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Abstract

Theory describing lamellar mesophases formed in the melt of ABA
triblock copolymers with strongly incompatible comblike blocks is
developed using combination of strong-stretching self-consistent field
(SS-SCF) analytical approach and numerical self-consistent field cal-
culations based on the Scheutjens-Fleer (SF-SCF) methods. Struc-
tural and thermodynamic properties of the lamellae are analysied as
a function of architectural parameters, i.e. grafting density and poly-
merization degree of the main and side chains in the comb-shaped
blocks. In particular, we distinguish between loops and bridges formed
by middle comb-shaped block and demonstrate how fraction of bridges
connecting neighboring AB interfaces of the lamellar layers and shear
modulus of the mesophase are mediated by architectural parameters
of comblike blocks. In particular, we predict an increase in the shear
modulus upon replacement of linear ABA triblock copolymers by
comblike ones with the same composition. The asymptotic analytical
predictions of the theory are complemented by the results of numerical
modelling.
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1 Introduction

Brushes of branched polymers became a subject of intense theoretical in-
vestigation during the last decade.1–7 Solvated or dry brushlike structures
arise, e.g., upon self-assembly of block copolymers with branched blocks in
selective solvent8–12 or in the melt state.13–22

An interest to covalently-linked to the surface or self-assembled brushes of
branched macromolecules is motivated by applications in nanomedicine, par-
ticularly for drug and gene delivery systems12 and antifouling surfaces23–25

due to the increased number of potentially functionalized and exposed to
the environment free ends. On the other hand, microphase segregated bulk
morphologies of block copolymers with branched blocks exhibit specific me-
chanical properties that facilitate the design of novel biomimetic, including
tissue-like materials.26–29

It was recently realized that structural properties of brushes formed by
end-tethered polymers with certain branched architectures (e.g., regular den-
drons, arm-tethered stars, etc.) can be described by means of the analytical
theory incorporating architecture-dependent self-consistent molecular poten-
tial. The pioneering study of Pickett1 demonstrated a parabolic nature of
the self-consistent molecular potential acting in brushes formed by strongly
stretched root-tethered regular dendrons and paved the way to generalization
of this analytical approach to other molecular architectures.30–34

In our recent study35 we applied the parabolic potential framework (ref-
ered to as SS-SCF approach) to study microphase segregated melts of AB
diblock copolymers with blocks composed of molecular brushes (comb-shaped
polymers). In the strong segregation limit, the domain- and matrix-forming
blocks of such macromolecules could be modelled as tethered to A/B in-
terfaces constituting solvent-free brushes of comblike/bottlebrush polymers.
In this paper we extend the analysis to lamellar mesophases formed by tri-
block ABA copolymers comprising comblike blocks. In contrast to diblock
macromolecules, triblock copolymers organize in domains interconnected by
the central (bridging) blocks of these macromolecules. That is, some of the
central blocks in microphase segregated melts form loops by returning to the
same domain, while others make bridges connecting the neighboring domains
(Figure 1). The fraction of bridges is an important characteristics of the
system because it controlls shear modulus of the lamellar structure. By us-
ing the parabolic potential SS-SCF framework and the numerical SF-SCF
modeling we analyze here how the equilibrium fraction of bridges in lamellar
mesophase and its shear modulus are governed and can be tuned by variable
architectural parameters of ABA triblock copolymer.

The rest of the paper is organized as follows. In Section 2 we outline
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Figure 1: Schematics of lamellar mesophase formed by ABA triblock copoly-
mers with comb-shaped central B-blocks.

the basic elements of the analytical self-consistent field (SS-SCF) and the
numerical (SF-SCF) approaches and briefly review the results obtained in
ref36 for solvent-free brushes formed by comblike macromolecules tethered
by one end of the main chain to an impermeable interface. In Section 3
we calculate the equilibrium fractions of loops and bridges in solvent-free
brushes formed by comb-shapes macromolecules with both main chain ends
tethered to any of two apposing grafting surfaces and compare abalytical
results with the results of numerical SF-SCF calculations. In Section 4 we
use the obtained results for analysing structural and mechanical properties of
lamellar mesophases formed by ABA triblock copolymers with comb-shaped
B-blocks and analyze dependence of fraction bridging B-blocks and shear
modulus on the set of architectural parameters of the comb-shaped blocks.
Finally, in Section 6 we formulate our conclusions.
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2 Brush of end-tethered comblike macromolecules

Following ref,36 consider first a solvent-free brush formed by comblike poly-
mers tethered by one end of the main chain to an impermeable planar surface
with area s per molecule. Each macromolecule comprises P � 1 repeats each
composed of the backbone spacer with degree of polymerization (DP) m and
q ≥ 1 side chains with n monomer units each, linked to each junction on
the backbone, see Figure 2. The backbone and side chains are assumed to
be chemically identical, and have monomer units with length l, volume υ,
and Kuhn segment b > l. If q > 1, the macromolecules are termed ”barb-
wire” polymers. The backbone has DP M = Pm while the total degree of
polymerization of the macromolecule is

N = P (m+ qn) = M(1 + qn/m) (1)

The grafting density σ = 1/s ensures strong overlap of individual macro-
molecules so that the side chains and spacers are extended in the direction
normal to the grafting surface with cut-off of polymer density profile (brush
thickness) at distance D = Nυ/s from the surface.

