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INTRODUCTION

Fractional killing due to non-genetic resistance is a major cause of therapeutic failure in preclinical assays of anticancer drugs, and the actual manifestation of drug efficacy. Indeed, all isogenic cells -sometimes in the same phenomenological state [START_REF] Purvis | p53 dynamics control cell fate[END_REF] -respond to cytotoxic drugs with different timing and magnitude, but only a fraction of them commit to apoptosis, a form of programmed cell death [START_REF] Roux | Fractional killing arises from cell-to-cell variability in overcoming a caspase activity threshold[END_REF]. Additionally, repeated experiments on several generations of clonal resistant cells [START_REF] Flusberg | Cells surviving fractional killing by trail exhibit transient but sustainable resistance and inflammatory phenotypes[END_REF], have shown that the same amount of sensitive cell is always observed in each round, even with saturating doses. Combined, this heterogeneous commitment to apoptosis on several generations leads to drug evasion, incomplete tumor clone eradication, and at the end, treatment failure [START_REF] Strasser | Cell death in the origin and treatment of cancer[END_REF].

Several studies combining mathematical modelling - [START_REF] Albeck | Modeling a snap-action, variable-delay switch controlling extrinsic cell death[END_REF][START_REF] Matveeva | Heterogeneous responses to low level death receptor activation are explained by random molecular assembly of the caspase-8 activation platform[END_REF] -and singlecell omics data -gene level: [START_REF] Purvis | p53 dynamics control cell fate[END_REF], signal transduction [START_REF] Roux | Fractional killing arises from cell-to-cell variability in overcoming a caspase activity threshold[END_REF], multi-omic scale [START_REF] Paek | Cell-to-cell variation in p53 dynamics leads to fractional killing[END_REF]) -have established several potential sources for this partial response to cancer drugs in isogenic populations at all omics stages, some of them directly linked to cell signalling dynamics and other coming from stochastic noise [START_REF] Hurbain | Theoretical study of the impact of adaptation on cell-fate heterogeneity and fractional killing[END_REF]. However, none of these studies were interested in the timeline of cell decision despite the increasing number of articles revealing the key-role of chemical reaction speed and timing in cell decision [START_REF] Paek | Cell-to-cell variation in p53 dynamics leads to fractional killing[END_REF][START_REF] Roux | Fractional killing arises from cell-to-cell variability in overcoming a caspase activity threshold[END_REF]. Indeed, we believe that the moment a cell takes its lethal decision tells us a long story about its sensitivity state [START_REF] Meyer | Profiling the non-genetic origins of cancer drug resistance with a single-cell functional genomics approach using predictive cell dynamics[END_REF]) and how we could predict and control its drug response.

In this study, we present an ODE model of extrinsic apoptosis triggered by death receptor ligands, calibrated on single-cell fluorescent ratio time-trajectories (FRET - [START_REF] Albeck | Modeling a snap-action, variable-delay switch controlling extrinsic cell death[END_REF]), of clonal HeLa cells, from [START_REF] Roux | Fractional killing arises from cell-to-cell variability in overcoming a caspase activity threshold[END_REF]. These cells are treated with 4 different doses of Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a death-ligand drug known for its high rate of resistant cells in clonal populations (fractional killing), even at saturating dose, and change in fluorescence when they react to the drug.

Analysing the timeline of the core reactions and the dynamic properties of the model with a principal process analysis, we identify regulatory steps of the cell decision, locating a first resolution upon TRAIL binding but also the existence of a ruling time frame during which the sensitive cells benefit from additional regulation at the receptor level, before cell death commitment. Comparing the mean timeline of the death inducing signalling complex (DISC) formation, according to the drug response when TRAIL dose increases, we show that this augmentation has different impacts, whether the cell is sensitive to the drug, or resistant. In particular, this study reveals that an increase in TRAIL doesn't affect so much the cell parameters and timeline inside each population (resistant and sensitive) but rather widens the gap between the resistant and sensitive cells. Finally, the distribution of three parameters of an approximated solution of our model -parameters directly related to caspase 8 activity -shows the existence of a clear biological threshold distinguishing sensitive from resistant cells, regardless of the drug dose. The double partitioning of these parameters highlights the central role of caspase 8 and paves the way for the prediction and control of the cellular response to drugs at the single cell level.

