the semigroup relation
and preserves the Hermitian property and trace. Thus,
Theorem 6 signifies the violation of complete positivity
at some time. A finite time evolution can be obtained
by concatenating infinitesimal time evolution owing to
the semigroup relation. Since concatenation of completely
positive maps is completely positive (Havel (2003)), the
violation occurs at infinitesimal time. Q.E.D.

When γ
(4)
φ is negative, the time evolution map exp(LG=0

s t)
at infinitesimal t is positive, while it is not completely
positive. It is widely recognized that the matrix transpose
has such property (Nielsen and Chuang (2000)). Here, we



have found another example which is derived naturally
from a physics equation.

So far, we have considered the evolution of the partial
trace. Strikingly, the above result of the non-Lindblad form
can be generalized to any gauge choice. The proof proceeds
as we have summarized at the end of the Introduction
section. We first recall the following result in Wolf and
Perez-Garcia (2010);

Proposition 8. (Wolf and Perez-Garcia (2010)) Given Λ ∈
C4, the following statements are equivalent:

• There exists a Kraus map the spectrum of which is
given by Λ.

• Λ = 1 ∪ λ where λ ∈ C3 is closed under complex
conjugation. Furthermore, if we define s ∈ R

3 by
si = λi if λi ∈ R and si = |λi| otherwise, then

s ∈ T , (11)

where T ⊂ R3 is the tetrahedron whose corners are
(1, 1, 1), (1,−1,−1), (−1, 1,−1), and (−1,−1, 1).

With this, we come to the main result of this paper;

Theorem 9. If γ
(4)
φ < 0 in (10), then LG

s is not in the
Lindblad form in any gauge choice G.

Proof. We use Proposition 8. Let Λ be the spectrum of
the time evolution map exp(LG=0

s t). From Corollary 3,

Λ = {1, e−t/T2+iω
(4)

B
t, e−t/T2−iω

(4)

B
t, e−t/T1},

which is closed under complex conjugation. From the
definition, {si} are now all positive. In this case, assuming
s1 ≥ s2 ≥ s3, the condition (11) reads s1 ≤ 1 and s1 +
s2 ≤ 1 + s3 (see (Wolf and Perez-Garcia (2010))). When

γ
(4)
φ < 0, we always have 1/T1 > 1/T2, and exp(−t/T2) >

exp(−t/T1) for t > 0. Thus, we set s1 = s2 = exp(−t/T2)
and s3 = exp(−t/T1). Then, while the first condition
s1 ≤ 1 is satisfied, the second condition reads

2e−t/T2 ≤ 1 + e−t/T1 . (12)

For infinitesimal t such that exp(−t/Ti) ≃ 1 − t/Ti (i =

1, 2), this condition reads γ
(4)
φ ≥ 0 and is violated if γ

(4)
φ <

0. Therefore, there does not exist a Kraus map which has
the same spectrum as exp(LG=0

s t) at infinitesimal time
t. From (9), the gauge transformation induces similarity
transformation of the time evolution map,

eL
G

s
t = (IB +G)−1 ◦ eLG=0

s
t ◦ (IB +G).

Here, we have assumed that (IB +G) is invertible, which
is a valid assumption in the parameter region of interest
as discussed below Lemma 1. This proves that exp(LG

s t)
at infinitesimal time t is not a Kraus map in any choice of
gauge G. Q.E.D.

Therefore, this oscillator-qubit system serves as a coun-
terexample to the conjecture in Azouit et al. (2017).

5. DISCUSSIONS

In this section, we discuss interpretation of the results
found so far. As we have seen in the proof of Theorem
9, complete positivity violation in any gauge choice stems
essentially from that in the partial trace parametrization.
Accordingly, we concentrate on the partial trace in this
section.

We first note that the complete positivity violation is not
an artifact caused by truncating the series expansion at
a finite order. Higher-order contributions only correct the
values of 1/T1 and 1/T2 in (12). Thus, for small enough
|g|/γ, they cannot cure the violation of the inequality at
the fourth-order. In fact, we have found an example where
adiabatic elimination can be performed at any order,
yet the partial trace evolution is not completely positive
(Tokieda et al. (2022)).

As shown in Corollary 4, the time evolution map for the
oscillator-qubit system is positive even when it is not
completely positive. As long as the time evolution map is
positive, the density matrix properties are preserved along
the evolution, and result can be interpreted physically.
However, this positivity is not generally the case. In
Tokieda et al. (2022), we present an example where the
time evolution map is not even positive.

In order to understand its origin, let us first recall the
reason why we expected a completely positive evolution.
It can be seen by writing the time evolution of the partial
trace via that of the total state. If we assume a separable
initial state with ρ̄A, we have

ρB(t) = trA ◦ eLtott(ρ̄A ⊗ ρB(t = 0)), (13)

where ρB(t = 0) is the partial trace of an initial total
state ρ(t = 0), ρB(t = 0) = trA(ρ(t = 0)). Note that
trA, exp(Ltott), and the map that sends ρB(t = 0) to
ρ̄A ⊗ ρB(t = 0) are all completely positive. Therefore, the
time evolution map from an initial state ρB(t = 0) to ρB(t)
is completely positive.

