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Antarctic specimens collected during various research expeditions are preserved

in natural history collections around the world potentially offering a cornucopia of

morphological and molecular data. Historical samples of marine species are, however,

often preserved in formaldehyde which may render them useless for genetic analysis.

We sampled stomachs and hindguts from 225 Trematomus specimens from the

Natural History Museum London. These samples were initially collected between 20

and 100 years ago and fixed in either formaldehyde or ethanol. A 313 bp fragment

of the cytochrome c oxidase subunit I (COI) was amplified and sequenced for prey

item identification in the stomach and a 450 bp region of the 16S rRNA gene to

investigatemicrobiome composition in the gut system. Both data sets were characterized

by large dropout rates during extensive quality controls. Eventually, no unambiguous

results regarding stomach content (COI) were retained, possibly due to degraded DNA,

inefficient primers and contamination. In contrast, reliable microbiome composition data

(16S rRNA) was obtained from 26 samples. These data showed a correlation in change

of microbiome composition with fish size as well as year of the catch, indicating a

microbiome shift throughout ontogeny and between samples from different decades.

A comparison with contemporary samples indicated that the intestinal microbiome of

Trematomus may have drastically changed within the last century. Further extensive

studies are needed to confirm these patterns with higher sample numbers. Molecular

analyses of museum stored fish can provide novel micro evolutionary insights that may

benefit current efforts to prioritize conservation units in the Southern Ocean.

Keywords: natural history museum, notothenioidei, 16S rRNA, COI, Southern Ocean, Antarctica

INTRODUCTION

The Antarctic continent and the surrounding Southern Ocean contain fragile and unique
ecosystems, molded by cold climate, seasonal photoperiod, and remoteness. Despite its distance
to congested areas, human influences on the ecosystems include both direct impacts (such as
commercial fishing, tourism, and research) and indirect impacts (such as global warming or ocean
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acidification). These impacts increased considerably during the
last 100 years. For example, Antarctica is among the areas most
affected by climate change (Solomon et al., 2009), which is
expected to have negative effects on marine Antarctic ecosystems
(Griffiths et al., 2017). All over the world, climatic changes have
already had severe effects on fish populations (Roessig et al.,
2004). These effects are expected to be especially grave in the
Southern Ocean, as it is home to a unique fish fauna adapted
to the prevailing stenothermal conditions (Eastman, 1993). This
fragility is due to thermal limitations of the fish species itself,
but also to temperature restraints and preferences of complex
associated prey, symbiont, and microbiome communities. The
wellbeing of fish stocks is often dependent on high abundance
of their main prey items (Roessig et al., 2004). Key prey species
may be forced to change their distribution range, driving the
fish to either prey on other taxa or migrate and follow the
initial prey. Baseline data studying these shifts in associated
fauna is often lacking, especially for remote areas such as the
Southern Ocean. Therefore, describing the associated fauna
of fish species in the present and in the past may be a yet
underappreciated way to understand eco-evolutionary processes
and follow environmental changes.

Natural history museums worldwide house an immense
number of preserved specimens. Many of these samples
were collected before or during the period of rapid increase
in anthropogenic impact on natural populations, and could
therefore yield valuable information regarding recent eco-
evolutionary processes (Ceballos and Ehrlich, 2002; Wandeler
et al., 2007). While such museum samples have been used
extensively for morphological studies in the past (e.g., taxonomy,
morphometrics, and meristic counts), they often pose challenges
for genetic and genomic analysis due to nucleic acid degeneration
(Chakraborty et al., 2006; Bi et al., 2012, 2013). Amongst the first
reports of successful DNA extraction from archived samples was
the study of Higuchi et al. (1984) targeting the extinct quagga,
a member of the horse family. Molecular analysis of museum
samples, sometimes also referred to as “ancient DNA” studies,
have gained popularity since (e.g., Lambert et al., 2002; Nielsen
et al., 2017). Advances of high-throughput sequencing techniques
applied to museum samples have changed the possible scale and
effort needed for archived DNA investigations and shown how
powerful and valuable these can be (Bi et al., 2012, 2013; Nielsen
et al., 2017). To date, studies using museum samples have mainly
focused on the host (e.g., extracting DNA from bones, otoliths,
teeth), whereas organisms that lived on or within the host, as well
as ingested prey organisms are mostly ignored. Museum samples
can be used to reveal the genetic variation of a host species in
space and time. In addition, these samples may be useful to
study associated symbionts, parasites, prey items, or microbiome
composition, with enormous potential to unveil eco-evolutionary
processes over large time scales.

Metabarcoding has the potential to simultaneously assess
the presence and to some extent also abundance of hundreds
of species, which makes it attractive for diversity assessment
studies. Knowledge of prey items or themicrobiome composition
within species can often highlight spatial differences in diet,
behavior, or environmental pressure. Recently, studies assessed

the biodiversity of ancient samples by metabarcoding permafrost
samples (Jørgensen et al., 2012; Bellemain et al., 2013; Willerslev
et al., 2014) and dental calculus (Eisenhofer et al., 2017), however,
such studies are few. Using ancient samples gives a unique
opportunity to compare community structures through time and
space.

