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Abstract: Cell response heterogeneity upon drug treatment is a leading cause of reduced drug
efficacy in preclinical cancer research. Although single-cell studies have revealed the depth of
cellular heterogeneity observed between in tumor cells, the regulatory impact of cell variability
on therapeutic response remains unclear.
Here, we present a new ODE model of the extrinsic apoptosis initiation by death-ligands.
This model is calibrated on fluorescent time-trajectories (FRET) of hundreds of clonal HeLa
cells treated with different amounts of Tumor necrosis factor-related apoptosis-inducing ligand
(TRAIL). By highlighting the different steps in the regulation of apoptosis, and the associated
timeline, we locate an initial cell fate decision just after TRAIL binding and the presence of
additional regulation at the receptor that only benefits the drug-sensitive population. Then, our
study provides evidence that increasing the dose of TRAIL actually has small effects within
each population (resistant or sensitive) but rather accentuates the differences between the two,
affecting the population dynamics in two different ways depending on their response to the drug.
Finally, the distribution of 3 parameters of our mechanistic model, according to the cell drug
response, suggests the existence of an determinant threshold in C8 dynamics, independent of
the drug dose, that distinguishes cells drug-resistant or sensitive, that could be used to control
or predict cell drug-response in the future.
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1. INTRODUCTION

Fractional killing due to non-genetic resistance is a ma-
jor cause of therapeutic failure in preclinical assays of
anticancer drugs, and the actual manifestation of drug
efficacy. Indeed, all isogenic cells - sometimes in the same
phenomenological state (Purvis et al., 2012) - respond to
cytotoxic drugs with different timing and magnitude, but
only a fraction of them commit to apoptosis, a form of
programmed cell death (Roux et al., 2015). Additionally,
repeated experiments on several generations of clonal resis-
tant cells (Flusberg et al., 2013), have shown that the same
amount of sensitive cell is always observed in each round,
even with saturating doses. Combined, this heterogeneous
commitment to apoptosis on several generations leads to
drug evasion, incomplete tumor clone eradication, and at
the end, treatment failure (Strasser and Vaux, 2020).

Several studies combining mathematical modelling - (Al-
beck et al., 2008; Matveeva et al., 2019) - and single-
cell omics data - gene level:(Purvis et al., 2012), signal

transduction (Roux et al., 2015), multi-omic scale (Paek
et al., 2016) - have established several potential sources
for this partial response to cancer drugs in isogenic popu-
lations at all omics stages, some of them directly linked to
cell signalling dynamics and other coming from stochastic
noise (Hurbain et al., 2020). However, none of these studies
were interested in the timeline of cell decision despite
the increasing number of articles revealing the key-role of
chemical reaction speed and timing in cell decision (Paek
et al., 2016; Roux et al., 2015). Indeed, we believe that the
moment a cell takes its lethal decision tells us a long story
about its sensitivity state (Meyer et al., 2020) and how we
could predict and control its drug response.

In this study, we present an ODE model of extrinsic
apoptosis triggered by death receptor ligands, calibrated
on single-cell fluorescent ratio time-trajectories (FRET -
Albeck et al. (2008)), of clonal HeLa cells, from Roux
et al. (2015). These cells are treated with 4 different doses
of Tumor necrosis factor-related apoptosis-inducing ligand
(TRAIL), a death-ligand drug known for its high rate



of resistant cells in clonal populations (fractional killing),
even at saturating dose, and change in fluorescence when
they react to the drug.

Analysing the timeline of the core reactions and the
dynamic properties of the model with a principal process
analysis, we identify regulatory steps of the cell decision,
locating a first resolution upon TRAIL binding but also
the existence of a ruling time frame during which the
sensitive cells benefit from additional regulation at the
receptor level, before cell death commitment. Comparing
the mean timeline of the death inducing signalling complex
(DISC) formation, according to the drug response when
TRAIL dose increases, we show that this augmentation
has different impacts, whether the cell is sensitive to the
drug, or resistant. In particular, this study reveals that
an increase in TRAIL doesn’t affect so much the cell
parameters and timeline inside each population (resistant
and sensitive) but rather widens the gap between the
resistant and sensitive cells. Finally, the distribution of
three parameters of an approximated solution of our model
- parameters directly related to caspase 8 activity - shows
the existence of a clear biological threshold distinguishing
sensitive from resistant cells, regardless of the drug dose.
The double partitioning of these parameters highlights
the central role of caspase 8 and paves the way for the
prediction and control of the cellular response to drugs at
the single cell level.

