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Abstract

The parabolic approximation for self-consistent molecular poten-
tial is widely used for theoretical analysis of conformational and ther-
modynamic properties of polymer brushes formed by linear or branched
macromolecules. The architecture-dependent parameter of the poten-
tial (topological coefficient) can be calculated for arbitrary branched
polymer architecture from the condition of elastic stress balance in all
the branching points. However, the calculation routine for the topo-
logical coefficient does not allow unambigously identifying the range
of applibility and the accuracy of the parabolic approximation. Here
the limits of applicability of parabolic approximation are explored by
means of numerical self-consistent field method for brushes formed by
Y-shaped and comb-like polymers. We demonstrate that violation of
the potential parabolic shape can be evidenced by appearance of mul-
timodal distribution of the end monomer unit in the longest elastic
path of the macromolecule. The asymmetry of branching of Y-shaped
polymers does not disturb the parabolic shape of the potential as long
as the degree of polymerization of the root segment remains sufficiently
large. The same applies to comb-shape polymers with sufficiently long
main chain and large number of branching points. For short comb-
like polymers multiple modes in the distribution of the end monomer
unit of the main chain are observed and related to deviation from the
parabolic shape of the potential.
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1 Introduction

Polymer brushes are formed by linear or branched macromolecules attached
to an interface at high surface coverage assuring dominance of inter-molecular
interactions. Solvated or solvent-free (dry) polymer brushes are used in tech-
nology and medicine for modification of adhesive, tribological, and biointer-
active surface properties. Brush-like layers of biological macromolecules are
found inside living species, e.g., cilia in lung airways and cell membranes.

Theoretical understanding of structure and properties of polymer brushes
stem from pioneering works of Alexander1 and de Gennes,2 based on scaling
approach which capture the most essencial structure-property relationships
for brushes formed by linear chain polymers. More recent theoretical activity
in this field amply exploited the strong-stretching (or quasi-classical) self-
consistent field approximation suggested by Semenov3 and further elaborated
for solvated polymer brushes in refs4,5 (see also a comprehensive review6 on
theory of polymer brushes).

According to the Semenov’s approach3 each chain is assimilated to the
trajectory of a forward motion of a classical particle in the self-consistent
potential field. The particle velocity is mapped to the local chain stretching.
The non-uniform distribution of the local stretching along the contour of the
chain assures minimum of its free energy in the potential field. Irrespectively
of the chain free end position (starting point of any trajectory) the termi-
nal segment of the chain reaches the grafting surface. As long as the chains
exhibit linear (Gaussian) elasticity this condition of equal paths length (or
eaqul ”flight times”) can be satisfied only if the potential has a parabolic
shape. The condition of self-consistency requires that polymer density dis-
tribution dictated by the parabolic potential can be formed by an ensemble of
non-equally and non-uniformly stretched chains without dead zones depleted
of the chains free ends.

The equivalent arguments were further applied for brushes of tree-like
macromolecules (dendrons) by Pickett who suggested that self-consistent
molecular potential acting in brushes of tethered regular dendrons has also
a parabolic shape.7,8 These findings paved the way for generalization of the
analytical self-consistent field approach to brushes of other architectures.9–13

The parameters of the parabolic self-consistent potential can be calculated for
an arbitrary tree-like or even cyclic macromolecules. However, this does not
guarantee that a real self-consistent field potential has indeed the parabolic
shape.

Notably, if the brush is formed by linear chain macromolecules, the self-
consistent potential is parabolic only for stricktly monodisperse brushes.
Even weak polydispersity of the brush-forming chains distores the parabolic
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shape of the potential,14,15 which is not always the case in brushes formed
by branched macromolecules.11

The applicability of the parabolic potential approximation, i.e. the shape
of the true self-consistent potential for any specific branched architecture
of the brush-forming molecules can be verified by numerical self-consistent
methods, that are free of any assumption about the stretching mode and do
account for finite extensibility of the polymer chains.

The aim of the present paper is to explore the ranges of validity of the
parabolic potential approximation for mono-component brushes formed by
macromolecules with various branched architectures. In particular, we ex-
plore the simplest case of branched macromolecules, i.e. root-tethered Y-
shaped macromolecules and further extend the analysis for comb-shape poly-
mers tethered to planar surface. To establish applicability limits of this ap-
proach for various macromolecular architectures,we use the Scheutjens-Fleer
numerical self-consistent field (SF-SCF) method.16 Although quantitative
predictions of the lattice-based SF-SCF theory concerning chain elasticity
in the non-linear stretching regime do not exactly match results obtained
within continuum models (see, e.g., discussion in recent review article17),
this approach provides a robust tool for exploring both the shape of the
self-consistent potential and the end-point distribution in brushes formed by
branched macromolecules with varied architecture.

