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Abstract: To study conformational transition occuring upon inferior solvent strength in a brush
formed by linear or dendritically branched macromolecules tethered to the inner surface of cylindrical
or planar (slit-like) pore, a self-consistent field analytical approach is employed. Variations in the
internal brush structure as a function of variable solvent strength and pore radius, and the onset of
formation of a hollow channel in the pore center are analysed. The predictions of analytical theory
are supported and complemented by numerical modelling by a self-consistent field Scheutjens–
Fleer method. Scaling arguments are used to study microphase segregation under poor solvent
conditions leading to formation of a laterally and longitudinally patterned structure in planar and
cylindrical pores, respectively, and the effects of confinement on "octopus-like" clusters in the pores
of different geometries.

Keywords: polymer brushes, nanopores, conformational transitions, pore opening/closing transition

1. Introduction

Polymer brushes are layers of macromolecules tethered by terminal segments to a
solid substrate and immersed in a solvent [1–5]. Grafting of macromolecules to planar
substrates or to the surface of colloidal particles gives rise to planar or colloidal polymer
brushes, respectively. If the solubility of the brush forming macromolecules can be tuned
by varying environmental conditions (e.g., temperature), adhesive, tribological, and bioint-
eractive properties of the substrates and colloidal stability of dispersions can be controlled
through conformational changes (i.e., swelling-to-collapse) in the brush [6–10]. A novel
trend in the molecular design of smart polymer-modified interfaces assumes that the topo-
logical diversity of the brush forming macromolecules that enables tuning of the response
functions with respect to external stimuli through varied macromolecular architecture can
be exploited [11–13].

The grafting of brushes composed of stimuli-responsive polymers onto the inner
surface of nano- or mesoscopic pores in porous materials allows for controlled partition-
ing of different molecules between the pores and the bulk solution in which the porous
medium is immersed [14–16]. Furthermore, decorating walls of nanopores that perfo-
rate a membrane may ensure selective and controlled permeability of the membrane for
(bio)molecules [17]. The principles of “permselectivity” can be borrowed by biomimetic
nanotechnology from nuclear pore complexes (NPCs) that control bulk macromolecular ex-
change between the cytoplasm and the nucleus of eukaryotic cells. In their central channel,
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which measures tens of nanometers in diameter, NPCs harbour intrisically disordered and
thus flexible protein domains (FG domains) that are grafted to the channel walls and rich
in phenylalanine-glycine (FG) motifs thus being moderately hydrophobic [18–20]. Since
partitioning in and transport through polymer decorated nanopores can be regulated by
conformational changes in the brush, it is important to understand the pecularities of the
swelling-to-collapse conformational transitions occuring in the polymer brush tethered to
the inner surface of the pores as a function of the solvent quality.

The theory of the swelling-to-collapse conformational transition in planar brushes of
linear polymers was developed within strong stretching self-consistent field approximation
in References [21,22] and then generalised for brushes formed by dendritically branched
macromolecules in Reference [23]. A similar approach was applied [24] to concave (curved
inwards) brushes of linear chains swollen in a good solvent.

The aim of the present paper is to study conformational transitions in brushes formed
by polymers with arbitrary (linear or tree-like) architecture grafted to the inner surface of
cylindrical or slit-like pores and immersed into a solvent of arbitrary quality. Our emphasis
lies on an analysis of the evolution of the intra-pore polymer density profiles and the pore
filling/opening threshold as a function of variable solvent strength and the architecture of
brush forming macromolecules. To this end, we employ the analytical strong-stretching
self-consistent field (SS-SCF) approximation (Section 2) and complement it by numerical
modelling based on a self-consistent field Scheutjens–Fleer method. The latter does not
involve approximations of strong stretching of the brush forming chains and enable us to
investigate the effects of polymer density fluctuations near the edge of the brush. Whilst
the brush is laterally or longitudinally uniform under good or moderately poor solvent
conditions (when the chains are stretched), it splits into an array of finite-size clusters
upon a decrease in solvent strength, i.e., when the chains lose stretching beyond Gaussian
dimensions. The interplay between brush confinement and clusters formation is analysed
in Section 3 using a scaling approach. The Conclusions are formulated in Section 4.

2. Self-Consistent Field Theory for Polymer and Dendron Brushes in the Pore
2.1. Analytical Theory: Strong-Stretching Approximation

We consider a brush formed by long flexible polymer chains with degree of polymeri-
sation (DP) N and arbitrary linear or tree-like (dendron) architecture, grafted by one end
to the inner surface of a cylindrical pore of radius R and immersed in a solvent (Figure 1).
Here and below, we assume the brush forming chains (or any linear segment of the them)
to be intrinsically flexible. Each monomer unit is assumed to have a length a and a volume
a3, and in the following, all dimensions are normalised by the monomer unit length (ap-
proximately equal to the statistical segment length). The pore is assumed to be long so that
edge effects on the conformation of the brush forming macromolecules are disregarded.
For comparison, we also consider the case of a slit-like pore of thickness 2D.

The grafting density σ = 1/s is related to the area per chain s or number of chains 1/h
per unit length of the pore,

σ =
1

2πRh
(1)

Obviously, the pore can accomodate a polymer brush if R ≥ Rmin, where Rmin =
(N/πh)1/2 = 2Nσ.

The solvent quality is characterised by the Flory–Huggins parameter χ. In our recent
paper [23], we considered the collapse of a brush formed by linear or branched macro-
molecules in the case when the pore radius exceeds the brush thickness H, i.e, R ≥ H,
and there is a hollow channel around the pore axis. Here, we focus primarily on the case
when, under good solvent conditions, the brush filles the pore, that is, the polymer density
is nonzero at z ∈ [0, R], where z is the distance from the wall towards the pore axis. The
transition from R ≤ H (filled pore) to R ≥ H (open pore) triggered by variations of the
solvent strength (i.e., in parameter χ) or of the pore radius R are analysed.
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a) b)

Figure 1. Schematics of a brush formed by first generation dendrons grafted on a planar surface (a)
or to the inner surface of a cylindrical pore of radius R. In the scenarios depicted with a red polymer
chain, the brush pervades the entire space of a planar slit (a) or the cylindical pore (b).

An analytical strong-stretching self-consistent field (SS-SCF) approach formulated
initially for brushes of linear chains [21,25] and later extended to brushes of branched
polymers [26–29] presumes linear (Gaussian) entropic elasticity of any linear segment
of the brush forming macromolecules and operates with the chain trajectories z(m) that
specify the most probable position z of the monomer unit with ranking number m with
respect to the grafting surface.

