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Anomalous Dissipation & Spontaneous Stochastic-
ity in Deterministic Surface Quasi-Geostrophic Flow

Nicolas Valade, Simon Thalabard, Jérémie Bec

Abstract. Surface quasi geostrophy (SQG) describes the two-dimensional
active transport of a temperature field in a strongly stratified and rotating envi-
ronment. Besides its relevance to geophysics, SQG bears formal resemblance
with various flows of interest for turbulence studies, from passive scalar and
Burgers to incompressible fluids in two and three dimensions. This analogy
is here substantiated by considering the turbulent SQG regime emerging from
deterministic and smooth initial data prescribed by the superposition of a few
Fourier modes. While still unsettled in the inviscid case, the initial value
problem is known to be mathematically well-posed when regularised by a
small viscosity. In practice, numerics reveal that in the presence of viscosity,
a turbulent regime appears in finite time, which features three of the distinc-
tive anomalies usually observed in three-dimensional developed turbulence:
(i) dissipative anomaly, (ii) multifractal scaling, and (iii) super-diffusive sep-
aration of fluid particles, both backward and forward in time. These three
anomalies point towards three spontaneously broken symmetries in the van-
ishing viscosity limit: scale invariance, time reversal and uniqueness of the
Lagrangian flow, a fascinating phenomenon that Krzysztof Gawedzki dubbed
spontaneous stochasticity. In the light of Gawedzki’s work on the passive
scalar problem, we argue that spontaneous stochasticity and irreversibility are
intertwined in SQG, and provide numerical evidence for this connection. Our
numerics, though, reveal that the deterministic SQG setting only features a
tempered version of spontaneous stochasticity, characterised in particular by
non-universal statistics.

1. Introduction

Viscous, incompressible fluid velocity fields v(x,t) solve the Navier—Stokes equations
with viscosity v
ov+v-Vvo=-Vp+rvAv, V-v=0. (1)

They evolve into an unsteady, turbulent state when the injection of kinetic energy over-
whelms viscous damping. This imbalance is measured by the Reynolds number Re
v~1, which in practice can reach very large values, from 10% for the aorta to 10'? in a
cyclone. To efficiently dissipate energy at large Reynolds numbers, the flows develops
violent structures at small scales, associated to large fluctuations of velocity gradients.
Strikingly, a finite energy dissipation persists when Re — oo, a phenomenon known
as the dissipative anomaly. When abruptly setting v = 0, the viscous Navier—Stokes
equations turn into the inviscid Euler equations, which are invariant under time reversal
(x,t,v) — (x,—t,—v). In physical terms, the persistence of a finite dissipation when
Re — oo suggests a mechanism of spontaneous symmetry breaking; Such remanent time
irreversibility has long been considered the main source of difficulties in turbulence mod-
elling. Mathematically, the dissipative anomaly originates from the intrinsically singular
nature of turbulent fields. Kolmogorov’s phenomenological arguments [[1] suggest that



velocity differences over a distance ¢ scale as |[v(x + £) — v(x)| ~ |[£|" with h =1/3,
thus implying that relevant fields in turbulence are rough, or non-differentiable. This
idea is formalised by the Onsager theorem [2H4], which states that the value h =1/3 ex-
actly corresponds to the minimal roughness needed to dissipate energy without the help
of viscosity. Onsager theorem suggests to define dissipative Euler flows as the natural
physically admissible solutions to the Euler equations. Recent work [, 6] shows however
that most singular initial data are wild, in the sense that they give rise to infinitely many
dissipative Euler flows. This suggests that the criterion of energy dissipation alone is not
enough to univocally prescribe turbulent fields from the Euler equations.

A natural set of ideas involves additional anomalies and other broken symmetries
of the Euler equations. In particular, turbulence displays systematic anomalous devia-
tions to Kolmogorov self-similarity: This phenomenon, dubbed intermittency, reflects the
breaking of the symmetry of the Euler equation under scale-invariance [7]: (x,t,v) —
(Ax, \'="t, \v) for A > 0 and h € R. Practical description of intermittency is usually
rooted in Kolmogorov’s hypothesis of refined self-similarity (K62) [8]], which in its more
popular version connects the scaling of velocity increments to the multi-fractal nature of
energy dissipation. The K62 connection between intermittency and time irreversibility is
however suggestive only, in the sense that refined self-similarity essentially points towards
a mechanism of multiplicative cascades, which in turn can be formulated in an intrinsic
fashion, and without relying on the modelling of a dissipation field [8H10]].