Following the strong stretching self-consistent field (SS-SCF) approach
formulated earlier,35 the molecular potential U(z) in a solvent-free brush
exhibits parabolic dependence as a function of distance z from the grafting
surface,

U(z)

kBT
=

3

2lb
κ2(D2 − z2) (2)

with architecture-dependent topological coefficient κ. The latter depends
on DPs of the side chains (n), the backbone spacer (m), the number q of
side chains emanating from each branching point and total number (P ) of
branching units but is remarkably independent of the chain grafting density
σ or the brush geometry. Eq 2 presumes the Gaussian (linear) elasticity
of the tethered chains on all length scales. That is, the we focus here on
comblike polymers with backbones whose Kuhn length is not renormalized
by stretching due to the presense of side chains. Crowding of the side chains
near the branching points is not taken into account, which imposes a restric-
tion on the branching activity, q & 1. Another restriction on applicability
of eq 2 is possible appearance of the dead zones (depleted of the free ends
of backbones), and the chains stratification for certain architectural param-
eters of comblike polymers. In these cases eq 2 serves as an approximation
to be examined by the numerical self-consistent field methods. The appli-
cability of the parabolic potential approximation to any specific branched
architecture of the brush-forming molecules can be checked by the numerical
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self-consistent methods (e.g., SF-SCF modelling39) that are free of any pre-
assumption about the shape of the self-consistent molecular potential and do
account for finite extensibility of the macromolecules. The basic elements of
SF-SCF modeling are described in SI.

In our previous publication36 we have analyzed how the topological co-
efficient κ depends on architectural parameters of the comb-shaped poly-
mer with q ≥ 1, i.e., the lengths of side chains and spacers, n and m, and
of its backbone, M = mP . We demonstrated that for comblike polymers
κ exhibits two different asymptotic dependences for polymers with short,
M � (nm/q)1/2, and long, M � (nm/q)1/2, backbones. In this paper we
focus on comblike polymers with long backbones, M � (nm/q)1/2, which
allows us to use the asymptotic power law for the topological coefficient κ,

κ =
π

2N

(
1 +

qn

m

)1/2
=

π

2M

(
1 +

nq

m

)−1/2
, M � (nm/q)1/2 (3)

For linear chains with q = 0 and N = M , the topological coefficient κ =
κlin = π/2N . To eliminate the molecular weight dependence, we introduce
the topological ratio

η =
κ

κlin
=

2κN

π

which is approximated as

η =
(

1 +
qn

m

)1/2
(4)

for barbwire comblike polymers with M � (nm/q)1/2. Conventional comb-
like polymers exhibit q = 1.

Equations 3 and 4 provide important insights in the equilibrium struc-
ture of solvent-free planar layer formed by end-tethered comblike polymers.
They indicate that the elastic free energy of comblike polymers in a brush is
dominated by the stretching of the backbone while side chains retain almost
unperturbed Gaussian conformations.

As it was demonstrated by means of the numerical SF-SCF calculations,36

the conformations of backbones in comb-shape polymers (distribution of elas-
tic tension along the chain and distribution of the end segments) are very
close to those for linear chains of the same DP forming a solvent-free brush.

3 Central B-domain of the lamella: brush of

loops and bridges

To mimic B-domain formed by comblike central blocks of ABA triblock
copolymer we consider two apposing solvent-free brushes comprising loops
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(a) (b)

Figure 2: Model of comblike polymer implemented in SF-SCF calculations
(a), and schematic of apposing solvent-free planar brushes of comblike poly-
mers (b) The DPs of the main chains, side chains and a spacers of comblike
polymers are M , n and m = M/P , respectively. The grafting area per
macromolecule is s .

(with both main chain ends tethered to the same grafting surface) and brid-
gies connecting apposing grafting surfaces. The brushes are brought in graz-
ing contact.

Although the average stretching of comblike B-blocks in bridges is larger
than that in loops, a non-zero fraction of bridges under thermal equilibrium
conditions is due to the gain in mixing entropy of loops and bridges. To
specify the equilibrium fraction of bridges in brushes of comblike polymers,
we follow the original model developed in ref37 for solvent-free brushes formed
by linear chains and predicting equilibrium fraction X of bridges. A brief
review of this model is presented in the following subsection whereas the
details of calculations are delegated to SI.

3.1 Brush of loops and bridges formed by linear chains

A B-domain formed by central B-blocks in lamellar phase of triblock linear
ABA copolymers can be envisioned as consisting of two apposing brushes
comprising loops (both chain ends are tethered to the same A/B interface)
and bridges connecting apposing AB interfaces, Figure 3a.

Let the fraction of chains forming bridges be 0 ≤ X ≤ 1. Let the area per
chain on one interface be 2s and the number of monomer units per chain be
2M . Then the half distance between A/B interfaces is D = Mυ/s. If ΣAB

is the area of one A/B interface, then total number of chains in two brushes
is 2(ΣAB/2s) = ΣAB/s, the number of bridges is XΣAB/s, and the number
of loops is (1 −X)ΣAB/s. The number of loops of return to the same A/B
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Figure 3: Schematics of two apposing brushes formed by (a) loops and bridges
of linear chains of DP 2M and (b) comb-like polymers with DPs of the main
chains, side chains and spacers 2M , n and m, respectively. Grafting area per
macromolecule is 2s.

interface is 1
2
(1−X)ΣAB/s.