2. MODELING TRAIL-INDUCING EXTRINSIC
APOPTOSIS

Mechanistic models of extrinsic apoptosis (Albeck et al.,
2008; Chaves et al., 2021) usually consider many chemical
reactions and proteins, sometimes too many to understand
the role of each compound. Following this idea, in a
previous work, we determined the key-proteins of extrinsic
apoptosis transcriptional pathway (Péré et al., 2020).
Therefore, our current Extrinsic Apoptosis Initiation Core
Reactions model (EAICRm), obtained by applying mass
action kinetic law (Fig. 1), only integrates the receptor (R)
trimerisation when TRAIL (T ) binds to the cell, while it
does not represent FADD and c-FLIP actions.
The major novelty of this system is incorporating all
the steps leading to C8 activation, whether with the
dimerisation of pC8 (p for pro, C for caspase), or with
the recruitment of an already active C8. Hence, the
dimerisation of pC8, which is required to activate C8,
is modelled, as well as the C8/C10 clustering and the
downstream feedback loop on C8. As in (Péré et al.,
2020), the effector caspases are grouped under the variable
Ceff , and the intermediary complexes are denoted by
Zi, i ∈ {0, 1, 2}. Finally, the model also accounts for the
FRET activation by C8.

3. PRINCIPAL PROCESS ANALYSIS (PPA)

A PPA (Casagranda et al., 2018) evaluates the impact
of each chemical reaction (represented by each equation
term) on each protein (variable) all along the system
simulation.
The EAICR parameters were estimated for each cell of
the dataset from Roux et al. (2015). This study records
FRET time trajectories of clonal HeLa cells treated with

Fig. 1. Extrinsic Apoptosis Initiation Core Reac-
tions model (EAICRm) scheme

50ng/mL of TRAIL (T0 = 1550 molecules), and observed
for 10 hours. The calibration method is from Péré et al.
(2020). Then, each fitted system were analysed with the
PPA method.

3.1 Describing apoptosis dynamic timeline

To run a PPA, we first must split the simulation into
caracteristic time checkpoints. We decided to base
their definition on dynamic events (rather than using
same-size steps) and divide our 10 hours of simulations
into important time-slots corresponding to specific protein
dynamic turnovers (in italic the mean value in min for cells
treated with 50ng/ml of TRAIL (app. C for computation):

(1) τT.trigger (1e-5 ) : Z0 reaches its first local maximum
- it corresponds to the moment when TRAIL is in
sufficient quantity to trigger a cellular reaction;

(2) τDISC.ass (1.15 ): at this time, the DISC assembly
expands,R decreasing speed strongly draws down and
pC8 becomes linear;

(3) τdrug.0 (5.20 ): T falls down to the equilibrium
T = 0, R stabilizes to −3T0+R0 while Z1 reaches its
local maximum Z1 = T0 ;

(4) τDISC.end(400 ) : Z1 collapses to almost 0 and Z0
becomes bigger than pC8;

(5) τC8.final (412 ) : C8 reaches its maximum before
decreasing (or remaining constant for the major part
of sensitive cells)

Hence, we obtain 6 models summarised in table 1 p.3.

3.2 An early cell decision time

The PPA shows that the first changes between sensitive
and resistant population happen after τT.trigger and con-
tinue until cell death (before τDISC.end for the sensitive),
which locates the main events leading to fractional killing
between these two times. Comparing resistant and sen-
sitive dynamic during this timelapse reveals that K2Z1
comes into action sooner in the sensitive population and
potentially add a regulatory effect on the DISC in the form
of a positive feedback, driving the cell to death.
Table 1 also highlights the significant impact of Z0 (T:R)
and Z1 (DISC - T:R:2pC8) on every step of the cell fate.
These complexes appear to be the decision-makers whereas
C8 is simply the result of their actions.
Finally, τdrug.0 marks the moment when the effective cas-
pase downstream feedback is activated but, at least in this
model, they seem not to have enough impact to really
influence the cell’s decision in most cases. We can also



