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1 Introduction

In the recent paper [10], a new stable enriched Galerkin element for the Stokes
problem was introduced and analyzed. In this element, the pressure is approximated
by piecewise constants and the velocity is approximated by continuous linear
polynomials (in the simplicial case) plus piecewise constants. As usual, in the case
of quadrilateral or hexahedral elements, to achieve continuity, the linear polynomials
are replaced by the inverse images of bilinear or trilinear elements according to the
dimension. As is shown in [10], this pair of spaces satisfies a uniform inf-sup condition
both in two and three dimensions on simplices and on quadrilaterals or plane faced
hexahedra. The a priori analysis shows that it has order one. This scheme can be
easily implemented and can be used to solve large problems. Of course, it involves
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jumps because of the piecewise velocity constants, but compared to first-order
standard discontinuous Galerkin methods, see for instance [29], it requires less
degrees of freedom (DOFs, see Figure 1) and its computer implementation is easier
because the jumps are constant functions. Compared to the first-order Crouzeix-
Raviart element, see [14], it has the advantage of applying to quadrilaterals and
hexahedra. And compared to the rotated quadrilateral or hexahedral element of
order one, see [28], it does not lose accuracy when the element is distorted.

The idea of adding piecewise constants to continuous finite element methods
has been used first by Becker et al. [5] and Sun and Liu [31] for solving elliptic
problems. It has been further studied by Lee et al. in [24] for parabolic problems
and applied in [25, 26, 27] to geomechanics problems.

The literature on a posteriori error analysis of the Stokes equations is very
extensive. Up to our knowledge, the first work is [32], where two reliable and
locally efficient a posteriori error estimators are proposed and analyzed for the mini-
element. One is an explicit residual-based estimator and the other is based on the
solution of suitable local Stokes problems. The latter is simplified in [4]. Ainsworth
and Oden [2] proposed an a posteriori error estimator based on the solution of local
Poisson residual problems. This error estimator provides a guaranteed upper bound
on the true error in an energy-like norm, and the analysis is valid for essentially
any finite element approximation, including h-p finite elements.

In [6] the Stokes problem is solved by adding a penalty parameter to the
saddle point variational formulation; the penalized problem is then solved by the
finite element method. The authors presented two types of error indicators: one
related to the penalty term and the other to the finite element discretization.
Anisotropic finite element discretizations were considered in [13]. That analysis
covers conforming and non-conforming discretizations and some of their results are
new for isotropic meshes.

Dörfler and Ainsworth [16] proposed fully computable explicit a posteriori error
estimates for the lowest order nonconforming Crouzeix-Raviart element provided
that a reasonable lower bound for the inf-sup constant is available. A computational
survey of a posteriori error estimators for that element can be found in [9]. Local a
posteriori error estimates for the gradient of the velocity field in the maximum error
for the standard Hood-Taylor discretization are analyzed in [15]. More recently,
a posteriori error estimators for classical low-order inf-sup stable finite element
discretizations of the Stokes problem with singular sources are presented in [3].

Regarding the a posteriori error analysis of mixed discontinuous Galerkin
methods, the first computable upper bounds on the error, measured in terms of a
mesh-dependent energy-norm, appear to be [21]. Anisotropic residual a posteriori
error estimators were proposed in [12].
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The aim of this paper is to develop the a posteriori error analysis of the method
introduced in [10]. Our error indicators are residual-based; we study both reliability
and efficiency of the indicators, and the results in both cases are optimal. Because
of the discontinuous constants, the analysis shares some aspects with those of
discontinuous Galerkin methods (DG), see for example [23], but it also differs in
the approximation of the divergence because it includes an additional stabilizing
term.

This article is organized as follows. In the remaining part of this Section we
introduce some notation to be used throughout the paper. In Section 2 we describe
the model problem. We present the associated enriched Galerkin scheme in Section
3. Section 4 is the core of the paper: we first derive error equalities for the velocity
and the pressure; then, we derive the corresponding error inequalities and establish
the reliability and local efficiency of the proposed a posteriori error indicator. In
Section 5 we report some numerical results. Finally, we discuss in the Appendix the
extension to the case of non planar hexahedra, an approximation of the boundary
data, and the choice of the penalty parameters.

1.1 Notation

Let Ω ⊂ R𝑑 (𝑑 = 2 , 3) be a bounded domain with boundary Γ. For any real number
𝑝 ≥ 1, 𝐿𝑝(Ω) is the Lebesgue space of measurable functions 𝑣 such that |𝑣|𝑝 is
integrable in Ω, normed by

‖𝑣‖𝐿𝑝(Ω) =
(︁∫︁
Ω

|𝑣|𝑝
)︁ 1

𝑝
.

The space 𝐿2(Ω) is a Hilbert space for the associated scalar product

(𝑢, 𝑣) =

∫︁
Ω

𝑢 𝑣.

We denote by 𝐿2
0(Ω) the subspace of functions of 𝐿2(Ω) with zero mean in Ω,

𝐿2
0(Ω) = {𝑣 ∈ 𝐿2(Ω) :

∫︁
Ω

𝑣 = 0},

with the same norm and scalar product.
We denote by 𝐻1(Ω) the Sobolev space of functions in 𝐿2(Ω) with first order

partial derivatives (in the distributional sense) in 𝐿2(Ω):

𝐻1(Ω) = {𝑣 ∈ 𝐿2(Ω) : ∇ 𝑣 ∈ [𝐿2(Ω)]𝑑},
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and by 𝐻1
0 (Ω) the subspace of functions in 𝐻1(Ω) that vanish on its boundary Γ.

The norm of 𝐻1(Ω) is

‖𝑣‖𝐻1(Ω) =
(︁
‖𝑣‖2𝐿2(Ω) + |𝑣|2𝐻1(Ω)

)︁ 1
2
,

where | · | denotes the seminorm,

|𝑣|𝐻1(Ω) = ‖∇ 𝑣‖[𝐿2(Ω)]𝑑 ,

which is a Hilbert norm for 𝐻1
0 (Ω) owing to the Poincaré inequality. More generally,

𝑊 1,𝑝(Ω) is the Sobolev space

𝑊 1,𝑝(Ω) = {𝑣 ∈ 𝐿𝑝(Ω) : ∇ 𝑣 ∈ [𝐿𝑝(Ω)]𝑑},

normed by

‖𝑣‖𝑊 1,𝑝(Ω) =
(︁
‖𝑣‖𝑝

𝐿𝑝(Ω)
+ |𝑣|𝑝

𝑊 1,𝑝(Ω)

)︁ 1
𝑝
,

where
|𝑣|𝑝

𝑊 1,𝑝(Ω)
= ‖∇𝑣‖𝑝

[𝐿𝑝(Ω)]𝑑
.

We denote by 𝐻1/2(Γ) the space of traces on Γ of functions in 𝐻1(Ω). When Γ is a
portion of the boundary with non zero measure, we denote by 𝐻

1/2
00 (Γ) the subspace

of functions of 𝐻1/2(Γ), that when extended by zero to the whole boundary 𝜕Ω

still belong to 𝐻1/2(𝜕Ω). We shall use here the intrinsic seminorm of 𝐻1/2(Γ),

|𝑣|𝐻1/2(Γ) :=
(︀ ∫︁
Γ

∫︁
Γ

|𝑣(x)− 𝑣(y)|2

|x− y|𝑑
𝑑x 𝑑y

)︀ 1
2 ,

and the norm of 𝐻1/2
00 (Γ),

‖𝑣‖
𝐻

1/2
00 (Γ)

=
(︁
‖𝑣‖2𝐿2(Γ) + |𝑣|2𝐻1/2(Γ) +

∫︁
Γ

|𝑣(x)|2 𝑑x

𝑑(x, 𝜕Γ)

)︁ 1
2
,

where 𝑑(x, 𝜕Γ) denotes the distance function to the boundary of Γ. See [1] for the
definitions of fractional Sobolev spaces 𝐻𝑠(Ω), for real numbers 𝑠 > 0. Finally,
given a Hilbert space 𝐻, we denote by 𝐻𝑑 and 𝐻𝑑×𝑑, respectively, the vector and
tensor versions of 𝐻. Given two second-order tensors, 𝜎 and 𝜏 , we denote its inner
product by