Because of the symmetry of the system, the middle monomer units of
bridges are located in average at the middle plane. Two simplifying the
analysis assumptions are made: (i) The middle points of bridges are pinned
at the middle plane separating the brushes, so that both halves of each
bridge (subchains with end-points fixed at symmetry plane between appos-
ing brushes) comprise N monomer units. (ii) Each loop is cut in its middle
point and modelled as two end-tethered linear subchains with DP M and
uncorrelated positions of the free ends. Hence, half of the B-domain is mod-
elled as a brush of linear chains with grafting area per chain s and DP M ,
among which XΣAB/s have their terminal monomer unit pinned at z = D
(”bridges”) and 2·(1/2)(1−X)ΣAB/s = (1−X)ΣAB/s have freely fluctuating
ends.

In the framework of the SS-SCF approach, loops and segments of bridges
with M ′ monomer units occupy proximal to A/B interfaces sublayers with
thickness h < D, and experience parabolic potential (eq 2 with topological
coefficient κ = π/2N), which is truncated at z = h. The central part of the
B-domain, i.e., the layer with thickness 2(D − h), comprises only uniformly
stretched segments of bridges each comprising 2(N − N ′), monomer units;
these monomer units experience constant potential, U(h).

Following ref,37 we introduce fraction τ = (M−M ′)/M of monomer units
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of bridges that form central part of the layer, leading to the relationship

h/D = 1−Xτ (5)

The elastic free energy Fel per subchain in the brush with fraction X of
bridges was calculated in ref,37 and is given by

Fel,lin(X)

kBT
=
π2

8

D2

lbM

[
(1− τX)3 +

12X2

π2

]
=
Fel,lin(0)

kBT

[
(1− τX)3 +

12X2

π2

]
(6)

with X and τ related as

(1− τX) =
2X

π
cot
(πτ

2

)
, (7)

and the elastic free energy Fel,lin(0) per subchain in the brush with no bridges
(X = 0),

Fel,lin(0)

kBT
=
π2

8

D2

lbM
(8)

Obviously, the elastic free energy Fel,lin(X) given by eq 6 is an increasing
function of X.

However, an option for B-blocks to make either loops or bridges brings an
additional combinatorial entropy in the system. The entropy Fmix of mixing
loops and bridges can be approximated as

Fmix
kBT

= X lnX + (1−X) ln(1−X), (9)

Then minimization of the total free energy per chain, F = Fel + Fmix,
with respect to X leads to equation for the equilibrium fraction XB of bridges
that with accuracy of O(X3) reduces to

24

π2

D2

lbM
X3
B + ln

XB

1−XB

= 0 (10)

By expanding eq 10 with respect to (1/2−XB), and retaining terms up
to O(X3) one arrives at an expression for XB,

1−XB

XB

=

(
1 +

9D2

π2lbM

)1/3

=

(
1 +

72

π4

Fel,lin(0)

kBT

)1/3

, (11)

fraction

τ ≈ 4

π2
XB (12)
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of monomer units per bridge in the central region, and thickness

h ≈ D(1− 4

π2
X2
B) (13)

of the proximal to the grafting surface layer. Schematic of a planar layer
formed by loops and bridges that lead to eqs. 12,13 and 11 is presented in
Figure 3a.

As it follows from eqs 11 and 14, the equilibrium fraction XB of bridges
could be estimated from the equilibrium properties of a brush formed by
chains with free end-points (linear chains with DP N tethered with area s
per chain) as

XB ≈
1

1 +
(

1 + 72
π4

Fel,lin(0)

kBT

)1/3 (14)

For strongly stretched chains, Fel,lin(0)/kBT � 1, the second term in
brackets dominates making XB � 1, and eq 11 reduces to the previously
obtained37 scaling dependence

XB '
(
Mlb

D2

)1/3

=

(
lb

υ2M
s2
)1/3

∼ (
Fel,lin(0)

kBT
)−1/3 (15)

Under these conditions, bridging invokes only O(X4
B) correction to the elastic

free energy per subchain (second term in brackets in eq 16),

Fel,lin(XB)

kBT
=
Fel,lin(0)

kBT

[
1 +

(
2XB

π

)4
]

(16)

In Figure 4 we compare the results of the analytical SS-SCF and nu-
merical SF-SCF models for the equilibrium fraction XB, and the elastic free
energy Fel,lin(XB) as a function of the brush thickness D. Dashed lines indi-
cate the theoretical predictions (calculated via eqs 14 and 16), red lines are
the results of the SF-SCF numerical model.

As it is seen from Figure 4, the analytical and numerical models are
in perfect agreement in the range of the system parameters that ensure
considerable elongation of the chains with respect to their Gaussian size
(∼ M1/2 ≈ 10 for 2N = 201) in the linear elasticity regime. Deviations
from the theoretical curve for XB are found upon onset of nonlinear chain
elasticity at D/aM & 0.5.

Overall data for brushes of loops and bridges formed by linear chains
indicate a remarkably good correspondence between the analytical and nu-
merical self-consistent field models in the regime of Gaussian elasticity for
the brush-forming polymers.
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Figure 4: Equilibrium fraction of bridges XB in planar layers of linear chains
(a), and the corresponding free energy per chain (b) measured in kBT units,
as a function of 2D2/(Ma2).

3.2 Brush of loops and bridges formed by comblike
polymers

The corroboration of the analytical predictions by the numerical SF-SCF cal-
culations in the previous section suggests that the layer of loops and bridges
formed by comblike polymers with long backbones might retain the structure
similar to that for linear chains. That is, the central region filled predomi-
nantly by monomer units from the bridges, and the loops localized closer to
grafting surfaces. Schematic of a planar brush of loops and bridges formed
by comblike polymers is presented in Figure 3b.

