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Abstract: Block copolymers comprising chemically different bottlebrush blocks can self-assemble in
selective solvents giving rise to micellar-like solution nanostructures. The self-consistent field theo-
retical approach is used for predicting relation between architectural parameters of both bottlebrush
blocks (polymerization degrees of the main and side chains, density of grafting of the side chains to
the backbone) and structural properties of micelles as well as critical micelle concentration (CMC).
As predicted by the theory, replacement of linear blocks by bottlebrush ones with the same degrees of
polymerization results in a decrease in the micellar core size (in aggregation number) and extension
of the corona, whereas the CMC increases. These theoretical findings are in good agreement with
results of computer simulations.

Keywords: block copolymers; bottlebrushes; self-assembly

1. Introduction

Diblock copolymers comprising chemically different blocks A and B are capable
of self-assembly in selective solvent, which is good for blocks A, but poor for block B,
thus giving rise to nanoscale micellar-like aggregates. In such aggregates, insoluble B
blocks associate into solvent-free core domain decorated by solubilizing corona formed
by solvophilic A blocks. Amphiphilic diblock copolymers with hydrophobic B block and
hydrophilic (neutral or ionically charged) A blocks represent generic type of polymeric
surfactants resembling in many aspects their low molecular weight counterparts [1].

Rational understanding of self-assembly of block copolymers in selective solvent has
been achieved on the basis of existing theories [2–7] amply supported by experiments (see,
e.g., reviews [8,9]). A generic feature of block copolymer assembly is coupling of inter-
molecular association to conformational changes in both blocks which makes self-assembly
of block copolymers more complex than that of conventional surfactants. Structure and
properties of self-assembled aggregates can be efficiently controlled by DPs of blocks,
as well as by tuning their solubility (so called stimuli-responsiveness) [6].

Moreover, as has been recently understood, by changing topology (mode and degree
of branching) of the blocks, one can achieve new properties of the self-assembled nanos-
tructures without affecting chemical nature of the constituent blocks. Linear-dendritic
or double dendritic block copolymers (termed also as amphiphilic or Janus dendrimers)
represent typical examples [10–15]. Such copolymers are most promising for biomedical
applications due to large number of exposed to environment and potentially functionizable
terminal groups of dendritically-branched solvophilic blocks [16].

Recently, self-assembled structures of block copolymers with bottlebrush-like blocks
have attracted considerable interest. Amphiphilic diblock copolymers with bottlebrush
soluble blocks can replace in many aspects copolymers with dendritic blocks because
they comprise large number of functionizable end segments in multiple lateral branches.
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Moreover, triblock copolymers with middle bottlebrush blocks can associate in solution or
in the melt state giving rise to materials (microphase segregated, mesogels) with unique
mechanical properties resembling biological tissues and efficiently controllable through
the generic set of architectural parameters, i.e., degrees of polymerization of the main and
side chains and grafting density in the bottlebrush blocks.

Although the first computer simulations [17,18] proved the possibility of affecting
the micellar structure by varying architecture of the bottlebrush blocks, theoretical under-
standing of systematic relations between the topological parameters set and experimentally
relevant properties (aggregation number, overall dimensions) of micelles formed by bot-
tlebrush block copolymers is still missing. Here, we aim to fill this important knowledge
gap. The aim of the present paper is to develop a theory of self-assembly of diblock copoly-
mers comprising one soluble and one insoluble bottlebrush blocks in selective solvent
(linear-bottlebrush block copolymers represent a particular case).

2. Model and Method

We consider diblock copolymers comprising two chemically different comb-shaped
blocks in selective solvent, Figure 1. Block A has total degree of polymerization (DP) NA,
the DP of the main chain MA, DPs of side chains nA, and number of monomers in a spacer
separating two neighboring grafting points mA. The number of side chains emanating
from each branching point is qA. The ratio qA/mA (number of side chains per monomer
unit of the main chain) quantifies grafting density. Total number of side chains in the block
A is MAqA/mA. The set of architectural parameters for the block A will be abbreviated as
{MA; nA; mA; qA}. Block B with total DP NB is characterized by the corresponding set of
parameters {MB; nB; mB; qB}. Below we focus on comb-shaped copolymers with densely
grafted side chains, qA,BnA,B/mA,B � 1, and, following standard nomenclature, term them
as molecular bottlebrushes. Evidently, nA = 0 or nB = 0 correspond to linear respective
blocks. The DPs of the blocks are expressed through the sets of architectural parameters as

Ni = Mi(1 +
qi · ni

mi
) i = A, B (1)

The backbone and the side chains in each of the blocks are assumed to be chemically
identical, the monomer unit size a (the same for both blocks), is on the order of the Kuhn
segment length. The solvent is assumed to be poor for monomer units of blocks B and
moderately good for monomer units of blocks A.

