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High-throughput sequencing (HTS) has the potential to decipher the diversity of T cell 
repertoires and their dynamics during immune responses. Applied to T  cell subsets 
such as T effector and T  regulatory cells, it should help identify novel biomarkers of 
diseases. However, given the extreme diversity of TCR repertoires, understanding how 
the sequencing conditions, including cell numbers, biological and technical sampling 
and sequencing depth, impact the experimental outcome is critical to proper use of 
these data. Here, we assessed the representativeness and robustness of TCR repertoire 
diversity assessment according to experimental conditions. By comparative analyses of 
experimental datasets and computer simulations, we found that (i) for small samples, 
the number of clonotypes recovered is often higher than the number of cells per sample,  
even after removing the singletons; (ii) high-sequencing depth for small samples alters 
the clonotype distributions, which can be corrected by filtering the datasets using 
Shannon entropy as a threshold; and (iii) a single sequencing run at high depth does 
not ensure a good coverage of the clonotype richness in highly polyclonal populations, 
which can be better covered using multiple sequencing. Altogether, our results warrant 
better understanding and awareness of the limitation of TCR diversity analyses by HTS 
and justify the development of novel computational tools for improved modeling of the 
highly complex nature of TCR repertoires.

Keywords: Tcr repertoire, diversity, sampling, normalization, bioinformatics

inTrODUcTiOn

Understanding the specificity of T cells involved in immune responses is of utmost importance in 
many fields of immunology. T cells are characterized by the expression a unique T cell receptor (TR), 
which is clonally generated by somatic rearrangement of the V, D, and J genes belonging to the TR 
genomic locus during thymic T cell differentiation (1). This process leads to the generation of a huge 
diversity of TR, defining a repertoire of antigen recognition, the hallmark of the adaptive immune 
response. Immunoscope analysis (also called CDR3 spectratyping) has long been the standard tech-
nique for TR repertoire analyses (2). Although immunoscope analysis has been very useful, it misses 
the key parameters of TR diversity, which include nucleotide sequence, codon usage, and amino acid 
composition. High-throughput sequencing (HTS) of the adaptive immune receptor rearrangements 
(RepSeq) expressed in a lymphocyte population now overcomes previous limitations, providing a 
thorough and multifaceted measure of diversity (3). Several studies have already highlighted the 
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feasibility of HTS for the analysis of TR repertoire diversity in 
various immune contexts (4–17). However, while the amount of 
information and the depth of analysis provided by this technique 
are unprecedented, the representativeness and robustness of the 
data obtained remain to be established.

First of all, although not addressed in this study, the type of 
starting material (DNA/RNA) as well as the molecular biology 
method used to prepare a TR/IG template may impact the resulting 
diversity observed. Indeed, 5’RACE-PCR and multiplex-PCR, the 
two major methodologies used for TR/IG template amplification, 
can both introduce biases. Multiplex-PCR is mainly sensitive to 
primer competition and does not allow new variant identification, 
while 5’RACE-PCR will be sensitive to transcript integrity and 
length (18). An additional issue is the quantification of the species. 
Unique molecular identifiers have been proposed as a molecular 
method to trace the origin of identical species, thus distinguishing 
species arising from different cells or from PCR amplifications 
(19–22). A comparative study considering UMI on TR sequences 
obtained by 5’RACE-PCR or not suggested fewer intersample 
variations in quantification of unique TRB clonotypes based on 
sequences identified with UMI in comparison with randomly 
selected sequences (23, 24). However, amplification and sequenc-
ing errors in those highly variable short oligonucleotides can still 
occur and be difficult to assess and correct. In addition, UMI can 
be used only in 5’RACE-PCR methods. Therefore, not all the 
commercially available protocols include UMI and tools to handle 
them may need further improvement (25).

RepSeq is a numbers game (26) particularly dependent on 
sequencing depth and therefore on sampling. When monitoring 
T  cell leukemia or highly expanded antigen-specific TCRs fol-
lowing an infection, the sampling and depth of sequencing might 
not be critical parameters. But things are different when studying  
TR repertoire diversity in physiological conditions, when descri-
bing the basics of immune repertoire generation and selection 
or in immune contexts where subtle or qualitative modifica tions 
may be involved in the pathophysiological outcome, such as in 
complex infectious diseases (27–29), autoimmune disorders 
(13, 30–35), and transplantation follow-up (36–38). However, 
RepSeq necessarily implies sampling: (i) only a fraction of the 
cells from peripheral blood or an organ (or a fragment of that 
organ in humans) is harvested; (ii) only a fraction of the RNA/
DNA extracted from these cells is used for sample preparation; 
and finally, (iii) only a fraction of the library is used for a sequenc-
ing run. These different levels of experimental sampling are likely 
to affect the observed diversity.