In Figure 5 we present typical SF-SCF data for volume fractions ϕ(z)
and ϕM(z) of monomer units that belong to the side chains in loops (black
solid lines) and bridges (red solid lines), and the backbones of loops and
bridges (dashed black and red lines, respectively).

As it is seen in Figure 5, the basic structure of the layer remains similar
to that for linear chains (n = 0, Figure 5a): monomer units of the back-
bones of bridges together with their side chains occupy the central region of
the layer, while backbones of loops with their side chains dominate in the
proximal regions of the layer. The backbones of loops formed by comblike
polymers show better segregation than loops of linear chains. As it is also
seen in Figure 5d which shows a magnified distribution ϕM(z) of monomer
units of the backbones, backbones of the loops from apposing brushes do not
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Figure 5: SF-SCF distributions of monomer units from the side chains from
loops (solid black lines), loop backbones (dashed black lines), side chains of
bridges (solid red lines), and bridge backbones (dashed red lines). Values of
parameters m = 10, 2M = 201, 2D/a = 70, X = 0.3, n = 0 (a), n = 20
(b), n = 100 (c). Magnified distributions ϕM(z) for backbones of loops and
bridges for n = 100 are shown in (d).
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overlap, compared to limited overlapping of loops by linear chains in Figure
5a. Moreover, in contrast to linear chains, the volume fraction ϕM(z) of
the backbone monomer units in comblike polymers increases near grafting
surfaces.

As it follows from SF-SCF data in Figures 5, the backbones of loops
become less stretched upon increasing n via accumulation of their monomer
units near grafting surfaces (see also Figure 7). As a result, the sublayers
with thickness ∼ an1/2 in the vicinity of the central region could be depleted
of the backbone segments, and contain mostly monomer units of side chains
decreasing thereby the average extension of backbones.

To get more insights in the equilibrium structure of brushes formed by
comblike polymers, we examined molecular potential U(z) in a solvent-free
brush of loops.

In Figure 6 the dimensionless potential U(z)/kBT is presented as a func-
tion of (z/a)2 for a set of comblike polymers with short spacers m = 2 (a) and
m = 4 (b), fixed M = 1001, 2D/a = 300, and varying DP n of side chains.
Straight dashed lines indicate parabolas, triangles mark the theoretical values
of potential U(0) calculated according to eqs 2,3,

U(0)

kBT
=

3

2
κ2
(
D

a

)2

=
3π2

8

(
D

aM

)2
1

(1 + n/m)
(17)

As it follows from Figure 6, the agreement between the numerical SF-
SCF and the analytical SS-SCF models is encouraging. Relatively small
deviations of the SF-SCF data from the dashed line for linear chains (n = 0)
are invoked by onset of nonlinear elasticity. An increase in n up to 80 (not
shown in Figure 6) leads to a better ”parabolicity” of U(z). Moreover, in
agreement with eq 3 the dependences U(z) in Figures 6a (m = 2) and
Figure 6b (m = 4) perfectly match each other for equal values of n/m
(shown by similar colors).

In Figures 7 we present volume fractions ϕM(z) of the backbone monomer
units for a set of comblike polymers with the same parameters as in Fig-
ure 6. To estimate the increase in ϕM in the vicinity of the grafting sur-
face consider a volume V with area s and width ∼ an1/2 that contains
p ' V/(a3n) = s/(a2

√
n) side chains with n � m, originating from the

backbone segment with length pm ' sm/(a2
√
n). In the body of the brush

the average volume fraction of the backbone monomer units is almost con-
stant, ϕM(z) ≈ m/n, to preserve the unperturbed state of side chains. If pm
backbone monomer units are extracted from the vicinity of central domain,
and equal amount of monomer units is accomodated within distance ∼ an1/2

from the grafting surface (the Gaussian size of unperturbed side chain), the
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average volume fraction of backbone monomer units would increase there by
∆ϕM ' a3pm/(asn1/2) ' m/n ' ϕM . Therefore, the increase in presurface
concentration of backbone monomer units yields ∆ϕM/ϕM ' 1, which is
consistent with the data in Figures 5 and 7.

In Figures 8 we present normalized to unity distribution functions gmp(z)
of the loop middle monomer unit (monomer unit with the ranking number
M/2) for the same values of the parameters as in Figure 7. For spacer with
DP m = 2 (Figure 8a), all distributions of comblike polymers with n up to
80 collapse on the linear chain distribution (n = 0). An increase in m up to
8 (Figure 8b) invokes minor deviations of gmp(z) near the grafting surface
indicating the onset of changes in the structural organization of the brush.
In SI we consider the limiting case of loose side chain grafting depicted in
Figure S2: a single side chain with DP n attached to the middle monomer
unit of the loop (m = M/2). It is demonstrated in SI (Appendix 3) how
increasing n modifies the molecular potential (Figure S3) and distribution
of the end-points (Figure S6), leading first to stratification of the loops
into strongly and weakly stretched populations, and subsequently to the de-
velopment of an extended dead zone near the surface. A similar behavior is
expected for comblike polymers with few grafted side chains with DP n� m.
Notably, the parabolic approximation for U(z) in eq 2 does not work in such
systems, and in the following we focus on comblike polymers with densely
grafted side chains for which eqs 2 and 3 are applicable.