MODELING TRAIL-INDUCING EXTRINSIC APOPTOSIS

Mechanistic models of extrinsic apoptosis [START_REF] Albeck | Modeling a snap-action, variable-delay switch controlling extrinsic cell death[END_REF][START_REF] Chaves | Two-level modeling approach to identify the regulatory dynamics capturing drug response heterogeneity in single-cells[END_REF] usually consider many chemical reactions and proteins, sometimes too many to understand the role of each compound. Following this idea, in a previous work, we determined the key-proteins of extrinsic apoptosis transcriptional pathway [START_REF] Péré | Core models of receptor reactions to evaluate basic pathway designs enabling heterogeneous commitments to apoptosis[END_REF]. Therefore, our current Extrinsic Apoptosis Initiation Core Reactions model (EAICRm), obtained by applying mass action kinetic law (Fig. 1), only integrates the receptor (R) trimerisation when TRAIL (T ) binds to the cell, while it does not represent FADD and c-FLIP actions.

The major novelty of this system is incorporating all the steps leading to C8 activation, whether with the dimerisation of pC8 (p for pro, C for caspase), or with the recruitment of an already active C8. Hence, the dimerisation of pC8, which is required to activate C8, is modelled, as well as the C8/C10 clustering and the downstream feedback loop on C8. As in [START_REF] Péré | Core models of receptor reactions to evaluate basic pathway designs enabling heterogeneous commitments to apoptosis[END_REF], the effector caspases are grouped under the variable C ef f , and the intermediary complexes are denoted by Zi, i ∈ {0, 1, 2}. Finally, the model also accounts for the FRET activation by C8.

PRINCIPAL PROCESS ANALYSIS (PPA)

A PPA [START_REF] Casagranda | Principal process analysis of biological models[END_REF] evaluates the impact of each chemical reaction (represented by each equation term) on each protein (variable) all along the system simulation.

The EAICR parameters were estimated for each cell of the dataset from [START_REF] Roux | Fractional killing arises from cell-to-cell variability in overcoming a caspase activity threshold[END_REF]. This study records FRET time trajectories of clonal HeLa cells treated with (2020). Then, each fitted system were analysed with the PPA method.

Describing apoptosis dynamic timeline

To run a PPA, we first must split the simulation into caracteristic time checkpoints. We decided to base their definition on dynamic events (rather than using same-size steps) and divide our 10 hours of simulations into important time-slots corresponding to specific protein dynamic turnovers (in italic the mean value in min for cells treated with 50ng/ml of TRAIL (app. C for computation):

(1) τ T .trigger (1e-5 ) : Z0 reaches its first local maximum -it corresponds to the moment when TRAIL is in sufficient quantity to trigger a cellular reaction; (2) τ DISC.ass (1.15 ): at this time, the DISC assembly expands, R decreasing speed strongly draws down and pC8 becomes linear; (3) τ drug.0 (5.20 ): T falls down to the equilibrium T = 0, R stabilizes to -3T 0 + R 0 while Z1 reaches its local maximum Z1 = T 0 ; (4) τ DISC.end (400 ) : Z1 collapses to almost 0 and Z0 becomes bigger than pC8; (5) τ C8.f inal (412 ) : C8 reaches its maximum before decreasing (or remaining constant for the major part of sensitive cells)

Hence, we obtain 6 models summarised in table 1 p.3.