Table 1. Principal Process Analysis Results - Only the reactions above 0.05 (in black) and the
one above 0.0005 (in blue) for more than half of the cells (more than 57 cells for resistant and 150
for the sensitive population) are kept. The reactions available only for the sensitive population,

and between 0.0005 and 0.05, are in purple and the sensitive reaction above 0.05 in red.

var.
All

experience
[0 τT.trigger ]

]τT.trigger,

τDISC.ass]

]τDISC.ass,

τdrug.0]

]τdrug.0,

τDISC.end]

]τDISC.end,

τC8.final]

]τC8.final,

τcell.death]

Ṫ −K1 TR3 +K1 Z0 +K1 Z0 +K1 Z0

Ṙ −3K1 TR3 +3K1 Z0 +3K1 Z0 +3K1 Z0

Ż0 K1 TR3 K1 TR3 + α0Z1 K1 TR3 + α0Z1 +K1 TR3 + α0Z1 K1 TR3 + α0Z1 K1 TR3+α0Z1

−K2Z0pC82 −K2Z0pC82 −K2Z0pC82 −K2Z0pC82 −K2Z0pC82−K1 Z0 −K2Z0pC82

+K2Z1 +K2Z1 +K2Z1 +K2Z1 −K1 Z0

˙pC8 −K2Z0pC82 2K2Z1 +2K2Z1 +2K2Z1+2K2Z1 +2K2Z1+2K2Z1

Ż1 K2Z0pC82 −α0Z1−K2Z1 −α0Z1−K2Z1 −α0Z1−K2Z1 −α0Z1−K2Z1 −α0Z1−K2Z1

Ż2 K3Z1C8 −K3Z2 − α0Z2 −K3Z2 − α0Z2 −K3Z2 − α0Z2

˙Ceff K4C10Z2 −αCeff −αCeff −αCeff

˙C10 −K4C10Z2 αCeff αCeff αCeff

Ċ8 α0Z1 −KdegC8 −KdegC8 −KdegC8 −KdegC8

˙FRET KfretC8

notice that C8 degradation disappears just after TRAIL
binding, during the DISC formation phase. However, after
τdrug.0, it keeps gaining importance until τC8.final.
In summary, it seems clear that cells take a first decision
before τdrug.0. But the mechanisms responsible for cell fate
implementation and regulation are really acting between
τDISC.ass and τDISC.end.

3.3 Reducing Extrinsic Apoptosis Initiation Core Reaction
model

The PPA method is originally designed to reduce the
model size. Removing the chemical reactions important
only for themselves all along the experiment, we obtain a
reduced EAICR model (rEAICR):

Ṫ = −K1 TR
3 +K1 Z0,

Ṙ = −3K1 TR
3 + 3K1 Z0,

Ż0 = K1 TR
3 −K1 Z0 +K2Z0pC82

+K2Z1 + α0Z1,

˙pC8 = −2K2Z0pC82 + 2K2Z1,

Ż1 = K2Z0pC82 −K2Z1− α0Z1,

Ċ8 = α0Z1− (Kdeg +Kfret)C8,

˙FRET = KfretC8.

(1)

Using mass conservation:

Ṫ + Ż1 + Ż0 = 0. (2)

As Z0 and Z1 are intermediary complexes, they are null at
the beginning of the experiment and we get the following
relation:

T + Z1 + Z0 = T0. (3)

Model simulation (data not shown but simulation parame-
ters available), with different cell sets of parameters, show
that between τdrug.0 and τDISC.end,

Z1 ≈ T0, (4)

that leads to: ˙pC8 = −2α0T0, (5)

which gives us the slope of pC8 when it becomes linear .
Hence, we approximate Z1 and Z0 with step functions by

putting Z1 = T0 between 0 and τDISC.end (as τdrug.0 ¡6
min), and assuming Z1 = 0 after τDISC.end in C8 and
FRET ). Therefore, before τDISC.end,

Ċ8 = α0T0 − (Kdeg +Kfret)C8, (6)

so an approximated explicit solution for C8 is given by :

C80,τDISC.end
= C80e

−t(Kdeg+Kfret)

+
α0T0

(
1− e−t(Kdeg+Kfret)

)
(Kdeg +Kfret)

.
(7)

Integrating this solution in FRET equation:

FRET =
Kfret

Kdeg +Kfret
×

(
α0T0t

+

(
C80 −

α0T0

Kdeg +Kfret

)(
1− e−(Kdeg+Kfret)t

)) (8)