Spontaneous stochasticity is likely a third constitutive broken symmetry of Navier—
Stokes turbulence, with implications both for the Lagrangian and Eulerian flows. Specifi-
cally, the Lagrangian flow X (¢ | xy, to) tracks the positions at time ¢ > ¢, of fluid particles
located at x at time ty. One of Krzystof Gawgdzki’s major contribution to the modelling
of turbulent transport is the idea that incompressibility and roughness may conspire to-
gether to make this flow non-unique, eventhough the realisation of the velocity field is
prescribed [[11-13]]. Uniqueness of the Lagrangian flow is not, strictly speaking, a sym-
metry of the Euler equations. Yet, the framework of spontaneous stochasticity gives a
probabilistic interpretation strongly reminiscent of the mechanism of spontaneous sym-
metry breaking. The introduction of a small noise, sent to zero together with a small-
scale regularisation, leads to the explosive separation of fluid particles, which separate
in a finite time, no matter how close they initially are. This procedure also allows to
build well-defined probability measures over Lagrangian trajectories. As such, while it
is broken at a deterministic level, the Lagrangian flow is repaired and well-defined in a
probabilistic sense. To date, the scenario of spontaneous stochasticity for Lagrangian tra-
jectories has been well-formalised only for models of advection by random velocities or
simplified versions thereof [13-20]. For Navier-Stokes turbulence, it is substantiated by
consistent numerical and experimental observations of regimes of explosive separations
between fluid particles, a phenomenon known as Richardson’s super diffusion, and crucial
for the understanding of turbulent mixing (see [21] for a review).

In principle, the Eulerian flow is a deterministic mapping between initial and final
fields over prescribed time interval. Possible breakdowns of Eulerian flows connect to
a conjecture formulated by Lorenz in the late sixties, stating that multiscale fluid flows
could have a drastically unpredictable behaviour if their small scales were sufficiently
energetic [22, [23]. Spontaneous stochasticity provides a modern perception of this idea:
The dynamical evolution of singular velocity fields could be a mathematically ill-posed
problem, with a non-continuous dependence on initial conditions, therefore leading to
the finite-time separation of initially undistinguishable fields. This suggests that turbulent



velocity fields should perhaps not be treated individually, as is usually the case for partial
differential equations in physics, but rather in terms of probability measures. Recent
work shows that the idea of an intrinsic randomness applies both in simplified turbulence
models [24} 25] and in archetypical hydrodynamical instabilities [26} 27].

To date, the complex interplay between time irreversibility, intermittency and spon-
taneous stochasticity is elucidated — at least partially — in only few turbulent transport
problems, including in particular Burgers or Kraichnan flows. Burgers dynamics can
be interpreted as the pressure-less active transport of a velocity field by itself; The con-
nection between irreversibility, intermittency and spontaneous stochasticity is mediated
through the presence of shocks, in which clusters of fluid particles coming from different
regions of space and transporting distinct values of the initial velocity field get trapped. In
Burgers turbulence, the shocks constitute the only type of singular dissipative structures;
they prescribe the intermittency through their statistical distribution, and they provide a
breakdown mechanism for the Lagrangian flow (see, e.g.,[28]). While the forward flow
X (t| g, to), t > to is deterministic and univocally prescribes the destinies of fluid parti-
cles, the backward flow X (¢ | xg, o), t < to is non-unique, because particles trapped in
shocks loose the memory of their past positions. Explicit probabilistic constructions of
backward Lagrangian flows can be achieved in terms of backward Markov processes [29].
As to Kraichnan flow, they describe the transport of a passive temperature field by a pre-
scribed random Gaussian velocity ensemble, with correlations essentially given by

<\'v(:c +e,t+7)— v(cc,t)|2> o [€* (1), he(0,1), 2)

namely statistics which are uncorrelated in time and Kolmogorov-like in space. In Kraich-
nan flows, Lagrangian particles behave as Markov processes, which map to Brownian
trajectories under suitable rescaling. From the Feynman—Kac representation of partial
differential equations, one can explicitly compute their statistics in terms of parabolic
boundary-value problems, involving forward generators £,, associated to n-point motion.
Solving the boundary-value problems requires selecting specific zero-modes of the for-
ward generators. In particular, the zero-modes determine both the anomalous scaling of
n-point correlation functions, namely the intermittency, and the separation statistics of
particles, namely the Lagrangian spontaneous stochasticity [[13-16) [18]. Strictly speak-
ing, Kraichnan model does not entail any notion of time irreversibility at the level of
the velocity field. Still, fluctuation-dissipation formulas derived from stochastic repre-
sentation of the temperature field connect Lagrangian spontaneous stochasticity to the
dissipation of the scalar energy [13} 30].