The gastrointestinal microbiome, the community of
protozoans, bacteria, and viruses inhabiting the digestive
system of a fish host, may display fundamental interspecific as
well as intraspecific variation (Ghanbari et al., 2015; Egerton
et al., 2018). It is affected by the physical properties of a habitat,
such as water temperature, salinity or pollution, as well as
biological factors, such as preferred prey, interactions with
other species, and the ambient microbiome of the water column
(Tarnecki et al., 2017; Bagi et al., 2018; Chen et al., 2018). In
turn, the gastrointestinal bacterial community can influence
the nutrition (Bäckhed et al., 2004; Turnbaugh et al., 2006) and
therefore growth and reproduction, general behavior (Cryan
and Dinan, 2012), and vulnerability to diseases (Kau et al.,
2011) of the host itself. The microbiome composition varies
and reflects both host-specific changes as well as environmental
changes. Understanding past and present diversity patterns
of diet and gastrointestinal microbiome composition can help
pinpoint ecological implications of centennial-scale change in
the Southern Ocean. Such insights may be useful in the context
of current conservation planning, especially when integrated
with other information sources and disciplines (e.g., Dawson
et al., 2011). With the present proof-of-concept study, we aim
to advance the development of metabarcoding techniques
applied to museum samples originating from the Southern
Ocean. We hope that such innovative methods lead to a better
understanding of eco-evolutionary dynamics between host, prey,
and microbiome species in times of rapid change.

Notothenioidei include the dominant fishes in the High-
Antarctic and feature prominent adaptations such as antifreeze
glycoproteins (Chen et al., 1997), reduced ossification (Eastman
and Devries, 1981), and loss of heat-shock response (e.g.,
Hofmann et al., 2000). This makes them valuable model species
for evolutionary and developmental biology (Rutschmann et al.,
2011; Postlethwait et al., 2016). The genus Trematomus includes
13 species (sensu Duhamel et al., 2014) of medium-sized
high-Antarctic shelf fishes that display ecological diversification
(Lannoo and Eastman, 2000; Janko et al., 2011; Duhamel et al.,
2014). They show differing levels of habitat preference in terms of
depth and bottom association (inshore—deep-sea; cryopelagic—
benthic), population genetic structure, and feeding habits (Dewitt
et al., 1990; Van De Putte et al., 2012; Mcmullin et al., 2017).
Morphological stomach content identification has shown that
Trematomus species feed mainly on a variety of small crustaceans
(amphipods, copepods, euphaussiids, isopods, mysids), but also
molluscs, polychaetes, algae, and fish (Vacchi and La Mesa, 1995;
La Mesa et al., 1997, 2004, 2015; Moreira et al., 2014; Jurajda
et al., 2016). Precise, species level prey identification necessary for
high-resolution intra- and interspecific comparisons, however,
can be challenging due to degradation and lost taxonomic
characters. The diversification of Trematomus is part of the
adaptive radiation of the Notothenioidei, believed to coincide
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with extinction and recolonization cycles in the Antarctic (Near
et al., 2012). Ancient climate change has likely played a major
role in facilitating the evolution of these fishes (Matschiner
et al., 2011; Near et al., 2012). However, contemporary rates
of environmental change and additional stressors such as
pollution and new colonizing species are unprecedented andmay
fundamentally alter future evolution or even cause extinction of
high-Antarctic fish species (Dornburg et al., 2017).

The aims of this study are threefold: (1) to test the
applicability of metabarcoding techniques to determine the prey
andmicrobiome composition ofmuseum samples (2) to compare
results from museum samples to those of contemporary samples
(2017–2018), and (3) to explore potential driving factors of
microbiome variability found in museum samples.

MATERIALS AND METHODS

Stomach and hindgut samples of 225 specimens of the genus
Trematomus were obtained from the Natural History Museum,
London. Fish were carefully dissected to minimize damage to the
specimens. Stomachs were opened to remove stomach content
and a small portion of the hindgut (1 cm) was removed. Stomach
content and hindgut were stored separately in 70% ethanol.
Sampling dates ranged from 1901 to 1988. Standard length (SL),
year of catch, location of catch, and species identity (based on
the morphological identification of the initial identifier) were
recorded from the ledgers of the museum for all samples as far as
available. Contemporary samples (n= 15) were caught with hook
and line in the vicinity of the Gerlache Strait, Antarctic Peninsula
in the season of 2017–2018. They weremorphologically identified
and frozen at−20◦C until being processed.

Laboratory Procedures
Eight protocols were tested for DNA purification, including
two commercial kits specialized for formalin fixed and paraffin
embedded (FFPE) tissue (Supplementary Material; Sato et al.,
2001; Shi et al., 2002, 2004; Joshi et al., 2013). The method
described below is strongly based on Shi et al. (2002) and Shi
et al. (2004) and showed the most promising results. During
molecular laboratory work special care was taken to prevent
(cross-) contamination of samples. A large piece of stomach
content (0.5 × 0.5 cm) or the entire piece of hindgut (1 cm)
was placed into screwcap microtubes (fitted with rubber seals)
with 500 µl of Phosphate Buffered Saline (PBS) at pH 9. Tissue
was fragmented thoroughly in each tube to ameliorate efficiency.
Samples were heated to 100◦C for 10min, left to cool on ice
for 5min and then spun down with 20,000 × g for 5min. PBS
was carefully removed without taking any tissue and replaced
by 500 µl of PBS at pH 7.2 and again heated to 100◦C for
10min. PBS was again carefully removed and further purification
steps were conducted using the commercial Nucleospin R© Tissue
(Macherey-Nagel, Accession number: 740952) DNA extraction
kit following the manufacturer’s protocol. Since more tissue
was used than the manufacturer anticipated, multiple (2×,
3×, or 4×) amounts of the manufacturer’s recommended
chemicals were used depending on the amount of initial tissue.
Furthermore, digestion was extended from 2 to 48 h. Final elution

of DNA from the columns was also extended to 1 h. Workbench
wipes (workbench contamination), human saliva wipes (human
contamination) and no-template extractions (blanks) were
included as contamination controls for amplification and
sequencing.