Setting: 
β0 = Kdeg +Kfret,

β1 =
Kfretα0T0

β0
,

β2 =
KfretC80 − β1

β0
,

(9)

we find a sigmoid formula for FRET :

FRET = (β1t+ β2

(
1− e−β0t

)
). (10)

Keeping the same notation, between τDISC.end and
τC8.final:

{
Z1 = 0,

Ċ8 = −β0C8.
(11)

Hence,
C8 = C8τDISC.end

e−β0(t−τDISC.end),

FRET =
KfretC8τDISC.end

β0

(
1− e−β0(t−τDISC.end)

)
+FRET (τDISC.end).

(12)
Equations (10) and (12) provide an approximated explicit
solution, denoted by FRETexp, for the time interval
[0, τDISC.end[, and between τDISC.end and the cell death,
respectively.
From this analysis, we improved our fitting method for the
next steps by using the FRETexp solution parameters to
have a better initial guess (see B) and divide our fitting
time by 4. It also gives a good idea of the main protagonists
of the extrinsic apoptosis (C80, pC80, Kdeg and α0).



Lastly, taking the power series of this explicit solution
recovers the empiric model from Roux et al. (2015), thus
confirming the straightforward model suggested in that
paper, as a simplification of a mechanistic and more
detailed signaling pathway.

4. TRAIL VARIATION IMPACT

To understand how TRAIL dose variations affect cell deci-
sion, the rEAICR model parameters (and the correspond-
ing caracteristic times) were estimated for each cell of 4
datasets from Roux et al. (2015), treated with 4 different
doses of TRAIL (5,10,25 and 50 ng/mL), using our new
fitting method (see B), and imposing the same T0 for all
the cells treated with the same amount of TRAIL (see A).

4.1 Measuring TRAIL effects on timeline

To characterize TRAIL variation effects on the cell time-
line, the 5 characteristic time checkpoints - τT.trigger,
τDISC.ass, τdrug.0, τDISC.end, τC8.final - are computed for
all the cells, along with 4 associated time-lapses:

(1) DISC formation phase (DISC-fp - [0, τdrug.0.]):
during this time-interval, Z0 reaches a maximum
before decreasing to 0. It seems that this time cor-
respond to the reception of the apoptotic message
sent by TRAIL binding on the cell. Then, when
Z0 reaches 0, the DISC complex starts to form :
T decreases toward 0 (all cells go toward the same
model equilibrium space T = 0), marking the end of
signal reception, R decreases until τDISC.ass toward
the value −3T0 + R0 (with mass conservation). pC8
lowers too.

(2) DISC action phase (DISC-ap - ]τDISC.ass,
τDISC.end]): Z1 represent the DISC in the system.
From τDISC.ass, and until τDISC.end, Z1 reaches its
maximum level and remains constant so we consider
this time-lapse as the DISC action. In addition,
τDISC.ass marks a turn-over in pC8 dynamics as
pC8 becomes linear. During this time, Z0 starts to
increase but very slowly, leading to the subsequent
decrease of Z1, initiating the end of the phase and
the major dynamic turn-over.

(3) C8 final decision (C8-fd - ]τDISC.end, τC8.final]):
the DISC influence is finished, only C8 keeps evolving.
The sensitive cells never reach this point but for the
resistant population, we thinks this is the last chance
to turn then into sensitive.

(4) C8 no possible turning back (C8-nptb - after
τC8.final until death)

Between τDISC.ass and τdrug.0, the two DISC involved
phases DISC-fp and DISC-ap overlap.

4.2 TRAIL dose influences the early stages of apoptosis

Comparing the distribution of the characteristic times,
and the associated time-lapses (only the mean value is
represented in Fig. 2-(c-1)), shows that an increase in
TRAIL affects mostly the beginning of apoptosis initiation
(before τdrug.0) in two different ways according to the drug
response.
For the resistant cells, more TRAIL means an earlier death