An early cell decision time

The PPA shows that the first changes between sensitive and resistant population happen after τ T.trigger and continue until cell death (before τ DISC.end for the sensitive), which locates the main events leading to fractional killing between these two times. Comparing resistant and sensitive dynamic during this timelapse reveals that K 2 Z1 comes into action sooner in the sensitive population and potentially add a regulatory effect on the DISC in the form of a positive feedback, driving the cell to death. Table 1 also highlights the significant impact of Z0 (T:R) and Z1 (DISC -T:R:2pC8) on every step of the cell fate. These complexes appear to be the decision-makers whereas C8 is simply the result of their actions. Finally, τ drug.0 marks the moment when the effective caspase downstream feedback is activated but, at least in this model, they seem not to have enough impact to really influence the cell's decision in most cases. We can also ]τ DISC.ass ,
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notice that C8 degradation disappears just after TRAIL binding, during the DISC formation phase. However, after τ drug.0 , it keeps gaining importance until τ C8.f inal . In summary, it seems clear that cells take a first decision before τ drug.0 . But the mechanisms responsible for cell fate implementation and regulation are really acting between τ DISC.ass and τ DISC.end .

Reducing Extrinsic Apoptosis Initiation Core Reaction model

The PPA method is originally designed to reduce the model size. Removing the chemical reactions important only for themselves all along the experiment, we obtain a reduced EAICR model (rEAICR):

                                   Ṫ = -K 1 T R 3 + K 1 Z0, Ṙ = -3K 1 T R 3 + 3K 1 Z0, Ż0 = K 1 T R 3 -K 1 Z0 + K 2 Z0pC8 2 +K 2 Z1 + α 0 Z1, ṗC8 = -2K 2 Z0pC8 2 + 2K 2 Z1, Ż1 = K 2 Z0pC8 2 -K 2 Z1 -α 0 Z1, Ċ8 = α 0 Z1 -(K deg + K f ret )C8, Ḟ RET = K f ret C8.
(1) Using mass conservation:

Ṫ + Ż1 + Ż0 = 0.

(2) As Z0 and Z1 are intermediary complexes, they are null at the beginning of the experiment and we get the following relation:

T + Z1 + Z0 = T 0 .

(3) Model simulation (data not shown but simulation parameters available), with different cell sets of parameters, show that between τ drug.0 and τ DISC.end , Z1 ≈ T 0 , (4) that leads to: ṗC8 = -2α 0 T 0 , (5) which gives us the slope of pC8 when it becomes linear . Hence, we approximate Z1 and Z0 with step functions by putting Z1 = T 0 between 0 and τ DISC.end (as τ drug.0 ¡6 min), and assuming Z1 = 0 after τ DISC.end in C8 and F RET ). Therefore, before τ DISC.end , Ċ8 = α 0 T 0 -(K deg + K f ret )C8, (6) so an approximated explicit solution for C8 is given by : C8

0,τ DISC.end = C8 0 e -t(K deg +K f ret ) + α 0 T 0 1 -e -t(K deg +K f ret ) (K deg + K f ret ) . (7) 
Integrating this solution in FRET equation:

F RET = K f ret K deg + K f ret × α 0 T 0 t + C8 0 - α 0 T 0 K deg + K f ret 1 -e -(K deg +K f ret )t (8) 
Setting:

         β 0 = K deg + K f ret , β 1 = K f ret α 0 T 0 β 0 , β 2 = K f ret C8 0 -β 1 β 0 , (9) 
we find a sigmoid formula for FRET :

F RET = (β 1 t + β 2 1 -e -β0t
).

(10) Keeping the same notation, between τ DISC.end and τ C8.f inal :

Z1 = 0, Ċ8 = -β 0 C8. (11) Hence,        C8 = C8 τ DISC.end e -β0(t-τ DISC.end ) , F RET = K f ret C8 τ DISC.end β 0 1 -e -β0(t-τ DISC.end )
+F RET (τ DISC.end ). ( 12) Equations ( 10) and ( 12) provide an approximated explicit solution, denoted by FRETexp, for the time interval [0, τ DISC.end [, and between τ DISC.end and the cell death, respectively. From this analysis, we improved our fitting method for the next steps by using the FRETexp solution parameters to have a better initial guess (see B) and divide our fitting time by 4. It also gives a good idea of the main protagonists of the extrinsic apoptosis (C8 0 , pC8 0 , K deg and α 0 ). Lastly, taking the power series of this explicit solution recovers the empiric model from [START_REF] Roux | Fractional killing arises from cell-to-cell variability in overcoming a caspase activity threshold[END_REF], thus confirming the straightforward model suggested in that paper, as a simplification of a mechanistic and more detailed signaling pathway.