3.2.1 Fraction of bridges Xcomb in SS-SCF model

Adopting the theoretical model depicted in Figure 3b, we consider brushes
of loops and bridges formed by comblike polymers with long backbones. Sim-
ilarly to loops of linear chains, we cut each loop of comblike polymer into two
equal subchains with DP N each, and pin middle monomer units of bridges
at the symmetry plane between apposing brushes. Substitution of loops by
equivalent subchains leads to only minor variations in the molecular poten-
tial U(z) (see Figure S1 in SI), and in the following calculation of fraction
Xcomb of bridges we use U(z) for the brush of tethered by one end comblike
subchains (eq 2).

As it has been demonstrated in our previous publication,36 in solvent-
free brushes of comblike polymers the trajectories of backbones with DP M
approach the trajectories of linear chains with same DP upon increasing M .
The trajectory of the linear chain38 with DP M and end-point position zend
specifies position zj of monomer unit with ranking number j as
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zj
zend

= sin

(
πj

2M

)
, j = 1, 2, ...M

and exhibits the stretching function

E =
dzj
dj

=
π

2M

√
z2end − z2

The similarity between trajectories of the backbones of comblike polymers
and trajectories of linear chains allows us to relate position zi of i-th branch-
ing unit in comblike polymer with end-point position zP of the backbone
as

zi
zP
≈ sin

(
πi

2P

)
, i = 1, 2, ..., P

and to introduce the stretching function Ebb of the backbone as

Ebb(zP , z) =
π

2M

√
z2P − z2

The elastic free energy of the backbone is then formulated as

Fbb(zP )

kBT
=

3

2lb

∫ zP

0

Ebb(zP , z)dz =
3π2

16lb

z2P
M

(18)

In total P = M/m side chains with DP n each are exposed to the same
molecular potential specified in Eq 2. Zero tension at the free end of each
side chain is taken into account to find the end-point position of i-th side
chain (i = 1, 2,...P ) as zi/ cos(κn). The stretching function Esc,i(zi, z) of i-th
side chain is then given by

Esc,i(zi, z) = κ

√
z2i

cos2(κn)
− z2

The elastic free energy of i-th side chains yields

Fsc,i
kBT

=
3

2lb

∫ zi/ cos(κn)

zi

Esc,i(zi, z)dz =
3

4lb
κz2i

[
(κn)(1 + tan2(κn))− tan(κn)

]
≈

≈ z2i
2lbn

(κn)4 if κn� 1.

By performing summation over 1 ≤ i ≤ P , one finds the total elastic free
energy of side chains (see SI for details),

Fsc(zP )

kBT
≈ 1

4lb

z2P
M

(m
n

)
P 2(κn)4 =

π4

64

z2P
lbM

( n
m

)3 η4

P 2(1 + n/m)4

16



By implementing the topological ratio η for comblike polymer with long
backbone (eq 4 at q = 1), η =

√
1 + n/m, one finds

Fsc(zP )

kBT
=
π4

64

z2P
lbM

( n
m

)3 1

P 2(1 + n/m)2
≈ π4

64

z2P
lbM

( n
m

) 1

P 2
if n� m

(19)
The ratio of two contributions,

Fsc(zP )

Fbb(zP )
≈ π2

12

n

mP 2
=
π2

12

nm

M2

rapidly decreases upon an increase in length M of the backbone. There-
fore, in the limit of long comblike polymers with M � (nm)1/2, the elastic
stretching of side chains in the parabolic potential U(z) (eq 2 with κ specified
in eq 3) can be neglected, and the side chains can be considered as almost
unperturbed Gaussian coils to support the conjecture that the backbones are
”floating in the sea of side chains”. Moreover, the relative extension of the
architecture-induced dead zone emerging near the grafting surface, and its
effect on the elastic free energy of comblike polymer also decrease upon an
increase in M , improving eligibility of the parabolic potential in eq 2.

The distribution function gcomb(zP ) of the backbone end-points of sub-
chains is similar to the distribution function g(zend) of the free ends of linear
chains.36 Therefore, the elastic free energy per molecule in an individual
solvent-free brush of comblike polymers with long backbones can be approx-
imated (see SI) as

Fel,comb(0)

kBT
≈ π2

8

D2

lbM
=
π2

8
η2
D2

lbN
(20)

Within the approximation of unperturbed side chains, thickness h of the
boundary layer is still related to thickness D = υN/s of the brush by eq 5.
To account for bridging between apposing brushes of comblike polymers, we
substitute eq 20 in eq 6 to formulate

Fel,comb(X)

kBT
=
π2

8

D2

lbM

[
(1− τX)3 +

12X2

π2

]
(21)

Minimization of Fcomb = Fel,comb +Fmix with respect to X provides the equi-
librium fraction of bridges XB,comb,

1−XB,comb

XB,comb

=

(
1 +

9D2

π2lbM

)1/3

=

(
1 +

9D2

π2lbN
η2
)1/3

=

(
1 +

9Nυ2

π2lbs2
η2
)1/3

,

(22)

17



or, equivalently,

XB,comb =
1

1 +
(
1 + 9Nυ2

π2lbs2
η2
)1/3 ∼

(Fel,comb(0)/kBT )−1/3 =

(
Fel,lin(0)η2

kBT

)−1/3
if

D2

lbM
� 1 (23)

Here

Fel,lin(0) =
π2

8

D2

lbN

is the elastic free energy per molecule in a dry brush of linear chains with
DP N . As it follows from eq 23, within the approximation of unperturbed
side chains fraction of bridges XB,comb ∼ η−2/3 decreases compared to that
in the brush of linear molecules with the same grafting area 2s and DP 2N .
If, however, the elastic free energies of the backbones and of linear chains in
the brushes are equal, then according to eqs 22 and 23, fraction of bridges is
expected to be the same in both systems (i.e., XB = XB,comb). Recall that
these predictions are expected to hold for comblike polymers with n/m� 1,
and long backbones (M �

√
mn) exhibiting linear (Gaussian) elasticity.