Notably, brushlike structures emerge as an outcome of self-assembly of
copolymers comprising comb-shape blocks into diverse bulk morphologies.
Such microphase segregated materials are being actively studied because of
possibility to controll their optical and mechanical properties by tuning atch-
tectural parameters of constituent branched polymer blocks.18–28

The paper is organized as follows. In section 2 we present the general
parabolic potential framework for arbitrary polymer architecture. In section
3 we employ numerical self-consistent field method to check range of appli-
cability of the parabolic approximation to brushes of asymmetric Y-shaped
polymers. In section 4 we extend our numerical analysis to brushes of comb-
like polymers. In section 5 formulate the conclusions. In the Appendix we
demonstrate how the parabolic potential can be derived explicitly for the
brush formed by Y-shaped macromolecules.
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Figure 1: Schematic of Y-shape macromolecule (a) and comb-like polymer
(b) tethered to the surface by the root segment of the main chain.
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2 SS-SCF formalism.

According to previous studies,7–13 the molecular potential U(z) in the brush
can be presented as

U(z)

kBT
=

3

2a2
κ2(H2 − z2) (1)

where kBT is the thermal energy, H is the brush thickness and κ is the
topological coefficient. The latter has to be specified for each particular
macromolecular architecture yet is remarkably independent of the grafting
density and solvent quality. Eq 1 presumes the Gaussian (linear) elasticity
of the tethered macromolecules on all length scales but can be generalized6

for accounting finite chain extensibility. Crowding of the side chains near the
branching points is not taken into account.

The values of κ for macromolecules with different architectures are cal-
culated11,13 by using the conditions of length conservation for the segments
between branching units, and by balancing the elastic forces in all branching
units of the macromolecule. For linear chains κlin = π/2N .3

The topological coefficient κ ensures conservation of number of monomer
units in all linear segments of the molecule at any position of the free end-
points. However, it does not ensure the absence of dead zones depleted of
the free ends. Curvature of the grafting surface is known to produce dead
zones in spherical and cylindrical convex brushes formed by both linear and
branched polymers. Branching of the brush-forming macromolecules makes
the free-end distribution more even, and may lead to virtual disappearance
of the curvature-induced dead zones.8,29 As demonstrated below, the dead
zones, which are always present in the convex brushes, may appear even
in planar brushes for some particular macromolecular architectures. In the
case of the dead zone emergence, the parabolic potential, eq 1 is not a true
self-consistent one.

The profile of free ends of the tethered macromolecules should be therefore
checked for every specific chain architecture to identify the parameter space
where the parabolic potential is valid. We use the numerical self-consistent
method of Scheutjens and Fleer (SF-SCF) to examine distributions of the
free ends.16

The molecular potential in eq 1 is related to the polymer density (volume
fraction) profile φ(z) in the brush by a general equation

a3
δf{φ(z)}
δφ(z)

= U(z) (2)

where f{φ(z)} is the free energy density of monomer-monomer interactions.
For non-ionic polymers, at φ(z)� 1, it can be presented as a virial expansion
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in powers of polymer volume fraction, that is

f{φ(z)} = υφ2(z) + wφ3(z) + ... (3)

where υa3 and wa6 are the second and the third virial coefficients of monomer-
monomer interactions, respectively. The former is related to the Flory-
Huggins polymer-solvent interaction parameter χ as υ = 1

2
− χ.