Within the strong-stretching self-consistent field approximation monomer units in
the brush are subjected to the self-consistent molecular potential that exhibits a parabolic
dependence on the distance z from the grafting surface [29]

∂ f {φ(z)}
∂φ(z)

=
3
2

κ2(Λ2 − z2) (2)

where φ(z) is the volume fraction of monomer units in the brush, f {φ(z)} is the free energy
of interactions in the brush per unit volume, κ is a coefficient dependent on the DP and
topology of the brush forming chains, and the parameter Λ is specified below. For linear
chains, κ = π/2N, whereas for tree-like or cycle-containing polymers,

κ =
πη

2N
(3)

where η ≥ 1 is the so-called topological ratio that can be calculated for particular macro-
molecular architectures (tree-like or cycled) following earlier developed routines [29,30].
The topological ratio quantifies relative increases in the conformational entropy losses in
brushes formed by branched (or cycled) polymers compared with those in brushes of linear
chains with the same DP.

Equation (2) presumes Gaussian (linear) conformational elasticity of the brush-forming
chains on all the length scales and absence of “dead zones” depleted of the chain ends
proximal to the grafting surface. Remarkably, Equation (2) is applicable irrespective of the
specific type of interactions (functional form of f {φ(z)}) in the brush.
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Here, we apply the mean field Flory–Huggins approximation

f {φ(z)}
kBT

= (1− φ(z)) ln(1− φ(z)) + χφ(z)(1− φ(z)) + φ(z)(1− χ) (4)

which (in contrast with the virial expansion used in Reference [23]) is applicable at arbitrar-
ily large polymer volume fractions up to φ(z) ≤ 1.

Combining Equations (2) and (4), we obtain an implicit dependence of the polymer
volume fraction φ(z) in the brush on z as

− ln(1− φ(z))− 2χφ(z) =
3

2a2 κ2(Λ2 − z2) (5)

The osmotic pressure inside the brush is given by the following equation:

Π(z) = φ(z) ∂ f {φ(z)}
∂φ(z) − f {φ(z)} =

kBT[− ln(1− φ(z))− φ(z)− χφ2(z)]
(6)

The normalisation condition

(σR)−1
∫ min{R,H}

0
(R− z)φ(z)dz = N (7)

allows us to find Λ = Λ(R) in the case of “closed” pores or the brush thickness H if there
is a hollow channel in the pore center, H ≤ R.

In the case of an “open pore”, H ≤ R, the polymer volume fraction at the edge of
the brush, φ(H) ≡ φH , can be found from the condition of vanishing osmotic pressure,
Π(z = H) = 0, which leads to an equation for φH as a function of χ

− ln(1− φH)− φH − χφ2
H = 0 (8)

By substituting z = H into Equation (5), we find parameter Λ in an open pore as

Λ2 = H2 − 2a2

3κ2 [ln(1− φH) + 2χφH ] (9)

As follows from Equation (8), φH = 0 and, consequently, Λ = H in an open pore at
χ ≤ 1/2 (i.e., under good or theta-solvent conditions). Under poor solvent conditions,
χ > 1/2, in the open pore φH > 0 and Λ < H. Under poor solvent conditions, φH
defined by Equation (8) coincides with the polymer volume fraction in a polymer globule.
Remarkably, under poor solvent conditions, H2 −Λ2 is independent of the pore radius R.

A hollow channel in the center of the pore appears upon a decrease in the solvent
strength or upon an increase in R at H(R) = R, where H(R) is calculated for an open
pore, H ≥ R. This is equivalent to the condition Π(z = R) = 0, i.e., [ln(1 − φ(z)) −
χφ2(z)− φ(z)]z=R = 0, where the polymer concentration φ(z) depends on R through Λ(R)
calculated from Equation (7).

Under good or theta-solvent conditions, χ ≤ 1/2, the condition of the channel opening
can be found directly from the condition φ(z = R) = 0, that is R = Λ(R)

An analytical solution can be found under good solvent conditions, when f (φ(z))/kBT ≈
vφ2(z) with v = 1/2− χ. In this case,

φ(z) =
3

4v
κ2(Λ2 − z2) (10)

and from Equation (7), we find

Λ2 =
R2

6
+

4vN
3πκ2hR2 (11)
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so that

φ(z) =
3

4v
κ2(

R2

6
+

4vN
3πκ2hR2 − z2) =

3κ2

4v
(

R2

6
− z2) +

N
πhR2 (12)

where N
πhR2 is average polymer concentration in the pore. As follows from Equation (12),

upon a decrease in the solvent strength (decrease in v, brush contraction), the local polymer
concentration decreases at z ≥ R/

√
6 but increases at z ≤ R/

√
6. This applies as long as

binary repulsive interactions remain dominant (good solvent conditions).
The condition of the channel opening, Λ = R or φ(z = R) = 0, leads to

Ropening = (
8vN

5πκ2h
)1/3 = 2(

8vσ

5π2η2 )
1/3N (13)

At R ≥ Ropening, there is a hollow channel in the pore center. As follows from
Equation (13), Ropening is proportional to N and increases upon an increase in σ and v and
decreases upon replacement of linear brush forming chains by branched ones (increase
in η).

At R ≥ Ropening, the brush thickness (calculated from Equations (7) and (12)) can be
found from the equation

H4
(

8
3

R
H
− 1
)
=

16vNσR
3k2 (14)

which in the limit R� H reduces to

H = Hplan = 2N(
vσ

π2η2 )
1/3 (15)

which coincides with the result obtained in [23].
Remarkably, as follows from Equations (13) and (15), the ratio

Ropening

Hplan
=

(
8
5

)1/3

> 1 (16)

is independent of topological ratio η and grafting density σ.
Under poor solvent conditions, χ > 1, the unconfined brush (H ≤ R) is collapsed

and φ(z) ≈ φH , which can be found from Equation (8). The critical pore radius Ropening
can be estimated from simple packing conditions, Ropening ≈ 2Nσ/φH , which increases
as a function of σ and decreases with decreasing solvent strength (an increasing φH) but,
remarkably, is independent of the topology of the bruh forming chains. At R ≤ Ropening,
polymer distribution in the closed pore is fairly uniform with the polymer volume fraction
φ ≈ 2Nσ/R.