This is a genuine issue described in ecology studies, as “the 
absence of observation of a species can be either real or the effect 
of a subsampling” (39). Previous studies showed that the number 
of clonotypes observed is positively correlated with sampling size 
(30, 40, 41). This is important, as studies performed in humans 
are mostly based on peripheral blood, a compartment that rep-
resents only around 2% of the total T  lymphocyte population. 
Warren et  al. (42) compared TR repertoires from two blood 
samples from the same individual and found a limited number 
of shared clonotypes (~10%). They concluded that a considerable 
proportion of the peripheral blood TR repertoire is unseen when 
observed randomly (42, 43).

The depth of the sequencing is another confounding factor for 
TR repertoire diversity studies, since an insufficient number of 
sequences produced would not adequately assess the molecular 
diversity of the sample analyzed. To ensure the statistical repre-
sentativeness of the data produced with regards to the population 
of interest, two rules should be considered (44): (i) the number 
of sequences produced must be at least equivalent to the clonal 
richness of the population of interest and (ii) the rarer a clone, the 
greater the sequencing depth needed to detect it. Therefore, the 
RepSeq strategy must be adapted to the nature of the samples and 
the biological questions investigated (45).

While most studies seek to assess the similarity between the 
TR repertoires of several samples, without any knowledge of 
what level of similarity can be observed at best, it seems crucial 
to determine the limits of this approach in order to be able to 
interpret the data properly. In this study, we first investigated the 
impact of the depth of sequencing, in relation to the size of the 
population analyzed, on the observed TR repertoire diversity. 
We found that a small sample size is negatively affected by a too 
high, yet average in common practice, sequencing depth, and 
proposed an analytical approach to recover the “true” repertoire 
diversity. We then questioned the representativeness of a single 
RepSeq experiment by multiple sequencing of the same sample 
and demonstrated that performing a single sequencing run, even 
at high depth of sequencing, does not allow exhaustive observa-
tion of the existing clones in a polyclonal population. Finally, we 
addressed these experimental biases by computational simulation 
on RepSeq data reflecting several levels of clonality and sequenc-
ing depth, to have a better assessment of the robustness of the 
experimental observations.

MaTerials anD MeThODs

Mice
Eight- to twelve-week-old female Balb/C Foxp3-GFP 
(C.129 × 1-Foxp3tm3Tch/J) and 24- to 26-week-old male C57Bl/6 
Foxp3-GFP mice, both expressing the green fluorescent protein 
(GFP) under the promoter of Foxp3 gene, were, respectively, 
provided by V. Kuchroo, Brigham and Women’s Hospital, Boston, 
MA, USA and B. Malissen of the Centre d’Immunologie de 
Marseille Luminy (France). All animals were maintained in the 
Sorbonne Université Centre d’Expérimentation Fonctionnelle 
animal facility under specific pathogen-free conditions in agree-
ment with current European legislation on animal care, housing, 
and scientific experimentation (agreement number A751315). All 
procedures were approved by the local animal ethics committee.

cell Preparation
Fresh total cells from spleen were isolated in PBS1X-3% fetal calf 
serum and stained for 20 min at 4°C with anti-Ter-119-biotin, 
anti-CD11c-biotin, and anti-B220-biotin antibodies followed 
by labeling with anti-biotin magnetic beads (Miltenyi Biotec) 
for 15 min at 4°C. B cells and erythrocytes were depleted on an 
AutoMACS separator (Miltenyi Biotec) following the manufac-
turer’s procedure. Enriched T cells were stained with anti-CD3 
APC, anti-CD4 Horizon V500, anti-CD8 Alexa 700, anti-CD44 
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PE, and anti-CD62L efluor 450. 6.105 CD3+CD4+GFP− Teff cells 
were sorted on a BD FACSAria II (BD Biosciences, San Jose, CA, 
USA) with a purity >99%. Sorted cells were stored in Trizol 
(Invitrogen) or RNAAquous (Ambion, Inc./Life Technologies, 
Grand Island, NY, USA) lysis buffer.

Tr library Preparation
RNA was extracted following the manufacturer’s recommenda-
tions and cDNA synthesis was performed with the Qiagen OneStep 
RT-PCR kit (Qiagen Inc., Valencia, CA, USA) and mouse T cell 
beta receptor primers provided with the mouse TRB iR-Profile 
Kit (iRepertoire Inc., Huntsville, AL, USA). cDNA was amplified 
by two rounds of PCR according to the manufacturer’s recom-
mendations. The TRB library was sequenced using Illumina on 
a MiSeqv2 kit.

repseq Data Processing
Data Annotation
The RepSeq fastq files were demultiplexed by iRepertoire Inc. and 
then annotated using clonotypeR (46) to identify high-quality 
productive and non-ambiguous TRB sequences. Clonotypes were 
defined as unique combinations of TRBV-CDR3-TRBJ segments.