Under good (υ � wφ) or theta (| υ |� wφ) solvent conditions one can
keep only the respective dominant term in the virial expansion. This leads
to explicit expressions for the polymer density profile,

φ(z) ≈


(3κ2)/(4a2υ)(H2 − z2) υ � wφ
{(κ2/2a2w)(H2 − z2)}1/2 | υ |� wφ

−υ/(2w) υ ≤ 0, | υ |� wφ
(4)

Under good solvent conditions, according to eqs 2 and 3 there is a simple
relation between self-consistent potential and polymer density profile, that is

U(z)

kBT
= 2vφ(z)

and both have a parabolic shape. Through normalization of the polymer
density profile,

s

a3

∫ H

0

φ(z)dz = N (5)

one finds the brush thickness

H/a =


(2a2υN/sκ2)1/3 v � wφ

(2w)1/4(4Na2/πsκ)1/2 | v |� wφ
−2Nwa2/(sυ) υ ≤ 0, | υ |� wφ

(6)

It is instructive to introduce the topological ratio

η =
κ

κlinear
=

2κN

π
(7)

for brushes of branched polymers with the same number N of monomer units
as in a linear macromolecule ( klinear = π/(2N)). The topological ratio quan-
tifies a relative increase in the elastic free energy penalty for stretching of a
branched macromolecule as compared to that for a linear one in a brush. The
reduced thickness H/Hlinear of the brush formed by branched macromolecules
can be expressed as

H

Hlinear

=


η−1/3 v � wφ
η−1/2 | v |� wφ
η0 υ ≤ 0, | υ |� wφ

(8)
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Free energy per chain in the brush is then presented as12

F

Flinear

=

 η2/3 v � wφ
η | v |� wφ
η2 υ ≤ 0, | υ |� wφ

(9)

where the last line in eq 9 describes only the elastic contribution to the total
free energy per chain.

3 Brushes of Y-shaped polymers

The simplest case of a branched macromolecule is an Y-shaped polymer with
the stem composed of n1 monomer units and two branches with n2 and n3

(n3 ≥ n2) monomer units emanating from a single branching point. Such
polymer can be envisioned as a comblike polymer with one branching point
or, equivalently, as an asymmetric starlike macromolecule with q = 2 free
branches, Figure 1a.

As it is demonstrated in the Appendix, the self-consistency of the molec-
ular potential in eq 1 in this case is attained if the topological coefficient κ
is given by the minimal root of the equation

tan(κn1)[tan(κn2) + tan(κn3)] = 1 (10)

In a symmetric case, n1 = n2 = n3 = n, the solution of eq 10 yields κ =
n−1a tan(1/

√
2) to give η = 3a tan(1/

√
2), a known result for a brush of

end-tethered symmetric stars, η = (q+ 1)a tan(1/
√
q), with q = 2 . Notably,

the solution of eq 10 can be found numerically for arbitrary values of n1, n2

and n3. However, as we demonstrate below, it does not ensure the absence
of dead zones (regions depleted of the free chain ends) and thus applicability
of the parabolic molecular potential even in a planar geometry.

3.1 Numerical SF-SCF calculations for brushes of Y-
shaped polymers.

The Scheutjens-Fleer self-consistent field method (SF-SCF) was used earlier
to analyze the organization of brushes formed by star-like polymers.9 The
details about SF-SCF method can be found elsewhere.16 Here we apply good
(athermal) solvent conditions, χ = 0, under which the effect of repulsive
monomer-monomer interactions in the brush of branched macromolecules is
maximal. In the parabolic molecular potential U(z), the polymer density
profile ϕ(z) in a good solvent is expected to be parabolic as well provided
that ϕ(z)� 1 (eq 4, first line).
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Below, we focus on analyzing the shape of self-consistent potential (more
particularly, its deviation from the expected parabolic shape) and distribu-
tion of free ends of both branches and branching points in brushes formed
by Y-shaped polymers with systematically and independently varied DPs of
the stem, n1 and both free branches, n2 and n3.

As a reference system we use the brush formed by symmetric Y-shaped
polymers with n2 = n3 and N = n1 + n2 + n3 = 300 grafted to a planar
surface with the density θ = Na2/s = 5. By plotting in Figure 2, the
self-consistent potential is plotted as a function of z2, we show that upon
variation of the length of the stem n1 = N − (n2 + n3) in the range of
100 ≤ n1 ≤ 200, the profile of the self-consistent potential remains parabolic
while the distributions of the free ends of both branches are unimodal and
exhibit no dead zone proximal to the surface. For very short stem length,
n1 = 2, the branching points are located proximal to the grafting surface
and the brush of symmetric Y-shaped polymers is equivalent to conventional
monodisperse brush formed by linear chains with DP n2 = n3. The parabolic
approximation is exact for such brushes as well. In the intermediate case of
n1 = 40 both distributions of the branching and end points exhibit a plateau
shape which points to the onset of bimodal distributions of branching and
end points. Such bimodal distributions are typical for stratified dendron
brushes where the stems are strongly stretched in the non-linear elasticity
regime.31

Let us now consider the effect of the branch bidispesity (asymmetry of
branching) in brushes of Y-shaped macromolecules.