𝜎 : 𝜏 =

𝑑∑︁
𝑖,𝑗=1

𝜎𝑖𝑗𝜏𝑖𝑗 .
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2 Model problem

We consider a bounded domain Ω ⊂ R𝑑 (𝑑 = 2 , 3) with a Lipschitz-continuous
boundary Γ := 𝜕Ω, filled with a fluid. Recall that by definition a domain is open
and connected. We denote by n the unit outward normal to Γ. Let f ∈ [𝐿2(Ω)]𝑑

be a volume force, g𝐷 ∈ [𝐻1/2(Γ)]𝑑 be a prescribed velocity such that∫︁
Γ

g𝐷 · n = 0 , (1)

and let 𝜇 > 0 denote the fluid viscosity, assumed to be constant. We consider the
Stokes problem: find the fluid velocity u : Ω → R𝑑 and the fluid pressure 𝑝 : Ω → R
such that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−𝜇Δu + ∇𝑝 = f in Ω ,

∇ · u = 0 in Ω ,

u = g𝐷 on Γ ,∫︁
Ω

𝑝 = 0 ,

(2)

where the last condition is introduced to guarantee uniqueness of the pressure.
It is well-known that the following inf-sup condition holds; there is a positive

constant 𝛽 such that

inf
𝑞∈𝐿2

0(Ω)
sup

v∈[𝐻1
0 (Ω)]𝑑

−
∫︁
Ω

𝑞∇ · v

|v|[𝐻1(Ω)]𝑑‖𝑞‖𝐿2(Ω)
≥ 𝛽 , (3)

and problem (2) has a unique solution (u, 𝑝) in [𝐻1(Ω)]𝑑×𝐿2
0(Ω), cf. for instance [19].

In fact, it suffices that f belongs to [𝐻−1(Ω)]𝑑, the dual space of [𝐻1
0 (Ω)]

𝑑, but
we restrict the discussion to forces in [𝐿2(Ω)]𝑑 because below f will be applied to
functions that do not have 𝐻1 regularity.

3 Discretization

From now on, we restrict the discussion to the case when Ω is a bounded connected
polygon in R2 or Lipschitz polyhedron in R3. This restriction substantially sim-
plifies the analysis and implementation owing that it avoids curved faces on the
boundary and their possible approximation. But in the case of hexahedra, it does
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not necessarily rule out interior curved faces, even though all their edges are straight
lines. For the sake or simplicity, we shall only deal with planar faces hexahedra and
postpone to the appendix a brief study of an extension to curved-faced hexahedra.

3.1 Mesh and discrete spaces

Let 𝒯ℎ be a partition of Ω made up of triangles or quadrilaterals (𝑑 = 2) and
tetrahedra or hexahedra (𝑑 = 3). Given an element 𝐸 ∈ 𝒯ℎ, we denote by ℎ𝐸 the
diameter of 𝐸, and by ℎ = max𝐸∈𝒯ℎ

ℎ𝐸 . We assume that 𝒯ℎ is a regular family of
meshes in the following sense:
1. In the case of simplices, 𝒯ℎ is regular as defined by Ciarlet [11].
2. In the case of quadrilaterals, when dividing each quadrilateral into two subtri-

angles by any diagonal, the resulting triangular mesh is regular in the sense of
Ciarlet, see for example [19].

3. In the case of hexahedra, the mapping from the reference element 𝐸̂ (unit
square or cube according to the dimension) to any physical element 𝐸 is
invertible at all points of 𝐸̂ and its Jacobian determinant is bounded below by
𝑐 ℎ3 with a constant 𝑐 independent of ℎ and 𝐸.

This definition implies in particular that all elements are convex. But whereas for
quadrilaterals, the notion of regularity reduces to a simple geometrical property,
this is not yet known for hexahedra, even in the simpler case of planar hexahedra,
see [22].

We denote by ℰℎ the set of all edges (𝑑 = 2) or faces (𝑑 = 3) of 𝒯ℎ; ℰ0
ℎ denotes

the set of all interior edges (resp., faces) and ℰ𝜕
ℎ is the set of all boundary edges

(resp., faces), so that
ℰℎ = ℰ0

ℎ ∪ ℰ𝜕
ℎ .

To simplify, it is convenient to use the following notation:∫︁
𝒯ℎ

:=
∑︁

𝐸∈𝒯ℎ

∫︁
𝐸

,

∫︁
ℰℎ

:=
∑︁
𝑒∈ℰℎ

∫︁
𝑒

,

∫︁
ℰ0
ℎ

:=
∑︁
𝑒∈ℰ0

ℎ

∫︁
𝑒

,

∫︁
ℰ𝜕
ℎ

:=
∑︁
𝑒∈ℰ𝜕

ℎ

∫︁
𝑒

.

Given an edge or face 𝑒 ∈ ℰℎ, ℎ𝑒 denotes its (𝑑− 1)-dimensional measure.
Now, let 𝑘 ≥ 1 be an integer. For a simplex 𝐸 ∈ 𝒯ℎ, we let 𝒫𝑘(𝐸) denote the

space of polynomials of degree at most 𝑘 in 𝐸. In the case of 𝐸, quadrilateral
(𝑑 = 2) or hexahedron (𝑑 = 3), 𝒫𝑘(𝐸) is defined as the inverse image of 𝑄𝑘(𝐸̂),
where 𝐸̂ is the reference element and 𝑄𝑘(𝐸̂) is the space of polynomials of degree
𝑘 in each variable,

𝒫𝑘(𝐸) = {𝑞 = 𝑞 ∘ ℱ−1 : 𝑞 ∈ 𝑄𝑘(𝐸̂)}, (4)
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where ℱ is a one-to-one bilinear (𝑑 = 2) or trilinear (𝑑 = 3) mapping of 𝐸̂ onto 𝐸;
its existence is guaranteed by the regularity of the mesh. Note that, when 𝐸 is a
simplex, the space defined by (4) coincides with that of polynomials of degree at
most 𝑘 in 𝐸. Note also that, unless 𝐸 is a parallelogram (𝑑 = 2) or parallelepiped
(𝑑 = 3), the functions defined by (4) are in general not polynomials. Finally, when
𝑘 = 0, 𝒫0(𝐸) is the space of constant functions in all elements whatever their
shape.

Let 𝑀𝑘(𝒯ℎ) be the space of piecewise discontinuous functions 𝒫𝑘(𝐸) in each
𝐸:

𝑀𝑘(𝒯ℎ) := {𝑣 ∈ 𝐿2(Ω) : 𝑣|𝐸 ∈ 𝒫𝑘(𝐸) , ∀𝐸 ∈ 𝒯ℎ} . (5)

We then define the space of globally continuous functions that are 𝒫𝑘(𝐸) in each
𝐸:

𝑀𝑘
0 (𝒯ℎ) := 𝑀𝑘(𝒯ℎ) ∩𝐻1(Ω) .

The enriched Galerkin finite element space is the space of discontinuous functions:

𝑉 𝐸𝐺
ℎ,𝑘 := 𝑀𝑘

0 (𝒯ℎ) + 𝑀0(𝒯ℎ) , 𝑘 ≥ 1 . (6)

Now, we associate a unit normal vector n𝑒 to each edge or face 𝑒 ∈ ℰℎ, with
arbitrary but fixed orientation, and with the convention that n𝑒 = n is the unit
outward normal to the boundary Γ when 𝑒 ∈ ℰ𝜕

ℎ . Let 𝐸− and 𝐸+ be the two
elements sharing an edge or face 𝑒 ∈ ℰ0

ℎ, such that n𝑒 points from 𝐸− to 𝐸+.
Given smooth functions 𝑞 : 𝒯ℎ → R, for instance 𝑞 ∈ 𝑊 1,1(𝒯ℎ), and v : 𝒯ℎ → R𝑑,
v ∈ [𝑊 1,1(𝒯ℎ)]𝑑, we define their average, {·}|𝑒 , and jump, [·]|𝑒 , on 𝑒 as follows:

{𝑞}|𝑒 =
1

2
((𝑞|𝐸−)|𝑒 + (𝑞|𝐸+)|𝑒) , [𝑞]|𝑒 = ((𝑞|𝐸−)|𝑒 − (𝑞|𝐸+)|𝑒) ,

{v}|𝑒 =
1

2
((v|𝐸−)|𝑒 + (v|𝐸+)|𝑒) , [v]|𝑒 = ((v|𝐸−)|𝑒 − (v|𝐸+)|𝑒) .