Understanding the complex interplay between the three broken symmetries remains
a challenge in the Navier—Stokes case. Unlike Burgers, the topological nature of the dis-
sipative structures is unknown. Besides, it is unclear how to extend the notion of zero
mode to non-Markovian and non-linear settings. The purpose of this work is to discuss
the case of Surface Quasi-Geostrophic (SQG) flows, which describe the two-dimensional
active transport of a temperature scalar field in a strongly stratified and rotating envi-
ronment [31H33]]. From a fundamental perspective, SQG shares formal analogies with
3D Navier—Stokes, and as such has received much attention both from the mathemati-
cal community, on topics related to the development of singularities, non-uniqueness and
the Onsager theorem [34-36], and from the physical community on topics related to cas-
cades, intermittency, transport and predictability [32} 133) [37-40]]. We here specifically
discuss the turbulent state emerging from a deterministic initial condition, prescribed by
a few large-scale Fourier modes, and for which viscous regularisation ensures global ex-



istence of the solution. In practice, numerics reveal the emergence of a turbulent state in
finite-time, which shares the three broken symmetries of Navier—Stokes turbulence. Due
to the specific features of SQG transport, the bridging mechanisms also share features
with both Burgers and Kraichnan flows. Similar to Kraichnan flows, the spontaneous
stochasticity is evidenced both for forward and backward trajectories. Similar to Burgers
flows, breakdown of the Lagrangian flow connects to anomalous dissipation of the ad-
vecting field. Our numerics however point towards the fact that SQG stochasticity might
be present in a tempered version only, characterised in particular by non-universal statis-
tics: This means that the statistics obtained in the double limit of vanishing viscosity and
perturbation might be highly sensitive to the way the latter is taken.

The paper is organised as follows. Section [2] introduces SQG flows, focusing on
formal analogies and differences with various flows of fundamental interest, from Burg-
ers and passive scalar to 2D and 3D Navier-Stokes flows. We discuss freely evolving
SQG from analytical initial conditions, and argue from numerics that a turbulent regime
emerges, which realises the scenario of an active scalar a la Kolmogorov. Section
focuses on spontaneous stochasticity. We discuss the connections between Lagrangian
backward stochasticity and anomalous dissipation that come from incompressibility and
the stochastic representation of advection. We then provide numerical evidence for La-
grangian stochasticity, both forward and backward in time. In particular, varying the
Reynolds number, we evidence a persistent Richardson superdiffusion, with strong corre-
lations to the statistics of the dissipation. We highlight the fact that, unlike in 3D Navier—
Stokes, the observed SQG superdiffusion retains dependence upon the initial separation,
hereby signalling tempered stochasticity. Section 4 draws concluding remarks, and sug-
gests possible scenarios for the tempered nature of SQG stochasticity.

2. An active scalar a la Kolmogorov

2.1. A two-dimensional analog of three-dimensional Navier—Stokes turbulence

SQG dynamics is described in terms of a surface temperature field 6(x, ) that solves
00 +v-VO=vA0, withv= (-0, 0,9) and |A|'?¥ =6, (3)

which is nothing but the transport and diffusion of an active scalar. The advecting in-
compressible velocity v is itself controlled by the temperature through a functional re-
lation v = R*6. This non-local relation simply corresponds to the Fourier multiplier
O = i(k/|k|)* O, where k- = (—ko, k1)" and ¥y, and 0, are the Fourier transforms of
velocity and temperature associated to wavenumber k, leading to straightforward numer-
ical simulations by pseudo-spectral methods. Because the R+ operator is homogenous of
degree 0 in k-space, the active surface temperature ¢ and the advecting velocity v have the
same dimension and share the same power spectrum. This leads to draw a formal analogy
between SQG and Burgers flow, which can be seen as a 1D version of Equation (3).
SQG dynamics has actually much in common with the transport of vorticity in 2D
Navier—Stokes flows. In particular, SQG flows also have two inviscid quadratic invariants,
which we denote as
H(t) == % Z k| 1|05 (1) (Hamiltonian)
1 1 I
§< ) = 5 (Jv]*) = Z 10 (1)), (Surface kinetic energy)



where the angular brackets (-) stand for spatial averages over [0, 27]%. They play roles
similar to energy and enstrophy in 2D Navier—Stokes turbulence [32]: In a developed
turbulent regime, the Hamiltonian carries out an inverse cascade towards large scales,
while the surface kinetic energy flows down to small scales where it is dissipated by large
gradients of . Analogies with 2D hydrodynamical turbulence are however at odds on
one crucial aspect. While the 2D direct cascade of enstrophy involves a smooth, dif-
ferentiable flow, the cascade of surface kinetic energy implies rough, non-differentiable
velocity fields. Kolmogorov’s phenomenology predicts for instance that in SQG turbu-
lence, the temperature field, as well as the velocity, have spatial increments that scale as
500 = |0(x + €) — 0(x)| ~ £*/3, similarly to 3D Navier—Stokes. However, direct numer-
ical simulations of SQG in the presence of forcing find that the power spectrum E(k) of
the surface temperature is steeper than the Kolmogorov prediction k~5/3(see [33]] for a
review): This is likely a signature that, as in 3D Navier—Stokes, SQG turbulence features
intermittency [38) 41].