As demonstrated in the upper line in Figure 2, the asymmetry of branches
does not perturb the parabolic shape of the self-consistent potential and
does not lead to appearance of dead zones (depleted of the ends of longer
branches) as long as the DP of the stem is sufficiently large (i.e., n1 = 200).
The distributions of the ends of long and short branches are close to each
other and both retain unimodal shape while the distribution of the branching
points is virtually unaffected by assymetry of branches.

For Y-shaped polymer with a constant degree of polymerization, N , and
a long stem of n1 ≥ N/3 monomeric units, the self-consistent potential in
the body of the brush is almost perfectly parabolic even if the branches
become asymmetric, i.e., n2 ≤ n3, and the cumulative end-points distribution
splits into two modes corresponding to the shorter and to the longer branch,
respetively.

The effect of branching asymmetry on the brush structure gets more
pronounced upon a decrease in the DP n1 of the stem (and concomitant
increase in total DP of branches n2 + n3). At n1 = 100 distributions of
the ends of long and short branches only partially overlap though without
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Figure 2: Self-consistent potential (left). free ends distributions (middle) and
branching points distribution (right) in brushes of Y-shaped polymers, cal-
culated numerically by SF-SCF method. The DP of the Y-shaped polymers
N = 300 is kept constant, the DP of the stem n1 is varied from 200 to 2,
n2 ≤ n3 are the DPs of branches.
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pronounced dead zone. However, the apparent shoulder in the distribution of
the longer branch ends indicates approaching onset of their depletion in the
region proximal to the grafting surface and enrichment in the distal region
of the brush. The branching point distribution remains unimodal, but its
maximum is displaced towards grafting surface upon increasing branching
asymmetry.

These trends become and even more pronounced for Y-polymers with
shorter stem, n1 = 40. The distribution of the ends of longer branch demon-
strates pronounced depletion near the grafting surface, where the self-consistent
potential strongly deviates from the parabolic shape. Notably, as discussed
above, at n1 = 40, the stem approaches the non-linear elasticity regime and
the brush structure is affected by both asymmetry of branching and strati-
fication. Here the parabolic shape of the self-consistent potential is strongly
violated.

At vanishing stem length, the brush of asymmetric Y-shaped polymers
becomes equivalent to a bidisperse brush of linear chains14 with two different
DPs, n2 and n3, and virtually non-overlapping end-point distributions of
short and long chains: the ends of the longer chains are depleted from the
proximal to the grafting surface region where short chains and their end
points are located.

4 Brushes of comb-shaped polymers

4.1 Architecture of comb-shaped polymers

A comb-shaped polymer consists of P repeat units each comprising the main
chain segment (spacer) with mi monomer units (i = 1, 2, ...P ) and qi ≥ 1
side chains each with nij monomers (j = 1, 2, ...qi) linked to a single branch-
ing point on the main chain (backbone), see Figure 1b. If qi > 1, such
macromolecules are usually refered to as ”barbwire” bottlebrushes.

The first backbone segment attached to the surface (the stem) has m1

monomer units. The backbone has

M =
P∑
i=1

mi (11)

monomer units whereas total number of monomer units in one macromolecule
is

N =
P∑
i=1

mi +
P∑
i=1

qi∑
j=1

nij (12)
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4.2 Topolgical coefficient κ for comb-shaped polymers.

A scheme to calculate the topological coefficient κ and topological ratio η =
2kN/π for a brush composed of comb-shaped macromolecules is described in
details in ref30 Here, we present only basic equations.

The topological coefficient κ can be found for abitrary set of parameters
{mi;nij} and arbitrary P as a minimal root of the equation

det AP = 0 (13)

where matrix AP is defined as

AP =


−B1(κ) 1 0 0 0 0
D1(κ) −B2(κ) 1 0 0 0

0 D2(κ) −B3(κ) . . . 0 0
0 0 . . . . . . 1 0
0 0 0 DP−2(κ) −BP−1(κ) 1
0 0 0 0 −1 CP (κ)


(14)

and its elements are related to parameters {mi;nij} as

Bi(κ) = cos(κmi+1)+
sin(κmi+1)

tan(κmi)
−sin(κmi+1)

qi∑
j=1

tan(κnij), i = 1, 2, .., P −1

(15)

Di−1(κ) =
sin(κmi+1)

sin(κmi)
, i = 2, 3, ...P − 1 (16)

CP = cos(κmP )− sin(κmP )

qP∑
j=1

tan(κnPj) (17)

Importantly, as we shall demonstrate below, the existence of the solu-
tion of eq 13 does not guarantee the parabolic shape of the self-consistent
molecular potential.