Here 𝑊 1,1(𝒯ℎ) denotes the space of functions 𝑣 in 𝐿1(Ω) such that for each 𝐸 of
𝒯ℎ, 𝑣|𝐸 belongs to 𝑊 1,1(𝐸). On boundary edges or faces 𝑒 ∈ ℰ𝜕

ℎ , the average and
jump of any function 𝑞 or v are simply replaced by the trace of this function on 𝑒.
With this notation, we choose for 𝑉 𝐸𝐺

ℎ,𝑘 the usual DG norm,

‖vℎ‖2𝐸𝐺 :=

∫︁
𝒯ℎ

∇vℎ : ∇vℎ +

∫︁
ℰℎ

𝜎𝑒
ℎ𝑒

[vℎ] · [vℎ] , (7)

and the seminorm,

|vℎ|ℎ =
(︁∫︁
𝒯ℎ

∇vℎ : ∇vℎ

)︁ 1
2
.
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Here 𝜎𝑒 are nonnegative penalty parameters defined on each edge (resp., face) to
be chosen further on (see subsection 6.2). If the usual DG norm defined in (7)
is restricted to a macroelement 𝑆, we will indicate it as ‖ · ‖𝐸𝐺,𝑆 . The discrete
velocity will be found in [𝑉 𝐸𝐺

ℎ,𝑘 ]𝑑 for 𝑘 = 1, and the discrete pressure in 𝑀0(𝒯ℎ).
As expected, the norm of 𝑀0(𝒯ℎ) is the 𝐿2-norm.

For 𝑘 = 1, the following Figure 1 shows the number of degrees of freedom
(DOFs) of the scheme below using EG compared with standard DG. The numbers
−3 and −4 in EG are due to the mean value constraint in the pressure and the
fact that each component of the EG velocity has an extra constant function. To
compute the asymptotic number of DOFs in three dimensions, we use the fact that
in a classical tetrahedral mesh the number of tetrahedra is approximately six times
the number of vertices. In a classical two dimensional triangular mesh, this factor
is two.

Fig. 1: Comparison of DOFs for EG and classical DG for the Stokes problem with k=1. 𝒩𝑡

and 𝒩𝑣 are, respectively, the number of elements and the number of vertices in a simplicial
triangulation.

DG EG
2d 7𝒩𝑡 − 1 2𝒩𝑣 + 3𝒩𝑡 − 3

3d 13𝒩𝑡 − 1 3𝒩𝑣 + 4𝒩𝑡 − 4

(a) Exact number of DOFs.

DG EG
2d 14𝒩𝑣 8𝒩𝑣

3d 78𝒩𝑣 27𝒩𝑣

(b) Asymptotic num-
ber of DOFs.

3.2 The enriched Galerkin scheme

We consider the enriched Galerkin method proposed in [10] for the Stokes problem
with the choice 𝑘 = 1: find uℎ ∈ [𝑉 𝐸𝐺

ℎ,𝑘 ]𝑑 and 𝑝ℎ ∈ 𝑀0(𝒯ℎ) ∩ 𝐿2
0(Ω) such that⎧⎨⎩ 𝜇𝑎𝜖(uℎ,vℎ) + 𝑏(vℎ, 𝑝ℎ) = 𝐿(vℎ) , ∀vℎ ∈ [𝑉 𝐸𝐺

ℎ,𝑘 ]𝑑 ,

𝑏(uℎ, 𝑞ℎ) = 𝐺(𝑞ℎ) , ∀ 𝑞ℎ ∈ 𝑀0(𝒯ℎ) ∩ 𝐿2
0(Ω) ,

(8)
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where for any uℎ, vℎ ∈ [𝑉 𝐸𝐺
ℎ,𝑘 ]𝑑 and 𝑞ℎ ∈ 𝑀0(𝒯ℎ) ∩ 𝐿2

0(Ω),

𝑎𝜖(uℎ,vℎ) :=

∫︁
𝒯ℎ

∇uℎ : ∇vℎ −
∫︁
ℰℎ

{∇uℎ n𝑒} · [vℎ]

+ 𝜖

∫︁
ℰℎ

[uℎ] · {∇vℎ n𝑒} +

∫︁
ℰℎ

𝜎𝑒
ℎ𝑒

[uℎ] · [vℎ] ,
(9)

𝑏(vℎ, 𝑞ℎ) := −
∫︁
𝒯ℎ

𝑞ℎ ∇ · vℎ +

∫︁
ℰℎ

{𝑞ℎ} [vℎ] · n𝑒 + 𝛼

∫︁
ℰ0
ℎ

[vℎ] · n𝑒 [𝑞ℎ] , (10)

𝐿(vℎ) :=

∫︁
𝒯ℎ

f · vℎ + 𝜖𝜇

∫︁
ℰ𝜕
ℎ

(∇vℎ n) · g𝐷 + 𝜇

∫︁
ℰ𝜕
ℎ

𝜎𝑒
ℎ𝑒

vℎ · g𝐷 , (11)

and
𝐺(𝑞ℎ) :=

∫︁
ℰ𝜕
ℎ

𝑞ℎ g𝐷 · n . (12)

The form 𝑎𝜖(·, ·) is the usual DG approximation of (∇u,∇v). Depending on
the choice of 𝜖, we have different algorithms. For example, for 𝜖 = −1, we recover
the Symmetric Interior Penalty Galerkin (𝑆𝐼𝑃𝐺) method; for 𝜖 = 1, we recover
the Non-symmetric Interior Penalty Galerkin (𝑁𝐼𝑃𝐺) method, and for 𝜖 = 0,
we have the Incomplete Interior Penalty Galerkin (𝐼𝐼𝑃𝐺) method. The penalty
parameters 𝜎𝑒 are chosen large enough (usually larger than one), independent of
ℎ, to guarantee that the bilinear form 𝑎𝜖(·, ·) is elliptic. The form 𝑏(·, ·) is not the
usual DG approximation of (𝑞,∇ · v). Its last term is a consistent term introduced
to satisfy a discrete inf-sup condition, at least when 𝑘 = 1. It is consistent for all
values of the parameter 𝛼, but it is used here with 𝛼 = ±1

2 , because for these
values the following discrete inf-sup condition is satisfied when 𝑘 = 1:

inf
𝑞ℎ∈𝑀0(𝒯ℎ)

sup
vℎ∈[𝑉 𝐸𝐺

ℎ,𝑘,0]
𝑑

𝑏(vℎ, 𝑞ℎ)

‖vℎ‖𝐸𝐺‖𝑞ℎ‖𝐿2(Ω)
≥ 𝛽⋆, (13)

for a constant 𝛽⋆ > 0, independent of ℎ, where

𝑉 𝐸𝐺
ℎ,𝑘,0 = 𝑀𝑘(𝒯ℎ) ∩𝐻1

0 (Ω) +𝑀0(𝒯ℎ).

It is shown in [10], in the case of triangles, quadrilaterals, tetrahedra and planar
hexahedra, that (13) holds when no element has more than three when 𝑑 = 3 (or
two when 𝑑 = 2) interior normals and no pair of interior normals is located on
opposite faces of quadrilaterals or hexahedra (see Figure 3.2), whence problem
(8) has exactly one solution. This mild restriction concerns only interior faces
because the normal to Γ always points outside the domain. It was found to be
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directly satisfied in all our numerical experiments on simplicial meshes, owing to a
suitable numbering of the elements. It can also be easily checked on quadrilateral
or hexahedral meshes with cartesian numbering.

(c) (d)

(e) (f)

Fig. 2: Cases (a) and (c) illustrate two possible choices of the normals. Cases (b) and (d)
do not meet the assumptions.

In the next section we develop an a posteriori error analysis for the SIPG
method. The analysis for the NIPG and IIPG methods is somewhat simpler but
follows the same steps.