For prey identification a 313 bp region of the COI gene was
amplified from the stomach content using the tailed primers
NGSmlCOIint and NGSjgHCO2198 according to Leray et al.
(2013). The V3 and V4 region (460 bp) of the 16S rRNA
gene was amplified using the tailed primers 16s-IllumTS-F
and (4) 16s-IllumTS-R to assess the microbiome composition
(Klindworth et al., 2013). The reaction mix for the amplicon
PCR for COI contained 12.5 µl of MytaqTM 2x Mix (Bioline,
Accession number: BIO-25041), 0.5 µl of each primer (20µM),
10.5 µl of molecular grade water and 1 µl of DNA template
with a PCR profile of 10 s of denaturation at 95◦C, 30 s of
annealing at 62◦C and 60 s elongation at 72◦C for 16 cycles
with the annealing temperature dropping every cycle by 1◦C,
followed by 25 cycles with an annealing temperature at 46◦C.
The reaction mix for the amplicon PCR for 16S contained
12.5 µl of MytaqTM 2x Mix, 2.5 µl of each primer (1µM),
2.5 µl of DNA template (5 ng ul−1) and 5 µl of molecular
grade water with a PCR profile of 60 s of initial denaturation at
95◦C followed by 25 cycles of 15 s denaturation at 95◦C, 15 s of
annealing at 55◦C and 10 s elongation at 72◦C, finishing with a
final extension of 72◦C for 300 s. PCR products were cleaned up
using Agencourt AMPure XP beads (BeckmanCoulter, Accession
number: A63882) following the manufacturer’s instructions with
a bead to template ratio of 0.8 to 1. Thereafter followed an
indexing PCR, which binds a unique primer barcode to each
respective sample following Lange et al. (2014) with a PCR
mix of 10 µl of MytaqTM 2x Mix, 0.5 µl of each forward and
reverse indexing-primer (to form a unique identifiable primer
combination for each sample; 20µM) and 9 µl of DNA template
with a PCR profile of an initial denaturation of 1min at 95◦C
followed by 15 cycles of denaturation for 15 s at 95◦C, 15 s
of annealing at 51◦C and 10 s of extension at 72◦C finishing
with a final extension of 5min at 72◦C. The PCR product
was cleaned up again, then quantified using the commercial
Quant-iTTM Picogreen R© kit (Thermo Fisher) and pooled, if
sufficient template (20 ng) was available. Sequencing took place
on an Illumina MiSeq PE 3000 (Genomics Core, KU Leuven,
Belgium).

Filtering and Statistical Analysis
After the generation of the raw reads samples were demultiplexed
using the bcl2fastq v2.16 tool integrated in the Illumina platform.
Barcode mismatch was set to 0 to avoid index cross ambiguity
errors. 16S rRNA data was analyzed through QIIME v.1.9.1
(Caporaso et al., 2010) to OTU level via NEPHELE (NEPHELE,
2016) for FASTQ paired-end reads: All reads with ambiguous
base calls or a Phred score below 20 were removed from the
dataset. Forward and reverse reads were joined with a minimum
overlap of 30 bp and a maximum of 25% difference in base calls
in the overlapping regions. Reads were classified by similarity
based on Operational Taxonomic Units (OTUs) using an open
reference approach. Chimeras were identified and removed using
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FIGURE 1 | Vertical bar chart showing the remaining sample size for museum gut (16S gene, gray) and museum stomach (COI gene, black) content analysis after

every DNA metabarcoding pipeline step.

uchime (Edgar et al., 2011). OTUs were identified by alignment
to the SILVA 128 (Quast et al., 2012) reference database based
on 99% similarity. The final output for both 16s rRNA and
COI data resulted in an OTU table with number of reads
per OTU for each sample. Analysis of COI data followed the
protocol of Aylagas and Rodríguez-Ezpeleta (2016). The quality
of the reads were checked using FASTQC v0.11.5 (Andrews,
2010) and merged using FLASH v1.2.11 (Magoč and Salzberg,
2011) with a minimum and maximum overlap of 217 bp and
257 bp, respectively. Reads with a Phred score below 25 were
removed using Trimmomatic v0.36 (Bolger et al., 2014). Reads
were classified into OTUs using an open reference approach
with mothur v.35.1 (Schloss et al., 2009). Taxonomic assignment
of OTUs was conducted using the Barcode of Life Datasystem
(BOLD, www.boldsystems.com). Rarefaction curves were created
in Nephele to assess the number of identified OTUs over the
number of reads per sample and per group. Data was analyzed
using Calypso (Zakrzewski et al., 2016). Principal Coordinate
Analysis (PCoA) was applied in R Studio with R v.3.3.2 (R
Core Team, 2016). Linear models (LM; R base package “stats”
v3.5.0) were utilized to assess the relationship between the
microbiome composition as reflected in the second PCoA axis
and standard length (SL) and the year of catch. Species identity
and location were found to be non-significant, possibly due to
small sample size and therefore not further considered. Both
significant variables (SL, year of catch) are not independent of
each other and cannot be disentangled due to limited sample
number because of large dropout rates (Figure 1). Therefore,
both variables were used separately to create LMs, which were
tested for significance (ANOVA) and adjusted formultiple testing
using the Bonferroni correction. The diversity was assessed using
Calypso and significance was tested using Tukey’s (HSD) post-hoc
test.