3.2.2 Fraction of bridges Xcomb in SF-SCF numerical model

To check the predictions of the analytical SS-SCF theory we performed the
numerical SF-SCF calculations for brushes of comblike polymers with differ-
ent lengths of backbone (2M), side chain (n), and spacer (m). Total DP of
these polymers equals N = 2M(1 + n/m)

In Figure 9 we present the equilibrium fraction XB,comb of bridges as a
function of the sublayer thickness 2D/a = Na2/s for two sets of comblike
polymers with fixed backbone DP 2M = 201, and varied values of n (a)
and m (b). As it is seen in Figures 10, branched polymers form smaller
fraction of bridges compared with linear counterparts with the same DP of
the backbone: all the SF-SCF data for comblike polymers is located below
the curve with n = 0 corresponding to linear chains (”bare backbone”).

In Figures 10 and Figure 11 we present the results of SF-SCF calcula-
tions for the equilibrium fraction of bridges, XB,comb, in brushes of comblike
polymers with longer backbone, 2M = 1001, fixed 2D/a = 300, and varied
values of n and m. The SF-SCF data are indicated by symbols, lines are guide
for eye. In Figure 10, n = 0 corresponds to liner chains with XB ≈ 0.195,
while comblike polymers are found for the values of parameters n > m. In
accord with the analytical model predicting independence of XB,comb on the
molecular parameters, n and m, at fixed values of D and M (eq 23), the
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Figure 6: Numerically calculated SF-SCF molecular potential U(z)/kBT in
solvent-free brush of loops as a function of z2/a2 for (a) m = 2 and (b)
m = 4 at fixed 2D/a = 300 and 2M = 1001, and varying n. Dashed
lines indicate ideal parabolas. Theoretical SS-SCF values of U(0)/(kBT ) =
(3π/8)(D/2aN)2 · (1 + n/m)−1 are shown by triangles on y-axis. Deviations
from parabolic shape due to onset of nonlinear elasticity for linear chains
(n = 0) decrease upon increasing n. As predicted, lines in panel (b) perfectly
match lines in panel (a) at equal ratios of n/m (indicated by the same colors).
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Figure 7: Numerically calculated SF-SCF volume fraction profiles ϕM(z) of
the backbone monomer units as a function of distance z/a from grafting
surface in apposing brushes. 2D = 300, 2M = 1001, m = 2 (a) and m = 8
(b), n varies from 0 to 40.

deviations of XB,comb from XB are small (. 2%) for densely grafted combs
with m = 4, and 8, and slightly increase upon increasing m.

In Figure 11, XB,comb is presented as a function of spacer length m. Here,
all comblike polymers with densely grafted side chains (m < 10) demonstrate
fraction of bridges quite close to XB ≈ 0.195 for linear chains. However, rel-
ative deviation, (XB −XB,comb)/XB, remains below 10% for macromolecules
with n > m.

As it follows from Figures 10 and 11, fraction XB,comb of bridges formed
by comblike polymers is fairly described by the analytical SS-SCF model
when the spacers and the side chains are relatively small. However, an in-
crease in n and/or m leads to conformational re-arrangements of loops in
dry brushes of comblike polymers (see volume fraction profiles in Figures
5 and 7) that are absent for linear chains and disregarded in the SS-SCF
formalism.

The decrease in stretching of the loop backbones at almost unchanged
stretching of the bridges increases the difference in the loop and bridge elas-
tic free energies, and decreases thereby the equilibrium fraction XB,comb of
bridges. However, at relatively small values of m and moderate n, a con-
jecture that conformations of backbones in loops and bridges in B-domain
are similar to those of linear counterparts in a ”sea of almost unperturbed
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Figure 8: Numerically calculated SF-SCF distributions gmp(z) of backbone
middle points (normalized to unity) as a function of distance z/a from
grafting surface in each of apposing solvent-free brushes. 2D/a = 300,
2M = 1001, m = 2 (a), and m = 8 (b), n varies from 0 to 80. All curves in
panel (a) collapse on top of each other starting from n = 0, in panel (b) mi-
nor deviations emerge near the grafting surface, indicating onset of bimodal
distribution of loops.
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side chains” can be viewed as an adequate approximation supported by the
numerical SF-SCF modelling. Below we use this approximation (eqs 24 and
23) to estimate the fraction of bridges in lamellae of microphase segregated
triblock copolymers with comblike central block.