The analogies between SQG and 3D Navier—Stokes have motivated over the last
decades a considerable interest among mathematicians. Following the seminal work of
Constantin et al. [34], attention has predominantly focused on the well-posedness of the
initial-value problem in the inviscid case v = 0. Although local existence and uniqueness
of regular solutions are granted, the possibility of finite-time singularity from smooth ini-
tial data remains open — see [42] for a recent review. In the scenario originally proposed
in [34], the development of a singularity would require the presence of hyperbolic point
in the initial level sets of the scalar. This scenario has been ruled out [43-45]], but an al-
ternative framework where patches of surface temperature undergo a self-similar cascade
of shear instabilities, gives strong evidence in favour of finite-time blowup [46].

Besides quests for singularities, results have been obtained on the weak formula-
tion of SQG dynamics (3). Global existence of weak solutions with bounded surface ki-
netic energy is proven in [47]. However, convex integration techniques, which are proved
successful for the Euler equation, face here difficulties because the Fourier multiplier re-
lating v and @ is an odd function of wavenumbers [48]. Attention has mostly focused
on solutions that violate the conservation of the Hamiltonian H(¢). The SQG version of
Onsager’s theorem is the conjecture that # is dissipated if and only if 5,¥ ~ (™" with
h < 0. While, it was shown in [48]] that solutions with & > 0 conserve the Hamiltonian,
singular flows that dissipate H can only be explicitly constructed when h < —1/5, at
least to this day [36]. If one has in mind, though, a cascade-like mechanism towards the
small scales, we expect the surface kinetic energy & rather than the Hamiltonian # to be
anomalous, so that the dissipation rate ey = v (|V|?) has a finite limit when v — 0.
As for 3D Euler, this should require 5,0 ~ ¢" with h < 1/3 but, to our knowledge, only
the necessary condition has be proven for this Onsager-like criterion [49]]. Furthermore,
the question of uniqueness or non-uniqueness for 4 < 1/3 remains unsettled, even if
the rigidity results of [48]] indicate that the vanishing viscosity limit could be well posed.
From a mathematical viewpoint, it is thus today unclear whether SQG dynamics is ex-
pected or not to display Eulerian spontaneous stochasticity. Still, numerical simulations
of SQG dynamics in the presence of forcing suggest the presence of an inverse cascade
of errors [23, 39]].

Lagrangian spontaneous stochasticity is nevertheless likely to underpin the sepa-
ration of tracers in SQG flows. The numerical simulations of [37, 40] demonstrate that
pairs separate in a superdiffusive manner. The average squared distance between tracers
follows approximately Richardson’s law R* oc ¢® at large-enough times, in agreement



with dimensional expectations. Nevertheless, dependence upon either the initial separa-
tion R(0) or viscosity has not been fully sorted out. The explosive nature of Lagrangian
dispersion thus remains largely unsettled.

The considerations above and related open questions provide motivation for revisit-
ing SQG flows in the light of its broken symmetries, in particular time irreversibility and
spontaneous stochasticity. This work aims to be a first step in this direction. To stay as
close as possible to the mathematical problems, we restrict our study to SQG flows freely
evolving from deterministic smooth initial conditions.

2.2. Turbulence from analytical initial conditions

We consider decaying solutions to the SQG equation (3), whose initial condition at time
t = 0 is smooth, analytic and consists of the superposition of a few Fourier modes. The
idea is to highlight that, even if the question of a finite-time blowup remains open for
v = 0, such solutions display turbulent features in the asymptotics of small viscosities.
More specifically, we consider the initial condition introduced by Constantin et al.

O(x,0) = cos g — sinzy sin zs. 4

The surface kinetic energy at time ¢t = 0 is £ = 3/8, so that the typical time and veloc-
ity scales are of the order of unity. Numerical simulations are performed using a fully-
dealiased pseudo-spectral method at various resolutions and values of the viscosity (see
Tab. [I). As seen in the left panels of Fig. [I] the solution here shown for Run IV, starts
smooth (t = 4), develops a quasi-singular filament (¢ = 8) that continues to get stretched
and folded by the flow (t = 16). At a large-enough time (¢ = 32), these filaments have
destabilised, activating a wide range of scales in the active scalar field.

t=4

2T

.
=
=
53]

T2

10 107 102 10°

Figure 1. Left: Snapshots of the surface temperature 6 for v = 107° (Run
IV), at times before (t = 4, 8, 16) and after (¢ = 32) the turbulent regime has
settled. Right: Shell-averaged power spectrum of the surface temperature field
E(k,t) = 1 D k1< |k|<k |01 (t)|? computed at the same instants of time. The solid

lines correspond to behaviours o k2 and oc k~%/5.

The corresponding power spectra are shown in the right panel of Fig. [T} The de-
velopment of a quasi-singular behaviour at time ¢ ~ 8 goes with the development of an
intermediate range where E(k) approximately scales as k=2, which is consistent with the



Run I 1l 111 WY \
v 3x107* 107 |3x107° 107° 3x107°
N? 10242 10242 20482 40967 81922
At 4x107* | 4x107* |2x107* 10~* 5x107°
n(t=32) | 1.7x107% | 7.7x107% | 3x 107 | 1.3 x 107 | 5.3 x 10~*

Table 1.