RESULTS

All data are available online under http://dx.doi.org/10.17632/
8cr8yzvsj2.9: containing metadata for all museum fish (including
dorsal and lateral photos) as well as demultiplexed raw MiSeq
reads from museum and contemporary samples. Metadata for
contemporary samples are available under http://dx.doi.org/10.
17632/gk94xj8ydg.1.

Success Rate of Museum Sample
Metabarcoding
The complete workflow was characterized by high dropout
rates of museum samples at every stage (Figure 1). Initially,
400 specimens of the genus Trematomus were identified in the
museum’s catalogs. Of these only 225 were suitable for stomach
and gut analysis, either due to fish size or to the fact that the
intestines had already been removed previously. After extraction
and amplification, sufficient DNA (at least 20 ng for sequencing)
was available in 84 gut and 67 stomach samples. Only 44 gut and
49 stomach samples were sequenced with at least 1,000 reads per
sample. Quality filtering reduced the sample size further to 35 gut
and 27 stomach samples. In the final step samples were compared
to blank, human contamination, and workbench contamination
samples. The microbiome composition (16S rRNA) of most
museum samples clustered distinctly apart from the majority
of the control samples (Figure 2A). Samples with a negative
value on PCoA 1 axis (n = 5) clustered close to the control
samples. They were therefore removed from the dataset as being
contaminated by either the environment (indicated by proximity
to workbench samples), the researcher (proximity to human
contamination samples), or a combination of both. One blank
control (positive value on the PCoA 1 axis) clustered close
to the museum samples. This blank control was most likely
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FIGURE 2 | Principal Coordinate Analysis (PCoA) of (A) microbiome composition in the gut and (B) prey item composition in the stomach of Antarctic Trematomus

fish from natural history museum (gray) and control samples (black).

contaminated by museum samples. The PCoA of the prey item
composition (COI) shows that museum samples and control
samples were evenly distributed (Figure 2B). Here, blank as well
as workbench contamination samples cluster within the museum
samples, indicating great homogeneity between them. All prey
items from museum samples were manually assessed, and the
taxonomic classification evaluated (data not shown). Samples
were dominated by reads linked to environmental (other species
used in the same laboratory) and human contamination. Few
reads (<3% in all samples) were of species that actually occur in
the Southern Ocean.

Contrasting Museum and Contemporary
Samples
Microbial data (16S rRNA) was reanalyzed for the remaining
museum (M) samples together with contemporary (C)
Trematomus samples to evaluate a temporal contrast with
23 museum samples, one blank extraction, three human
contamination, three workbench contamination controls, and
15 contemporary samples (Table 1). In total 2,331,397 reads
were obtained for all samples with an average of 51,809 (± SE
10,266) reads per sample. Contemporary samples produced
more than twice as many reads as museum samples with averages
of 88,578 (± SE 8,399) and 38,899 (± SE 17,774) reads per
sample, respectively. The blank sample had in total 14 reads.
For most samples rarefaction curves of the number of observed
species over number of sequences per sample leveled out at about
1000 sequences per sample, indicating that the sampling effort
was more than sufficient, and a majority of the species present
were recorded (Figure 3A). Rarefaction curves for the samples
clustered by treatment groups (museum samples, contemporary
samples, workbench controls, and human controls) show that
the curve for museum samples evened out at only about 4,000

reads, indicating more rare species in the samples compared to
the contemporary samples (Figure 3B). Overall, this indicates
that sufficient reads per sample and per treatment were obtained
in order to sequence a majority of the bacterial species present.
For further analysis all OTUs that counted less than two reads
were removed from the dataset.

Principal component analysis (PCoA) showed that in both the
microbiome (16S rRNA) as well as prey item composition (COI)
the contemporary and museum samples cluster distinctly away
from each other (data not shown), with little overlap between
contemporary and recent samples. Contemporary samples did
not cluster within the control samples for both datasets.

The microbiome composition of Trematomus museum
samples proved to be highly diverse (a full abundance list of all
taxa can be found online (http://dx.doi.org/10.17632/8cr8yzvsj2.
9) under bacterial_taxa_summary.html). Here, the focus lays
on a comparison between species, where museum as well as
contemporary samples were available (T. hansoni, T. newnesi,
T. loennbergii). Bacterial composition is compared at the phylum
and family level (Figure 4). The most abundant phylum in
all sample groups was Proteobacteria. However, abundance of
both phyla and family varied greatly between museum and
contemporary samples of the same species. Trematomus hansoni
showed the most similar microbiome between museum and
contemporary samples when analyzed at the phylum level.
However, family level analyses presented large differences as well.
In total, museum and contemporary samples shared only 32,
49, and 33 OTUs for T. hansoni (total number of OTUs M:
131, C: 110), T. newnesi (M: 131, C: 134), and T. loennbergii
(M: 80, C: 96), respectively (Figure 5). In T. hansoni the
composition of phyla was most similar with Proteobacteria
(M:75%, C: 79%), Deionococcus-Thermus (M:14%, C: 2%),
Bacteroidetes (M: 2%, C: 9%), and Actinobacteria (M: 0.5%,
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TABLE 1 | List of fish included in Figures 2, 4, 5.