BM

AM
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Bn
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Bn

a

b

Figure 1. Schematics of bottlebrush (a) and miktoarm star (b) diblock copolymer for a particular case
of branching activity qA = qB = 1.
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Poor solubility of blocks B drives association of block copolymers in selective solvent
that leads to formation of micellar-like aggregates where blocks B constitute solvent-free
core domain whereas soluble blocks A protrude in solution to form corona. Here, we focus
on spherical micelles although depending on the DPs of blocks A and B, and their degrees
of branching other morphologies (wormlike micelles, polymersomes) may correspond to
thermodynamic equilibrium structures which will be considered elsewhere.

Poor solubility of blocks B assures narrow core–corona interface so that the corona
and the core of micelle can be envisioned as convex swollen and concave dry brushes of A
and B blocks tethered to the core–corona (A/B) interface, respectively.

We implement the strong stretching self-consistent field (SS-SCF) approximation for
calculating the free energies of both corona (A) and core (B) domains. In the SS-SCF
formalism, the self-consistent molecular potential acting on monomer units of A or B
blocks is parabolic and presented [19–21] as

Ui(z)
kBT

=
3κ2

i
2a2 ·

{
D2 − z2, i = A
R2 − z2, i = B

(2)

Here, D and R are the corona thickness and radius of the core, respectively (R + D
is overall radius of micelle), z ∈ [0, D] or z ∈ [0, R] are the distances from the core–corona
interface, kBT is the thermal energy, and i = A, B.

The topological coefficients κi depend on the set of topological parameters {Mi, ni, mi, qi}
of each respective block. Below, instead of the topological coefficients κi, we use the
topological ratios

ηi =
2Niκi

π
(3)

which are equal to unity for linear blocks (“bare backbones”), Ni = Mi at ni = 0 but
are larger than unity for any branched, e.g., bottlebrush blocks. The topological ratio
quantifies the relative increase in the elastic free energy per chain in the brush formed by
branched macromolecules as compared to that in the brush formed by linear chains with
the same degree of polymerization. The topological ratio depends on the macromolecular
architectural parameters but is independent of the chain grafting density, and the character
of intermolecular interactions in the brush.

The topological ratio for brushes of comblike macromolecules was calculated in
ref. [22] and can be expressed analytically in the two asymptotic limits

ηi ≈
{

(1 + qini/mi)
1/2, Mi � (nimi/qi)

1/2

qi Mi/mi, Mi � (nimi/qi)
1/2 (4)

The first line in Equation (4) corresponds to the comblike block with long backbone
and multiple relatively short side chains attached to it (bottlebrush limit, as depicted in
Figure 1a), whereas the second line corresponds to the block with few long arms attached
to the relatively short backbone (miktostar limit, depicted in Figure 1b). Although the
topological coefficient (and the topological ratio) can be calculated for comb-shaped blocks
with arbitrary set {Mi, ni, mi, qi} of the parameters, the self-consistent potential exhibits the
parabolic dependence on z, Equation (2), provided (i) Gaussian conformational elasticity of
all linear segments of the branched blocks on all length scales and (ii) absence of “dead
zone” proximal to A/B interface and depleted from the free ends of backbones of blocks. In
convex spherical geometry the latter criterion can be violated but, nonetheless, Equation (2)
with topological ratio given by Equation (4) can serve as a reasonable approximation.

In this paper, we focus on copolymers with comb-shaped blocks that exhibit linear
(Gaussian) elasticity on all length scales. Although, due to repulsive interactions between
densely grafted side chains, the backbones of comb-shaped polymers in the melt or/and in
solution are elongated with respect to unperturbed Gaussian end-to-end dimensions [23],
the application of the SS-SCF approach to micellar corona and core ignores pre-stretching of
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backbones in the individual A and B blocks. A more elaborated model taking into account
renormalization of the blocks’ elasticity will be considered elsewhere.

Below we analyze how parameters of micelles (aggregation number, radius of the
core, corona thickness, and the overall radius of the micelle) depend on the length of side
chains ni for Ni, mi = const or Mi, mi = const. For that, Equation (4) can be presented as

ηi(ni) ≈
{

(1 + qini/mi)
1/2, ni � N2/3

i (mi/qi)
1/3

Ni/(ni + mi/qi), ni � N2/3
i (mi/qi)

1/3 (5)

or

ηi(ni) ≈
{

(1 + qini/mi)
1/2, ni � M2

i qi/mi
qi Mi/mi, ni � M2

i qi/mi
(6)

Obviously, ni is limited from above as ni ≤ Ni −mi.
Alternatively, we can analyze parameters of micelles as a function of grafting density

mi/qi for Ni, ni = const or Mi, ni = const, so that

ηi(mi/qi) ≈
{

(1 + qini/mi)
1/2, mi/qi � N−2

i n3
i

Ni/(ni + mi/qi), mi/qi, � N−2
i n3

i
(7)

or

ηi(mi/qi) ≈
{

(1 + qini/mi)
1/2, mi/qi � M2

i n−1
i

Miqi/mi, mi/qi � M2
i n−1

i
(8)

The first and the second lines in Equations (5)–(8) refer to bottlebrush or miktostar
shape of a block, respectively.