Here, it should be recalled that, in adiabatic elimination,
we initialize a state on an invariant manifold. When ǫ = 0,
a set of density matrices on the invariant manifold is
characterized by separable states as KG=0

0 (ρB) = ρ̄A ⊗ ρB
(see (5)). In this case, (13) describes the slow dynamics on
the invariant manifold. When higher-order contributions
are taken into account, on the other hand, (13) includes
the transient dynamics of the fast degrees of freedom. Long
after decay time of the fast sub-system, say t ≥ tinv, the
total state ρ(t) is approximately on an invariant manifold.
In this situation, the time evolution map computed in
adiabatic elimination is the one that sends ρB(tinv) =
trA(ρ(tinv)) to ρB(t) (t ≥ tinv). There is no guarantee that
this map is completely positive, even though the map that
sends ρB(t = 0) to ρB(t) is completely positive.

To account for the initialization on the invariant manifold,
(13) should be rewritten as

ρB(t) = trA ◦ eLtott ◦ KG=0(ρB(t = 0)). (14)

From this equation, KG=0 is not completely positive if
the time evolution map is not. In fact, it was shown in
Azouit (2017) that one can make KG completely positive
up to second-order by a proper gauge choice, but in general
KG=0 is not. 1 For the oscillator-qubit system, this can be
seen as follows (we assume ∆A = 0 for simplicity);

Proposition 10. For the oscillator-qubit system, when
∆A = 0, KG=0 up to the second-order expansion reads

1 For a different choice of G, the results are consistent as the map
trA in (14) would be replaced by a non-completely positive one.



KG=0(ρB) = V (ρ̄A ⊗ ρB)V
†

−4g2(1 + nth)

γ2
(IA ⊗ σ−)(ρ̄A ⊗ ρB)(IA ⊗ σ−)

†

−4g2nth

γ2
(IA ⊗ σ+)(ρ̄A ⊗ ρB)(IA ⊗ σ+)

†,

(15)

with IA the identity operator on HA and V = IA ⊗ IB −
(2ig/γ)(a† ⊗ σ− + a⊗ σ+)− (2g2/γ2)(a†a− nthIA)⊗ IB.

Because of the minus signs in the last two lines, the second-
order expansion of KG=0 is not completely positive. From
the construction, LG=0

s,n with a positive integer n depends

on {KG=0
k }k=0,1,...,n−1. For the oscillator-qubit system,

we have LG=0
s,2n−1 = 0. Thus, complete positivity of the

time evolution map can be violated from the fourth-order
expansion. This consideration is consistent with the result
in the previous section. It should be noted that the time
evolution map can be completely positive even if KG=0 is

not. If nth = 0, for instance, γ
(4)
φ = 0 and the generator

LG=0
s is in the Lindblad form up to the fourth-order terms,

despite that KG=0 still contains a negative term.

To understand the origin of non-completely positive KG=0,
we note that it is not even positive;

Corollary 11. If ρB is a pure state, then KG=0(ρB) given
by (15) is not positive semidefinite.

Proof. Let |0〉 ∈ HA be the vacuum state of the oscillator
and |ψ〉 ∈ HB be a state. The matrix element of KG=0

with respect to |0, ψ〉 = |0〉 ⊗ |ψ〉 reads

〈0, ψ|KG=0(ρB)|0, ψ〉 = 〈0|ρ̄A|0〉
[(

1 +
4g2nth

γ2

)

〈ψ|ρB |ψ〉

−4g2(1 + nth)

γ2
〈ψ+|ρB|ψ+〉 −

4g2n2
th

γ2(1 + nth)
〈ψ−|ρB|ψ−〉

]

.

with |ψ±〉 = σ± |ψ〉. If ρB is a pure state, its kernel is
not empty. Suppose |ψ〉 is in the kernel of ρB, that is,
ρB |ψ〉 = 0. Since either 〈ψ+|ρB |ψ+〉 or 〈ψ−|ρB|ψ−〉 is non-
zero, we obtain 〈0, ψ|KG=0(ρB)|0, ψ〉 < 0. Q.E.D.

Theorem 12. For the oscillator-qubit system, let Minv be
a set of density matrices on the invariant manifold up
to the second-order expansion and D(HB) be a set of
density matrices on HB. Then, the partial trace map
trA : Minv → D(HB) is injective, but not surjective.

Proof. The injective property follows from the uniqueness
of KG=0. On the other hand, the partial trace is not
surjective because, from Corollary 11, any pure density
matrix on HB cannot be obtained by taking the partial
trace of states in Minv. Q.E.D.

The positivity violation of KG=0 and thus the non-
surjective property of the partial trace map can be under-
stood from the correlation between the two sub-systems
as discussed for composite isolated systems in Pechukas
(1994). When ǫ = 0, states in Minv are characterized by
ρ̄A ⊗ ρB as mentioned above. For these non-interacting
separable states, any reduced state ρB can be assigned to
a valid total state. When ǫ > 0, on the other hand, states
in Minv are no longer separable due to the interaction
term. At the second-order of ǫ, they are characterized by
entangled states. Then, a pure reduced state cannot be
assigned to any valid total state.

From this consideration, care should be taken if an initial
state is determined in the reduced system. In order to
ensure that the corresponding total state is a valid one,
the domain of initial reduced states must be restricted
to trA(Minv), which is a subset of D(HB). By linearity,
extending the domain of KG=0 to D(HB) (all density
matrices) is possible. However, such extension leads to an
initial total state that is not positive semidefinite and thus
is unphysical.
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