Sample ID Species SL Year of catch Location

Contemporary BW002.22 T. newnesi 83 2017–2018 Enterprise Island

Contemporary BW002.23 T. newnesi 94 2017–2018 Enterprise Island

Contemporary BW002.25 T. newnesi 91 2017–2018 Enterprise Island

Contemporary BW002.27 T. newnesi 100 2017–2018 Enterprise Island

Contemporary BW006.11 T. newnesi 136 2017–2018 Enterprise Island

Contemporary BW007.15 T. newnesi 186 2017–2018 Alvaro Cove

Contemporary BW010.16 T. newnesi 106 2017–2018 Trinity Island

Contemporary T.han1 T. hansoni 295 2017–2018 Dallmann Bay

Contemporary T.han2 T. hansoni 316 2017–2018 Dallmann Bay

Contemporary T.loe1 T. loennbergii 227 2017–2018 Hugo Deep

Contemporary T.loe2 T. loennbergii 142 2017–2018 Hugo Deep

Contemporary T.sco1 T. scotti 153 2017–2018 Gerlache Strait

Contemporary T.sco3 T. scotti 127 2017–2018 Gerlache Strait

Contemporary T.sco5 T. scotti 122 2017–2018 Gerlache Strait

Contemporary T.sco7 T. scotti 124 2017–2018 Hugo Deep

Museum 104 T. bernacchii 14.4 1913 Cape Evans

Museum 126 T. bernacchii 29.8 1912 South Orkney Is.

Museum 128 T. bernacchii 23 1939 Palmer Archipel

Museum 136 T. borchgrevinki 14.5 1901 Graham Land

Museum 148 T. borchgrevinki 10.5 1909 Unknown

Museum 149 T. borchgrevinki 8.7 1909 Unknown

Museum 33 T. hansoni 29 1912 South Georgia

Museum 37 T. hansoni 22.2 1937 South Georgia

Museum 189 T. lepidorhinus 11.5 1913 Balleny Island

Museum 192 T. loennbergii 8.8 1913 McMurdo

Museum 194 T. loennbergii 6.5 1913 McMurdo

Museum 150 T. newnesi 10 1938 Graham Land

Museum 151 T. newnesi 7 1938 Graham Land

Museum 152 T. newnesi 13.9 1912 South Orkney Is.

Museum 154 T. newnesi 6.5 1912 South Orkney Is.

Museum 157 T. newnesi 10.2 1910 South Shetland

Museum 161 T. newnesi 6.9 1910 South Shetland

Museum 163 T. newnesi 17.5 1901 Falkland Islands

Museum 103 T. bernacchii 17.3 1988 Graham Land

Museum 138 T. borchgrevinki 20.5 1988 Graham Land

Museum 139 T. borchgrevinki 18.7 1988 Graham Land

Museum 26 T. hansoni 19.4 2006 Station 89, Unknown

Museum 9 T. penellii 17.4 1988 Graham Land

For each fish the identification number corresponding to the metadata (museum:.9 http://dx.doi.org/10.17632/8cr8yzvsj2; contemporary: http://dx.doi.org/10.17632/gk94xj8ydg.1),

the species name (based on morphological identification) the standard length (SL) in cm, the year of catch and the location of catch is given.

C: 2%) present in notable (≥1%) abundance in both museum
and contemporary samples. Museum and contemporary samples
of T. newnesi differed most with only Proteobacteria (M: 79%,
C: 22%), Cyanobacteria (M: 1%, C: 60%), Bacteroidetes (M: 2%,
C: 1%), and Actinobacteria (M: 1%, C: 1%) occurring in notable
abundances. Similarly, T. loennbergii showed overlaps in the
phyla Proteobacteria (M: 94%, C: 80%) and Bacteroidetes (M: 1%,
C: 5%). A visual comparison at the family level (Figure 4) points
to greater overlap between different species within the same time
frame (museum vs. contemporary) rather than within species

(T. hansoni vs. T. newnesi vs. T. loennbergii). Furthermore,
museum samples showed much more similarity to each other
when compared to contemporary samples, as is reflected in the
number of OTUs shared between all species in museum (65
OTUs) and contemporary (33 OTUs) samples (Figure 5).

An overall comparison between museum and contemporary
samples shows that there was no significant difference between
average Shannon indices, although museum samples exhibited
much less variability than contemporary samples [TukeyHSD:
F(1, 21) = 1.988, p > 0.05, Figure 6A]. Species richness, on
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FIGURE 3 | Rarefaction plots of the Alpha diversity of (A) all samples and (B) average number of observed species for each treatment group (Museum samples,

contemporary samples, workbench control and human control). Error bars indicate the standard deviation.

the other hand, was higher and exhibited less variation in
museum samples [TukeyHSD: F(1, 21) = 16.85, p < 0.001,
Figure 6B]. There were no statistically significant differences
between evenness of museum and recent samples [TukeyHSD:
F(1, 21) = 1.5518, p > 0.05, Figure 6C].