3. Free Energy of a Micelle

The properties of equilibrium micelles are obtained through minimization of the free
energy per block copolymer molecule,

F = Fcorona + Fcore + Finter f ace (9)

which comprises contribution of the corona, Fcorona, and the core, Fcore, domains, as well as
the free energy of the core–corona interface, Finter f ace.

Within SS-SCF approximation, the self-consistent molecular potential acting on the
monomers of corona chains is given by Equation (2), and related to the interaction free
energy density fint,A{φA(z)} as

U(z) =
δ fint,A{φA(z)}

δφA(z)

where φA(z) is concentration (volume fraction) profile of monomer units of block A in
the corona.

Under good solvent conditions,

fint,A{φA(z)} = kBTa−3vφ2(z) (10)

where v is dimensionless (normalized by a3) second virial coefficient, and, therefore

φA(z) =
3κ2

A
4va2 (D2 − z2) (11)

also exhibits a parabolic shape.
Detailed calculations of the free energies of corona and core domains in a micelle

formed by copolymers with arbitrary branched architecture of blocks are presented else-
where [15] and here we outline only the key steps.
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The cumulative free energy of the corona and the core domains can be presented as

Fcorona + Fcore =∫ D

0
fint,A{φA(z)}sA(z)dz +

∫ D

0
felastic,A(z)sA(z)dz +

∫ R

0
felastic,B(z)sB(z)dz (12)

where fint,A{φA(z)}, felastic,A(z) and felastic,B(z) are the free energy of excluded volume
interactions, the elastic (conformational) free energy per unit volume in the corona, and of
the core, respectively. Here s is the core surface area per block copolymer molecule and
sA,B(z) is defined as

si(z) = s ·
(

R± z
R

)2

(13)

where signs “+” and “−” refer to the corona (i = A) and core (i = B) domains, respectively
The condition of uniform packing of blocks B in the core imposes the relation between

the core–corona A/B interface area s per block copolymer and the radius R of the core
domain

s =
3NBa3

RφB
, (14)

The number p of block copolymer chains in a spherical micelles is related to the radius
R of the core or to the core surface area s per copolymer chain as

p =
4πR3φB

3NB
=

36πN2
Ba6

s3φ2
B

(15)

where φB ' 1 is the volume fraction of monomer units B in the core.
Conservation of the number of monomer units of the A blocks,

∫ D
0 A(z)sA(z)dz =

NAa3, provides (with account of Equation (11)) the relationship between s, R and D

D = D0(s) · (1 +
3
4

D
R

+
1
5

D2

R2 )
−1/3 (16)

where

D0(s) =
(

2NAva2

sκA

)1/3

a ≡ (
8

π2 )
1/3NAv1/3(

a2

s
)1/3η−2/3

A a (17)

is the thickness of a planar brush (with zero curvature) with grafting area s per molecule.
As long as both blocks A and B exhibit Gaussian elasticity, the density of elastic free

energy can be expressed as

felastic,i(z) =
Ti(z)

2
(18)

where Ti(z) is the flux of elastic tension per unit area in the corresponding domains at
distance z from A/B interface.

It can be presented as

Ti(z)
kBT

=
3κ2

i
2si(z)a3

∫ D,R

z
z′φi(z′)si(z′)dz′ (19)

where the upper limits of the integral are equal to D or R for the corona and core domains,
respectively, and φA(z) is given by Equation (11), while φB(z) ≈ const ∼= 1.

After performing integration, one gets

Fcorona = F(0)
corona(s)

(
D

D0(s)

)5

·
(

1 +
5
6

D
R

+
5

21
D2

R2

)
(20)
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where

F(0)
corona(s) = kBT

9
20

κ4
As

va2

(
D0(s)

a

)5

= kBT
9π2/3

10
NAv2/3(

a2

s
)2/3η2/3

A (21)

is the free energy (per molecule) in a planar brush with area s per A block and Equation (3)
for ηA was used.

The elastic free energy of block B in the core with radius R can be expressed using
Equations (12) and (19) as

Fcore(s) =
∫ R

0
felastic,B(z)sB(z)dz = kBT

27π2

80
NBa4

s2φ2
B

η2
B (22)

The excess free energy of the core–corona interface (per block copolymer chain) can
be expressed as

Finter f ace = kBTγs (23)

where γkBT is the interfacial free energy per unit area, which is controlled primarily by solu-
bility parameter of the core-forming B-blocks but is virtually independent of concentration
of monomer units of A-blocks in the corona domain.