Sequencing Error Correction
Annotated sequences were clustered per TRBV-TRBJ combina-
tion and similar clonotypes collapsed as follows: within each 
TRBV-TRBJ cluster, the clonotypes observed once (singletons) 
were separated from the others to constitute two groups.  
A Levenshtein distance was then calculated between the CDR3 
peptide sequences of each clonotype of the two groups. The 
Levenshtein distance (lev) is a string metric measuring the mini-
mum number of single-character edits (insertions, deletions, or 
substitutions) required to change one sequence into another (47).

When comparing the CDR3 peptide sequences of singleton 
with that of a “non-singleton” sequences, if levseq1,seq2 = 1, their 
respective nucleotide sequences are then compared. If the two 
corresponding nucleotide sequences are also distant by 1, the 
singleton is considered as erroneous and considered as the “non-
singleton” clonotype.

Dataset Normalization
Using the function rrarefy from the Vegan R package (48), 
randomly rarefied datasets were generated to given sample sizes. 
Random rarefaction was done without replacement.

Diversity Profiles
Rényi entropy is a generalization of Shannon entropy, initially 
developed for information theory. We applied this mathemati-
cal function to clonotype frequencies to assess their diversity 
within each dataset. Rényi entropy is function of a parameter α,  
a strictly positive real number that differs from 1 and allows 
the definition of a family of diversity metrics spanning from  
(i) the species richness (α = 0), which corresponds to the number 
of clonotypes regardless of their abundance, to (ii) the clonal 
dominance (α → + ∞), corresponding to the frequency of the 
most predominant clonotype. For α = 1, the Shannon diversity 
index is computed. The exponential of the Rényi entropy defines a 

generalized class of diversity indices called Hill diversities, which 
can be interpreted as the effective number of clonotypes in the 
datasets (49) and thereby is used to build a diversity profile.

repseq simulation algorithm

A. 2·106 clonotype library construction with the tcR package

Based on the estimated total number of clonotypes in a 
mouse, a 2·106 TRB CDR3 library was generated with the tcR 
package following the probability rules of V(D)J rearrange-
ment established in Murugan et al. (50):
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B. Construction of 6·105 sequence datasets following particular 
Zipf distributions

Based on the demonstration by Greiff et al. (41) that clonotype 
frequencies determined from RepSeq datasets generally follow a 
Zipf distribution with a particular α ∈ [0, 1] parameter, we chose 
to use the Zipf–Mandelbrot law implemented in the zipfR R 
package (51) to simulate clonotype distributions. The probability 
density function used for simulations is given by
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with two free parameters: α ∈ [0, 1] and B ∈ [0, 1] and a normal-
izing constant C. B corresponds to the probability π1 of the most 
frequent species (clonotype).

Seven Zipf distributions were generated with the following 
Zipf parameters:
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1·31·108 2·10·107 1·60 107 1·44·107 1·23·107 1·16·107 1·11·107
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C. For each A parameter, the 2·106 ZA values were randomly 
assigned to the clonotype collection to obtain seven TRB 
clonotype repertoires.

D. To obtain the final seven datasets, each of them was rarefied 
using the function rrarefy from Vegan R package to datasets 
of with a size of 6·105 sequences.
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Rarefaction at Increasing Sizes
Each of the seven simulated datasets was rarefied into a series of 
six datasets of size D ∈ {500, 1,000, 5,000, 5·104, 5·105, 1·106}. For 
each value of D, subsamples of TRB sequences were randomly 
produced using the vegan:rrarefy function (without replace-
ment). This process was iteratively repeated 100 times with 
replacement. For each resulting series of subsamples, clonotype 
counts were calculated and used to assess the median and 95% 
CI values of Morisita–Horn index [MH; (52)] between them and 
the original dataset (representativeness) and between each other 
(robustness).

Subsample compositions were also compared to evaluate 
the level of overlap between three subsamples according to the 
dataset size.

For each D, combinations of 3 ZA dataset subsamples were 
randomly selected to determine the proportion of clonotypes 
observed once, twice or in the three subsamples. This process 
was performed 100 times to calculate the median and 95% CI of 
each result.