There were no statistically significant differences [TukeyHSD:
F(3, 19) = 6.798, p > 0.05] between average species richness
between museum and recent samples of T. hansoni (M: 134.4
± 13; C: 85 ± 38.4), T. newnesi (M: 112, 5 ± 4.4; C: 50.8
± 10.4), or T. loennbergii (M: 98.4 ± 14.3; C: 105.2 ± 8.3).
However, there was a significant difference between average
species richness between museum T. hansoni and contemporary
T. newnesi samples (p = 0.0054). The average Shannon
index [TukeyHSD: F(3, 19) = 1.039, p > 0.05] and evenness
[TukeyHSD: F(3, 19) = 0.832, p > 0.05] were similar with no
significant differences (p > 0.05).

Biological Background
Non-contaminated samples of the microbiome analysis differ
mainly along the second PCoA axis (Figure 2A). PCoA values
were extracted and tested for correlations with metadata. There
was no correlation of PCoA 2 values of the microbiome
composition with neither species identity nor location. However,
there was a correlation between the PCoA 2 values and the
standard length of the fish [Bonferroni corrected p = 0.0053,
F(1, 21) = 11.6, R2 = 0.3556, Figure 7A] as well as a correlation
between the PCoA 2 values of the microbiome composition and
year of catch [Bonferroni corrected p = 0.0345, F(1, 21) = 6.685,
R2 = 0.2415, Figure 7B]. The linear models explain 35.5 and
24.2% of the variability of the data, respectively. In contemporary
fish the microbiome composition differed mainly along the first
PCoA 1 axis and these values were therefore used for further
analysis. However, the PCoA 1 values did not correlate to any
of the potential explanatory variables (Figure 7A). Noteworthy
is also the distribution of the year of catch of samples from

which meaningful results were obtained (Figure 7B). A majority
of these samples were caught between 1901 and 1913 (n = 14),
with another small cluster (n = 4) from 1938/39, another cluster
(n= 4) from 1988, and one single sample from 2006.

DISCUSSION

Museum Sample Metabarcoding
In this study, we targeted the stomach content and internal
microbiome of fish that have been stored in museum
collections for a prolonged amount of time. Extraction of
DNA, amplification of a gene fragment (COI/16S rRNA),
and successful sequencing has proven extremely difficult and
characterized by high dropout rates. We established an intensive
control system in order to ensure that results do not merely
reflect contamination of ambient bacterial communities, which
has been problematic in many metabarcoding studies (Ficetola
et al., 2016). The COI data, targeting prey items in the stomach,
showed particularly high contamination rates and even the
removal of all OTUs from the dataset that were present in
contamination controls yielded no usable results. We therefore
conclude that this method as presented and applied here is not
suitable to amplify COI fragments from the stomach of museum
stored fish specimens.

In contrast, reliable results of the microbiome composition
(16S rRNA) for 23 fish was obtained. Even with high dropout
rates, this is a promising finding, because it opens up enormous
possibilities for future studies to assess the intestinal microbiome
of fish from museum collections. The 16S rRNA data of museum
samples, targeting the bacterial community within the hindgut,
was distinctly different from control samples, indicating no
contamination issues. One confounding explanation might be
that the bacterial communities found here were remnants of
bacterial communities from the ethanol used to preserve the
fish in the museum. However, if that was the case, we would
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FIGURE 4 | Taxonomic information of the microbiome of Trematomus hansoni, T. newnesi and T. loennbergii. The abundance of each microbial taxonomic group is

represented in bar plots on phylum (P) as well as family (F) level for museum and contemporary samples of each fish species. Phyla are separated by black lines drawn

through both P and F barplots. The taxa listed in the family level plots are positioned as in the phylum level plots (i.e., they correspond to the same phyla). Within the

bar plots the phylum of the family plots correspond to the same position as of the one from the phylum plots. Diversity plots for species evenness, Shannon index and

species richness of museum and contemporary samples are presented for each species below the taxonomic plots.

expect greater homogeneity in the contamination of the samples,
i.e., bacterial communities would be more homogenous between
samples indicated by nearly all OTUs shared and also more
samples would likely have been contaminated. In addition,
fish were not previously opened (access to gut) before this
study, which should limit contamination within the intestine.
Interestingly, the few samples that passed all pipeline and quality
control steps, were all collected at few time points (year of
catch). This possibly reflects a strong influence of the initial
(and long-term) preservation method. Formalin (formaldehyde)
gained increasing popularity for specimens after the first quarter
of the twentieth century in all fields of biological sciences
(Herbin, 2013). Formalin replaced the more expensive ethanol
as standard preservative, also providing better preservation
and higher efficiency, especially for larger specimens. However,

even if buffered properly, formalin causes crosslinking among
DNA molecules, between DNA molecules and nucleoproteins,
and between nucleoproteins alone (Koshiba et al., 1993). This
complicates/hampers DNA extraction and marker amplification.
If not buffered correctly, formic acid forms with time in
the formalin preservative. Depending on the pH, the effects
of this process can range from structural modifications, over
denaturation to complete depolymerization of the DNA (Thomas
and Doty, 1956; Geiduschek, 1958). Furthermore, if conditions
remain acidic, DNA hydrolyzes resulting in further structural
changes (Koshiba et al., 1993). In museum collections, the
initial preservative (formalin/ethanol fixation) is generally not
documented. Formalin, as a preservative, was first introduced in
1891 and gained attention between the years of 1896 to 1937
(Herbin, 2013). Between 1960 and 1980 it was used almost
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FIGURE 5 | Six-way Venn diagram of the microbial OTU composition in the guts of members of the genus Trematomus (T. hansoni, T. newnesi, T. loennbergii) from

museum and contemporary samples.