Using Equations (14), (16), and (17), the area s of the core surface per block copolymer
chain can be presented as

s
a2 =

πη

N3/2
A v1/2

(
NB
φ

)3/2
· (3D

2R
)3/2(1 +

3
4

D
R

+
1
5

D2

R2 )
1/2 (24)

As follows from Equation (24), the surface area s per block copolymer chain is ex-
pressed as a function of dimensionless ratio

x = D/R (25)

The free energy of the core–corona interface is given by

Finter f ace(x) =
kBTγs

a2 = kBTγ
πη

N3/2
A v1/2

(
NB
φ

)3/2
(

3x
2
)3/2(1 +

3
4

x +
1
5

x2)1/2, (26)

By substituting Equation (24) for s in Equations (12) and (21) for corona and core,
contributions to the free energy can be also expressed as functions of x

Fcorona(x)
kBT

=
3
5

vN2
Aφ

NB

(1 + 5
6 x + 5

21 x2)

x(1 + 3
4 x + 1

5 x2)2
(27)

and
Fcore(x)

kBT
=

N3
Avφ

N2
B

(
ηB
ηA

)2
· 1

10
x−3(1 +

3
4

x +
1
5

x2)−1 (28)

By minimizing total free energy (per chain) as a function of x

d[Fcorona(x) + Finter f ace(x) + Fcore(x)]
dx

= 0 (29)

which is equivalent to the minimization with respect to s, one finds the value of s (or R)
corresponding to equilibrium micelle and, using Equations (9), (26)–(28) the free energy
per block copolymer chain in the equilibrium micelle. This free energy is directly related to
CMC, as

kBT ln CMC = F(s)− F1 (30)

where
F1 ≈ kBTγ(NB/φB)

2/3 (31)
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is (with the accuracy of numerical prefactor) the free energy of a unimer which is dominated
by the excess free energy of the interface between single collapsed B-block and surrounding
(poor) solvent. We remark that Equation (30) disregards translational entropy of micelles
which is justified for sufficiently large aggregation numbers, p� 1.

4. Starlike and Crew-Cut Micelles: Asymptotic Results

Following standard nomenclature, we distinguish starlike, D � R, and crew-cut,
D � R, micelles (Figure 2). The overall dimensions of the micelles in these limiting
cases are controlled either by the extension of the corona, D, or by the core radius, R,
respectively. In both limits, structural and thermodynamic properties of micelles can be
derived analytically in the form of power-law dependencies by keeping only the dominant
terms in the free energy, that is, the free energy of the corona, Fcorona and the free energy of
the core–corona interface, Finter f ace. Neglecting conformational entropy of the core-forming
B-blocks does not allow us to capture the effect of their architecture on the properties of
micelles, which may serve as a reasonable approximation as long as the B-blocks are linear
or weakly branched. As demonstrated below, the calculations with proper account of the
contribution of the conformational entropy of the B-blocks, prove that increasing branching
of the B-blocks leads to systematic decrease in the dimensions and aggregation number of
micelles. However, this decrease cannot be described in terms of power law dependencies
on ηB.

Starlike micelle, D > R

R

D

R

D

Crew-cut micelle, D < R

Figure 2. Schematics of starlike, D � R, and crew-cut, D � R, micelles formed by copolymers with
bottlebrush blocks.

The asymptotic power law dependencies of structural and thermodynamic properties
of starlike and crew-cut micelles on the set {MA; nA; mA; qA} of architectural parameters
of A-block and NB/φB are presented below. They differ for the cases of bottlebrush,
MA � (nAmA/qA)

1/2, and miktostar-like, MA � (nAmA/qA)
1/2, blocks A.

4.1. Starlike Micelles, D � R

Aggregation number:

p ∼= γ15/11(
NB
φB

)10/11v−6/11·{
N−3/11

A (1 + qAnA
mA

)−9/11 = M−3/11
A (1 + qAnA

mA
)−12/11, MA � (nAmA/qA)

1/2

N−21/11
A n18/11

A (1 + mA
qAnA

)18/11 = (MAqA
mA

)−21/11n−3/11
A (1 + mA

qAnA
)−3/11, MA � (nAmA/qA)

1/2 (32)

and core radius R/a ∼=
(

NB
φB

)1/3

p1/3.