The outlined above formalism provides a route to calculate the topological
coefficient κ for macromolecules with a variety of comb-like architectures.
In ref30 we focused below on a representative case of macromolecules with
equal lengths of side chains, nij = n, and equal branching activity of all the
branching points, qi = q. These macromolecules have

M = m1 + (P − 1)m (18)

monomer units in the backbone, and total number of monomer units

N = M + Pqn = (m1 −m) + P (m+ qn) (19)
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The condition m1 6= mi, i = 2, 3, ...P is most essential for deviation of the
molecular potential from the parabolic shape.

The topological coefficient κ can be related to the topological ratio η , as

κ =
πη

2N
=

πη

2M
·
{

(1 + qn/m)−1, m1 = m
[1 + qn/m+ (m1/m− 1)/P ]−1, m1 6= m

(20)

The asymptotic dependence for the topological ratio for such comb-shaped
macromolecule can be obtained by assuming that the elastic stress propagates
only through the main chain (backbone) of the macromolecule and reads

η ≈ κ

κlinear
=

2κN

π
= (1 + qn/m)1/2 ≈ (qn/m)1/2, qn/m� 1 (21)

which coincides with asymptotic numerical solution of eq 13, as discussed in
ref30

4.3 SF-SCF results for comb-shaped polymers

Below we present the results of SF-SCF calculations for comb-shaped macro-
moelcules with mi = nij = n, q1 = q2 = ... = qP−1 = q and qP = q + 1. For
this architecture the total degree of polymerization is given by

N = n(1 + P + qP )

and the topological ratio is

η ≈
(

1 +
qP

P + 1

)1/2
The macromolecules are tethered to an impermeable planar surface with

area s per chain. The grafting density θ = Na2/s ≥ 1 ensures strong overlap
of individual macromolecules and predominance of intermolecular interac-
tions over intramolecular ones (the brush regime). The Flory-Huggins pa-
rameter for both main and side chains is set as χ = 0, that corresponds to
good (athermal) solvent conditions. In contrast to Y-shaped polymer, comb-
shaped macromolecule with relatively small number of periods, P , demon-
strate surprising features .

In Figures 3a,b , we present the polymer density profiles ϕ(z) and ϕ(z2)
in planar brushes of comb-shaped macromolecules with mi = nij = n = 100,
q = 5, fixed surface coverage θ = Na2/s = (1 + P + Pq)a2n/s = 20, and
varying P from P = 1(starlike polymer) to P = 10 (values of P are indicated
near the curves). Variations in P at fixed surface coverage θ correspond to
variations in the grafting area per macromolecules as s/a2 = (1+P+qP )n/θ.
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Figure 3: Polymer density profiles ϕ as a function of z (a) and z2 (b) in planar
brush of comb-shaped macromolecules with m0 = m = n and total number
of monomer units N = n+ P (q + 1)n at fixed surface coverage Na2/s = 20.
Other parameters are m = n = 100, q = 5, number of periods P = 1, 2, 3, , 10
indicated at the curves. The Flory-Huggins parameter χ = 0.
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As expected, at values of ϕ(z) . 0.15, polymer density profiles ϕ(z2)
constitute almost perfect straight lines with conventional deviations at the
brush edge and near the grafting surface. At larger values of ϕ(z) > 0.15,
the profiles ϕ(z2) become slightly convex, which is can be explained by larger
polymer concentration and contributions of higher order monomer-monomer
interactions.