In what follows we assume that the boundary data g𝐷 is the trace of a
function of [𝑀𝑘

0 (𝒯ℎ)]𝑑 satisfying (1). This simplifying assumption is discussed in
subsection 6.1.
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4 A posteriori error analysis for the symmetric
interior penalty enriched Galerkin method

Motivated by the discrete inf-sup condition, the analysis below addresses the case
𝑘 = 1 and 𝛼 = ±1

2 , but it easily extends to arbitrary 𝑘 and 𝛼 except when the
inf-sup condition is needed. In this section, we shall first derive error equalities
adapted to a posteriori estimates, then deduce from these the expression of error
indicators and establish reliability bounds. The local efficiency of the error indicators
is derived at the end.

4.1 Error equalities

In this section, we choose 𝜖 = −1. We further assume that the exact solution is
somewhat smoother: (u, 𝑝) ∈ [𝐻1+𝑠(Ω)]𝑑 × 𝐻𝑠(Ω), for some 𝑠 > 0, so that the
terms in (14) and (15) below are all meaningful. This additional regularity for u is
compatible with the assumption that g𝐷 is the trace of a function of [𝑀𝑘

0 (𝒯ℎ)]𝑑,
provided 0 < 𝑠 < 1

2 ; this is not a constraint since 𝑠 > 0 is supposed to be small.
The following properties hold, namely, Galerkin orthogonality:

𝜇𝑎−1(u− uℎ,vℎ) + 𝑏(vℎ, 𝑝− 𝑝ℎ) = 0 ∀vℎ ∈ [𝑉 𝐸𝐺
ℎ,𝑘 ]𝑑 , (14)

and consistency:

𝜇𝑎−1(u,v − vℎ) + 𝑏(v − vℎ, 𝑝) =

∫︁
𝒯ℎ

f · (v − vℎ)

+𝜇

∫︁
ℰ𝜕
ℎ

𝜎𝑒
ℎ𝑒

g𝐷 · (v − vℎ)− 𝜇

∫︁
ℰ𝜕
ℎ

g𝐷 · (∇(v − vℎ)n) ∀vℎ ∈ [𝑉 𝐸𝐺
ℎ,𝑘 ]𝑑 ,

(15)

for all v sufficiently smooth so that all terms above are well defined.
With the intention of deriving the velocity error equation, we first use the

Galerkin orthogonality property (14),

𝜇𝑎−1(u− uℎ,v) + 𝑏(v, 𝑝− 𝑝ℎ) = 𝜇𝑎−1(u− uℎ,v − vℎ) + 𝑏(v − vℎ, 𝑝− 𝑝ℎ) .
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Then, by using the consistency property (15),

𝜇𝑎−1(u− uℎ,v) + 𝑏(v, 𝑝− 𝑝ℎ) =

= 𝜇𝑎−1(u,v − vℎ) + 𝑏(v − vℎ, 𝑝)− 𝜇𝑎−1(uℎ,v − vℎ)− 𝑏(v − vℎ, 𝑝ℎ)

=

∫︁
𝒯ℎ

f · (v − vℎ) + 𝜇

∫︁
ℰ𝜕
ℎ

𝜎𝑒
ℎ𝑒

g𝐷 · (v − vℎ)− 𝜇

∫︁
ℰ𝜕
ℎ

g𝐷 · (∇(v − vℎ)n)

−𝜇𝑎−1(uℎ,v − vℎ)− 𝑏(v − vℎ, 𝑝ℎ).

Therefore, by inserting any piecewise polynomial function fℎ,

𝜇𝑎−1(u− uℎ,v) + 𝑏(v, 𝑝− 𝑝ℎ) =

=

∫︁
𝒯ℎ

(f − fℎ) · (v − vℎ) +

∫︁
𝒯ℎ

fℎ · (v − vℎ)

+𝜇

∫︁
ℰ𝜕
ℎ

𝜎𝑒
ℎ𝑒

g𝐷 · (v − vℎ)− 𝜇

∫︁
ℰ𝜕
ℎ

g𝐷 · (∇(v − vℎ)n)

−𝜇𝑎−1(uℎ,v − vℎ)− 𝑏(v − vℎ, 𝑝ℎ) .

Using Green’s formula in the volume integrals of 𝑎−1(uℎ,v−vℎ) and 𝑏(v−vℎ, 𝑝ℎ),
we arrive at the following error equation for all v sufficiently smooth and all
vℎ ∈ [𝑉 𝐸𝐺

ℎ,𝑘 ]𝑑:

𝜇𝑎−1(u− uℎ,v) + 𝑏(v, 𝑝− 𝑝ℎ) =

=

∫︁
𝒯ℎ

(f − fℎ) · (v − vℎ) +

∫︁
𝒯ℎ

(fℎ + 𝜇Δuℎ −∇𝑝ℎ) · (v − vℎ)

+

∫︁
ℰ0
ℎ

[(−𝜇∇uℎ + 𝑝ℎI)n𝑒] · {v − vℎ}+ 𝜇

∫︁
ℰ0
ℎ

{∇(v − vℎ)n𝑒} · [uℎ]

−𝜇

∫︁
ℰ0
ℎ

𝜎𝑒
ℎ𝑒

[uℎ] · [v − vℎ]− 𝛼

∫︁
ℰ0
ℎ

[(v − vℎ) · n𝑒][𝑝ℎ]

+𝜇

∫︁
ℰ𝜕
ℎ

𝜎𝑒
ℎ𝑒

(g𝐷 − uℎ) · (v − vℎ)− 𝜇

∫︁
ℰ𝜕
ℎ

(g𝐷 − uℎ) · (∇(v − vℎ)n) .

(16)
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Now, by testing (16) with v = u − uℎ, and grouping interior and boundary
terms, we obtain,

𝜇𝑎−1(u− uℎ,u− uℎ) + 𝑏(u− uℎ, 𝑝− 𝑝ℎ) =

=

∫︁
𝒯ℎ

(f − fℎ) · (u− uℎ − vℎ) +

∫︁
𝒯ℎ

(fℎ + 𝜇Δuℎ −∇𝑝ℎ) · (u− uℎ − vℎ)

+

∫︁
ℰ0
ℎ

[(−𝜇∇uℎ + 𝑝ℎI)n𝑒] · {u− uℎ − vℎ}

+𝜇

∫︁
ℰℎ

{∇(u− uℎ − vℎ)n𝑒} · [uℎ − u]

−𝜇

∫︁
ℰℎ

𝜎𝑒
ℎ𝑒

[uℎ − u] · [u− uℎ − vℎ]− 𝛼

∫︁
ℰ0
ℎ

[(u− uℎ − vℎ) · n𝑒][𝑝ℎ] .

By expanding the left-hand side, passing all terms other than the 𝐸𝐺 norm (7) to
the right-hand side, and cancelling some terms, this becomes

𝜇 ‖u− uℎ‖2𝐸𝐺 =

∫︁
𝒯ℎ

(f − fℎ) · (u− uℎ − vℎ)

+

∫︁
𝒯ℎ

(fℎ + 𝜇Δuℎ −∇𝑝ℎ) · (u− uℎ − vℎ)−
∫︁
𝒯ℎ

(∇ · uℎ)(𝑝− 𝑝ℎ)

+

∫︁
ℰ0
ℎ

[(−𝜇∇uℎ + 𝑝ℎI)n𝑒] · {u− uℎ − vℎ}

−𝜇

∫︁
ℰℎ

{∇(u− uℎ + vℎ)n𝑒} · [uℎ − u] + 𝛼

∫︁
ℰ0
ℎ

[vℎ · n𝑒][𝑝ℎ]

−𝜇

∫︁
ℰℎ

𝜎𝑒
ℎ𝑒

[uℎ − u] · [u− uℎ − vℎ] +

∫︁
ℰℎ

{𝑝− 𝑝ℎ}[(uℎ − u) · n𝑒] .