Parameters of the different numerical simulations: viscosity v, number

of collocation points N2, time step At, dissipative scale 7 = (3 /(gg))'/* at time
t = 32, where (g¢) is the spatially averaged dissipation rate of surface kinetic energy,
as defined in . Each run additionally contains N;, = N? Lagrangian particles.

measurements of Ohkitani and Yamada [43]. This scaling can be explained as the signa-
ture of discontinuities of the temperature field § occurring on lines, as visible from Fig.[Tp.
At larger times, the solution experiences a series of quasi-singular episodes. As visible
in the spectrum at time ¢ = 16, they materialise as waves that propagate towards large
k’s. The solution’s power spectrum gets gradually less steep and approach the behaviour

closer to k~°/3 expected in the developed turbulent regime.

Run IIT

Figure 2.
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Left: Snapshots at time ¢t = 32 of 6 in the quadrant [0, 7]? for v =

3 x 107 (top) and v = 3 x 10~% (bottom); The colour scale is the same as in Fig.
Right: Spatially averaged dissipation rates () of the Hamiltonian # (up) and (gp)
of the surface energy £ (bottom), as a function of time for the different values of the

viscosity v.

We now turn to dependence of the turbulent regime upon the viscosity v. The
right panels of Fig. [2] display snapshots of the solution at time ¢t = 32 for two different
viscosities. One clearly observes that decreasing viscosity leads to the formation of thiner
filaments that are more likely to destabilise and create structures at even smaller scales.
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This picture agrees with the scenario of cascading shear instabilities studied in [46]. The
left panels of Fig. 2] show for the various v, the time evolutions of the dissipation rates

(eg) = _drt v(VU-VE) and (g) = —% = v (|V|*), Q)
where, as before, (-) denotes spatial average. Measurements indicate that the dissipation
of H seems to decrease proportionally to » when we approach the inviscid limit, indicating
the absence of dissipative anomaly for the Hamiltonian. Conversely, the dissipations of
& associated to different viscosities collapse to a behaviour independent of v at large-
enough times. This gives evidence that an anomalous dissipation of the surface kinetic
energy could persist in the limit » — 0. Note that the time needed for such a regime
to establish seems independent of the viscosity, at least in the range of values that is
considered here. Indeed, all curves on the bottom-right panel of Fig. 2] are pinched at
a time fty,, ~ 27 — 30. This means that either (i) dependence of this timescale on
viscosity is very weak (almost invisible over two decades), or (ii) a specific singular event
occurs at this time in the inviscid solution. The first option could for instance result
from a double exponential growth of temperature gradients [43], 44], which would lead
to the double-logarithmic behaviour t,,1, ~ log(|logr|), impossible to detect from our
simulations. The second option might involve the hurling cascade of shear instabilities
of [46]], but before the solution has to cross several almost-singular events (illustrated for
instance in Fig [Ib and c), where temperature gradients become so large that even very
small viscosities are brought into play. Such an eventuality could be a hindrance to detect
any blowup with current computational means.

Regardless of the presence or not of finite-time singularities, a turbulent regime set-
tles at large-enough times ¢ > t;,,1,. Remarkably, the decaying solution develops features
that are very similar to those observed for statistically stationary solutions sustained by an
external forcing. Besides power-law behaviours of energy spectra, the solution displays
features expected for an intermittent turbulent field. The left-hand panel of Fig. [3] shows
the time evolutions of the normalised fourth-order moment F := (|VO|*) / (|V0|2)* of
the temperature. The curves associated to different values of the viscosity remain approx-
imately parallel to each other, indicating that gradients feature an anomalous scaling as a
function of v, as known to occur in 3D Navier—Stokes turbulence [50].

To characterise further ¢, we have also studied the distribution of the coarse-grained
dissipation (eo), (z,t) := (1/7€?) [, _,, €o(x+r, t)d*r. Turbulent dissipation fields are
expected to strongly deviate from self-similarity and to rather display multifractal statis-
tics (see, e.g., [7]). In particular this means that the coarse-grained dissipation scales
as (gg)e/(c9) ~ (¢/L)* on a fractal set of dimension D(«), i.e. with a probability
o (¢/L)> P | As seen on the right-hand side of Fig. [3| the distributions of the sin-
gularity exponent o obtained for various scales ¢ collapse on the top of each other. This
is in agreement with multifractal statistics and the resulting master curve provides an ap-
proximation of D(«). It is worth mentioning that estimating these distributions required,
in addition to spatial averages, a time average over ¢t € [40,50]. Similarly to Navier—
Stokes turbulence [7, 50], multifractal distributions of the coarse-grained dissipation can
be used to predict through saddle-point arguments how the moments of the temperature
gradients scale as a function of viscosity. Their flatness is for instance expected to behave
forv — 0as F ~ v~ where 4 = sup,[3(D(«) —2 —2«)/(4+ «)]. The approximation
of D(«) obtained numerically leads to v, = 0.4 £ 0.05, which is consistent with our data
(see the inset of the right panel of Fig.[3). These results on the intermittency of the active
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Figure 3.  Left: Time evolution of the flatness F of temperature gradients
V@ (or equivalently of the normalised variance of eg) for different viscosities.
Right: Probability density functions p(«) of the local scaling exponent o :=
log ((g9)¢/(gg)) /log(¢/L) of the coarse-grained dissipation (g4}, for v = 107°
(Run IV) and over various scales ¢ as labelled. Here p(ay) = sup, p(«) and we
have chosen L = 2. Inset: same as the left-hand panel, but rescaling this time JF
with v~ with here v4 = 0.4.