2.2. Brush Thickness and Pore Opening/Closing Threshold

In Figure 2, we present the reduced thickness of the brush, min{H, R}/N, as a function
of normalised N pore radius, R/N, for selected values of the χ-parameter and for three
architectures of the brush forming chains: linear and dendrons of the second generation
(g = 2) with branching functionality q = 2 and q = 3. The unconfined and confined
brush regimes correspond, obviously, to min{H, R} = H and min{H, R} = R, respectively.
Horizontal dashed lines correspond to the thickness of the brush (with the same N, σ and
χ) grafted onto a planar surface (the limit of R → ∞). As one can see from the figure,
the thickness H(χ, R) of a unconfined brush in the pore is systematically larger that of
the brush grafted to a planar surface and monotonously increases upon a decrease in
the pore radius R. At H(χ, R) → R, the hollow channel in the pore center vanishes (the
closing/opening point), and at smaller R, the brush fills the pore. For a given pore radius
R and solvent strength χ, the thickness H(χ, R) of an unconfined brush of linear chains is
larger than that of a dendron brush, whereas for a given R and selected topology of the
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chains, the brush thickness H(χ, R) monotonously decreases as a function of χ (decreasing
solvent strength).

Figure 2. Normalised brush thickness, min{H/N; R/N}, as a function of the normalised pore radius,
R/N, for selected values of the χ-parameter (0; 0.25; 0.5; 0.75; 1.0) and different topologies (linear and
dendritic) of the brush forming macromolecules, as indicated with (g, q) numbers. Horizontal dashed
lines correspond to the thickness H of a brush grafted onto a planar surface. The corresponding
values of χ are color-coded, and topologies are indicated with markers, where cross, circle, and
square markers are linear chains and the second generation dendroids g = 2 of different branching
functionalities q = 2 and q = 3, respectively. Numbers on the solid lines denote the dendron
functionality q, where 0 corresponds to linear chains.

These trends are also illustrated in Figure 3 where we present the dependence of
min{H, R} (left) and polymer volume fractions at the grafting surface, φ(χ, z = 0), and
at the edge of the brush, φ(χ, z = min{H, R}), (right) on χ parameter for a set of selected
values of the reduced pore radius, R/N, and for three polymer topologies: linear chains
(upper row), and dendrons of the second generation with branching functionality q = 2
(middle row) and q = 3 (lower row). Black solid lines in the left column correspond to the
reduced thickness, H(χ, R→ ∞)/N of the unconfined brush grafted to a planar surface,
whereas dotted black line corresponds to the pore opening threshold, H(χ, R)/N = R/N.
The smaller the pore radius, R/N, the larger the brush thickness at any given χ. Therefore,
the dotted line (R/N at pore opening) lies systematically above the solid line (the planar
brush thickness).

As one can see from Figure 3, irrespective of the confinement, the polymer volume
fraction close to the grafting surface, φ(χ, z = 0), is an increasing function, whereas the
polymer volume fraction at the edge of the brush, φ(χ, z = min{H, R}), is a decreasing
function of χ. These trends and the difference between both values become less pronounced
(density distribution thoughout the brush becomes more uniform) as confinement becomes
stronger or/and degree of branching of the brush forming chains increases (dendron
compared to the linear chain brush). For dendron brushes (middle and lower rows in
Figure 3), the brush thickness is systematically smaller and the χ-range corresponding to
the open pore, H ≤ R, is more extended than for the brushes of linear chains.
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Figure 3. Normalised brush thickness, min{H/N; R/N}, (left) and polymer volume fractions at the
edge of the brush, φ(χ, z = H) (solid lines) and at the grafting surface φ(χ, z = 0) (dashed lines)
as a function of χ-parameter for different pore radius R (R = 250 (unrestricted); 150; 100; 75; 50)
compared with the polymer volume fractions in planar brush with the same N = 1000, σ = 0.02. The
upper, middle, and lower rows correspond to brushes of linear chains, and dendrons of the second
generations with functionality q = 2 (middle row) and q = 3 (lower row), respectively. The pore radii
are universally color-coded through all of the frames. Solid black lines correspond to brushes grafted
onto the planar surface. The dotted lines in the left frames trace the dependence Ropening(χ, g, q) on

χ. Note the secondary axis with brush thickness normalised as min{H/Hplan
θ ; R/Hplan

θ }

The dependences of χopening corresponding to the pore opening/closing threshold on
the pore radius, R, (or the slit half-width, D) for linear chain and dendron brushes (with the
same N and σ) are presented in Figure 4. As follows from the figure, at given pore radius R,
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the pore opening occurs at better solvent strength conditions (i.e., at smaller χ) for dendron
brushes than for linear chain brushes. For example, the pore opening may occur only
under poor solvent conditions for the linear chains brush whereas in the pore decorated by
dendrons with the same N and σ the central channel emerges already under good solvent
conditions. This trend is clearly explained by the weaker swelling of dendron brushes
under good or theta-solvent conditions. As expected, the difference between brushes of
linear chain and dendron brushes vanishes under poor solvent conditions or confinement
(pore filling).

Figure 4. χopening for the pore (solid lines) or a slit (dashed lines) with grafted linear, or dendron
brush g = 2, q = 2, or q = 3 with N = 1000, σ = 0.02 as a function of the pore radius R or the slit
thickness D (see Figure 1) normalised by N. Topologies are indicated with markers, where cross,
circle, and square markers are linear chains and dendroids of the second generation, g = 2 of different
functionalities q = 2 and q = 3, respectively.

2.3. Polymer Density Distribution in the Pore

The evolution of the polymer volume fraction distribution across the cylindrical
pore upon variations in χ-parameter (solvent strength) is illustrated by Figure 5. The
upper row corresponds to the case when the brush is unconfined, H ≤ R, at any solvent
strength. In the middle row, closing/opening of the hollow channel in the center of the
pore, H(χ, R) = R, occurs upon a decrease in the solvent strength at χ ≤ 1/2; the lower
row depicts the situation when the closing/opening occurs at χopening ≈ 1/2 (close to
theta-solvent conditions).