(17)

Now, we observe that the terms,

−𝜇

∫︁
ℰℎ

{∇(u− uℎ)n𝑒} · [uℎ − u] and
∫︁
ℰℎ

{𝑝− 𝑝ℎ}[(uℎ − u) · n𝑒] ,

cannot be controlled by the left-hand side of (17), a situation common to DG
schemes. In order to control these terms, inspired by the strategy in [23], we
introduce a function w ∈ [𝑀𝑘

0 (𝒯ℎ)]𝑑 such that w = g𝐷 on Γ, that does not jump
across elements; here we use the assumption that g𝐷 is the trace of a function of
[𝑀𝑘

0 (𝒯ℎ)]𝑑. Then, we take vℎ = uℎ −w in (14):

𝜇𝑎−1(u− uℎ,uℎ −w) + 𝑏(uℎ −w, 𝑝− 𝑝ℎ) = 0 . (18)
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Equation (18) reads:

𝜇

∫︁
𝒯ℎ

∇(u− uℎ) : ∇(uℎ −w) −
∫︁
𝒯ℎ

(𝑝− 𝑝ℎ)∇ · (uℎ −w)

+𝜇

∫︁
ℰℎ

𝜎𝑒
ℎ𝑒

[u− uℎ] · [uℎ −w]

−𝜇

∫︁
ℰℎ

{∇(u− uℎ)n𝑒} · [uℎ −w]− 𝜇

∫︁
ℰℎ

[u− uℎ] · {∇(uℎ −w)n𝑒}

+

∫︁
ℰℎ

{𝑝− 𝑝ℎ} [uℎ −w] · n𝑒 + 𝛼

∫︁
ℰ0
ℎ

[uℎ −w] · n𝑒 [𝑝− 𝑝ℎ] = 0 .

Therefore, taking into account that w does not jump and that w = g𝐷 on Γ,

−𝜇

∫︁
ℰℎ

{∇(u− uℎ)n𝑒} · [uℎ −w] +

∫︁
ℰℎ

{𝑝− 𝑝ℎ} [uℎ −w] · n𝑒 =

= −𝜇

∫︁
𝒯ℎ

∇(u− uℎ) : ∇(uℎ −w) +

∫︁
𝒯ℎ

(𝑝− 𝑝ℎ)∇ · (uℎ −w)

+𝜇

∫︁
ℰℎ

𝜎𝑒
ℎ𝑒

|[uℎ − u]|2 + 𝜇

∫︁
ℰℎ

[u− uℎ] · {∇(uℎ −w)n𝑒}

−𝛼

∫︁
ℰ0
ℎ

[uℎ] · n𝑒 [𝑝− 𝑝ℎ] .

(19)

Substituting (19) into (17) and taking vℎ ∈ [𝑉 𝐸𝐺
ℎ,𝑘 ]𝑑 defined by

(vℎ)|𝐸 =
1

|𝐸|

∫︁
𝐸

(u− uℎ) ∀𝐸 ∈ 𝒯ℎ , (20)
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(so that ∇(vℎ)|𝐸 = 0 on every 𝐸 ∈ 𝒯ℎ), we obtain the velocity error equality:

𝜇 ‖u− uℎ‖2𝐸𝐺 =

∫︁
𝒯ℎ

(f − fℎ) · (u− uℎ − vℎ)

+

∫︁
𝒯ℎ

(fℎ + 𝜇Δuℎ −∇𝑝ℎ) · (u− uℎ − vℎ)−
∫︁
𝒯ℎ

(∇ · uℎ)(𝑝− 𝑝ℎ)

−𝜇

∫︁
𝒯ℎ

∇(u− uℎ) : ∇(uℎ −w) +

∫︁
𝒯ℎ

(𝑝− 𝑝ℎ)∇ · (uℎ −w)

+

∫︁
ℰ0
ℎ

[(−𝜇∇uℎ + 𝑝ℎI)n𝑒] · {u− uℎ − vℎ}

+𝜇

∫︁
ℰℎ

𝜎𝑒
ℎ𝑒

[uℎ − u] · [uℎ − u+ vℎ]

+𝛼

∫︁
ℰ0
ℎ

[(uℎ − u+ vℎ) · n𝑒][𝑝ℎ] + 𝜇

∫︁
ℰℎ

𝜎𝑒
ℎ𝑒

|[uℎ − u]|2

+𝜇

∫︁
ℰℎ

[u− uℎ] · {∇(uℎ −w)n𝑒} .

(21)

Remark 1. In order to choose w, we first recall that uℎ = ucont
ℎ + udisc

ℎ , where
ucont
ℎ and udisc

ℎ denote, respectively, the continuous and discontinuous parts of
uℎ. We take for w an approximation 𝑆ℎ(uℎ) of the Scott–Zhang type (see [30]):
𝑆ℎ(uℎ) ∈ [𝑀1

0 (𝒯ℎ)]𝑑 (recall that here 𝑘 = 1). Let 𝒩 denote the set of vertices of
𝒯ℎ, 𝒩 0 the set of its interior vertices and 𝒩 𝜕 that of its boundary vertices. For
every a of 𝒩 𝜕 , we set

𝑆ℎ(uℎ)(a) = g𝐷(a);

for every a of 𝒩 0, we choose an element 𝐸a ∈ 𝒯ℎ with vertex a and set

𝑆ℎ(uℎ)(a) = ucont
ℎ (a) + udisc

ℎ |𝐸a
;

then for every x ∈ Ω, we define

𝑆ℎ(uℎ)(x) =
∑︁
a∈𝒩

(︀
𝑆ℎ(uℎ)(a)

)︀
𝜑a(x),

where, in the case of simplices 𝜑a is the standard piecewise linear basis function, i.e.,
𝜑a(b) = 𝛿a,b for all a,b in 𝒩 . In the case of quadrilaterals (𝑑 = 2) or hexahedra
(𝑑 = 3), the basis function 𝜑a is defined likewise through (4).
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Remark 2. Note that, if u belongs to [𝐻1+𝑠(Ω)]𝑑 and 𝑝 belongs to 𝐻𝑠(Ω), we
can deduce from (16) that for all v ∈ [𝐻1

0 (Ω)]
𝑑 and vℎ ∈ [𝑀𝑘(𝒯ℎ) ∩𝐻1

0 (Ω)]
𝑑,

𝑏(v, 𝑝− 𝑝ℎ) = −𝜇

∫︁
𝒯ℎ

∇(u− uℎ) : ∇v +

∫︁
𝒯ℎ

(f − fℎ) · (v − vℎ)

+

∫︁
𝒯ℎ

(fℎ + 𝜇Δuℎ −∇𝑝ℎ) · (v − vℎ)

+

∫︁
ℰ0
ℎ

[(−𝜇∇uℎ + 𝑝ℎI)n𝑒] · {v − vℎ} − 𝜇

∫︁
ℰℎ

{∇vℎn𝑒} · [uℎ − u] .

(22)

It is easy to check that (22) is valid for all functions v in [𝐻1
0 (Ω)]

𝑑. Note that all
terms involving the jump of v and vℎ vanish owing that both v and vℎ belong to
[𝐻1

0 (Ω)]
𝑑.

Now, we need to control 𝑝−𝑝ℎ. To this end, we use the continuous inf-sup condition:
since 𝑝− 𝑝ℎ ∈ 𝐿2

0(Ω), there exists v̄ ∈ [𝐻1
0 (Ω)]

𝑑 such that (see [19]),

∇ · v̄ = −(𝑝− 𝑝ℎ) and |v̄|[𝐻1(Ω)]𝑑 ≤ 1

𝛽
‖𝑝− 𝑝ℎ‖𝐿2(Ω) . (23)

Hence, using (10), it is easy to see that v̄ ∈ [𝐻1
0 (Ω)]

𝑑 satisfies:

𝑏(v̄, 𝑝− 𝑝ℎ) = ‖𝑝− 𝑝ℎ‖2𝐿2(Ω) . (24)

Then, we revert to (22) with v̄ ∈ [𝐻1
0 (Ω)]

𝑑 given by (23) and vℎ = 𝑅ℎ(v̄), where
𝑅ℎ : [𝐻1

0 (Ω)]
𝑑 → [𝑀1(𝒯ℎ) ∩𝐻1

0 (Ω)]
𝑑 is the standard Scott–Zhang interpolation

operator (see [30]). This yields the following pressure error equality:

‖𝑝− 𝑝ℎ‖2𝐿2(Ω) = −𝜇

∫︁
𝒯ℎ

∇(u− uℎ) : ∇v̄ +

∫︁
𝒯ℎ

(f − fℎ) · (v̄ − vℎ)

+

∫︁
𝒯ℎ

(fℎ + 𝜇Δuℎ −∇𝑝ℎ) · (v̄ − vℎ)

+

∫︁
ℰ0
ℎ

[(−𝜇∇uℎ + 𝑝ℎI)n𝑒] · {v̄ − vℎ} − 𝜇

∫︁
ℰℎ

{∇vℎ n𝑒} · [uℎ − u] .