scalar  further support analogies between SQG and 3D Navier—Stokes, which share a
clear break-up of scale-invariance symmetries.

3. Anomalous dissipation and spontaneous stochasticity

3.1. From fields to trajectories

We now turn specifically to the issue of spontaneous stochasticity. For SQG, the presence
of anomalous dissipation implies the breakdown of Lagrangian flows, both backward and
forward in time. This connection essentially stems from the stochastic representation
of advection, involving backward-in-time statistical averages over tracers [13, 51], and
which applies to both passive and active transport [30]. The feature specific to SQG is the
fact that the scalar dissipation identifies to the energy dissipation.

Following the terminology of [13]], tracers designate noisy Lagrangian fluid parti-
cles. Specifically they solve for s >0 the stochastic differential equations

AX (s|x,t) = v(X(s|x,t),s)ds + V2w dW,, X(t|z,t) ==, (6)

where W, denotes the 2D Brownian motion. This evolution defines for s > ¢, forward
trajectories emanating from « at time ¢, and for s < ¢, backward trajectories winding to
x at time ¢. In lieu of the Lagrangian flow, tracers determine the transition probabilities

Py, s|x, t;60p) dyidys == PY[ X (s| x,t) € [y1, y1+dya] X [y, y2+dys]] . @)

Here and in the sequel, P” and E” denote probability and expectation with respect to
the Brownian motion W;. These probability densities are defined both forward (for s >
t) and backward (for s < t). Owing to incompressibility, forward and the backward
densities relate to each to other through

Py, s|x,t;00) = p"(x,t]y,s:6). (8)

1t6 calculus [52] provides the stochastic representation for the temperature field in terms
of backward averaging

O0(x,t) = E"[0o(X (0] x,1))] = /90(y)p”(y70|w,t;€o)d2y, )

9



together with the fluctuation estimate

t
E"[[0(x, 1) — 06(X (0] 2, 1))]*] = 2v / E'[|VO(X (s|2.1), )]s (10)
0
Expanding the left-hand side of using both the representation (9)) and the incompress-
ibility condition (8]), one obtains the following stochastic representation for the dissipation
of scalar variance, or equivalently of the surface kinetic energy

£0) =) = [ 2(s)ds = o5 [ [1w.01@.6:00) 0(.0) = fow) oy, 1D

This relation is the SQG-version of a kinematic criterion highlighted by Gawedzki in
his lectures notes on the passive scalar problem [13]. As pointed out in [30] for more
general settings, Equation (T1)) is a fluctuation-dissipation relation, which ties the dissi-
pation of an Eulerian inviscid invariant to the fluctuations of the temperature field along
the Lagrangian paths. The presence of a dissipative anomaly implies that the transition
probability is not concentrated on deterministic paths. In the vanishing viscosity limit,
where the tracers (6)) formally become deterministic Lagrangian particles, the persistence
of a kinematic dissipation on a finite time interval therefore implies the breakdown of the
backward Lagrangian flow. In that sense, this mechanism ressembles the Burgers phe-
nomenology recalled in the introduction. Yet, there is a fundamental difference: From
incompressibility and the relation (8)), the breakdown of the backward Lagrangian flow
implies that the forward Lagrangian flow also breaks down.

3.2. Numerical evidence for Lagrangian spontaneous stochasticity

From Eq. (I1)), we inferred that the time irreversibility of SQG, measured at the level of the
surface kinetic energy, implies the presence of Lagrangian stochasticity, both forward and
backward in time. For the turbulent regime discussed in§2.2] the apparent collapse from
twurb ~ 30 for the evolution of the dissipation of Fig. [2] suggests finite-time emergence
of anomalous dissipation in the limit # — (0. Although in an indirect manner, this points
towards the presence of non-deterministic trajectories in the inviscid limit. To substantiate
this possibility from direct numerical observations, we estimate the transition probabilities
p” given by Eq. using Monte-Carlo sampling of Lagrangian particles seeded in the
flow. We use statistical averages over puffs of particles extended over a few 7 to estimate
averages over the Brownian noise. In other words, we use the identification

BT =~ (), (12)

with /,, prescribed of the order of n = (v3/g4)/*. We evaluate the relative separation of
pairs of tracers that coincide in « at time ¢, both forward and backward in time, as

(R (7 |2,t)), = <|X(t e t) — X'(t+7 |, t)|2>z (13)

v

with X and X' solutions associated to independent realisations of the Brownian motion
in Eq. (6). In principle, this quantity relates to the transition probability p, through

<R2(j:7\w,t)>e ~ / ly —y/'Ppy, t £ 7|z, t) p(y, t £ 7|2, t) d*y d*y

2(B"[|X(t£7|z, )] - [E"[X(t£7|z,1)]]%). (14)
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Figure 4. Left: Backward mean-squared separation shown as a function of x for
t = 70 and 7 = 5 for Run IV. Center: Dissipation field eo(z,t) = v|Vl(z,t)|>
Right: Forward mean-squared separation. See text for definitions.