Fig. 2. Summary of the rEAICR model analysis
for the 4 drug doses (timeline and parame-
ter means distribution): a) Datasets description
(Roux et al., 2015); b) Comparison of the time-series
obtained with rEAICR model, the FRETexp solution
and the real FRET measurements for a sensitive and a
resistant cell of each dataset; c,d,e) Radar plots analy-
sis according to the TRAIL dose in ng/mL (1 dose=1
vertex): c) Mean timeline analysis according to the
drug response (sensitive in dashed line, resistant in
plain); d) Mean rEAICR parameter (init. cond. and r.
rates) values analysis according to the drug response;
e) Comparison between resistant and sensitive mean
values (gap = mean R

mean S )



signal trigger (τT.trigger is decreasing meaning that Z0
(T:R) reaches a first maximum earlier), smaller τDISC.ass

and smaller DISC action phase too, but a longer C8-final
decision phase. On the opposite side, the sensitive cells
benefit from bigger τT.trigger and τDISC.ass with a bigger
DISC formation phase too. However, the other time-lapses
do not seem linked to the TRAIL dose since they are only
notably changing at the IC50 (Fig. 2 -(c-2)).
Finally, the fraction between the mean time values for
resistant and sensitive cells confirms that the main differ-
ences between them are located before τdrug.0 for all doses
of drug, with strong variations for τT.trigger and τDISC.ass

between the two populations, when TRAIL increases (Fig.
2-(e-i)). However, these variations does not affect the gap
between resistant and sensitive in time-lapses. Indeed, for
the time intervals, the biggest gaps, between resistant and
sensitive cells, are observed for the DISC action phase and
the C8-final decision interval, but at the IC50 (25 ng/mL),
whereas it remains constant for the others TRAIL doses.

4.3 TRAIL variation differently impacts cells according to
their drug sensitivity

Figure 2-d/e compares the mean value for each of the
7 reaction rates, the 3 initial conditions of the rEAICR
model and the relative proportions (represented by a frac-
tion) of the 4 main protagonists of the extrinsic apoptosis
(C80, pC80, Kdeg and α0), as a function of drug response
and TRAIL dose received. This comparison reveals that
an increase in TRAIL has a more profound impact on
the reaction rate of sensitive cells, particularly on the
rates involved in the onset of the extrinsic apoptosis chain
reaction. In particular, K1, K2 (associated to the Z0
complex in the model) increase while Kdeg decreases for
the sensitive cells (Fig. 2-(d-1)). Theses variations suggest
that an increase in TRAIL lowers down C8 degradation
for the sensitive population whereas it does not affect the
C8 degradation rate for the resistant cells. Regarding the
initial conditions (Fig. 2-(d-2)), the sensitive population
also benefits from an increase in R0 when the initial dose
of TRAIL is higher.
For the resistant population, the augmentation of TRAIL
mainly affects the quantity of recruited proteins. Indeed,
the higher TRAIL is, the more R and C8 are initially
recruited for the resistant population. On the other hand,
the variation of TRAIL does not have such an impact on
their reaction rates, as shown by the average values of the
reaction rates as a function of the variation of TRAIL.
Comparing the evolution of pC80 upon TRAIL variation,
for the two phenotypes (resistant and sensitive), highlights
the fact that, even though the variation of pC80 is not so
important within each population, the deviation between
resistant and susceptible increases as TRAIL increases
(Fig. 2-(e-ii)). These two distinct progressions according
to the drug phenotypes are even more pronounced if we
compare the relative proportions between initial condi-
tions and reactions rates for C80, pC80, Kdeg and α0 (Fig.
2 (d-3) and (e-iii)).
Interestingly, for the parameters of the rEAICR model, the
largest differences in initial conditions and in the reactions
rates between resistant and sensitive, cells are obtained at
the IC50 of TRAIL (25ng/mL) (Fig. 2 - e).
In conclusion, an increase in TRAIL does not have a great

Fig. 3. FRETexp β parameters distribution according
to the drug response and common cell decision
threshold between life and death obtained with an
linear support vector classifier (> 85% of accuracy)

impact on the reactions rates or the initial conditions
within the two populations (resistant and sensitive) - even
though it significantly extends the ratio between initial
conditions and reactions rates. However, this drug aug-
mentation considerably enlarges the differences between
the two drug response populations, especially in the early
stages of apoptosis initiation (before τdrug.0).