(25)

4.2 A posteriori estimates

We first propose error indicators, based on the above error equalities; next we
derive reliability and efficiency error inequalities. We start with the pressure in
terms of the velocity and then derive an inequality for the velocity. All constants
below are independent of ℎ, 𝐸 and 𝑒.
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4.2.1 Error indicators

The error equalities (21) and (25) suggest the following error indicators:
1. the volume momentum error,

𝜂𝑚,𝐸 := ℎ𝐸 ‖fℎ + 𝜇Δuℎ −∇𝑝ℎ‖[𝐿2(𝐸)]𝑑 , ∀𝐸 ∈ 𝒯ℎ ; (26)

2. the divergence error,

𝜂div,𝐸 := ‖∇ · uℎ‖𝐿2(𝐸) , ∀𝐸 ∈ 𝒯ℎ ; (27)

3. the interior penalty jump of the velocity,

𝜂pen,u := (
1

ℎ𝑒
)
1
2 ‖[uℎ]‖[𝐿2(𝑒)]𝑑 , ∀ 𝑒 ∈ ℰ0

ℎ ; (28)

4. the boundary penalty error of the velocity,

𝜂pen,𝐷 := (
1

ℎ𝑒
)
1
2 ‖uℎ − g𝐷‖[𝐿2(𝑒)]𝑑 , ∀ 𝑒 ∈ ℰ𝜕

ℎ ; (29)

5. the interface jump of the momentum,

𝜂𝑚,𝑒 := ℎ
1
2
𝑒 ‖[(−𝜇∇uℎ + 𝑝ℎI)n𝑒]‖[𝐿2(𝑒)]𝑑 , ∀ 𝑒 ∈ ℰ0

ℎ ; (30)

6. the pressure jump,

𝜂𝑗,𝑝 := ℎ
1
2
𝑒 ‖[𝑝ℎ]‖𝐿2(𝑒) , ∀ 𝑒 ∈ ℰ0

ℎ . (31)

4.2.2 Pressure error inequality

Now, we bound the terms on the right-hand side of (25). The first four bounds
below are straightforward consequences of the Cauchy-Schwarz inequality, (3), and
the approximation properties of 𝑅ℎ [30],

| − 𝜇

∫︁
𝒯ℎ

∇(u− uℎ) : ∇v̄| ≤ 𝜇

𝛽
|u− uℎ|ℎ ‖𝑝− 𝑝ℎ‖𝐿2(Ω), (32)

|
∫︁
𝒯ℎ

(f − fℎ) · (v̄ − vℎ)| ≤
𝐶

𝛽

(︁ ∑︁
𝐸∈𝒯ℎ

ℎ2𝐸‖f − fℎ‖2[𝐿2(𝐸)]𝑑

)︁ 1
2 ‖𝑝− 𝑝ℎ‖𝐿2(Ω), (33)

|
∫︁
𝒯ℎ

(fℎ + 𝜇Δuℎ −∇𝑝ℎ) · (v̄ − vℎ)| ≤
𝐶

𝛽

(︁ ∑︁
𝐸∈𝒯ℎ

(𝜂𝑚,𝐸)2
)︁ 1

2 ‖𝑝− 𝑝ℎ‖𝐿2(Ω), (34)
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|
∫︁
ℰ0
ℎ

[(−𝜇∇uℎ + 𝑝ℎI)n𝑒] · {v̄ − vℎ}| ≤
𝐶

𝛽

(︁ ∑︁
𝑒∈ℰ0

ℎ

(𝜂𝑚,𝑒)
2
)︁ 1

2 ‖𝑝− 𝑝ℎ‖𝐿2(Ω). (35)

A trace theorem in each element 𝐸 is used for (35). The last term of (25) is handled
by the next proposition.

Proposition 1. There exists a constant 𝐶 > 0, independent of ℎ, such that for
all u ∈ [𝐻1(Ω)]𝑑, uℎ ,vℎ in [𝑀𝑘(𝒯ℎ)]𝑑,⃒⃒⃒

𝜇

∫︁
ℰℎ

{∇vℎ n𝑒} · [uℎ − u]
⃒⃒⃒
≤

≤ 𝐶
𝜇

𝛽

(︁ ∑︁
𝑒∈ℰ0

ℎ

(𝜂pen,u)
2 +

∑︁
𝑒∈ℰ𝜕

ℎ

(𝜂pen,𝐷)2
)︁ 1

2 ‖𝑝− 𝑝ℎ‖𝐿2(Ω).

(36)

Proof. Consider first the case when 𝑒 belongs to ℰ0
ℎ, and let 𝐸1 and 𝐸2 denote the

two elements of 𝒯ℎ adjacent to 𝑒. By using the regularity of the triangulation and
an equivalence of norms owing that vℎ belongs to a finite dimensional space in
each 𝐸, we have⃒⃒⃒ ∫︁

ℰ0
ℎ

{∇vℎ n𝑒} · [uℎ − u]
⃒⃒⃒
≤

≤ 𝐶
∑︁
𝑒∈ℰ0

ℎ

(︀ 1

ℎ𝑒

)︀ 1
2 ‖[u− uℎ]‖[𝐿2(𝑒)]𝑑

(︁
|vℎ|[𝐻1(𝐸1)]𝑑 + |vℎ|[𝐻1(𝐸2)]𝑑

)︁
.

Any element 𝐸 of 𝒯ℎ occurs in this inequality at most 𝑑+ 1 times in the case of
simplices and 2𝑑 times in the case of quadrilaterals (𝑑 = 2) or hexahedra (𝑑 = 3).
Analogously, if 𝑒 belongs to ℰ𝜕

ℎ , we obtain⃒⃒⃒ ∫︁
ℰ𝜕
ℎ

{∇vℎ n𝑒} · [uℎ − u]
⃒⃒⃒
≤ 𝐶

∑︁
𝑒∈ℰ𝜕

ℎ

(︀ 1

ℎ𝑒

)︀ 1
2 ‖[u− uℎ]‖[𝐿2(𝑒)]𝑑 |vℎ|[𝐻1(𝐸)]𝑑 ,

where 𝐸 is the element in 𝒯ℎ that has 𝑒 as an edge (𝑑 = 2) or face (𝑑 = 3). This,
(3), and the stability of 𝑅ℎ lead readily to (36).
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By substituting (32)–(36) into (25), we immediately derive a first pressure error
inequality,

‖𝑝− 𝑝ℎ‖𝐿2(Ω) ≤ 𝜇

𝛽
|u− uℎ|ℎ +

𝐶

𝛽

[︁(︁ ∑︁
𝐸∈𝒯ℎ

ℎ2𝐸‖f − fℎ‖2[𝐿2(𝐸)]𝑑

)︁ 1
2

+
(︁ ∑︁

𝐸∈𝒯ℎ

(𝜂𝑚,𝐸)2
)︁ 1

2
+
(︁ ∑︁

𝑒∈ℰ0
ℎ

(𝜂𝑚,𝑒)
2
)︁ 1

2

+𝜇
(︁ ∑︁

𝑒∈ℰ0
ℎ

(𝜂pen,u)
2 +

∑︁
𝑒∈ℰ𝜕

ℎ

(𝜂pen,𝐷)2
)︁ 1

2
]︁
.

(37)

To simplify, set temporarily

𝜂f ,𝑚 :=
(︁ ∑︁

𝐸∈𝒯ℎ

ℎ2𝐸‖f − fℎ‖2[𝐿2(𝐸)]𝑑

)︁ 1
2
+
(︁ ∑︁

𝐸∈𝒯ℎ

(𝜂𝑚,𝐸)2
)︁ 1

2
+
(︁ ∑︁

𝑒∈ℰ0
ℎ

(𝜂𝑚,𝑒)
2
)︁ 1

2
,

𝜂pen :=
(︁∑︁
𝑒∈ℰ0

ℎ

(𝜂pen,u)
2 +

∑︁
𝑒∈ℰ𝜕

ℎ

(𝜂pen,𝐷)2
)︁ 1

2
.