Since the 95% CI values obtained for MH and overlap propor-
tion were similar to the medians, they are not indicated in the 
corresponding figures and tables.

resUlTs

impact of sequencing Depth on the 
representativeness of the repertoire 
Diversity
With advances in HTS technologies, the minimum number of 
outputs in RepSeq studies is often a million sequences per sample. 
Besides, small samples are often studied. Thus, to determine the 
minimum number of sequences required for a representative 
repertoire, we first explored how the number of raw reads could 
affect the repertoire description according to the sample size. 
We chose to analyze a mouse sample with high diversity and 
used the CD4+Foxp3-GFP− cell population (Teff) previously 
described as very diverse (4). 6·105 Teff cells from female Balb/C 
Foxp3 < GFP > splenocytes were sorted. RNA was extracted from 
these cells and diluted in order to obtain aliquots containing the 
RNA amount equivalent to what would be obtained from 50,000, 
5,000, 1,000, or 500 cells (Figure 1A). Two replicates per dilution 
were prepared. For simplicity in the text, the sample size will 
be defined according to the theoretical equivalent cell number 
for each aliquot. Sequencing was performed on RNA amplified 
by multiplex-PCR using a commercially available kit. We made 
this choice for three reasons: (1) a commercially available kit is 
standardized, avoiding pipetting errors in master mix prepara-
tion, (2) multiplex-PCR are template-target based, therefore we 
know what we are supposed to obtain in terms of V genes, and (3) 
the bias toward genes should be constant.

On average, 1.13 (±0.16) million reads were produced for each 
aliquot (Table S1 in Supplementary Material), which is in the 
average range of common practice (18, 44, 53). As summarized 
in Figure 1B, 0.99·106 (±0.15·106) TRB sequences were identi-
fied per aliquot regardless of the sample size. The point here is 
to determine whether the sample size will impact the resulting 
repertoire distribution.

Thus, we analyzed the diversity of the observed repertoires 
according to sample size. It is noteworthy that the number of unique 
clonotypes (i.e., unique combination of TRBV-CDR3pep-TRBJ)  
per sample was always higher than the number of cells per sample. 
This discrepancy was more marked for small size samples, with 
approximately 20- to 2-fold more clonotypes per sample than cells 
with the “500-” and “50,000-cell” samples, respectively. In each 
dataset, about 50% (±6%) of the clonotypes were observed once 
(singletons). After removing the singletons, as it is commonly 
done (44), this bias was reduced for the large samples, while the 
numbers of clonotypes remained much higher than the actual 
number of cells in small samples (Figure 1B). Still, overall richness 
remained equivalent between all sample sizes.

In order to refine the diversity assessment of these TRB reper-
toires, we computed their diversity profile (Figure 1C) applying 
Rényi entropy to the clonotype relative frequencies within each 
dataset. This function is used in ecological science to quantify the 
diversity, uncertainty, and randomness of a given system (54, 55). 
As the α order increases, it defines metrics spanning from (i) the 
species richness to (ii) the clonal dominance that progressively 
discards the scarcest species. The exponential of these metrics pro-
vides comparable effective numbers of species, used here to build a 
diversity profile. Analysis of the Rényi profiles for the eight aliquots 
showed that TRB repertoire diversity strongly decreases when the 
Rényi order α value increases. While richness was comparable 
between all sample sizes, diversity drops in proportion to sample 
size when progressively discarding scarce clonotypes to reach a 
plateau of clonotype counts below the initial number of cells.

shannon entropy as a Threshold  
to Filter the clonotypes
To avoid bias related to sample size, we normalized each dataset to 
700,000 sequences, a value corresponding to the smallest sample 
size (Table S1 in Supplementary Material). Therefore, we ran-
domly selected 700,000 sequences, ranked the unique clonotypes 
from the most to the least predominant (clonotype rank) and plot-
ted their abundance (clonotype count) to assess their distribution 
(Figure  2A). It is noteworthy that, while all the aliquots come 
from the same sample, the clonotype distributions within each 
dataset are different. The smaller a sample, the higher the most 
predominant clonotype counts, making it difficult to apply a filter-
ing rule based on the count values. The Rényi profiles (Figure 1C) 
showed that the repertoire diversity collapses at a Rényi order α 
of 1, which corresponds to the Shannon diversity index (56). 
Since the number of clonotypes assessed by the Shannon index 
(Table 1) correlates best with sample size (Pearson coeff = 0.966, 
p  =  9.62·10–5 and MH  =  0.877 on original clonotype number 
and Pearson coeff = 0.995, p = 2.92·10−7 and MH = 0.996 after 
clonotype number determined by Shannon index), we chose to 
use this metric as a threshold to discard scarce “uninformative” 
clonotypes (SUC) that could result from experimental noise 
(shown in gray in Figure 2A) and keep only “informative” ones. As 
shown in Figure 2B, the clonotype relative distribution within each 
dataset is not significantly altered by this filtering. Interestingly, 
as shown in Figure 2C, regardless of the initial number of cells, 
this transformation regularizes the values of the Piélou evenness 
index, a measure of clonotype evenness (57) (filled squares), 
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FigUre 1 | Impact of sequencing depth on measured diversity. (a) Experimental design: 600,000 CD4+Foxp3-GFP− cells were sorted from female Balb/C Foxp3 
splenocytes. RNA was extracted (1) and split into aliquots equivalent to the amount of mRNA of 500, 1,000, 5,000, and 50,000 cells (2). Two aliquots were 
produced for each amount of RNA. The eight prepared aliquots were processed for TRB chain deep sequencing. (B) Dataset summaries. Histograms show,  
for each resulting dataset, the number of reads (black), productive TRB sequences (gray), observed clonotypes (blue), and clonotypes observed more than  
once (NoSingletons; light blue). (c) Diversity profiles. For each dataset, a Rényi diversity profile was computed: diversity metrics using clonotype frequencies  
were calculated for increasing values of Rényi order α until stabilization of the resulting diversity. For α = 1, the Shannon entropy was computed.
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which otherwise strongly decreases for unfiltered datasets when 
the clonotype number/cell number ratio increases, revealing that 
a too high sequencing depth for small samples alters clonotype 
distributions (Figure 2C, empty circles).