TRAIL VARIATION IMPACT

To understand how TRAIL dose variations affect cell decision, the rEAICR model parameters (and the corresponding caracteristic times) were estimated for each cell of 4 datasets from [START_REF] Roux | Fractional killing arises from cell-to-cell variability in overcoming a caspase activity threshold[END_REF], treated with 4 different doses of TRAIL (5,10,25 and 50 ng/mL), using our new fitting method (see B), and imposing the same T 0 for all the cells treated with the same amount of TRAIL (see A).

Measuring TRAIL effects on timeline

To characterize TRAIL variation effects on the cell timeline, the 5 characteristic time checkpoints -τ T.trigger , τ DISC.ass , τ drug.0 , τ DISC.end , τ C8.f inal -are computed for all the cells, along with 4 associated time-lapses:

(1) DISC formation phase (DISC-fp -[0, τ drug.0. ]):

during this time-interval, Z0 reaches a maximum before decreasing to 0. It seems that this time correspond to the reception of the apoptotic message sent by TRAIL binding on the cell. Then, when Z0 reaches 0, the DISC complex starts to form : T decreases toward 0 (all cells go toward the same model equilibrium space T = 0), marking the end of signal reception, R decreases until τ DISC.ass toward the value -3T 0 + R 0 (with mass conservation). pC8 lowers too. (2) DISC action phase (DISC-ap -]τ DISC.ass , τ DISC.end ]): Z1 represent the DISC in the system. From τ DISC.ass , and until τ DISC.end , Z1 reaches its maximum level and remains constant so we consider this time-lapse as the DISC action. In addition, τ DISC.ass marks a turn-over in pC8 dynamics as pC8 becomes linear. During this time, Z0 starts to increase but very slowly, leading to the subsequent decrease of Z1, initiating the end of the phase and the major dynamic turn-over. (3) C8 final decision (C8-fd -]τ DISC.end , τ C8.f inal ]):

the DISC influence is finished, only C8 keeps evolving.

The sensitive cells never reach this point but for the resistant population, we thinks this is the last chance to turn then into sensitive. (4) C8 no possible turning back (C8-nptb -after τ C8.f inal until death)

Between τ DISC.ass and τ drug.0 , the two DISC involved phases DISC-fp and DISC-ap overlap.

TRAIL dose influences the early stages of apoptosis

Comparing the distribution of the characteristic times, and the associated time-lapses (only the mean value is represented in Fig. 2-(c-1)), shows that an increase in TRAIL affects mostly the beginning of apoptosis initiation (before τ drug.0 ) in two different ways according to the drug response.

For the resistant cells, more TRAIL means an earlier death signal trigger (τ T.trigger is decreasing meaning that Z0 (T:R) reaches a first maximum earlier), smaller τ DISC.ass and smaller DISC action phase too, but a longer C8-final decision phase. On the opposite side, the sensitive cells benefit from bigger τ T.trigger and τ DISC.ass with a bigger DISC formation phase too. However, the other time-lapses do not seem linked to the TRAIL dose since they are only notably changing at the IC50 (Fig. 2 -(c-2)).

Finally, the fraction between the mean time values for resistant and sensitive cells confirms that the main differences between them are located before τ drug.0 for all doses of drug, with strong variations for τ T.trigger and τ DISC.ass between the two populations, when TRAIL increases (Fig. 2-(e-i)). However, these variations does not affect the gap between resistant and sensitive in time-lapses. Indeed, for the time intervals, the biggest gaps, between resistant and sensitive cells, are observed for the DISC action phase and the C8-final decision interval, but at the IC50 (25 ng/mL), whereas it remains constant for the others TRAIL doses.