Corona thickness:
D/a ∼= γ3/11(

NB
φB

)2/11v1/11

{
N6/11

A (1 + qAnA
mA

)−4/11 = M6/11
A (1 + qAnA

mA
)2/11, MA � (nAmA/qA)

1/2

N−2/11
A n8/11

A (1 + mA
qAnA

)8/11 = ( qA MA
mA

)−2/11n6/11
A (1 + mA

qAnA
)6/11, MA � (nAmA/qA)

1/2 (33)
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The CMC:

ln CMC ∼= −γ

(
NB
φB

)2/3

+ γ6/11
(

NB
φB

)4/11

v2/11·{
N1/11

A (1 + qAnA
mA

)3/11 = M1/11
A (1 + qAnA

mA
)4/11, MA � (nAmA/qA)

1/2

N7/11
A n−6/11

A (1 + mA
qAnA

)−6/11 = ( qA MA
mA

)7/11n1/11
A (1 + mA

qAnA
)1/11, MA � (nAmA/qA)

1/2 (34)

4.2. Crew-Cut Micelles, D � R

Aggregation number:

p ∼= γ9/5(
NB
φB

)2v−6/5·{
N−9/5

A (1 + qAnA
mA

)−3/5 = M−9/5
A (1 + qAnA

mA
)−12/5, MA � (nAmA/qA)

1/2

N−3
A n6/5

A (1 + mA
qAnA

)6/5 = (MAqA
mA

)−3n−9/5
A (1 + mA

qAnA
)−9/5, MA � (nAmA/qA)

1/2 (35)

and core radius R/a ∼=
(

NB
φB

)1/3

p1/3

Corona thickness:
D/a ∼= γ1/5v1/5·{

N4/5
A (1 + qAnA

mA
)−2/5 = M4/5

A (1 + qAnA
mA

)2/5, MA � (nAmA/qA)
1/2

n4/5
A (1 + mA

qAnA
)4/5, MA � (nAmA/qA)

1/2 (36)

The CMC:

ln CMC ∼= −γ

(
NB
φB

)2/3

+ γ2/5v2/5·{
N3/5

A (1 + qAnA
mA

)1/5 = M3/5
A (1 + qAnA

mA
)4/5, MA � (nAmA/qA)

1/2

NAn−2/5
A (1 + mA

qAnA
)−2/5 = qA MA

mA
n3/5

A (1 + mA
qAnA

)3/5, MA � (nAmA/qA)
1/2 (37)

5. Discussion
5.1. Diagram of States

First of all, it is instructive to outline the ranges of stability of starlike (st) and crew-cut
(cc) micelles with corona formed by copolymers with either bottlebrush (bb) or miktostar
(mks) solvophilic blocks A. The corresponding diagrams of states are presented in (NA, nA)
and (MA, nA) coordinates in Figure 3a,b, respectively. The diagrams contain regimes bb/st,
mks/st, bb/cc, mks/cc of starlike or crew-cut micelles with bottlebrush and miktostar
corona-forming A-blocks, respectively. The diagrams contain also the unimer regime
where micellization is suppressed due to strong repulsive interactions between A-blocks.
An increase in the overall DP of soluble blocks ultimately provokes stabilization of the
unimer state of the block copolymers in the solution.
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Figure 3. Schematic diagram of states of micelles in (NA, nA) (a) and (MA, nA) (b) coordinates.
Regions of starlike (st) and crew-cut (cc) micelles with bottlebrush (bb) or miktostar (mks) A-blocks
are outlined. Equations for boundaries between different regimes are presented near the lines.
Parameters of the boundaries in the diagram are C ∼= (γ2(NB/φB)

5v−3)1/7; U = γ5(NB/φB)
10/3v−2.

Gray area corresponds to the region of spherical micelles instability (transition to wormlike micelles
and polymersomes).

5.2. Structural and Thermodynamic Properties of Micelles

Below we discuss the main trends in the dependencies of the micellar properties (aggre-
gation number, core, corona and overall dimensions, and CMC) on architectural parameters
of the blocks. These trends are qualitatively captured by asymptotic Equations (32)–(37)
whereas the explicit dependencies are accurately calculated at arbitrary ratio R/D accord-
ing to the routine described in Section 3.

We start with analysis of the effect of varied side chains length, nA, in soluble block A
at either NA, mA/qA = const or MA, mA/qA = const. An increase in nA (at NA = const or
MA = const) provokes transformation of the A-block from bottlebrush to miktostar-like
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and may also lead (particularly at MA = const) to change of the shape of the micelles from
crew-cut to starlike ones.

As illustrated by Figure 4, corresponding to cross-section (1) of the diagram in
Figure 3a, at NA, mA/qA = const the aggregation number, core radius, and corona thick-
ness in starlike micelles with bottlebrush A-block decrease as a function of nA. If not
the total DP of the A-block, but rather DP of the main chain MA is kept constant, the
aggregation number p and core radius R also decrease, whereas D and overall micellar
size increase as a function of nA. In both cases (NA = const or MA = const) CMC is an
increasing function of nA.