To confirm that the filtering does not bias the overall reper-
toire diversity, we computed the Morisita–Horn (MH) similarity 
index between the datasets before and after filtering; the high 
similarity values (0.983; 0.997) shown on the matrix diagonal in 
Figure 2D confirm that the datasets are not altered in the process. 
The similarity matrix also reveals a low similarity between repli-
cates, except for the “50,000-cell” samples, which are big enough 
to share rare clonotypes. Thus, high sequencing depth does not 
ensure good coverage of clonotype richness. This led us to ques-
tion the robustness of RepSeq experiment results.

robustness of the TrB repertoire 
Diversity assessment by repseq
We sorted 3·106 Teff cells from splenocytes, extracted the 
RNA and split it into three equivalent RNA aliquots, and then 

sequenced them independently at a high-depth targeting the TRB 
chain using the iRepertoire® multiplex-PCR technology. On aver-
age, for each aliquot, 8.33 (±0.66) million reads were produced 
and 5.63 (±0.56) million TRB sequences were identified, among 
which an average of 130·103 (±5·103) clonotypes (Table S2 in 
Supplementary Material). After applying Shannon filtering, the 
dataset sizes were reduced to 4.7 (±0.6) million TRB sequences 
for a total of 44,217 (±304) clonotypes. Datasets were rarefied 
at an equivalent size by randomly selecting 4·106 sequences for 
each sample.

We first analyzed the clonotype distributions within each 
dataset. The three distributions were similar between replicates 
(Figure 3A). However, when we compared the composition of 
the three TRB repertoires by clonotype overlap, it appeared that 
about 36% of the clonotypes observed in each dataset are shared 
by another replicate, with only 6,599 clonotypes common to the 
three replicates. Although these shared clonotypes represent only 
6% of the 105,332 clonotypes identified overall, their expression 
accounted for approximately 38% of each repertoire (Figure 3B). 
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FigUre 2 | Clonotype distributions before and after data filtering. (a) TRB clonotype counts of the eight aliquots according to sampling size. Within each dataset, 
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eight aliquots before and after data filtering. Before (left) and after (right) filtering each dataset using the Shannon index as threshold, clonotypes were ranked from 
the most to the least predominant (decreasing clonotype rank) according to their relative frequencies (clonotype frequency). The X-axis is log-scaled. Distributions 
were colored according to the sampling size as previously. (c) Impact of clonotype filtering on the clonotype distribution evenness. The ratio between the number  
of clonotypes and the number of cells (x-axis) was calculated for each aliquot before (circles) and after clonotype filtering either by removing only singletons 
(triangles) or using the Shannon index as a threshold (squares). For each dataset, the Piélou evenness index was calculated (y-axis). Aliquots are identified according 
the sampling size as previously. (D) Similarity between datasets before and after Shannon filtering. The Morisita–Horn similarity index between all pairs of datasets is 
color-coded according to the indicated scale before (lower half-triangle) and after (upper half-triangle) Shannon filtering. Aliquots are identified according to sampling 
size as previously.
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We then decomposed the clonotype collection by labeling the 
clonotypes as private (not shared between replicates) or shared by 
two or three replicates. For each dataset, clonotypes were sorted 
from the most to the least abundant and enrichment curves 
were built for each category according to the sharing status of 

each clonotype (Figure 3C). The resulting clonotype spectrum 
revealed that the most predominant clonotypes are shared by 
the three replicates, while the private clonotypes, which are the 
more numerous, are enriched for scarce clonotypes, therefore 
reducing the similarity between technical replicates. These results 

https://www.frontiersin.org/Immunology/
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TaBle 1 | Shannon diversity calculated for each dataset.