In the left column in Figure 5. we present 3D profiles of the polymer volume frac-
tion φ(z, χ) as a function of solvent quality, χ, and distance z from the pore wall. At
any value of χ, the polymer density profile is a decreasing function of z in the range of
z ∈ [0, min{H, R}). In accordance with Equation (8), under good and theta-solvent con-
ditions, χ ≤ 1/2, the polymer volume fraction in a unconfined brush, H ≤ R, vanishes
continuously at the brush edge, z = H, whereas under poor solvent conditions, χ ≥ 1/2,
the polymer volume fraction exhibits a finite jump from φH > 0 to zero at the brush
edge. The polymer volume fraction at z = R in a confined brush is nonzero at any solvent
strength and decreases upon an increase in χ. If the channel opening occurs under good
or theta-solvent conditions, χopening ≤ 1/2, then the polymer volume fraction at the edge
of the brush, z = H ≤ R, vanishes continuously in the range of χopening ≤ χ ≤ 1/2.
Otherwise, if χopening ≥ 1/2, the nonzero polymer volume fraction is found at the edge of
the brush, φ(z = min{H, R}), in both confined and non-confined regimes.
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Figure 5. Polymer volume fraction φ(χ, z) (left column), contour plot of the derivative(
∂φ(χ, z)/∂χ

)
z

in the (χ, z) plain (middle column) and dependence of the local polymer volume

fraction φ on χ at selected distances z from the pore wall (right column) for the brush of linear
chains, N = 1000, σ = 0.02 grafted in cylindrical pore. The rows of the grid correspond to differ-
ent pore radii: R = 250 (unconfined at any χ brush, H ≤ R, upper row), R = 200, 150 (confined
(pore-filling) under good solvent condition brushes, middle and lower rows). Solid black lines in
the left and right columns represent the local polymer volume fraction at the edge of the brush
φ(χ, z = min{H(χ), R)}); in the middle column, φ(χ, z = min{H(χ), R)}) is projected on χ − z
plane, thus tracing the dependence of min{H(χ), R)} on χ. Dashed black lines in the middle column
correspond to the values of χ for every given z that maximises the local polymer volume fraction
χ
′
= arg max{φ(χ)}z; corresponding maxima in the polymer volume fraction φ(χ

′
(z), z) are plotted

with dashed black lines in the left and right columns.

The dependence of the polymer volume fraction φ(χ, z) on χ exhibits qualitatively
different patterns depending on the selected distance z from the pore wall. In the right
column of Figure 5, the volume fraction φ(χ, z) is plotted as a function of χ for a few
selected values of z; the black solid lines correspond to the polymer volume fraction at the
edge of the brush, z = min{H, R}. In the middle column of Figure 5, the contour plots of
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the derivative
(

∂φ(χ, z)/∂χ

)
z

are presented. As one can see from these plots, the polymer

volume fraction φ(χ, z) monotonously increases as a function of χ and asymptotically
approches unity at χ→ ∞ for z ≤ Hmin, where Hmin = H(χ→ ∞) = R(1−

√
1− Rmin/R)

is the thickness of fully collapsed, φ = 1 brush and Rmin = 2Nσ is the minimal radius
of the pore accomodating the brush with given N and σ. At larger distances from the
surface, Hmin ≤ z ≤ Hθ , where Hθ = H(χ = 1/2) is the brush thickness in the theta-point,
the polymer volume fraction increases as a function of χ as long as χ ≤ χ∗(z), where
the value χ∗(z) is found from the condition H(χ∗(z)) = z, and then drops down to zero.
At even larger distance from the grafting surface, z ≥ Hθ , the polymer volume fraction
φ(χ, z) exhibits more complex behaviours as a function of χ, i.e., it either monotonously
decreases upon an increase in χ if z is close to the periphery of the brush or passes though
a maximum and then continously vanishes.

2.4. Numerical Self-Consistent Field Theory: Beyond Analytical Strong-Stretching Approximation

We note that the analytical SS-SCF approach employed above for calculating the
polymer volume fraction φ(z) and the brush thickness in the open pore, H ≤ R, does not
account for Gaussian fluctuations of the non-stretched terminal segments of the brush
forming chains. These fluctuations give rise to the decaying “tail” in polymer density dis-
tribution protruding beyond the brush edge, i.e., to non-vanishing polymer concentration
at z ≥ H. Due to these density fluctuations, the effective radius r = R− H of the hollow
chanel is slightly smaller than predicted by SS-SCF theory.

The width of the tail is expected to vary non-monotonously as a function of solvent
strength (χ): in the regimes of good and theta solvent, χ ≤ 1/2, it increases upon a decrease
in the brush thickness H caused by decreasing solvent strength as [31]

ξ ∼=
N2/3

H1/3(χ)
(17)

because of the decreasing overall stretching of the chains in the brush. Below the theta
point, i.e., at χ ≥ 1/2, polymer density fluctuations and extension of the tail in the polymer
density distribution are controlled by the thermal correlation length [32], which scales as

ξt ∼ (χ− 1/2)−1 (18)

close to the theta-point and further decreases upon an increase in χ ≥ 1. Therefore, the
relative width of the fluctuating tail scales as ξ/H ∼ N−1/3 under good and theta-solvent
conditions and as ξt/H ∼ N−1 under poor solvent conditions.

In order to obtain a more detailed description of the polymer density distribution
near the edge of the brush, we used a numerical modelling approach based on the self-
consistent field Scheutjens–Fleer method [33,34]. The latter method does not involve
any approximations concerning the degree of stretching of the brush forming chains and
accounts for the Gaussian fluctuations of the non-stretched terminal segments of the chains.
The polymer volume fraction profiles calculated for a planar (R→ ∞) brush under varied
solvent strength conditions analytically (SS-SCF approximation) and numerically using the
SF-SCF scheme and their difference, ∆φ(z) = φSF(z)− φSS(z) are presented in Figure 6. As
one can see from Figure 6, |∆φ(z)| vanishes far from the edge of the brush but is maximal
at z = H. The shape of the ∆φ(z) curves changes with the variation in the solvent strength:
they are fairly symmetric under good or poor solvent conditions and asymmetric close to
the theta point. In agreement with presented above analytical estimations, the magnitude
and the width of ∆φ(z) increase when the solvent strength decrease from good to theta-
solvent conditions, reach maxima in the theta-point, and decrease upon further increase
in χ in the range of poor solvent. This is illustrated in Figure 7, where the width of the
∆φ(z) curves is plotted as a function of χ (with the same values of N = 1000, σ = 0.02). As
seen from Figure 7, The width of ∆φ(z) curve for a dendron brush is expected [13] to be



Polymers 2021, 13, 3929 11 of 22

smaller than that for the brush of linear chains at any χ. This observation brings us to the
conclusion that the “tail” in the polymer volume fraction profile is most extended around
the theta-point and is more pronounced for the brushes of linear chains rather than for
dendron brushes.