 

𝑫,𝑹 

𝒏𝑨 𝒏𝑨 

𝒑 𝑫+ 𝑹 

𝒏𝑨 

Figure 4. Aggregation number p, core radius R (dashed lines), and corona thickness D (solid lines),
and overall radius, R + D, of starlike spherical micelles formed by block copolymers with NB = 200
and NA = 1000 or MA = 1000 as a function of nA (cross-section (1) in Figure 3a). Red and blue
curves correspond to NA = 1000 = const (varied nA, MA) or to MA = 1000 = const (varied nA, NA),
respectively. Other parameters are qA = 1, mA = 2, γ = 1, v = 1, φB = 1.

Figure 5 demonstrates more complex, non-monotonous dependencies of the micellar
parameters on nA at NA = const, mA/qA = const corresponding to cross-section (2) of
the diagram in Figure 3a. Here aggregation number, core radius and corona thickness
decrease as a function of nA as long as A-block is bottlebrush-like, but increase as a function
of nA when A-block acquires miktostar shape. Hence, p, R, D, and R + D pass through
a minimum as a function of nA when the shape of the coronal block A changes from
bottlebrush to miktostar. In Figure 5, this crossover occurs in the regime of crew-cut
micelles (R ≥ D), but similar trends are predicted for starlike micelles (cross-section (3) in
Figure 3a). The CMC also depends non-monotonously on nA, increasing in the range of
bottlebrush A-blocks and decreasing in the range of miktostar A-blocks.

 

𝐷, 𝑅 

𝑛𝐴 
𝑛𝐴 

𝑝 𝐷 + 𝑅 

𝑛𝐴 

D 

R 

𝒎𝑨 = 𝟐 

𝒎𝑨 = 𝟑 

𝒎𝑨 = 𝟒 

𝑵𝑩 = 𝟏𝟓𝟎 

 

 

 

 

Figure 5. Aggregation number p, core radius R (dashed lines), and corona thickness D (solid lines),
and overall radius, R + D, of micelles formed by block copolymers with NB = 150 and NA = 100
as a function of nA (cross-section (2) in Figure 3a). mA is varied, as indicated in the figure. Other
parameters are qA = 1, γ = 1, v = 1, φB = 1.

In Figure 6, the micellar structural properties p, R, D, R + D are plotted as a function
of qAnA/mA at NA = const for a number of selected values of qA/mA. As one can see
from the figure, all the dependencies follow universal curves as long as A-blocks keep
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bottlebrush shape but split into a series of curves each corresponding to specific value of
qA/mA at large nA when the A-block acquires miktostar shape.

 

𝐷, 𝑅 

𝑛𝐴𝑞𝐴
𝑚𝐴

 

 

𝑝 𝐷 + 𝑅 

𝑛𝐴𝑞𝐴
𝑚𝐴

 

 

𝑛𝐴𝑞𝐴
𝑚𝐴

 

 

D 

R 
𝒎𝑨 = 𝟐 

𝒎𝑨 = 𝟑 

𝒎𝑨 = 𝟒 

 

 

 

Figure 6. Aggregation number p, core radius R (dashed lines), and corona thickness D (solid
lines), and overall radius, R + D, of micelles formed by block copolymers with NB = 150 and
NA = 100 as a function of nAqA/mA. mA is varied, as indicated in the figure. Other parameters are
qA = 1, γ = 1, v = 1, φB = 1. The crossover between bottlebrush and miktostar shapes of the A-block
is indicated by vertical dashed lines in the middle panel.

The effect of DP MA of the backbone in the corona block A (at constant nA, mA/qA)
on the aggregation number and dimensions of micelles is as follows: As predicted by
Equations (32), (33), (35), and (36) for both starlike and crew-cut micelles p and R do
decrease as a function of MA while CMC increases. For starlike micelles, the corona
thickness D and the overall micellar sise R + D increase as a function of MA in the case of
bottlebrush A-block, but decrease in the case of miktoarm A-block. For crew-cut micelles,
the corona thickness increases as a function of MA in the case of bottlebrush A-block, but is
virtually independent of MA when A-block acquires miktostar shape. Hence, the corona
thickness and the overall radius of the micelle may exhibit non-monotonic behavior as
a function of MA passing through a minimum at the crossover between bottlebrush and
miktostar regimes for the coronal block A, as illustrated by Figure 7 for crew-cut micelles.

 

𝐷, 𝑅 

𝑀𝐴 𝑀𝐴 

𝑝 𝐷 + 𝑅 

𝑀𝐴 

Figure 7. Aggregation number p, core radius, R (red), corona thickness, D (blue) and overall radius,
R + D, of spherical micelles formed by block copolymers with NB = 200 as a function of MA at
nA = 100. Other parameters are qA = 1, γ = 1, v = 1, φB = 1.