(38)

Then (37) becomes

‖𝑝− 𝑝ℎ‖𝐿2(Ω) ≤
𝜇

𝛽
|u− uℎ|ℎ +

𝐶

𝛽

(︀
𝜂f ,𝑚 + 𝜇 𝜂pen

)︀
. (39)

4.2.3 Velocity error inequality

We now bound the terms on the right-hand side of (21); recall that here, vℎ is
given by (20). Let us begin with the terms not involving w,

|
∫︁
𝒯ℎ

(f − fℎ) · (u− uℎ − vℎ)| ≤ 𝐶
(︁ ∑︁

𝐸∈𝒯ℎ

ℎ2𝐸 ‖f − fℎ‖2[𝐿2(𝐸)]𝑑

)︁ 1
2 |u− uℎ|ℎ; (40)

|
∫︁
𝒯ℎ

(fℎ + 𝜇Δuℎ −∇𝑝ℎ) · (u− uℎ − vℎ)| ≤ 𝐶
(︁ ∑︁

𝐸∈𝒯ℎ

(︀
𝜂𝑚,𝐸

)︀2)︁ 1
2 |u− uℎ|ℎ; (41)

| −
∫︁
𝒯ℎ

(∇ · uℎ)(𝑝− 𝑝ℎ)| ≤
(︁ ∑︁

𝐸∈𝒯ℎ

(︀
𝜂div,𝐸

)︀2)︁ 1
2 ‖𝑝− 𝑝ℎ‖𝐿2(Ω); (42)

|
∫︁
ℰ0
ℎ

[(−𝜇∇uℎ + 𝑝ℎI)n𝑒] · {u− uℎ − vℎ}| ≤ 𝐶
(︁ ∑︁

𝑒∈ℰ0
ℎ

(︀
𝜂𝑚,𝑒

)︀2)︁ 1
2 |u− uℎ|ℎ; (43)
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|𝜇
∫︁
ℰℎ

𝜎𝑒
ℎ𝑒

[uℎ − u] · [uℎ − u+ vℎ]| ≤

≤ 𝐶𝜇 (max𝜎𝑒)
(︁ ∑︁

𝑒∈ℰ0
ℎ

(︀
𝜂pen,u

)︀2
+

∑︁
𝑒∈ℰ𝜕

ℎ

(︀
𝜂pen,𝐷

)︀2)︁ 1
2 |u− uℎ|ℎ,

(44)

where the maximum of 𝜎𝑒 is taken over all 𝑒 in ℰℎ;

|𝛼
∫︁
ℰ0
ℎ

[(uℎ − u+ vℎ) · n𝑒][𝑝ℎ]| ≤ 𝛼𝐶
(︁ ∑︁

𝑒∈ℰ0
ℎ

(︀
𝜂𝑗,𝑝

)︀2)︁ 1
2 |u− uℎ|ℎ. (45)

To estimate the three terms involving w, we employ the following approximation
property of 𝑆ℎ, a simple variant of the property established for example in [8, 18, 23].

Proposition 2. There exists a constant 𝐶 > 0, independent of ℎ and uℎ, such
that

|𝑆ℎ(uℎ)− uℎ|ℎ ≤ 𝐶
(︁ ∑︁

𝑒∈ℰ0
ℎ

1

ℎ𝑒
‖[uℎ]‖2𝐿2(𝑒) +

∑︁
𝑒∈ℰ𝜕

ℎ

1

ℎ𝑒
‖uℎ − g𝐷‖2𝐿2(𝑒)

)︁ 1
2
. (46)

As usual, (46) is first derived locally in each element and next summed over all
elements. Note that it involves interior and boundary terms. By applying it locally,
we obtain,

| − 𝜇

∫︁
𝒯ℎ

∇(u− uℎ) : ∇(uℎ −w)| ≤ 𝜇𝐶 𝜂pen |u− uℎ|ℎ; (47)

|
∫︁
𝒯ℎ

(𝑝− 𝑝ℎ)∇ · (uℎ −w)| ≤ 𝐶 𝜂pen ‖𝑝− 𝑝ℎ‖𝐿2(Ω), (48)

Finally, the term on ℰℎ is treated by combining locally an equivalence of norms as
in (36) with (46),

|𝜇
∫︁
ℰℎ

[u− uℎ] · ({∇(uℎ −w)}n𝑒)| ≤ 𝜇𝐶
(︀
𝜂pen

)︀2
. (49)
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By substituting (40)–(45), (47)–(49) into (21), and cancelling the jump term on
both sides, we obtain a first preliminary inequality,

𝜇 |u− uℎ|2ℎ ≤ 𝐶
[︁(︁ ∑︁

𝐸∈𝒯ℎ

ℎ2𝐸 ‖f − fℎ‖2[𝐿2(𝐸)]𝑑

)︁ 1
2
+
(︁ ∑︁

𝐸∈𝒯ℎ

(︀
𝜂𝑚,𝐸

)︀2)︁ 1
2

+
(︁ ∑︁

𝑒∈ℰ0
ℎ

(︀
𝜂𝑚,𝑒

)︀2)︁ 1
2
+ 𝜇(1 + max𝜎𝑒)𝜂pen + 𝛼

(︁ ∑︁
𝑒∈ℰ0

ℎ

(︀
𝜂𝑗,𝑝

)︀2)︁ 1
2
]︁
|u− uℎ|ℎ

+
[︁(︁ ∑︁

𝐸∈𝒯ℎ

(︀
𝜂div,𝐸

)︀2)︁ 1
2
+ 𝐶 𝜂pen

]︁
‖𝑝− 𝑝ℎ‖𝐿2(Ω) + 𝐶 𝜇

(︀
𝜂pen

)︀2
,

(50)
where the maximum of 𝜎𝑒 is taken over all 𝑒 of ℰℎ. With the simplified notation
(38), (50) reads

𝜇 |u− uℎ|2ℎ ≤ ‖𝑝− 𝑝ℎ‖𝐿2(Ω)

[︁(︁ ∑︁
𝐸∈𝒯ℎ

(︀
𝜂div,𝐸

)︀2)︁ 1
2
+ 𝐶 𝜂pen

]︁
+ 𝐶 𝜇

(︀
𝜂pen

)︀2
+𝐶

[︁
𝜂f ,𝑚 + 𝜇(1 + max𝜎𝑒)𝜂pen + 𝛼

(︁ ∑︁
𝑒∈ℰ0

ℎ

(︀
𝜂𝑗,𝑝

)︀2)︁ 1
2
]︁
|u− uℎ|ℎ.

(51)
By substituting (39) into (51) and collecting terms, we obtain a second preliminary
inequality

𝜇 |u− uℎ|2ℎ ≤ |u− uℎ|ℎ
[︁
𝜇

𝛽

(︁ ∑︁
𝐸∈𝒯ℎ

(︀
𝜂div,𝐸

)︀2)︁ 1
2

+𝐶
(︁
𝜇 𝜂pen

(︀ 1
𝛽
+ 1 +max𝜎𝑒

)︀
+ 𝜂f ,𝑚 + 𝛼

(︁ ∑︁
𝑒∈ℰ0

ℎ

(︀
𝜂𝑗,𝑝

)︀2)︁ 1
2
)︁]︁

+𝐶 𝜇
(︀
𝜂pen

)︀2
+

𝐶

𝛽

(︀
𝜂f ,𝑚 + 𝜇 𝜂pen

)︀(︁(︁ ∑︁
𝐸∈𝒯ℎ

(︀
𝜂div,𝐸

)︀2)︁ 1
2
+ 𝐶 𝜂pen

)︁
.