(a) (b)

Figure 6. Polymer volume fraction profile calculated by the numerical SF-SCF method
(φSF) and within analytical SS-SCF approximation (φSS) for selected values of χ parameter,
(0.25; 0.40; 0.50; 0.60; 0.80; 0.95) for N = 1000, σ = 0.02, planar surface, R = ∞ (a) The difference,
∆φ(z) = φSF(z)− φSS(z), between numerically and analytically calculated polymer density profiles
for the same selected values of the χ-parameter (b). Here, z is a distance from the grafting surface
or the number of the layer for lattice SF-SCF model. In panel (b) the brush thickness calculated by
analytical method is indicated by dashed vertical lines, and horizontal bars shows the total range ε

of Gaussian fluctuations, separated by the dashed vertical line into interior and exterior regions of
the brush.

Figure 7. Width of the range of Gaussian fluctuations of the non-stretched terminal segments of
the chains (square marker). and the size of the tail in the polymer density profile protruding above
z = H (triangle marker) as a function of χ-parameter for the brush of linear chains, grafted to a
planar surface, R = ∞ for N = 1000, σ = 0.02.

Ending this section, we have to point out a certain peculiarity in the pore clos-
ing/opening transition when it occurs under poor solvent conditions. According to the
SS-SCF approximation, under poor solvent conditions, χ ≥ 1/2, the polymer density in the
open pore, H ≤ R, exhibits a discontinuity at the edge of the brush, at z = H. The polymer
volume fraction at the edge of the brush, φ(z = H), obeys Equation (8) and coincides with
the equilibrium volume fraction in a polymer globule [32]. The unfavourable contacts
between monomer units and poor solvent at the interface between the collapsed brush
and the surrounding solution give rise to excess free energy γkBT per unit area of the
interface. In the vicinity of the theta point, (χ− 1/2) � 1, the surface tension γ scales
as [32] γ ∼ (χ − 1/2)2, whereas far from the theta-point, at χ ≥ 1, the linear grouth,
γ ∼ χ, is predicted with a smooth crossover between these two asymptotics in the χ ∼ 1
range [35]. In the case of the open cylindrical pore, this excess interfacial free energy pro-
duces a negative Laplace pressure −2γ/(R− H). In order to eliminate this unfavourable
interface by closing the pore and thus to vanish the excess interfacial free energy, the
brush may undergo additional swelling with respect to its equilibrium thickness calculated
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according to the SS-SCF scheme. Consequently, the closing of the pore is expected to
occur, when the channel radius is r = R− H � R, as a jump-like (first order) transition.
This transition occurs when the free energy corresponding to the equilibrium thickness of
the brush calculated above within SS-SCF scheme and complemented by the excess free
energy of the brush-solvent interface (per chain), Fsur f /kBT ∼= γh(R− H) ∼= γs(R− H)/R,
becomes equal to the free energy, corresponding to the filling the pore overstretched brush.
Mathematically, in the “pore closing” transition range, the free energy exhibits a local
minimum corresponding to the open pore and an edge minimum corresponding to the
close pore, and the minima are separated by the free energy barrier.

Assuming that r = R− H � R and H ∼= R ∼= N/sφH , where the collapsed polymer
volume fraction φH = φH(χ) is given by Equation (8), we find that the minimal equilibrium
radius of the open channel scales as

rmin = R− H ∼= (
γN2σ2

φ3
Hu(χ)

)1/3 ∼ N2/3 (19)

The derivation of Equation (19) and expression for u(χ) are presented in the Appendix A.
Following from Equation (19),

rmin
R
∼ N−1/3 (20)

Hence, for sufficiently long chains, N � 1, and wide pores, the relative minimal width
of the hollow channel at which jump-wise closing of the pore occurs is negligible compared
with the pore radius.

Obviously, since the contribution of conformational entropy to the overall free energy
of the collapsed brush under poor solvent conditions is negligible, the above estimate of
the jump-wise opening/closing transition point is fairly insensitive to the topology (linear
or dendritic) of the brush forming chains.

The evidence for the jupm-wise pore opening/closing transition is provided by
mumerical SF-SCF calculations. In Figure 8, the polymer volume fraction profiles φ(z/R)
calculated analytically and numerically under poor solvent conditions (χ = 0.6; 0.7 and 0.8)
are plotted for variable pore radius R/N close to the predicted by analytical theory pore
opening/closing threshold, R ≈ Ropening(χ) . As follows from the Figure 8, at R ≤ Ropening,
the pore is filled with polymer (no hollow channel) and the numerically calculated profile
perfectly matches the analytical one. If the pore radius R� Ropening and there is a hollow
channel in the pore center with φ(z) = 0, the numerically caclulated profile is slightly
more extended than the analytical one due to Gaussian fluctuations of the terminal chain
segments, as discussed above. However, close to the analytically caclulated transition
point, R ≥ Ropening, numerical calculations show that the pore is still closed with relatively
high polymer concentration in the pore center, at z = R, whereas according to analytical
theory they should be a hollow channel in the pore center. Moreover, according to nu-
merical calculations, the shape of the polymer density profiles abruptly changes (the pore
opsning/closing transition) within a very narrow range of variation of R around R∗opening,
where R∗opening evaluated from numerical calculations numerically is larger than Ropening
calculated analytically.

The same trend is illustrated by Figure 9, where the polymer volume fraction in the
pore center, φ(z = R), is plotted as a function of the pore radius R for a few selected
values of the χ-parameter. As expected, the polymer volume fraction in the pore center
monotonously decreases upon an increase in the pore radius R. Under good and theta-
solvent conditions, χ ≥ 0.5, the polymer volume fraction in the pore center smoothly
vanishes above the pore openning threshold, at R ≥ Ropening. The numerical calculations
predict slightly larger pore radius corrersponding to the opening transition than the an-
alytical theory due to Gaussian fluctuations of the terminal chain segments. Under poor
solvent conditions, analytical theory predicts a drop in the polymer density at the edge
of the brush upon the pore opening, which is in agreement with numerical results. How-
ever, numerical results indicate that this drop in the polymer density (the pore opening)
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emergies at significantly larger pore radius R = R∗opening > Ropening, than predicted by
analytical theory.