The effect of branching of the core-forming block B on the structural properties of
spherical micelles is less pronounced, as illustrated in Figure 8. Although asymptotic
Equations (32)–(37) neglecting conformational entropy of the core-forming blocks do not
predict any dependence on the branching parameters of the core-forming B-blocks, detailed
calculation with the account of the contribution of the conformational entropy of the core-
forming block indicate that increasing branching of block B leads to a decrease in the
micelle aggregation number and an increase in CMC, which is more pronounced in the
crew-cut domain.
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Figure 8. Aggregation number p, core radius, R (dashed lines), corona thickness, D (solid lines),
and overall dimensions R + D as a function of the DP nB of side chains in the core forming block
at NB = const = 1000. mB is varied, as indicated in the figure. Other parameters are qA = qB = 1
NA = 300, mA = 4, nA = 10 γ = 1, v = 1, φ = 1.

5.3. Comparison to Molecular Dynamics Simulations

Recent coarse-grained MD simulations [18] of AB diblock self-assembly in solution
demonstrated how aggregation number p of micelles depends on the architectural parame-
ters of comb-shaped blocks. Diblock copolymers with symmetric composition A:B = 50:50
were studied at fixed total diblock DP N = 96, equal and variable lengths of side chains
in both blocks, ni = n, and equal lengths of spacers, mi = 1, in the backbone with DP
M = N/(1 + n). A set of 9 different block copolymer architectures was constructed via
changing n, ranging from bottlebrush to starlike macromolecules. The average parameters
of micelles, formed with inferior solvent strength for B-block, were presented as a function
of branching parameter, g = (R2

br) /(R2
lin), specified as the ratio of gyration radii, R2, of the

branched (subscript br), and linear (subscript lin) individual chains with the same DP in a
good solvent.

To relate g to molecular parameters in our model, we use the asymptotic power
law dependencies for the average end-to-end distance (expressed in units of monomer
length) for bottlebrush and starlike polymers with spacer length m ' 1 under good solvent
conditions. In the mean filed approximation, the average size of macromolecule, Rbr, is
given by

Rbr '
{

n2/5M3/5 bottlebrush polymer
n3/5M1/5 starlike polymer

(38)

The first line in Equation (38) is obtained by balancing the elastic free energy of the stretched
bottlebrush backbone (∼R2/M) with the free energy of repulsive binary interactions
(∼(Mn)2/R3). For a starlike polymer, the elastic free energy accounts for stretching of
M side chains (∼MR2/n) while the contribution of binary interactions remains the same
as for bottlebrush polymer (∼(Mn)2/R3). The crossover between two asymptotes in
Equation (38) occurs at M = M∗ ' n1/2.

For a linear chain with N monomer units,

Rlin ' N3/5 = M3/5(1 + n)3/5 ≈ M3/5n3/5 (39)

The theoretical branching ratio g is then specified as

g =

(
Rbr
Rlin

)2
'
{

n−2/5 bottlebrush polymer
M−4/5 = (n/N)4/5 starlike polymer

(40)

with the accuracy of prefactors on the order of unity. As it follows from Equation (40),
an increase in n at fixed N leads to a non-monotonic dependence for g(n), in agreement
with the simulation data (Figure 2g in Ref. [18]). The crossover between asymptotes for
bottlebrush and starlike polymers occurs at

n∗ ' N2/3; g∗ = g(n∗) ' N−4/15
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For N = 96, and both prefactors equal to unity in Equation (40), n∗ ≈ 21 and g∗ ≈ 0.30.
In selective solvent, AB copolymer with equal DPs of linear blocks (ni = 0) gives rise

to starlike micelles in which the core of insoluble B-blocks is decorated by the corona of
soluble A-blocks. As it follows from the diagram of states in Figure 3, branching of the
blocks, i.e., an increase in nA at fixed value of NA, leads to the non-monotonic variation in
micelle aggregation number, p. According to Equation (32) in spherical micelles formed
by diblock copolymer with mA/qA ' 1, and NB = NA = N/2, the average aggregation
number varies as

p ∼ N10/11
B ·

{
N−3/11

A (1 + nA)
−9/11 bb/st

N−21/11
A n18/11

A mks/st
=

{
(N/2)7/11(1 + nA)

−9/11 bb/st
(N/2)−1n18/11

A mks/st
(41)

That is, aggregation number decreases from p(nA = 0) = plin ∼ (N/2)7/11 in
bb/st regime, reaches a minimum at the boundary between bb/st and mks/st regimes
(nA ' N2/3), and subsequently increases back to plin at nA = N/2 in mks/st regime.
By substituting g(n) from Equation (40) in Equation (41), one finds

p ' plin

{
g45/22 bb/st
g45/22 mks/st

(42)

Therefore, according to Equation (42), aggregation number p in micelles formed by
copolymer with fixed DP N and bottlebrush blocks is expected to decrease upon an increase
in n (due to decreasing g, Equation (40)), while for block copolymer with starlike blocks,
p is expected to increase with n (and g), making the dependence p(g) looplike. The loop
originates at g = 1, and turns backwards at g = g∗. In the mean field approximation,
the exponent in Equation (42) is the same for bottlebrush and starlike polymers, however,
the omitted numerical coefficients and nonpower law dependencies could be different.

