Fast and accurate gravitational-wave modelling with principal component regression - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Fast and accurate gravitational-wave modelling with principal component regression

Résumé

Inference from gravitational-wave observations relies on the availability of accurate theoretical waveform models to compare with the data. This paper considers the rapid generation of surrogate time-domain waveforms consistent with the gravitational-wave signature of the merger of spin-aligned binary black holes. Building on previous works, a machinelearning model is proposed that allows for highly-accurate waveform regression from a set of examples. An improvement of about an order of magnitude in accuracy with respect to the state of the art is demonstrated, along with a significant speed up in computing time with respect to the reference generation software tools.
Fichier principal
Vignette du fichier
paper.pdf (693.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03868278 , version 1 (02-12-2022)

Identifiants

Citer

Cyril Cano, Eric Chassande-Mottin, Nicolas Le Bihan. Fast and accurate gravitational-wave modelling with principal component regression. EUSIPCO 2022 - 30th European Signal Processing Conference, Aug 2022, Belgrade, Serbia. ⟨10.23919/EUSIPCO55093.2022.9909752⟩. ⟨hal-03868278⟩
70 Consultations
160 Téléchargements

Altmetric

Partager

More