TRAIL variation differently impacts cells according to their drug sensitivity

Figure 2-d/e compares the mean value for each of the 7 reaction rates, the 3 initial conditions of the rEAICR model and the relative proportions (represented by a fraction) of the 4 main protagonists of the extrinsic apoptosis (C8 0 , pC8 0 , K deg and α 0 ), as a function of drug response and TRAIL dose received. This comparison reveals that an increase in TRAIL has a more profound impact on the reaction rate of sensitive cells, particularly on the rates involved in the onset of the extrinsic apoptosis chain reaction. In particular, K 1 , K 2 (associated to the Z0 complex in the model) increase while K deg decreases for the sensitive cells (Fig. 2-(d-1)). Theses variations suggest that an increase in TRAIL lowers down C8 degradation for the sensitive population whereas it does not affect the C8 degradation rate for the resistant cells. Regarding the initial conditions (Fig. 2-(d-2)), the sensitive population also benefits from an increase in R 0 when the initial dose of TRAIL is higher.

For the resistant population, the augmentation of TRAIL mainly affects the quantity of recruited proteins. Indeed, the higher TRAIL is, the more R and C8 are initially recruited for the resistant population. On the other hand, the variation of TRAIL does not have such an impact on their reaction rates, as shown by the average values of the reaction rates as a function of the variation of TRAIL.

Comparing the evolution of pC8 0 upon TRAIL variation, for the two phenotypes (resistant and sensitive), highlights the fact that, even though the variation of pC8 0 is not so important within each population, the deviation between resistant and susceptible increases as TRAIL increases (Fig. 2-(e-ii)). These two distinct progressions according to the drug phenotypes are even more pronounced if we compare the relative proportions between initial conditions and reactions rates for C8 0 , pC8 0 , K deg and α 0 (Fig. 23) and (e-iii)). Interestingly, for the parameters of the rEAICR model, the largest differences in initial conditions and in the reactions rates between resistant and sensitive, cells are obtained at the IC50 of TRAIL (25ng/mL) (Fig. 2 -e).

In conclusion, an increase in TRAIL does not have a great impact on the reactions rates or the initial conditions within the two populations (resistant and sensitive) -even though it significantly extends the ratio between initial conditions and reactions rates. However, this drug augmentation considerably enlarges the differences between the two drug response populations, especially in the early stages of apoptosis initiation (before τ drug.0 ).

A clear distinction between survival and death

Fig. 3 reveals two distinct distributions for the FRETexp parameters, whether cells are drug resistant or sensitive, regardless of the initial amount of TRAIL. As the FRE-Texp β depend on the initial amount of C8, but also on the degradation (K deg ) and the activation rate (α 0 ) of the initiator caspase (eq. 9), their dual distribution is a sign of a complex biological threshold, with predictive value, around C8 activity, that distinguishes cells in a sensitivity or resistant state, but also confirms the central role of C8 in apoptosis [START_REF] Roux | Fractional killing arises from cell-to-cell variability in overcoming a caspase activity threshold[END_REF]. Indeed, Fig. 3 reveals the conditions (reaction rate and initial amount of protein) that cells must meet to be in a susceptible state, thus paving the way for controlling the cellular response to drugs. This clear difference between the two phenotypes also offers a possible way to predict cell drug response. Using only these 3 mechanistic parameters and our location of the cell death decision time, we may have the opportunity to create a new predictor of the apoptotic decision.