In Figure 4 , we present the distributions g(z) of the backbone end-
points for the same values of the parameters as in Figure 3. Surprisingly,
distributions g(z) demonstrate fine structure with numerous extrema in spite
of remarkably simple density profiles in Figure 3. Starlike polymer (P = 1)
with q+ 1 = 6 free branches exhibits a smooth distribution of the branching
monomer units (stem ends), pointing at a single population of moderately
stretched stars. Segregation of starlike polymers within the brush into two
populations with weakly and stongly stretched stems, respectively, is known
to occur at higher grafting densities in the nonlinear elasticity regime.9 In
contrast, distribution g(z) for comb-shaped macromolecules with P = 2
demonstrates two distinctive peaks indicating segregation of these macro-
molecules in two populations. Notably, this segregation occurs in the regime
of Gaussian elasticity. Further increase in P = 2, 3, 4 leads to an increase
in the number of peaks in g(z) pointing at the presence of P distinctive
populations of the tethered bottlebrushes. At P > 5 the fine structure of
g(z) smears and gradually disappears. No dead zones are found near the
grafting surface, however, the depletion minimum in g(z) in the vicinity of
z ' 50 (i.e., at approximately half counter length of the stem) deepens with
increasing P .

To examine the behavior of this depletion in more detail we increased
the length n of the side chains with the simulteneous decrease in spacer
length m, surface coverage θ, and increase in the number of periods P . In
Figures 5, 6, we present polymer density profiles ϕ(z) and backbone end-
point distributions g(z) for mi = 50, nij = 200, qi = 5 + δ(P − i), and
θ = 5. Comparison of Figures 5 and 4 indicates that fine structure of g(z)
and the trend in its evolution observed upon an increase in P are retained.
However, the relative contribution of the depleted zone in the total end-
point distribution, g(z), decreases upon an increase in P , suggesting that for
macromolecules with long backbone, m1 ' m, and P � 1, the depletion
effect could be neglected.

In Figure 6, the number of periods P increases up to P = 80. The
evolution of distributions g(z) upon an increase in P indicates further de-
crease of the depth of the minimum, its shift to smaller values of z, and final
disappearance leading to perfectly smooth g(z) at values of P & 60.

A decrease in length m1 of the stem (first spacer) leads to strong devia-
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Figure 4: Distribution of the free ends of the backbone g(z) in planar brush
of comb-shaped macromolecules with m0 = m = n and total number of
monomer units N = n + P (q + 1)n at fixed surface coverage Na2/s = 20.
Other parameters are m = n = 100, q = 5, number of periods P = 1, 2, 3, , 10
indicated at the curves. The Flory-Huggins parameter χ = 0.
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Figure 5: Polymer density profiles φ(z) and distribution of the free ends of
the backbone g(z) in planar brush of comb-shaped macromolecules with stem
length m0 = m and total number of monomer units N = m + P (qn + m)
at fixed surface coverage Na2/s = 20. Other parameters are m = 50, n =
200, q = 5, number of periods P = 1, 2, 3, , 10 indicated at the curves. The
Flory-Huggins parameter χ = 0.
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Figure 6: Polymer density profiles φ(z) and distribution of the free ends of
the backbone g(z) in planar brush of comb-shaped macromolecules with stem
length m0 = m and total number of monomer units N = m + P (qn + m)
at fixed surface coverage Na2/s = 20. Other parameters are m = 50, n =
200, q = 5, number of periods P = 10, , 80 indicated at the curves. The
Flory-Huggins parameter χ = 0.
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tions of polymer density profile ϕ(z) from the parabola. The shape of ϕ(z)
resembles the polymer density distribution in a two-component brush of lin-
ear polymers in which side chains emanating from the first branching point
constitute one component while the rest of the bottlebrush - the second com-
ponent. In accord with this picture, the ”dead zone” free of the backbone
ends (i.e. with g(z) = 0) develops near the surface.

In Figure 7 we present the polymer density profiles ϕ(z) and distribu-
tions of the backbone end-point, g(z), for macromolecules without a stem,
m1 = 0, that illustrate these features: complex (nonparabolic) shape of ϕ(z)
and dead zone with g(z) = 0 near the grafting surface .

However, the trends found in the case of m1 = m hold for m1 = 0 as well.
That is, an increase in P leads to gradual transformation of the polymer
density profile in the parabola, and disappearance of both depletion in the
vicinity of z ' 50, and dead zone near the surface.