shannon diversity r500 r1000 r5000 r50000

#1 171 1,034 3,124 30,432
#2 238 735 5,337 35,027

FigUre 3 | Robustness of a RepSeq experiment. (a) Clonotype distribution of the three replicates within each dataset. Informative clonotypes were ranked 
decreasingly according to their abundance and their frequency was plotted. The x-axis is log-scaled. (B) Venn diagram between the three replicates. Out of the 
105,332 clonotypes observed in total, only 6,599 are shared by the three replicates; their cumulative frequency covers about 38% of each dataset. (c) Spectrum  
of unshared (yellow) and shared (by two in orange and by three in magenta) clonotypes in each replicate. Within each dataset, clonotypes were ranked according  
to their counts from the most to the least predominant (decreasing clonotype rank). Since clonotypes are labeled according to their sharing status, the clonotype 
enrichment (y-axis) of each sharing group is incremented (+1) when a corresponding clonotype is found in the ranked list.
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demonstrate that although the sampling of a large and polyclonal 
cell population has no impact on the observed clonotype distri-
bution, the repertoire composition is affected: even if the most 
predominant clonotypes are always captured, a major proportion 
of the clonotypes observed with a single sequencing are private 
scarce ones. This observation confirms that the more abundant 

a clonotype, the more likely it is to be observed by sequencing. 
However, most rare clonotypes will remain unseen with a single 
sequencing run.

computational assessment of the impact 
of sequencing Depth on Observed 
Diversity
In order to assess the representativeness of the diversity observed 
when analyzing a clonotype repertoire by RepSeq, it would be 
necessary to know a  priori its full diversity and distribution, 
which is not achievable with a classic experimental approach 
inherently subject to sampling bias.

https://www.frontiersin.org/Immunology/
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FigUre 4 | Impact of sequencing depth on the observed diversity. (a) Clonotype distribution within the seven simulated datasets—within each A-dataset, 
clonotypes were ranked decreasingly according to their abundance and their frequency was plotted. Both axes are log-scaled. Distributions are colored according 
to the A parameter used to simulate it. (B) Impact of sequencing depth on the observed clonotype richness—for a given A-dataset, clonotype richness was 
measured within the 100 subsamples produced for each depth and divided by that of the original dataset. The median value by depth is represented for each 
condition. The 95% CI was calculated but cannot be seen since it merged with the median value. (c) Representativeness of the sequencing—the Morisita–Horn 
similarity index was calculated between each subsample and its original dataset. Boxplots across the 100 subsamples of a given depth are color-coded according 
to the A condition. (D) Reproducibility of the sequencing—for each A-dataset, the Morisita–-Horn similarity index was calculated between paired subsamples of a 
given depth. Boxplots across the 100 subsamples of a given depth are color-coded according to the A condition.
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Several studies have demonstrated that immune repertoires 
follow a Zipf-like distribution (58–62), which translates a relation 
between rank order and frequency of occurrence: the frequency 
f of a particular observation is inversely proportional to its rank 
r (63) with:

 
f r

r
( ) ∝ 1

α
 

for Zipf-α parameter ≈ 1 (64).
In addition, the lower the Zipf-α parameter of a distribu-

tion, the more evenly represented the clonotypes involved (59). 
We applied this observation to build clonotype distributions of 

a fixed size and known diversity to simulate the sampling effect 
occurring during a RepSeq experiment.

Seven Zipf distributions of 6·105 sequences each were simu-
lated with a parameter A = 1/Zipf-α ranging from 2 to 100. These 
distributions were then assigned to a list of clonotypes randomly 
generated using the tcR package (65), leading to seven TRB 
clonotype repertoires of known diversity.

As observed in Figure 4A, the distribution slope varies accord-
ing to the depth of sequencing of the clonotypes. For example, for 
the distribution simulated with A = 2 (A2), the resulting distribu-
tion is skewed in a way that clonotype counts range from 1 to 
31,109, whereas when A = 100 (A100), clonotype counts do not 

https://www.frontiersin.org/Immunology/
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TaBle 2 | Summary of the simulated Zipf distributions.
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N
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A
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=
∑ ,

6E + 05 6E + 05 6E + 05 6E + 05 6E + 05 6E + 05 6E + 05

NA 155,495 394,784 435,528 450,625 469,974 476,829 480,919

TaBle 3 | Sharing proportion between three replicates.