DISCUSSION

In this study, we presented a new ODE model of TRAILtriggered extrinsic apoptosis initiation (EAICR) and used it to analyze the timeline of cell fate decision. By studying the dynamic balance between the proteins involved in extrinsic apoptosis initiation, and the associated timing for each cell, we located an initial cell fate decision just after TRAIL binding which leads to a reduction of our model (rEAICR) that recovers an explicit expression for the caspase 8 and FRET early dynamics. The rEAICR model was next much more accurately fitted for all the isogenic cells in 4 datasets from the same study [START_REF] Roux | Fractional killing arises from cell-to-cell variability in overcoming a caspase activity threshold[END_REF], varying TRAIL doses from 5 ng/mL to 50 ng/mL. The characteristic time distributions obtained from these data demonstrated that an increase in TRAIL has a more profound impact on the onset of cell commitment to apoptosis, but with two different ways of changing the cell fate timeline depending on the sensitivity state of the cell. The different ways in which resistant and sensitive cells evolve, when the dose of TRAIL varies, are caused by distinct model parameter distribution changes: sensitive cells are characterized by an increase in their reaction rates, while the resistant population is more affected in terms of the initial amount of protein. Overall, we show that increasing TRAIL dose amplifies the gap between resistant and sensitive cells as reflected in the values of the reaction rates, the amount of protein recruited, and especially the ratio between the initial amount of proteins and the reactions rates inside each of the two populations which shift in opposite ways according to the drug response phenotype. Finally, the parameter distribution of the approximated solution of the reduced EAICR model helps deciphering how C8 dynamic affects cell decision, but also suggests a potential mean of predicting (and potentially controlling) drug response for any drug dose.

Fig. 1 .

 1 Fig. 1. Extrinsic Apoptosis Initiation Core Reactions model (EAICRm) scheme 50ng/mL of TRAIL (T 0 = 1550 molecules), and observed for 10 hours. The calibration method is from Péré et al.(2020). Then, each fitted system were analysed with the PPA method.

Fig. 2 .

 2 Fig. 2. Summary of the rEAICR model analysis for the 4 drug doses (timeline and parameter means distribution): a) Datasets description (Roux et al., 2015); b) Comparison of the time-series obtained with rEAICR model, the FRETexp solution and the real FRET measurements for a sensitive and a resistant cell of each dataset; c,d,e) Radar plots analysis according to the TRAIL dose in ng/mL (1 dose=1 vertex): c) Mean timeline analysis according to the drug response (sensitive in dashed line, resistant in plain); d) Mean rEAICR parameter (init. cond. and r. rates) values analysis according to the drug response; e) Comparison between resistant and sensitive mean values (gap = mean R mean S )

Fig. 3 .

 3 Fig. 3. FRETexp β parameters distribution according to the drug response and common cell decision threshold between life and death obtained with an linear support vector classifier (> 85% of accuracy)

Table 1 .

 1 Principal Process Analysis Results -Only the reactions above 0.05 (in black) and the one above 0.0005 (in blue) for more than half of the cells (more than 57 cells for resistant and 150 for the sensitive population) are kept. The reactions available only for the sensitive population, and between 0.0005 and 0.05, are in purple and the sensitive reaction above 0.05 in red.
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Appendix B. AN IMPROVED FITTING METHOD The improved fitting method follows 3 steps:

(1) Estimate the FRETexp function (8) parameters with the fit function from the lmfit library. (2) Compute the corresponding reduced EAICR parameters using eq. ( 9). (3) Use the corresponding rEAICR parameters as initial guess for the method described in [START_REF] Péré | Core models of receptor reactions to evaluate basic pathway designs enabling heterogeneous commitments to apoptosis[END_REF].

Appendix C. CARACTERISTIC TIME COMPUTATION For sensitive cells, if τ i is greater than the death time, tau i =NaN; same for the resistant cells is τ i > 24h: i) τ T .trigger : argmax t Z0(t), t ∈ [0, 1] ii) τ DISC.ass : min(t 1 , t 2 ) with t 1 first time to satisfy Ṙ(t) < 5e-2) (t 1 is the first time R stabilizes so its derivative gets close to 0), t 2 is the time when pC8 becomes linear with its coefficient equals to -2α 0 T 0 so t 2 is the first time when | ṗC8 + 2α 0 T 0 | < 5e-2, and 5e-2 being our threshold to consider the function closer enough to 0. iii) τ drug.0 : argmin t T (t) iv) τ DISC.end : t first time to satisfies Z0(t) > pC8(t) v) τ C8.f inal : argmin t C8(t)