4 Lamellar mesophase: bridging and shear

modulus

The analytical SS-SCF treatment of bridging allows us to estimate the equi-
librium fraction of bridges in lamellae formed by ABA copolymer with long
A and B blocks (i.e., in the strong segregation limit) from the equilibrium
parameters of lamellae formed by diblock AB/2 copolymers. The equilibrium
structure of microphase segregated lamellae formed by diblock copolymers
AB with comblike blocks was analyzed by us previously,35 and we reproduce
here the results that are necessary to estimate the equilibrium fraction XB,1

of bridging B-blocks. (Here and below subscript 1 indicates lamellar phase).
Assuming (for simplicity) that molecular parameters of monomer units A

and B are similar (υA = υB = υ, lA = lB = l, bA = bB = b), one finds the
elastic free energy per B-subchain with DP NB/2,

FB
kBT

≈ π2

4
η2B

D2
B

lbNB

, NB � 1 (24)

while the elastic free energy of A-block yields

FA
kBT

≈ π2

8
η2A

D2
A

lbNA

, NA � 1 (25)

with DA = υNA/s and DB = υNB/(2s). For linear A-block ηA = 1, for
branched A-block ηA > 1.

The elastic free energies of the blocks, FB + FA, are balanced with the
surface free energy of A/B interface,

FA/B = γs =
γυNA

DA

=
γυNB

DB

(26)

with surface tension γ accounting for unfavorable A/B contacts and confor-
mational losses of the blocks in the interfacial layer with thickness DA/B �
DA, DB.

By substituting area s per chain from eq 26 in eqs 24, 25, and minimizing
the free energy per chain,

F = FA + FB + FA/B
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with respect to s (see also ref35 for lamellae with unequal parameters of A and
B monomer units), one finds the equilibrium interfacial area s1 per diblock
copolymer AB/2 in the lamellar phase as

s1 =

(
π2lυ2

8γb

)1/3

(2η2ANA + η2BNB)1/3 (27)

and half thickness, DB,1, of lamellar B-layer,

DB,1 =
NBυ

2s1
=

(
γbυ

π2l

)1/3
NB

(2η2ANA + η2BNB)1/3
(28)

and half thickness DA,1 = DB,1NA/NB of lamellar A-layer. Presumed Gaus-
sian elasticity of the backbones, which is the case at DA,1/lNA = DB,1/lNB ≤
0.5 imposes limitations for the molecular parameters of the blocks, 2η2ANA +
η2BNB ≥ (8/π2)γbv/l4 which reduces to 20 for typical values of the param-
eters, γ = 0.4, b = 18Å, l = 2.5Å, v = 140Å3

Eq 27 allows us to estimate the equilibrium fraction XB,1 of bridges in
B-layers by using eq 23,

XB,1 =
1

1 +
(

1 + 2
9D2

B,1

π2lbNB
η2B

)1/3 =

=
1

1 +
[
1 +

(
2
π

)4/3 ( 9
π2

) (
γ2/3υ2/3

l5/3b1/3

)
N

1/3
A η

1/3
A

xη2B
(1+xη2B)2/3

]1/3 (29)

with x = NB/(2NA). For strongly stretched loops of B-blocks with
D2

B,1

lbNB
η2B �

1,

XB,1 ≈
(
π2

18

lb

υ2NBη2B
s21

)1/3

'
(
l5/3b1/3

γ2/3υ2/3

)1/3
(2η2ANA + η2BNB)2/9

(NBη2B)1/3
(30)

Eq 30 specifies how the equilibrium fraction XB,1 of bridges in B-layers
in microphase segregated lamellae can be manipulated by the molecular pa-
rameters of ABA copolymer. Although the expression in eq 30 is asymptotic
(obtained in the limit NA, NB → ∞), it nonetheless provides important
guidelines to mediate the equilibrium fraction XB,1 of bridges in microphase
segregated lamellae. Notably, while B-blocks are assumed to be comblike
polymers, the architecture of A-blocks is not specified in eq 30 (i.e., A-blocks
could be linear, comblike, starlike, dendronized, etc.), and the type of their
branching is accounted via the topological ratio ηA ≥ 1.
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Figure 9: Equilibrium fraction of bridgesXB,comb as a function of half distance
2D/a between grafting surfaces (sublayer thickness) for constant DP of the
main chain 2M = 201 and varied side chain length n (a) or varied spacer
length m (b)

As it follows from eq 30, the equilibrium fraction of bridges XB,1 can be
manipulated by variations in DPs, NA and NB, of the blocks as well as their
architectures. In particular, branching of the central (B) or of all of the
blocks in ABA copolymer leads to the decrease in XB,1 compared to ABA
triblock with linear blocks of similar DPs. Symmetric comblike branching of
A and B blocks leads to a stronger decrease in XB,1 compared with triblock
with branched B and linear blocks A. Branching of A-blocks with ηA > ηB
increases XB,1 compared to that for linear A-block.

In Figure 12 we present XB,1 calculated according to eq 29 as a function
of copolymer composition fB = NB/(2NA + NB) for various values of ηB.
Solid and dotted lines indicate stable and metastable states of the lamellar
morphology. The crossovers between solid and dotted lines (indicated by
arrows) correspond to morphological transitions from lamellae to cylinders
with A-domains in B-matrix at ηB = 2 and ηB = 5. For linear B-blocks with
ηB = 1, lamellae transform in inverted cylinders with B-domains in A-matrix
at small values of fB. For comblike B-blocks with ηB > 1, the transition to
cylinders is shifted towards smaller values of fB,35 decreasing the range of
stability of the lamellar phase.