5 Discussion and conclusions

In this study we have examined the applicability of the parabolic self-consistent
potential approximation for planar brushes formed by macromolecules with
branched architectures different from that of linear chains or regular den-
drons. In the latter two cases, the parabolic approximation is known to be
exact in the limit of linear conformational elasticity of the brush-forming
macromolecules. For branched macromolecules with less regular architec-
ture, the topological parameter of the parabolic potential can be calculated
within SS-SCF scheme as well though this route does not provide a proof
of self-consistency of the parabolic potential. We applied numerical SF-SCF
scheme to calculate true self-consistent potential which appears to deviate
from parabolic shape for such simple archittectures as asymmetric Y-shaped
and comb-shaped polymers with short stems. The deviation of the self-
consistent potential from the parabola is accompanied by peculiar patterns
in the free ends distribution functions.

Hence, the results of our study demonstrates that although topologi-
cal coefficient in the parabolic potential can be routinely calculated for any
branched polymer architecture, this calculation does not provide itself an un-
ambigious proof of applicability of the SS-SCF analytical scheme to brushes
formed by arbitrary tree-like macromolecules.
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Figure 7: Polymer density profiles φ(z) and distribution of the free ends of
the backbone g(z) in planar brush of comb-shaped macromolecules with stem
length m0 = 0 with total number of monomer units N = P (q + 1)n at fixed
surface coverage θ = Na2/s = 20. Other parameters are m = n = 100, q = 5,
number of periods P = 1, , 10 indicated at the curves. The Flory-Huggins
parameter χ = 0.
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Appendix: self-consistent potential for brushes

of Y-shaped macromolecules

Below we demonstrate how a self-consistent parabolic molecular potential

U(z) = U(0)− 3

2a2
κ2z2 (22)

(measured in kBT units) with specifically tailored coefficient κ ensures in-
dependence of the free energy penalty Ω for insertion of a probe Y-shaped
polymer (depicted in Figure 1).

In the strong stretching approximation (SSA), the chain conformations
in the self-consistent or external potential field are described via trajecto-
ries that specify the most probable position of each monomer unit at given
position of the chain end-point. We introduce the trajectory and stretching
functions of the stem, E0(z) = dz/dj, and corresponding branches, E1(z) and
E2(z) for the Y-shaped polymer with specified positions z = y1 and z = y2
of the ends of the shorter and the longer free branches, respectively.

If tethered to the surface Y-shaped polymers is subjected to external
potential Uex(z), then the free energy of such polymer (measured in kBT
units) can be presented as

Ω =

∫ z1

0

[
3

2a2
E0(z) +

Uex(z)

E0(z)

]
dz+∫ y1

z1

[
3

2a1
E1(z) +

Uex(z)

E1(z)

]
dz +

∫ y2

z1

[
3

2a2
E2(z) +

Uex(z)

E2(z)

]
dz (23)

where the first, the second and the third integrals correspond to contributions
of the stem, short and long free branches, respectively. The first term in
each integral accounts for the elastic (conformational) free energy, whereas
the second term is the energy of the corresponding chain segment (stem or
free branch) in the potential Uex(z).

The stretching functions E0, E1, E2 of the chain segments, and the po-
sition z1 of the branching point can be derived by minimization of the free
energy given by eq 23 with the account of conservation of the numbers of
monomer units in each segment of the Y-shaped macromolecule, that is,∫ z1

0

dz

E0(z)
= n0;

∫ y1

z1

dz

E1(z)
= n1;

∫ y2

z1

dz

E2(z)
= n2 (24)

which is reduced to the minimization of the functional

Φ =

∫ z1

0

[
3

2a2
E0(z) +

Uex(z) + λ0
E0(z)

]
dz+
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∫ y1

z1

[
3

2a2
E1(z) +

Uex(z) + λ2
E1(z)

]
dz+

∫ y2

z1

[
3

2a2
E2(z) +

Uex(z) + λ1
E2(z)

]
dz (25)

The indefinite Lagrange multiplies λ0, λ1, and λ2, insure the concervation
of the number of monomers in each chain segment. Variation of functional
Φ with respect to the unknown functions E0, E1, E2 leads to the set of
equations:

Ei(z) =

√
2a2

3

√
Uex(z) + λi, i = 0, 1, 2 (26)

Lagrange multiplies λ1, and λ2 are found from the condition of vanishing
tension at free ends of the branches,

λi = −Uex(yi), i = 1, 2 (27)

to give

E0(z) =

√
2a2

3

√
Uex(z) + λ0 (28)

E1(z) =

√
2a2

3

√
Uex(z)− Uex(y1) (29)

E2(z) =

√
2a2

3

√
Uex(z)− Uex(y2) (30)