Median proportion of 
clonotypes observed

Dataset sizes

5·102 1·103 5·103 5·104 5·105 1·10 6

Private 99.7 99.4 97.5 83.7 5.2 –
Shared by two 0.3 0.6 2.4 14.3 27.2 –
Shared by three – – 0.1 2 67.6 100
Total number across 
three replicates

1,493 2,973 14,456 117,634 393,434 394,784

FigUre 5 | Clonotype coverage of A3-dataset richness increases with 
multiple subsamples. The A3-datasets were subsampled at increasing depth 
(from 500 to 1·106 sequences as indicated in the legend from light to dark 
blue). For each depth, 100 subsamples were produced. Within each 
subsample series, an increasing number of subsamples (x-axis) were 
randomly selected and their cumulative clonotype richness was calculated 
relative to the original dataset richness (clonotype richness coverage).
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exceed 9. These different distributions lead to datasets of varying 
richness, as summarized in Table 2.

For each of our seven “known” repertoire distributions, we 
generated 100 subsamples at 6 sample sizes (from 500 to 1·106 
sequences) reflecting several levels of sequencing depth. The 
clonotype richness observed within each subsample increased 
according to the depth, as expected (Figure 4B). We used the 
MH similarity index to assess (i) representativeness (Figure 4C) 
by comparing the diversity captured for each subsample 
with the original repertoire diversity and (ii) reproducibility 
(Figure  4D) for the 100 subsamples for a given depth. When 
comparing the seven distributions at a given sequencing depth 
(5·104 sequences, representing 8% of the original repertoire), the 
representativeness of the diversity between distributions was dif-
ferent (Figure 4C), yet with similar relative richness values. For 
the “A2” condition, the similarity index between this subsample 
and the original repertoire was above 0.8, while it varied from 
0.2 to 0.5 for the other conditions (Figure 4C). A dataset of 5·105 
sequences (80% of the original repertoire size) is needed to reach 
a 0.9 similarity for the latter. However, a suitable representative-
ness does not ensure good reproducibility of the observations. 
With 500 or 1,000 sequences, even if the diversity observed for 
the “A2” condition is quite representative (MH ~ 0.8), the high 
variability between the subsamples implies a low reproducibility 
and thus an inability to observe exhaustively all the clonotypes 
(Figure 4D).

We sought to identify which simulated distribution would 
be the most representative of our experimental datasets. To this 
end, we compared the slope at the steepest descent point of each 
simulated distribution with those of all the experimental data 
analyzed in this study. The experimental distribution slopes are 
most comparable with the “A3” and “A5” distributions, with the 
exception of that of the R500_2 sample (Table S3 in Supplementary 
Material). Thus, we chose the “A3” distribution dataset as the most 
representative. In order to understand the low overlap observed 
between experimental replicates in Figure 3B, for each size we 
compared the “A3” simulated subsamples to determine the pro-
portion of clonotypes shared by three independent subsamples, 

as performed experimentally in Figure  3. As summarized in 
Table 3, the proportion of private and shared clonotypes varies 
according to the coverage of the initial repertoire stretch. For 
subsamples with sizes representing less than 1% of that of the 
initial dataset, almost all the clonotypes observed are private 
(only captured in one subsample). For the “5·104 sequence” sub-
samples, the size of which represents 8% of the original repertoire 
size, 16% of the clonotypes observed are captured at least twice. 
These proportions correspond to the observations we made in 
Figure  3 between the three experimental replicates. Finally, 
using subsamples of size close (80%) to that of the original, 95% 
of the observed clonotypes are shared by at least two replicates. 
In addition, as represented in Figure 5, at this depth, while one 
sample only captures about 12% of the overall existing clono-
types, three replicates cover a third of the overall richness. These 
observations suggest that multiple sequencing experiments can 
ensure greater clonotype exhaustiveness than a unique very deep  
sequencing.

DiscUssiOn

RepSeq offers new opportunities to identify biomarkers of health 
or disease by monitoring adaptive immune cell diversity at unprec-
edented high resolution. Continuing improvements in molecular 
biology protocols and sequencing technologies are increasing the 
accuracy of clonotype detection (66). Still, clear evaluation of the 
reproducibility and representability of the observed diversity is 
missing. This is particularly true when considering bulk sequenc-
ing on small size samples such as small cell subsets or cells from 

https://www.frontiersin.org/Immunology/
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biopsies, though of utmost interest when studying TCR repertoires. 
Although over-sequencing has been recommended to ensure 
the identification of rare clonotypes (53), it does increase the 
risk of generating uninformative, possibly artifactual clonotypes 
such as duplicate reads and chimeric reads (67). Indeed, when 
sequencing samples of varying sizes at a commonly used depth, 
we found that small datasets contained 20 times more clonotypes 
than would be expected regarding the sample size. This figure 
decreases when the starting material is increased, demonstrating 
that over-sequencing small samples dramatically generates noise 
that cannot be corrected by removing only singletons. Although 
the relationship between sample size and sequencing depth that 
we used may appear extreme, it can commonly occur when 
studying small cell subsets involved in immunological processes. 
These observations demonstrate the drawbacks of discarding 
clonotypes based only on their counts and the need for objective 
approaches in order to assess the actual richness of a repertoire 
effectively. Single-cell sequencing technologies are an alternative 
to accurate study of the repertoire of small cell subsets and there-
fore will surely not require the use of Shannon filtering, because 
the number of expected unique TR sequences will be at most two 
per single cell. However, currently the number of required cells 
is still regularly higher than actually recovered in particularly  
low-input samples.