Figure 8. Polymer density profiles φ(χ, z/R) as a function of normalised distance from the pore
wall z/R for selected values of χ parameter (0.6, 0.7, 0.8) corresponding to three frames from the
top to bottom for selected values of pore radii, including Ropening(χ) calculated within SS-SCF
approximation and marked by an asterix. Pore radii are color-coded, and the density profiles
calculated by numerical SF-SCF method (φSF) are presented as squared markers while solid lines
trace the polymer density profiles (φSS) calculated analytically. N = 1000, σ = 0.02.

In Figure 10, the ratio between the brush thickness H (calculated analytically or numer-
ically) and the pore radius R normalised by Ropening is plotted for a set of the χ-values corre-
sponding to theta and poor solvent conditions. The brush thickness is a decreasing function
of R (at given χ) or a decreasing function of χ at given R/Ropening(χ). The analytical curves
cross at H(χ, R)/R = R/Ropening = 1 since, by definition, H(χ, Ropening) = Ropening. The
numerically calculated dependences behave differently: the arrows in Figure 10 indicate
jump-wise closing-opening of the pore under poor solvent conditions upon continuous
variation in the pore radius R, the magnitude of the jump increases upon an increase in χ.
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Figure 9. Local polymer density in the center of a pore φ(z = R) as a function of normalised pore
radius R/N for selected values of χ-parameter (0.3, 0.4, 0.5, 0.6, 0.7, 0.8). The value of χ are color
coded, and the results calculated by numerical SF-SCF method (φSF(z = R)) are presented as squared
markers while solid lines trace the values of (φSS(z = R)) calculated analytically. N = 1000, σ = 0.02.

Figure 10. Polymer brush thickness min{H, R} in a poor solvent as a function of the normalised pore
radius R/Ropening calculated using the numerical SF-SCF method (squares) and within analytical
SS-SCF approximation (solid lines) for selected values of χ parameter, (0.50; 0.60; 0.70; 0.80) for
N = 1000, σ = 0.02. Here, Ropening is the minimal open pore radius calculated within analytical
SS-SCF approximation. Note the jumps (darkened color arrows) for χ = 0.8 and χ = 0.7 between
close sequential calculations with varied R; the upper darkened marker on a scatter correspond to
the closed pore H/R = 1, while the lower darkened marker correspond to open pores with brush
height H < 0.95R for χ = 0.8.

3. Cluster Formation and Longitudinal Versus Lateral Instability of the Collapsed
Brush in the Pore
3.1. Clusters in a Brush Confined in a Slit

It is known that a planar polymer brush collapsed in poor solvent retains a laterally
uniform structure as long as the brush thickness is larger than the Gaussian size of an
individual polymer coil, H ≥ N1/2. The SS-SCF formalism is applicable for description of
the brush structural properties under poor solvent conditions pre-assuming lateral brush
uniformity only if the condition H ≥ N1/2 is fulfilled. A further decrease in the solvent
strength provokes splitting of laterally uniform brush into clusters (“pinned micelles”) [36].

Each cluster consists of a collapsed globular core with radius Rc connected to the
grafting points of the cluster-forming chains by extended “legs” of length L, which serves
as a characteristic size (“footprint”) of the cluster in the lateral direction. The cluster size is
related to the number p of chains per cluster (aggregation number) as L ∼= (ps)1/2.

Below, we consider brushes formed by linear polymer chains in the regime of mod-
erately poor solvent strength conditions, τ ≡ |χ− 1/2| ≤ 1, when the volume fraction of
monomer units in the collapsed core ' τ, while surface tension γ at the polymer-solvent
interface is related to τ as γ ' kBTτ2. We consider the case when the surface tension γ
at the solvent–polymer interface is equal to the difference ∆γ between surface tensions
at the polymer–surface and solvent–surface interfaces. In this case, the globular core of
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pinned micelle acquires a perfectly spherical shape. The structural properties of clusters
were derived in Reference [36,37] in the form of scaling dependences as

p ∼= N4/5τ2/5s−3/5 (21)

L ∼= (τN2)1/5s1/5 (22)

Rc ∼= N3/5(τ)−1/5s−1/5 (23)

and all of the numerical pre-factors of the order of unity are omitted here and below.
Decomposition of a laterally uniform collapsed brush with the polymer volume

fraction φ ∼= τ and thickness H ∼= N/sτ into clusters occurs at τ ∼= N1/2/s when
L ∼= Rc ∼= N1/2. (Obviously, at sufficiently high grafting density, s ≤ N1/2, the brush
retains a laterally uniform structure up to fully collapsed, φ ∼= 1, state.) An increase in τ
(decreas in the solvent strength) in the range τ ≥ N1/2/s leads to an increase in the number
of chains per cluster and lateral cluster size (Equations (21) and (22)) with concomitant
decrease in the size of the globular core Rc (Equation (23)). The latter trend is explained by
increasing core density.

We now consider a slit-like (planar) pore with polymer brushes grafted onto both
upper and lower surfaces and decomposed into clusters (which is the case at τ ≥ N1/2/s).
As long as the half-distance between the grafting surfaces D exceeds the cluster size L,
each cluster comprises the chains originating from the same surface. However, when the
slit width becomes smaller that the span of an individual cluster, that is at D ≤ L, clusters
belonging to the upper and the lower surfaces merge. As a result, at Rc ≤ D ≤ L, each
sluster comprises approximately equal number of chains originating from upper and lower
surfaces, whereas the aggregation number p, lateral cluster size L, and core size Rc still
follow the sacling laws given by Equations (21)–(23).

Upon a further decrease in the distance 2D between the pore walls, the cores of the
clusters become compressed at D ≤ Rc, where Rc is given by Equation (23). The cores of
compressed clusters acquire the shape of the “pancakes” with the radius ρc, thickness D, and
total surface area A = πρ2

c + 2πρcD. The volume V of the pancake core with ρc � D yields

V ≈ πρ2
c D ' pN

τ
(24)

to give

ρc '
(

pN
τD

)1/2
(25)

and surface area per chain
A
p
' N

τD
+

(
a3ND

τp

)1/2

(26)

Although the first term in Equation (26) is dominant, it does not depend on aggregation
number p and can be omitted from further consideration. Moreover, a possible difference
between γ and ∆γ does not affect the second, p-dependent term in Equation (26).