This shows that the relative separation simply prescribes the variance of the tracers start-
ing or ending in z at time ¢. Hence, the persistence of non-zero values of (R*(+7 | x,t)),
when v — 0 signals non-deterministic transition probabilities in the inviscid limit.

The left and right panels of Fig. ] show the typical maps observed for the backward
and forward relative separations computed from ¢ = 70 in the turbulent regime, and over
a time lag 7 = 5. The central panel shows the dissipation field at the same instant of time.
The correlation between these three fields is spectacular, with no apparent distinct features
between forward and backward statistics. At a qualitative level, this is consistent with
both the SQG fluctuation-dissipation relation (TT) and the signature of incompressibility
(8). Such a triptych representation substantiates the picture suggested by Fig. (2) and the
analysis of §3.1} SQG irreversibility implies Lagrangian spontaneous stochasticity.

107 =107
g /";
B ©
T 107 & 107
\\// ~—
1070=1 107 0" 1070=1 10" 0"
T T

Figure 5. Mean-squared separations of pairs of tracers within puffs of sizes ¢, = 37 at
t = 70, backward (left) and forward (right) in time, for various values of the viscosity,
as labelled. The black lines show behaviours o< 73 as expected from Richardson law.

For more quantitative assessments, we have plotted in Fig. [5] the backward and for-
ward average relative separations for puffs of size ¢, = 37, at fixed ¢ = 70 and decreasing
values of the viscosity. In both cases, one observes a collapse of the statistics along a
super-diffusive regime, compatible with Richardson’s scaling oc 73, although with possi-
ble deviations. As the viscosity decreases, the convergence towards Richardson’s regime
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gets faster: This is a direct suggestive numerical evidence for the presence of Lagrangian
spontaneous stochasticity, characterised by the scaling regime extending down to 7 = 0%
in the joint limit » — 0 and ¢, — 0. In that limit, this signals finite-time separation of La-
grangian trajectories and non-deterministic nature for the limiting transition probabilities
lim, . p, — provided that the identification indeed holds.

Besides spontaneous stochasticity, Figure [5] hardly reveals any additional sign of
time irreversibility. In particular, there is no clear evidence that trajectories separate faster
backward than forward in time. This is at variance with 3D Navier-Stokes turbulence,
in which the backward mean-squared separation is observed to grow almost twice faster
than the forward one [33-57]. In our case, deterministic contributions, large-scale fluc-
tuations, and possible intermittent corrections to Richardson’s scaling prevent us from
unambiguously estimating constants in front of the apparent ¢* scaling law. Neverthe-
less, the backward-forward asymmetry becomes more visible when further conditioning
on the local dissipation rate (go(x,t)), = e. We then write ((R*(£7|x,t, 1)), | ) for
the mean-squared separation from puffs with dissipation level €. As seen in Fig. [6] pairs
located in highly dissipative puffs (shown in red) have approached significantly faster
than they subsequently separate. However, events that dissipate less than the average (in
blue) show a slower dispersion backward than forward. This inverse tendency might com-
pensate the bias due to dissipative events, possibly explaining the feeble manifestation of
irreversibility in the total average of Fig. [5

—4 . . .
0215 =05 00 .5 1.0 1.5 2.0

a « log(e/(cp))

Figure 6. Mean-squared separation conditioned on the local dissipation at ¢ =
70, backward (top left) and forward (fop right) in time. Different colours corre-
spond to different values of ¢ = (gg)3, as outlined on the histogram of o =
log ((g¢)¢/(c9)) /log(£/L) in the bottom panel.