4.0.1 Shear modulus G

Fraction XB,1 of bridging B-chains governs the shear modulus G of mi-
crophase segregated melt with lamellar morphology. It characterizes the
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Figure 12: Fraction XB,1 of bridging B-blocks in lamellae as a function of
fB = NB/(2NA+NB), NA = 200. Dotted lines indicate metastable states: at
these compositions nonplanar (cylindrical, spherical) morphologies are ther-
modynamically more favorable. Arrows indicate bounds of thermodynamic
stability of lamellar phase.
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relative lateral displacement of the lamellae due to applied force acting along
the lamellar plane. The backbones of bridging comblike B-blocks exhibit the
Gaussian elasticity in lateral direction, and the lateral displacement 2∆ of
the upper A/B boundary with respect to the lower A/B boundary of the
B-layer is opposed by the restoring elastic force,

σ = kBT
3∆

lbMB

XB,1

s1
,

per unit area of interface to counteract the applied stress. Here MB is half
of DP of the backbone of B-block.

The equilibrium shear modulusG = σ/ε defined as the coefficient between
stress σ and strain ε = ∆/DB,1 is then given by

G

kBT
= 3

υNB

lbs21MB

XB,1 = 3
υ

lbs21
η2BXB,1 (31)

By substituting s1 from eq 27, and XB,1 from eq 30 in eq 31, one predicts
the shear modulus G of a perfectly aligned stack of lamellae,

υG

kBT
= 3

η2B

N
2/3
A (1 + xη2B)2/3

C[
1 +

(
1 + (9/π2)CN

1/3
A η

1/3
A xη2B/(1 + xη2B)2/3

)1/3]
(32)

with dimensionless constant

C =

(
2

π

)4/3
γ2/3υ2/3

l5/3b1/3

For typical flexible polymers, b ' υ1/3, γ ' 1, leading to C ' 1.
Eqs 31 and 32 presume linear backbone elasticity leading to equal and

independent of deformation partitioning of monomer units along vertical to
the interface (z), and two lateral directions. Nonlinear elasticity of strongly
stretched backbones approaching fully stretched states, leads to re-distribution
of monomer units in favor of vertical direction, decreasing the fraction of
shear-responsive monomer units and increasing shear modulus G. There-
fore eqs 31 and 32 provide lower boundary for G in lamellae with strongly
stretched backbone of central block B. An increase in elastic moduli due
to nonlinear elasticity of strongly stretched backbones was detected and ra-
tionalized earlier in self-assembled networks of ABA block copolymers with
comblike central block.42 This non-linear effect will be considered by us in a
separate forthcoming publication.
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Figure 13: Shear modulus Gυ/(kBT ) as a function of fB = NB/(2NA +NB).
Dotted lines indicate metastable states of lamellae. Arrows indicate bounds
of thermodynamic stability of lamellar phase.

In Figure 13, we present normalized shear modulus υG/kBT as a func-
tion of copolymer composition fB = NB/(2NA +NB) for fixed DP NA = 200
and various degrees of branching of the central B-block (i.e., upon an increase
in ηB at fixed DP NB). As in Figure 13, arrows at the crossovers of solid
and dashed lines indicate the lost of stabilty of the lamellar phase in favour of
cylinders. Although the equilibrium fraction XB,1 of bridges between A/B in-
terfaces decreases upon an increase in ηB, the shear modulusG increases upon
branching of B-blocks (i.e., upon increasing ηB). This is because branching
of B-block at fixed DP NB decreases the length MB = NB/η

2
B of the back-

bone, and larger stress σ ∼ M−1
B must be applied to laterally displace the

lamellar layers.

5 Conclusions

In this study we have theoretically examined the equilibrium properties of
solvent-free planar brushes formed by loops and bridges of comblike poly-
mers. We focussed on the effect of architecture of the tethered chains on the
equilibrium fraction of bridges connecting apposing grafting surfaces. Such
layers model the lamellae formed in micrpophase segregated melts of ABA
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block copolymers, and we aimed to analyze how fraction of bridges depends
on the architectural parameters of the blocks. The applied analytical SS-
SCF model presumed: (i) local flexibility of the side and main chains, (ii)
the Gaussian elasticity of macromolecules on all length scales, and (iii) lack
of brush stratification that leads to architecture-induced dead zones.

We demonstrated that in the parabolic potential framework, fraction XB,1

of bridges formed by central B-block of ABA triblock copolymer can be es-
timated from the equilibrium properties of lamellae formed by diblock AB/2
block copolymer. In this approach, B-loop is modelled as two subchains
with DP NB/2, while the middle point of B-bridge is fixed at the bound-
ary of Wigner-Seitz cell. The numerical SF-SCF calculations performed for
solvent-free planar layers formed by loops and bridges of linear and comblike
polymers were in accord with the analytical SS-SCF model in eligible ranges
of the system parameters.

As we have shown, an increase in the degree of branching of the B-block
leads to a decrease in the fraction of bridges with a concomitant increase in
the shear modulus. Thus the results of our study prove the possibility to
control mechanical properties of the lamellar mesophases of ABA triblock
copolymers by tuning architecture of both central and terminal blocks. In
particular, we demonstrated that replacement of the central linear B-block
by the comblike one (with the same DP) allows to increase the shear modulus
of the material.

Notably, strong branching of B-blocks destabilizes the lamellar phase
(matastable states are indicated by dotted lines in Figure 12), leading to
morphological transitions into cylinders, and subsequently to spheres. We
will consider these morphologies in our forthcoming publication.
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computational algorithm. Analytical calculation of elastic free energies of the
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