Here, we provide a bioinformatics approach to assess accu-
rately the number of unique clonotypes in a large and complex 
cell population, even when over-sequenced. When analyzing 
the diversity profiles of repertoires from subsamples of varying 
sizes of a unique starting sample, we identified Shannon entropy 
as a reliable threshold to eliminate clonotypes arising from tech-
nical noise (SUC) and to focus on informative TR clonotypes 
(Figures 1C and 2A). This filtering strategy has no impact on 
the overall clonotype distribution (Figure  2B). Importantly, 
this approach was validated on subsamples originating from 
a single starting sample. Therefore, the representability of the 
smallest subsample was questioned. While the distribution 
evenness was sample size-dependent when considering all 
the reads, filtering by the Shannon entropy index removed 
this variability between replicates (Figure 2C). This proposed 
strategy therefore offers an accurate assessment of clonotype 
identification and representability, even in extreme situations. 
We applied our method to data produced following multiplex-
PCR amplification on bulk polyclonal CD4+ T cells, for which 
the targeted genes and bias should be constant from one 
experiment to another. Although the number of uninformative  
clonotypes should be assessed when analyzing datasets prepared 
by different molecular methods, we believe that the Shannon 
index should reflect the true diversity by excluding uninforma-
tive clonotypes. Once single-cell sequencing becomes stand-
ardized and applicable to a range of very small to very large 
sample sizes, such correction metrics may not be necessary  
anymore.

Our results strongly suggest that sequencing depth must be 
adapted to the initial cell amount. We show that “50,000-cell” rep-
licates are closer to each other than lower input pairs of samples 
(Figure 2D). This observation emphasizes the need to adapt the 
sample size to the population of interest. All aliquots analyzed 

here were obtained from a rich and polyclonal cell population. In 
order to be reliable, a sample needs to be large enough to ensure 
that most of the clones are represented. Here, about 20% of the 
clonotypes observed in the two replicates (6,766 out of 30,422 and 
35,020 clonotypes) are shared.

Altogether these results show how complex defining a RepSeq 
strategy can be in guaranteeing the representativeness of the 
repertoire diversity. If sequencing depth is not adapted to the 
population size, it can negatively affect the resulting observed 
diversity, in particular if data are not properly analyzed. This is 
particularly crucial since the clonality of a population is rarely 
known before its sequencing, leading to misinterpretation of the 
results. Since the sequencing depth used was much higher than 
the size of the samples we analyzed, one would expect good, if 
not exhaustive, coverage of the overall clonotypes. Conversely, 
we show that this is by no means the case, with only part of 
clonotypes being observed with confidence. These observa-
tions led us to question the robustness of the results of RepSeq 
experiments.

Multiple sequencing of the same sample revealed very low 
overlap between technical replicates, even after filtering out 
uninformative TR clonotypes, and merely captures the most 
frequent clonotypes. Rare clonotypes were at best shared by two 
replicates. As already suggested by Greiff et al. (44), our results are 
in favor of multiple sequencing when considering very diverse 
samples. This can be explained by the experimental sampling 
enforced by the different RepSeq steps (from RNA amplification 
to library sequencing). In order to validate these experimental 
observations and propose guidelines for RepSeq studies, we 
simulated different repertoire distributions and found that the 
representativeness of a very evenly distributed repertoire, which 
could be likened to a polyclonal repertoire, is more sensitive 
to the sequencing depth. The number of sequences produced 
(by multiple sequencing) needs to be equivalent to the popula-
tion size to ensure a good assessment of the original diversity 
(Figure  4C). This is particularly true for small samples for 
which too deep a sequencing can favor the erroneous sequences 
possibly generated during library preparation (68) and thereby 
introduce experimental noise.

Altogether, we provide here a method that accurately discards 
uninformative clonotypes for small and large samples based on 
the application of Shannon diversity index threshold filtering, as 
well as guidelines for RepSeq experimental design. In addition, 
we show how computational simulation of diversity can improve 
adaptive repertoire analysis assessment where controlled refer-
ence repertoires with known actual diversity can be modeled and 
subject to experimental design and annotation tool flaws. We 
believe these will be useful in ensuring better RepSeq analyses 
when looking at rare or unknown cell populations participating 
in pathophysiological processes and will facilitate the discovery 
of HTS-based biomarkers.
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