The aggregation number in such clusters can be found from minimisation of the free
energy (per chain)

Fcluster/p = τ3/2(ND/p)1/2 + p1/2τs1/2 (27)

where the first term describes the p-dependent interfacial free energy ∼ τ2 A/p and the
second term accounts for the free energy of stretched legs. As a result of the minimisation
with respect to p, we obtain

p ∼= (τND/s)1/2 (28)
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L ∼= (τNDs)1/4 (29)

ρc ∼= N3/4(τDs)−1/4 (30)

Hence, a decrease in D leads to a decrease in p and L with concomitant increase in
the pancake radius ρc. When, upon a decrease in D, the span of the cluster L and the
core radius Rc become equal, L ∼= ρc, the brush acquires a laterally uniform structure. In
Figure 11, we present the evolution of L and ρc as a function of D. Remarkably, in the
regime of clusters made from polymers grafted to both upper and lower surfaces with
unconfined cores, Rc ≤ D ≤ L, there is no dependence of the cluster properties L and Rc
on the slit width D. In Figure 12, the diagram of states of the compressed brush under poor
solvent conditions is presented.

, cL 

D3/5 1/5( )N s −
N

s

2/5 1/5( )N s

1/2 1/4( / )N s R −

1/4( )L N sD

3/4 1/4( )c N sD  −
3/5 1/5( )N s −

unconfined clusters
confined clustersuniform 

layer

1/2N

1/2N

s
 

L

c

2 1/5( )N s

Figure 11. Dependence of the cluster lateral dimension, L, and cluster core radius in the lateral
direction, ρc on the thickness of the slit-like pore D. The regimes of unconfined (free) and confined
clusters are indicated.

D

1/2N

s

1/2s− 1

/N s

3/5 1/5( )D N s −

1( )D N s −

unconfined clusters

confined clusters

uniform confined layer
1/2N

1/2Ns−

unconfined brush

2 1/5( )D N s

unconfined merged clusters

Figure 12. Diagram of states of the brush compressed in a planar slit-like pore under poor solvent
conditions in the pore width D, - solvent strength, and τ coordinates.
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3.2. Clusters in a Brush Confined in the Cylindrical Pore

Similar to the planar brush case (corresponding to the R→ ∞ limit), the brush grafted
onto the inner walls of a cylindrical pore with radius R ≥ N1/2 splits at τ ≥ N1/2/s into
clusters attached to the pore walls. Structural properties of the clusters evolve upon an
increase in τ according to Equations (21)–(23) as long as the cluster size remains smaller
than the pore radius, L ≤ R (quasi-planar regime). At τ ∼= R5/N2s, or equivalently,
at pore radius,

R = R∗ '
(

sτN2
)1/5

, (31)

the cluster size L becomes comparable with the pore radius R, indicating the lower limit of
quasi-planar regime.

A decrease in the core radius R . R∗ leads to rearrangement of clusters along the
pore in a quasi-one-dimensional array (see Figure 13). Let h ∼= s/R be the axial distance
per grafted chain in the pore and L ∼= ph be the longitudinal dimension of a cluster.
The aggregation number in the one-dimentional array of clusters is then found from
minimisation of the free energy (per chain)

Fcluster/p = τ4/3N2/3 p−1/3 + τp · (s/R) (32)

which leads to
p ∼= N1/2τ1/4 · (R/s)3/4 (33)

L ∼= N1/2τ1/4 · (s/R)1/4 (34)

Rc ∼= N1/2τ−1/4 · (s/R)−1/4 (35)

In scaling terms, the structural properties of clusters in the one-dimensional regime
follow the same dependences as derived for clusters attached to a thin cylinder in Refer-
ence [38].

The evolution of the cluster size L and cluster core dimensions Rc as a function of
τ are presented in Figure 14. Obviously, the transition from quasi-planar to quasi-one-
dimensional regimes occurs at τ ∼= R5/N2s only if the pore radius N1/2 ≤ R ≤ N2/5s1/5.
In the case R ≥ N2/5s1/5, the cluster remain quasi-planar up to τ ∼= 1.

a

R
R

L

b

Figure 13. Schematics of clusters pinned in quasi-two dimensional (a) and quasi-one-dimensional (b)
regime in a cylindrical pore.
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Figure 14. Dependence of the cluster size, L, and cluster core radius, Rc on solvent strength
τ ∼= (χ− 1/2) at pore radius N1/2 ≤ R ≤ N2/5s1/2, and grafting density is σ = 1/s ≤ N−1/2.

4. Discussion and Conclusions

In the present paper, the theory of conformational transitions in polymer brushes
grafted to the inner surface of a cylindrical or slit-like pore was developed using analytical
methods based on the strong-stretching self-consistent field (SS-SCF) approximation. The
theory applies to brushes made from linear chains as well as dendrons and cycled [39]
chains. The topology of the brush forming chains is taken into account within a universal
formalism through the so-called topological ratio, which quantifies the degree of branching
and affects the magnitude of the self-consistent field potential in the brush. The Flory
approximation was used to describe the solubility of monomer units, which made it
possible to describe both strongly swollen and completely collapsed brushes inside a pore
within the framework of a unified theory. The density distribution of the polymer across
the pore was obtained as a function of the thermodynamic quality of the solvent, the
degree of chain polymerisation, and the grafting density. It was shown that the dependence
of the local concentration of the polymer in the pore on the solvent strength (quantified
by the Flory–Huggins χ parameter) has a significantly different character at different
distances from the pore wall, namely, monotonically increases (near the pore wall), and it
monotonically decreases (at the edge of the brush) or passes through a maximum in the
intermediate region. This result is important for predicting the distribution of the flux of
diffusing particles across the pore upon a change in the solvent strength.

The effect of surface curvature on the threshold solvent quality at which a hollow
channel opens in the center of the pore is analysed, and it is shown that, at the same values
of the grafting density and degree of polymerisation, in the case of a cylindrical pore, this
occurs under conditions of poorer solvent than in the case of a slit-like pore. It was also
shown that replacing linear chains by dendrons decorating the pore wall leads to a more
uniform distribution of monomer units across the pore, but the pore opening threshold is
shifted towards better solvent conditions.

According to the SS-SCF approach, the pore closing occurs progressively when the
equilibrium thickness, H, of the brush reaches the pore radius, R. However, under poor
solvent conditions, a jump-wise (first order) closing-to-opening transition may occur in
a cylindrical pore at R− H � R. The metastability of the narrow open channel of radius
r = R− H � R arises due to excess free energy (surface tension) of the curved interface
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between the edge of the collapsed concave cylindrical brush and filling the pore poor
solvent. As demonstrated by scaling arguments, the minimal open channel radius scales as
rmin ∼ N2/3. Hence, this transition might be observable for relatively narrow pores (short
chains), whereas for wide pores, rmin/R ∼ N−1/3 and the relative width of the minimal
open channel is negligibly small. We remark that an alternative mechanism of the pore
closing at H ≤ R may involve long-wave instability of longitudinally uniform polymer
density distribution, which is beyond the scope of our current analysis.