The predicted trends are in agreement with the results of MD simulations [18]. The
latter demonstrated clear difference in the behavior of AB copolymers with bottlebrush
(samples 1–6) and starlike (samples 7–9) blocks. In accordance with Equations (40) and
(42), the data for micelle aggregation number < Nagg > formed a loop as a function of
branching parameter g (Figure 3e in Ref. [18]). The crossover value of n∗ ' 21 (estimated
with accuracy of prefactors on the order of unity) was between DPs Nsc = 15 and Nsc = 23
in starlike samples 8 and 9 (Figure 3a in Ref. [18]). The crossover value of g∗ ' 0.30 was
close to g ≈ 0.3, corresponding to reverse in < Nagg > (g) dependence in MD simulations.
However, evaluation of exponents in the asymptotic theoretical dependencies requires
more extensive simulations with longer chains, and remains a challenge at the moment.

6. Conclusions

To summarize, we have developed a theory of micellization of diblock copolymers
comprising chemically different comb-shaped (bottlebrush) blocks in selective solvents.
This theory enables predicting how DPs of the main and side chains and grafting densities
in both soluble and insoluble blocks of the copolymers affect aggregation number and the
equilibrium dimensions of self-assembled micelles and critical micellar concentration. Both
limits of blocks with long main chain and multiple short side chains (bottlebrush) and short
main chain and a few long side chains (miktostar) are considered. Asymptotic analytical de-
pendencies are derived for the limiting cases of starlike and crew-cut micelles, whereas full
solution is obtained for arbitrary ratios between the micellar core and corona dimensions.

We have demonstrated that the replacement of the linear soluble block by a bottlebrush
one with the same degree of polymerization results in a decrease in the aggregation number
and dimensions (core size, corona thickness, the overall radius) of micelles. A similar and
even stronger effect on p and R is predicted when the DP MA of the main chain of the
soluble block is kept constant and the number and the DP nA of the side chains is increasing;
in the latter case D is an increasing function of nA.
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As long as the main chain of the A-block is sufficiently long (the A-block has the
bottlebrush shape), all structural properties of the micelles and CMC follow approximately
power law dependencies on effective grafting density qAnA/mA. When the DP MA of the
main chain of the soluble block is short enough (miktostar regime), all these properties
become a power law function of the number MAqA/mA of side chains in A-block.

The described effects of architecture of the soluble blocks on the properties of micelles
are in full agreement with the trends observed in Molecular Dynamics simulations in
Refs. [17,18] and can be explained by enhanced repulsive interactions and larger confor-
mational entropy penalty for stretching of the comb-shaped blocks in the micellar corona,
as compared to those for linear blocks. Experimental validation of these theoretical pre-
dictions would require comprehensive study of micellization of block copolymers with
systematically varied DPs of the main and side chains in the soluble blocks

Replacement of the insoluble linear block by comb-shaped ones with the same DP
NB results in a weak decrease in the aggregation number with concomitant decrease in
the micellar size and increase in CMC. However, these dependencies are not described
by power law functions. These effects are due to larger conformational entropy penalty
for radial stretching of branched insoluble block in the micellar core. On the contrary,
increasing DP and grafting density of side chains in the insoluble block with constant
length of the main chain MB leads to an increase in NB and, as a consequence, increasing
aggregation number and decreasing CMC.

Importantly, in the present study, we used a mean-field approximation, which is
justified for semi-dilute solutions of semi-flexible polymers, that is, under the conditions
that Kuhn segments of the main and side chains of both blocks are larger than the monomer
unit size [24,25]. A more refined scaling analysis [7] may lead to different values of power
law exponents for different properties of the block copolymer micelles. Such analysis,
however, is beyond the scope of the present paper.

Finally, we remark that in the present study we considered only spherical micelles.
By adjusting the sets of architectural parameters of the blocks, nano-aggregates of other
morphologies (i.e., wormlike micelles, polymersomes) can be obtained as thermodynami-
cally equilibrium structures. We shall address polymorphism of nanostructures formed by
diblock copolymers with bottlebrush blocks in our forthcoming publication.
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