Complete Positivity Violation in Higher-order Quantum Adiabatic Elimination
Résumé
When a composite Lindblad system consists of weakly coupled sub-systems with fast and slow timescales, the description of slow dynamics can be simplified by discarding fast degrees of freedom. This model reduction technique is called adiabatic elimination. While second-order perturbative expansion with respect to the timescale separation has revealed that the evolution of a reduced state is completely positive, this paper presents an example exhibiting complete positivity violation in the fourth-order expansion. Despite the non-uniqueness of slow dynamics parametrization, we prove that complete positivity cannot be ensured in any parametrization. The violation stems from correlation in the initial state.
Origine | Fichiers produits par l'(les) auteur(s) |
---|