The analytical theory was complemented by calculations based on the numerical
Scheutjens–Fleer self-consistent field method. This method does not involve any pre-
assumption of strong stretching of the brush forming chains and allowed us to analyse
deviations in the polymer density profiles near the edge of the brush from those predicted
by SS-SCF analytical theory. It was demonstrated that the width of the fluctuating “tail”
in the polymer density profiles protruding beyond the edge of the brush (as defined
analytically) varies non-monotonically as a function of the solvent strength, i.e., it passes
through a maximum near the theta-point and decreases towards both good and poor
solvent conditions. Under good and theta-solvent conditions, the “tail” is formed by
non-stretched terminal segments of the chains, whereas under poor solvent conditions, the
“tail” length is proportional to the thermal blob size.

Microphase segregation, which occurs under poor solvent conditions and leads to
the disintegration of a longitudinally (or laterally) homogeneous brush into finite-size
clusters under spatial constraints imposed by the walls of the pore to which the polymer
brush is grafted, was studied using the scaling approach for the particular case of lin-
ear brush forming chains. The formation of clusters (“pinned micelles”) consisting of a
spherical globular core connected by stretched segments (legs) to grafting points of brush
forming chains has been previously described for free (non-constrained) polymer brushes
attached to planar [36] or convex [40,41] surfaces. In the case of a wide pore, the clusters
have the same (quasi-planar) structure regardless of the pore geometry. However, we
predicted qualitatively different scenarios of cluster transformation in a narrow slit-like or
cylindrical pore.

When the width of the slit-like pore decreases to a size smaller than the lateral size
(footprint) of a cluster, the clusters may include chains grafted to the opposing walls of the
slit. A further decrease in the slit width results in the confinement of the globular cores of
the clusters, and the core acquires the shape of an oblate cylinder (pankace) with a base
radius exceeding the slit width. A further decrease in the slit width is accompanied by
an increase in the lateral size of the cluster core and a decrease in the number of chains
included in the cluster and, therefore, a decrease in the lateral size of the cluster as a
whole, up to the formation of a laterally homogeneous collapsed layer. In the case of a
cylindrical pore, a decrease in the pore radius down to the size of the cluster leads to a
change in symmetry and the transformation of a quasi-two-dimensional array of clusters
into a quasi-one-dimensional one. In this case, the cores of the clusters are arranged along
the axis of the pore with a periodicity equal to the longitudinal size of the cluster. At
a fixed grafting density (pore surface area per chain), the aggregation number and the
size of the globular core of the cluster decrease with decreasing pore radius, while the
longitudinal size of the cluster increases. It can be hypothesised that, under the conditions
of the formation of a quasi-one-dimensional system of clusters, the diffusive transport of
sufficiently small solutes through a cylindrical pore occurs predominantly in the near-wall
region where the polymer density is reduced.

The results obtained in the present paper concerning the evolution of the radial
distribution of the polymer density in the pore upon variation of the solvent strength or
architecture (degree of branching) of the decorating pore macromolecules can be applied
for the formulation of principles of control of selective diffusive transport through polymer-
modified pores, which is the scope of a forthcoming publication.
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Appendix A. Pore Opening/Closing Threshold: Calculation of rmin

In this appendix, we present the calculation of the minimal radius rmin of the hollow
channel in the pore center under poor solvent conditions, χ ≤ 1/2, below which a jump-
wise closing of the pore, r → 0, takes place.

As under poor solvent conditions the brush is collapsed and the polymer volume
fraction in the unconfined brush is approximately constant, φ(χ, z) ≈ φH , where φH =
φH(χ) is defined by Equation (8), we can introduce the minimal pore radius accomodating
unconfined brush as

R0 =
2Nσ

φH
(A1)

which approximately coincides with Ropening(χ) calculated within SS-SCF scheme.
Assume that a jump-wise closing of the pore caused by a negative Laplace pressure

occurs when the pore radius is slightly larger than R0, i.e., at R = R0(1 + δ), where δ� 1,
which corresponds to the radius of the hollow channel r = R0[(1 + δ)2 − 1]1/2 ∼=

√
2δR0

and brush thickness H = R− r ≈ R0(1−
√

2δ).
In order to close the pore and thus to eliminate the brush–solvent interface, the

brush has to stretch beyond its equilibrium thickness, H(χ, R) < R up to H = R which
leads to a decrease in the average polymer volume fraction in the brush from φ ≈ φH to
φ ≈ φH(1− 2δ). The corresponding increase in the voume contribution to the free energy
of the brush (due to a decreased number of favourable under poor solvent conditions
monomer–monomer contacts) can be estimated as

∆Fvol/kBT = N
[(

f (φ)
φ

)
−
(

f (φ)
φ

)
φ=φH

]
(A2)

where f (φ)/φ is the free energy per monomer unit. By expanding Equation (A2) in powers
of φ− φH (that is, in powers of δ� 1) and keeping in mind that [∂( f (φ)/φ)/∂φ]φ=φH = 0,
we arrive at

∆Fvol/kBT ∼= Nu(χ)δ2 (A3)

where

u(χ) = 2
∂2

∂φ2

(
f (φ)

φ

)
φH

φ2
H , (A4)

we note that u(χ) ≥ 0 since the free energy of the brush exhibits a minimum at φ = φH .
The excess volume free energy of the overstretched brush has to be balanced by the

gain in the interfacial free energy due to the vanishing brush–solvent interface,

∆Fsur f /kBT = 2πrhγ ≈ 21/2γσ−1δ1/2 (A5)

where we used for the channel radius r ∼=
√

2δR0. We disregard the conformational
entropy penalty for additional stretching of the chains upon channel closing because the
entropic contribution to the free energy is negligible in the collapsed under poor solvent
conditions brush.
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By equating ∆Fvol = ∆Fsur f given by Equations (A3) and (A5), respectively, we
arrive at

δ =

( √
2γ

σNu(χ)

)2/3

(A6)

which allows us to calculate the minimal radius of the hollow channel at which jump-wise
closing of the pore occurs as

rmin = R0δ1/2 =
27/6γ1/3N2/3σ2/3

φHu1/3(χ)
(A7)

in accordance with Equation (19).
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