FIGURE 6 | Diversity graphs for all museum and contemporary samples: (A) Shannon index, (B) species richness and (C) evenness. Error bars indicate standard

deviation.

exclusively. Due to the health risks of formalin, starting around
2000 samples were over time gradually transferred to ethanol,
without keeping a record of the initial preservative. Most likely
the successful metabarcoding sequences of this study are from
specimens that have never been stored in formalin. That might
explain why more ancient samples (anterior to 1913) have better
amplification success and come in batches (same time and
same expedition, so preserved in a similar way). Unfortunately,

preservation data is not available, so this hypothesis cannot be
tested here. We recommend that future museum metabarcoding
studies carefully evaluate from which time periods samples are
available and whether there is any information on preservation
techniques. It would be interesting to specifically test sequencing
success in relation to formalin/ethanol use, although many
confounding factors (e.g., time between capture and transfer to
preservative, organism size, tissue permeability) may be present.
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FIGURE 7 | Scatter plots of PCoA values for contemporary and museum samples of the microbiome composition plotted against (A) the standard length (SL) in cm of

the fish. Triangles (1) represent contemporary samples and are plotted on the PCoA 1 axis, whereas dots (•) represent museum samples and are plotted on the PCoA

2 axis. Linear models (LM) were fitted to both data with significance levels of p = 0.0053 and p = 0.0685, respectively. (B) PCoA 2 values of the microbiome

composition of museum samples plotted against the year of catch. A LM was fitted to the data with a significance level of p = 0.0345.

In cases with no information available, researchers have to
critically weigh their options as many samples may fail as shown
here, which can drastically increase the cost of such a project.
Unfortunately, most surveys and collections from the Southern
Ocean were collected in the second half of the twentieth century,
after formalin became the preservative of choice for fish, but
before the potential of DNA was taken into account. The use
of these samples for molecular studies is therefore probably
limited.

It is also unclear why we were able to obtain data for
the microbiome composition (16S rRNA; both historical and
contemporary) and unable for the prey item composition of the
historical samples (COI; data for the prey item composition of
contemporary samples were generated but not shown, available
under http://dx.doi.org/10.17632/gk94xj8ydg.1). It might be that
bacterial communities based on their cellular structure and
properties are more resistant and cope better with long term
storage in the environment of the stomach and intestines, which
can include aggressive digestive acids. Prey items may not
withstand such an environment that well with the consequence
of genetic material degrading in the course of the many years
of storage. As there is no evidence for this suggestion in the
literature, it remains speculation at this point in time. Another
possible hypothesis would be that 16S rRNA primers used in
this study are generally more efficient than the ones used for the
COI fragment. In combination with low quality template DNA,
this might result in a successful amplification for the 16S rRNA
fragment, but not the COI fragment. Further technical tests or
replication studies are needed to clarify the cause of the problem
here and/or to find alternative ways to successfully obtain COI
data from historical stomach contents.

DNA metabarcoding studies in general can suffer from
poor taxonomic resolution due to primer bias (Deagle et al.,
2014). Regarding museum samples short target fragments are
often the only option due to fragmented and/or degraded
DNA. If well-preserved samples yielding high-quality DNA is
available, metagenomics (i.e., using genomewide markers or
whole-genome data) offer a taxonomically more representative
alternative (Porter and Hajibabaei, 2018). Natural history
museums may contain samples amenable to such approaches
as well (e.g., long-term ethanol preserved specimens, that were
not exposed to formalin). Despite these limitations and trade-
offs, museum metabarcoding may offer unique insights into
the temporal dynamics and driving factors of fish microbiome
variation. Such data can be especially valuable to understand
the responses to decadal to centennial scale environmental
changes. In the following we explore temporal and biological
signals with our—-admittedly small—-data set after quality
control to showcase potential trends in Antarctic fishmicrobiome
composition.

Microbiome Composition Through Time
So far only one study has investigated the microbial gut fauna
of Antarctic fishes (Notothenia coriiceps and Chaenocephalus
aceratus), using Sanger sequencing (Ward et al., 2009). We
found much greater microbial diversity in both museum and
contemporary samples of Trematomus spp., which can be
expected given that our data are based on high-throughput
sequencing. In general, the number of OTUs found in the
intestinal microbiome is very variable in marine fish (Sullam
et al., 2012). Two of the OTUs found in Ward et al. (2009) were
also present in our contemporary samples (AF206298-Ehrlichia
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sp. “trout isolate,” FM178379.1-Aliivibrio salmonicida LFI1238).
In nine cases the same genus (Fusobacterium, Photobacterium,
Aliivibrio, Desulfovibrio, Mycoplasma, Desulfovibrio, Shewanella,
Moritella, Sphingomonas) was present in our contemporary
samples. The museum sample microbiomes from our
study included three genera (Fusobacterium, Shewanella,
Sphingomonas), that were found by Ward et al. (2009) as well.
Differences between the two studies are probably largely driven
by the different sequencing techniques and possibly to a lesser
extent by the different target species. Interestingly, there is less
overlap between our museum samples and the results of Ward
et al. (2009) than between our contemporary samples and Ward
et al. (2009)