4.4 A clear distinction between survival and death

Fig.3 reveals two distinct distributions for the FRETexp
parameters, whether cells are drug resistant or sensitive,
regardless of the initial amount of TRAIL. As the FRE-
Texp β depend on the initial amount of C8, but also on
the degradation (Kdeg) and the activation rate (α0) of the
initiator caspase (eq. 9), their dual distribution is a sign
of a complex biological threshold, with predictive value,
around C8 activity, that distinguishes cells in a sensitivity
or resistant state, but also confirms the central role of C8
in apoptosis (Roux et al., 2015).
Indeed, Fig. 3 reveals the conditions (reaction rate and
initial amount of protein) that cells must meet to be in a
susceptible state, thus paving the way for controlling the
cellular response to drugs. This clear difference between
the two phenotypes also offers a possible way to predict cell
drug response. Using only these 3 mechanistic parameters
and our location of the cell death decision time, we may
have the opportunity to create a new predictor of the
apoptotic decision.

5. DISCUSSION

In this study, we presented a new ODE model of TRAIL-
triggered extrinsic apoptosis initiation (EAICR) and used
it to analyze the timeline of cell fate decision. By studying
the dynamic balance between the proteins involved in
extrinsic apoptosis initiation, and the associated timing for
each cell, we located an initial cell fate decision just
after TRAIL binding which leads to a reduction of our
model (rEAICR) that recovers an explicit expression



for the caspase 8 and FRET early dynamics. The rEAICR
model was next much more accurately fitted for all the iso-
genic cells in 4 datasets from the same study (Roux et al.,
2015), varying TRAIL doses from 5 ng/mL to 50 ng/mL.
The characteristic time distributions obtained from these
data demonstrated that an increase in TRAIL has a
more profound impact on the onset of cell commitment to
apoptosis, but with two different ways of changing the
cell fate timeline depending on the sensitivity state
of the cell. The different ways in which resistant and
sensitive cells evolve, when the dose of TRAIL varies, are
caused by distinct model parameter distribution changes:
sensitive cells are characterized by an increase in their
reaction rates, while the resistant population is more af-
fected in terms of the initial amount of protein. Overall, we
show that increasing TRAIL dose amplifies the gap
between resistant and sensitive cells as reflected in
the values of the reaction rates, the amount of protein re-
cruited, and especially the ratio between the initial amount
of proteins and the reactions rates inside each of the two
populations which shift in opposite ways according to the
drug response phenotype.
Finally, the parameter distribution of the approximated
solution of the reduced EAICR model helps deciphering
how C8 dynamic affects cell decision, but also suggests
a potential mean of predicting (and potentially
controlling) drug response for any drug dose.
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PhD fellowship “Médecine Numérique” and by the RSE
Saltire early career fellowship.

REFERENCES

Albeck, J.G., Burke, J.M., Spencer, S.L., Lauffenburger,
D.A., and Sorger, P.K. (2008). Modeling a snap-action,
variable-delay switch controlling extrinsic cell death.
PLoS Biol, 6(12), e299.

Casagranda, S., Touzeau, S., Ropers, D., and Gouzé, J.L.
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Appendix A. DATA DESCRIPTION

Table A.1. Dataset description

TRAIL in T0 in the # Total # Tolerant # Sensitive
ng/mL model of cells cells cells

5 115 342 308 34

10 310 213 167 46

25 775 344 250 94

50 1550 414 114 300

Appendix B. AN IMPROVED FITTING METHOD

The improved fitting method follows 3 steps:

(1) Estimate the FRETexp function (8) parameters with
the fit function from the lmfit library.

(2) Compute the corresponding reduced EAICR param-
eters using eq. (9).

(3) Use the corresponding rEAICR parameters as initial
guess for the method described in Péré et al. (2020).

Appendix C. CARACTERISTIC TIME
COMPUTATION

For sensitive cells, if τi is greater than the death time,
taui=NaN; same for the resistant cells is τi > 24h:

i) τT.trigger: argmax
t

Z0(t), t ∈ [0, 1]

ii) τDISC.ass: min(t1, t2) with t1 first time to satisfy

Ṙ(t) < 5e−2) (t1 is the first time R stabilizes so its
derivative gets close to 0), t2 is the time when pC8
becomes linear with its coefficient equals to −2α0T0

so t2 is the first time when | ˙pC8 + 2α0T0| < 5e−2,
and 5e−2 being our threshold to consider the function
closer enough to 0.

iii) τdrug.0: argmin
t

T (t)

iv) τDISC.end: t first time to satisfies Z0(t) > pC8(t)
v) τC8.final: argmin

t
C8(t)