With the account of eqs 28, 29, 30, functional Φ reduces to

Φ
a√
6

=

∫ z1

0

√
Uex(z) + λ0dz+

∫ y2

z1

√
Uex(z)− Uex(y2)dz+

∫ y1

z1

√
Uex(z)− Uex(y1)dz

(31)
The subsequent minimization of the functional Φ given by eq 31 with

respect to z1 leads to the equation,√
Uex(z1) + λ0 −

√
Uex(z1)− Uex(y2)−

√
Uex(z1)− Uex(y1) = 0 (32)

Notably, eq 32 is equivalent to the balance of elastic forces,

E0(z1) = E1(z1) + E2(z1)

in the branching point.
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The application of normalization conditions given by eq 24 provides three
equations, ∫ z1

0

dz√
Uex(z) + λ0

=

√
2a2

3
n0 (33)

∫ y1

z1

dz√
Uex(z)− Uex(y1)

=

√
2a2

3
n1 (34)

∫ y2

z1

dz√
Uex(z)− Uex(y2)

=

√
2a2

3
n2 (35)

By substituting eqs 28 - 30, and 33 - 35 in eq 23, one finds the penalty
for insertion of an Y-shaped polymer into the external field Uex(z)

Ω =

2

√
3

2a2

{∫ z1

0

√
Uex(z) + λ0dz +

∫ y1

z1

√
Uex(z)− Uex(y1)dz +

∫ y2

z1

√
Uex(z)− Uex(y2)dz

}
−λ0n0 + Uex(y1)n1 + Uex(y2)n2 (36)

We now show that if Uex(z) is given by eq 22 with the topological coeffi-
cient κ given by the minimal solution of equation

tan(κn0)[tan(κn2) + tan(κn1)] = 1, (37)

then the insertion free energy penalty Ω in eq 36 is independent of the position
y2 of the free end of the longest branch (or, equivalently, on positions y1 or z1
of the shorter branch or the branching point, respectively) of the Y-shaped
polymer.

Substituting U(z) = Uex(z) given by eq 22 into eqs 28 - 30 leads to

E0(z) =

√
2a2

3

√
U(0) + λ0 −

3

2a2
κ2z2 (38)

E1(z) =

√
2a2

3

√
U(z)− U(y1) = κ

√
y21 − z2 (39)

E2(z) =

√
2a2

3

√
U(z)− U(y2) = κ

√
y22 − z2 (40)

whereas substituting eq 22 into eqs 33 - 35 leads to√
3

2a2
z1κ√

U(0) + λ0
= sin (κn0) (41)
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z1
y1

= cos (κn1) (42)

z1
y2

= cos (κn2) (43)

where eq 41 can be presented as

λ0 + U(0) =
3

2a2
z21κ

2

sin2(κn0)
(44)

Eq 32 reduces to

√
U(0) + λ0 −

3

2a2
κ2z21 −

√
3

2a2
κ
√
y21 − z21 −

√
3

2a2
κ
√
y22 − z21− (45)

and, finally, with the account of eqs 42 - 44√
[U(0) + λ0]2a2

3κ2z21
− 1 =

√
y21
z21
− 1 +

√
y22
z21
− 1 (46)

Substitution of eqs 42 - 44 in eq 46 leads to eq 37.
The relative positions of the free end of the shorter branch and of the

branching point yield

y1 = y2
cos(κn2)

cos(κn1)
; z1 = y2 cos(κn2); (47)

while the stretching function E0(z) is given by

E0(z) = κ

√
z21

sin2(κn0)
− z2 (48)

By using eqs 38, 39,40 and eq 44 into eq 36 the insertion free energy penalty
of probe chain can be calculated as

Ω = U(0)(n1 + n2 + n3) = U(0)N (49)

Hence, Ω does not depend on position y2 of the free end of the inserted
Y-shaped polymer. If the molecular potential acting on each monomer unit
inside the brush is given by eq 22, then chain insertion free energy Ω given
by eq 49 coincides with the chain chemical potential.

Whether for any given set of {n1, n2, n3} the potential given by eq 22
is really self-consistent can be proven only by numerical calculations which
indicate absence of presence of the dead zone and provide the trueshape of
the self-consistent potential. As demonstrated above, in spite of existing
solution of eq 37, not for any set of {n1, n2, n3} the parabolic potential given
by eq eq 22 is a self-consistent one.
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