We also directly compared microbiome composition between
contemporary andmuseum samples of three Trematomus species
and found little overlap. Temporal comparisons of the same
species show more variation than between species comparisons
from the same sample type. Such results, albeit based on small
sample size, could indicate that the microbiome of all fishes
has undergone a drastic community shift. While there is large
overlap in the functional groups (phylum level) in terms of
presence and absence, the actual proportions of each group
vary greatly between museum and contemporary samples. At
higher resolution of the microbial community (family level),
there is a clear change in composition, with few OTUs present
in both museum and contemporary samples. This supports the
idea that the microbiome may have fundamentally changed in
these three species within the last century. We need to stress,
however, that due to the large amounts of dropout during
quality control our findings are based on very small sample
sizes. The observed differences could therefore be driven by an
insufficient community representation (especially in T. hansoni
and T. loennbergii). Further studies ideally selecting individuals
from similar locations and with known preservation history
are needed to confirm these patterns. It is also unclear how
such a drastic change could have occurred. The microbiome
composition can rapidly and drastically be affected by change
in behavior (David et al., 2014a), changes in diet (David
et al., 2014b) or due to environmental influences such as
pollution (Bagi et al., 2018; Chen et al., 2018). Ancient intestinal
microbiome studies in humans show great resemblance of
coprolite samples (between 8,000 and 1,400 years B.P.) with
that of contemporary traditional rural communities, but drastic
differences with samples associated with a cosmopolitan lifestyle
(Tito et al., 2012). This shows that strong community shifts
in the intestinal microbiome do occur across populations, but
are generally thought to be associated with environmental
pressures or changes in lifestyle (Schnorr et al., 2016). In
our case, it is unclear what could have caused the indicated
shift. One suggestion might be that humans have an increasing
impact on the Antarctic environment. Despite the distance
to congested areas, impacts on the Antarctic ecosystem have
increased dramatically in the last 100 years. They include direct
impacts such as pollution, tourism, and research (Clarke and
Harris (2003), as well as indirect impacts such as the emission
of greenhouse gases (Trathan and Agnew, 2010). While the
consequences of direct impacts are relatively minor compared

to other areas in the world (Halpern et al., 2008; Trathan
and Agnew, 2010), indirect impacts have already and are
expected to greatly affect and permanently alter the ecosystems
of the Southern Ocean and Antarctica in the near future
(Clarke and Harris, 2003; Schofield et al., 2010; Mintenbeck
et al., 2012; Griffiths et al., 2017). Changing microbiome
composition may be among these alterations. However, only
a larger dataset with more environmental information and
samples from multiple museum collections will be able to
validate this hypothesis. Our results for contemporary samples
also represent an important baseline that will be useful for
the study of future changes in the microbiome composition of
fish.

Biological Factors Influencing Microbiome
Composition
A correlation between the microbiome composition and the size
of the fish, and therefore also its age (White, 1991), was found
for museum samples and indicated as well in contemporary
samples. The contemporary samples were used as a control in this
study with low sample size. The hinted trend here remains to be
validated. There are many cases where the intestinal microbiome
evolves throughout the development of an individual, as it
changes its lifestyle or diet. There is a clear change in the
microbiome composition of children compared to adults (Kau
et al., 2011). In fish, body size (and therefore age) plays a crucial
role in the interaction between predators and prey (Lundvall
et al., 1999). With increasing size bigger prey items can be
ingested and smaller ones might become less important. This
shift might be reflected in the changing composition of the
intestinal microbiome composition with size. Notothenioid fish
have diversified ecologically and therefore feature a variety of
life styles and feeding habits. Members of the genus Trematomus
also show diversification in habitat use and diet (e.g., Brenner
et al., 2001). At the same time they attain a similar range of
maximum sizes and undergo ontogenetic shifts in in life style
(Dewitt et al., 1990). It seems therefore plausible that microbiome
composition of Trematomus fishes is dependent on fish size.
This hypothesis would be supported by studies concerning the
development of the intestinal microbiome of Coho salmon
(Oncorhynchus kisutch) where the authors conclude that an
early life microbiome is unstable (Romero and Navarrete, 2006).
Initial colonization of the gut occurs after first feeding by
microbes derived from the water column and the prey items.
Over time, initial microbes are outcompeted by strains that are
adapted to the intestinal environment. This is in line with other
studies of humans (e.g., Cho and Blaser, 2012) and mice (El
Aidy et al., 2012, 2013), that show that the initial intestinal
microbiome is highly unstable and subject to change during
development. In contrast, some studies support a more vertical
transmission (from parent to progeny) of bacteria and highlight
its importance (Funkhouser and Bordenstein, 2013). It seems that
in Trematomus size, development, and age play a predominant
role in the composition of the intestinal microbiome. Species and
location appear to be of lesser importance. Larger sample sizes,
a better understanding of the life history and more information
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of feeding habits are needed in order to better comprehend this
relationship.

CONCLUSION

Here we show how to obtain information about the intestinal
microbiome of century old fish from museum collections
through metabarcoding. The feasibility of this provides an
excellent opportunity to go back in time and learn about
centennial scale microbiome community shifts. Our results
indicate that a drastic shift may have occurred in recent years,
coinciding with increasing environmental pressure from global
change. Furthermore, microbiome composition of Trematomus
fishes seems linked to ontogeny, rather than species identity or
locality. Due to many samples failing at quality control steps,
these findings are based on very small sample sizes and more
extensive studies are needed to confirm such patterns. Future
studies could try to select specimens with known preservation
history and avoid formalin fixated samples, as these might be
responsible for the high dropout rates we experienced. Overall,
metabarcoding studies of museum fish harbor great potential for
understanding eco-evolutionary processes that lead to adaptation
within relatively short time scales.
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