3.3. A tale of tempered stochasticity?

Beyond the super-instability and breakdown of the Lagrangian flow evidenced in §3.2]
another facet of spontaneous stochasticity relates to its universality, and explicitly, to
whether the limiting transition probabilities depend or not on the way the limit is taken.
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In the Kraichnan model, such a universality essentially holds when the advecting flow is
incompressible: In that case, for example, the relative separation of tracers becomes inde-
pendent of any small-scale regularisation of the underlying flow, provided separations are
taken in the inertial range of scales. For 3D Navier—Stokes turbulence, there are strong
indications that such a scenario applies: When initial separations are larger than a few
7, backward and forward Lagrangian trajectories converge towards a universal scaling
regime, R*(+7) ~ gpet® with g, ~ g_/2 ~ 0.55 independent of 1 [55-58]]. Figure

BN N N
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Figure 7. Mean-squared separation of pairs of tracers within puffs of various sizes ¢
att = 70, from Run IV, backward (left) and forward (right) in time, with £ spanning
the inertial range, as labelled.

indicates that, quite surprisingly, the stochasticity observed in our SQG deterministic set-
ting is more tempered: The statistics of the relative separation (R*(+7 |z, t)), measured
for pairs of travers within puffs of various inertial extensions ¢’s do not collapse towards
a universal regime. Instead, the anomalous diffusions have a non-universal prefactor that
decreases with £. Such a non-universality is reminiscent of the weakly compressible phase
observed in Kraichnan flows [13} [15]], for which compressibility and roughness compen-
sate each other, resulting in the small-scale behaviours of tracers trajectories fully deter-
mining their large-scale separations. As SQG flows are incompressible, the origin of such
a behaviour is however not settled but could likely be due to non-trivial Lagrangian time
correlations [18], and the deterministic nature of the large-scale flow.

The same type of anomalous but non-universal behaviour is seen at the level of
Eulerian predictability. Figure 8] shows the time evolution of the separation energy

£r) = S (091 +7)— 6,1+ 7)°), (15)
where the temperature field §*) is obtained from the reference field , by perturbing it
at time ¢ with a spatial white-noise of amplitude /2, so that £,(0) = «. In the case of
intrinsic stochasticity a la Lorenz, one would expect the separation energy (13)) to display
a universal scaling regime that becomes independent of ~ and extends towards 7 = 0"
in the limit v — 0 [27]. While for a fixed v, there is evidence for an initial chaotic,
exponential stage &,.(7) ~ ke, as well as for a later anomalous, algebraic separation
regime, the latter is not universal, as both scaling and pre-factor depend upon the size x
of the initial disturbance. Of course the lack of clear scaling law might be due to finite-
size or viscosity effects. Still the lack of convergence towards a universal regime indicates
that the intrinsic scenario a la Lorenz might also be tempered, or even simply not realised.
Indeed, our numerics cannot rule out that £, — 0 as x and v — O.
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Figure 8. Left: Snapshots at t + 7 = 50 of the solution (*) perturbed at ¢ = 30 with
white noise of energy x = 1.5 % 1074 (top) and 1.5 x 10~ (middle), together with
the unperturbed case (botfom). The small panels show corresponding zooms in the
region delimited by the black square. Right: Time evolution of the separation energy
&, defined in (]E[) for various x, with lin-log (fop) and log-log (bottom) coordinates.

At a qualitative level, the snapshots in Fig. [§|show that, while mesoscale features at
¢ ~ 27 /10 and large-enough times differ for the various realisations, the large scales re-
main essentially undistinguishable. Our measurements contradict the scenario of a finite-
time inverse cascade of errors that one would expect from simple models reproducing the
k~5/3 energy spectrum [39,/59]. As for Lagrangian statistics, the mechanism opposing the
cascade of errors is unclear in the present setting. Possibilities include, but are not limited
to, the deterministic nature of our setting, the specific choice of the initial condition 6, or
the possible depletion of nonlinearity by a large-scale condensation.

4. Concluding remarks

Our highly-resolved numerics suggest that deterministic viscous SQG flows become tur-
bulent upon decreasing the viscosity, with three hallmark signatures: irreversibility, in-
termittency and spontaneous stochasticity of the Lagrangian flow. Specific to the active-
scalar nature of SQG is the fact that irreversibility of the advecting flow and Lagrangian
stochasticity are two facets of the same phenomenon. This is unlike the passive scalar
case, where what matters is the irreversibility of the advected scalar, and also unlike Burg-
ers, where this connection only holds at the level of the backward Lagrangian flow. The
present work also suggests that SQG spontaneous stochasticity is tempered, in the sense
that the limiting stochastic flows may be highly sensitive to the details of the joint limit
viscosity — 0, noise — 0, in both the Eulerian and the Lagrangian case. Most limits
could be deterministic, but spontaneous stochasticity may appear with ad-hoc choices. In
a sense, this feature is reminiscent of the highly non-universal behaviour of tracers ad-
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vected by weakly compressible random flows. It may signal a case where dependence
upon initial condition could be neither differentiable (chaos), nor discontinuous (spon-
taneous stochasticity), but singular in between. However, it is unclear what physical
mechanisms, which in SQG compete with roughness, are at play to temper stochasticity.
Possibilities include the deterministic setup, or the presence of the Hamiltonian invariant,
which favours large-scale deterministic self-organisation. For example, the predictabil-
ity that is lost at mesoscales could be recovered from statistical averaging over turbulent
scales. This would allow for randomness up to some intermediate mesoscale only, and
not for the full dynamics. Investigating these possibilities are matters for future work.
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