The term |u− uℎ|ℎ on the right-hand side is eliminated by Young’s inequality,

𝜇

2
|u− uℎ|2ℎ ≤ 1

2𝜇

[︁
𝜇

𝛽

(︁ ∑︁
𝐸∈𝒯ℎ

(︀
𝜂div,𝐸

)︀2)︁ 1
2

+𝐶
(︁
𝜇 𝜂pen

(︀ 1
𝛽
+ 1 +max𝜎𝑒

)︀
+ 𝜂f ,𝑚 + 𝛼

(︁ ∑︁
𝑒∈ℰ0

ℎ

(︀
𝜂𝑗,𝑝

)︀2)︁ 1
2
)︁]︁2

+𝐶 𝜇
(︀
𝜂pen

)︀2
+

𝐶

𝛽

(︀
𝜂f ,𝑚 + 𝜇 𝜂pen

)︀(︁(︁ ∑︁
𝐸∈𝒯ℎ

(︀
𝜂div,𝐸

)︀2)︁ 1
2
+ 𝐶 𝜂pen

)︁
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By expanding the square and applying Young’s inequality to the remaining terms,
we infer

𝜇

2
|u− uℎ|2ℎ ≤ 1

2𝜇

[︁
4𝜇2

𝛽2

∑︁
𝐸∈𝒯ℎ

(︀
𝜂div,𝐸

)︀2
+ 4𝐶2𝜇2𝜂2pen

(︀ 1
𝛽
+ 1 +max𝜎𝑒

)︀2
+4𝐶2𝜂2f ,𝑚 + 4𝐶2𝛼2

∑︁
𝑒∈ℰ0

ℎ

(︀
𝜂𝑗,𝑝

)︀2]︁
+𝐶𝜇𝜂2pen + 𝐶2(︀𝜂2f ,𝑚 + 𝜇2 𝜂2pen

)︀
+

1

𝛽2

∑︁
𝐸∈𝒯ℎ

(︀
𝜂div,𝐸

)︀2
+

𝐶2

𝛽2
𝜂2pen.

By grouping these terms and merging all unspecified constants into a single one,
we derive

𝜇

2
|u− uℎ|2ℎ ≤ 1

𝛽2

(︀
1 + 2𝜇

)︀ ∑︁
𝐸∈𝒯ℎ

(︀
𝜂div,𝐸

)︀2
+𝐶

(︁(︀
𝜇
(︀
2(

1

𝛽
+ 1+max𝜎𝑒)

2 + 1 + 𝜇
)︀
+

1

𝛽2

)︀
𝜂2pen

+(1 +
2

𝜇
)𝜂2f ,𝑚 + 2

𝛼2

𝜇

∑︁
𝑒∈ℰ0

ℎ

(︀
𝜂𝑗,𝑝

)︀2)︁
.

(52)

Finally, by expanding the notation (38), we obtain a first reliability error bound
for the velocity,

𝜇 |u− uℎ|2ℎ ≤ 4𝜇+ 2

𝛽2

∑︁
𝐸∈𝒯ℎ

(︀
𝜂div,𝐸

)︀2
+ 𝐶

(︁
4𝛼2

𝜇

∑︁
𝑒∈ℰ0

ℎ

(︀
𝜂𝑗,𝑝

)︀2
+2

(︀
𝜇
(︀
2(

1

𝛽
+ 1 +max𝜎𝑒)

2 + 1 + 𝜇
)︀
+

1

𝛽2

)︀(︀ ∑︁
𝑒∈ℰ0

ℎ

(︀
𝜂pen,u

)︀2
+

∑︁
𝑒∈ℰ𝜕

ℎ

(︀
𝜂pen,𝐷

)︀2)︀
+
(︀ 4
𝜇
+ 2

)︀(︀ ∑︁
𝐸∈𝒯ℎ

ℎ2𝐸 ‖f − fℎ‖2[𝐿2(𝐸)]𝑑 +
∑︁

𝐸∈𝒯ℎ

(︀
𝜂𝑚,𝐸

)︀2
+

∑︁
𝑒∈ℰ0

ℎ

(︀
𝜂𝑚,𝑒

)︀2)︀)︁
.

(53)
A reliability bound for the pressure follows immediately by combining (53) with
(37).

Of course,

𝜇
(︁∫︁
ℰℎ

𝜎𝑒
ℎ𝑒

|[u− uℎ]|2
)︁ 1

2 ≤ 𝜇(max𝜎𝑒)
1
2

[︁ ∑︁
𝑒∈ℰ0

ℎ

(︀
𝜂pen,u

)︀2
+

∑︁
𝑒∈ℰ𝜕

ℎ

(︀
𝜂pen,𝐷

)︀2]︁ 1
2
. (54)

4.2.4 Local Error indicator

For each 𝐸 ∈ 𝒯ℎ, we define the local error indicator:

𝜂2𝐸 := 𝜂2𝑚,𝐸+𝜂2div,𝐸+
1

2

∑︁
𝑒∈ℰ(𝐸)∩ℰ0

ℎ

(𝜂2pen,u+𝜂2𝑚,𝑒+𝜂2𝑗,𝑝)+
∑︁

𝑒∈ℰ(𝐸)∩ℰ𝜕
ℎ

𝜂2pen,𝐷 , (55)
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where ℰ(𝐸) denotes the set of edges (𝑑 = 2) or faces (𝑑 = 3) of the element 𝐸;
we remark that the coefficient 1/2 in equation (55) is introduced because each
interior edge or face occurs twice. From the analysis in previous sections, we have
the following result:

Theorem 1. Let the exact solution (u, 𝑝) of (2) belong to [𝐻1+𝑠(Ω)]𝑑 × 𝐻𝑠(Ω)

for some real number 𝑠 > 0. Assume that the triangulation 𝒯ℎ is regular and the
penalty parameters 𝜎𝑒 > 0 are independent of ℎ. For the values 𝑘 = 1, 𝜖 = −1, and
𝛼 = ±1

2 , let (uℎ, 𝑝ℎ) solve (8). There exists a positive constant 𝐶, independent of
ℎ, such that

𝜇 ‖u− uℎ‖2𝐸𝐺 ≤ 𝐶
∑︁

𝐸∈𝒯ℎ

(︁
ℎ2𝐸 ‖f − fℎ‖2[𝐿2(𝐸)]𝑑 + 𝜂2𝐸

)︁
, (56)

and
‖𝑝− 𝑝ℎ‖2𝐿2(Ω) ≤ 𝐶

∑︁
𝐸∈𝒯ℎ

(︁
ℎ2𝐸‖f − fℎ‖2[𝐿2(𝐸)]𝑑 + 𝜂2𝐸

)︁
. (57)

Proof. Inequality (56) is a consequence of inequalities (53) and (54). Inequality
(57) is deduced from inequalities (37) and (56).

From the previous result, 𝜂𝐸 can be used as a reliable error indicator to measure
the error in the velocity and in the pressure.

Remark 3. Following the same steps in the NIPG method (𝜖 = 1), we arrive
at the same bounds. For the IIPG method (𝜖 = 0), the calculations are slightly
simpler, but lead also to the same error indicator. Thus, the error indicator 𝜂𝐸 can
be used in combination with the NIPG and IIPG variants of the enriched Galerkin
method too.

Remark 4. Neither the discrete inf-sup condition (13) nor the particular choice of
penalty parameters 𝜎𝑒 have been used explicitly in proving (56) and (57). However,
they are used in Theorem 1 to derive existence of the discrete solution.

4.2.5 Efficiency

In this subsection, we study the efficiency of the error indicator 𝜂𝐸 for the Symmetric
Interior Penalty enriched Galerkin method. All constants 𝐶 below are independent
of ℎ, 𝐸, and 𝑒. We proceed in five steps.

1) First, since ∇ · u = 0 in Ω, we immediately have that

𝜂div,𝐸 = ‖∇ · uℎ‖𝐿2(𝐸) = ‖∇ · (u− uℎ)‖𝐿2(𝐸) ≤ 𝑑
1
2 |u− uℎ|[𝐻1(𝐸)]𝑑 . (58)
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2) Obviously, by definition,

𝜂pen,u =
1

𝜎
1
2
𝑒

(︀𝜎𝑒
ℎ𝑒

)︀ 1
2 ‖[uℎ]‖[𝐿2(𝑒)]𝑑 ,

𝜂pen,𝐷 =
1

𝜎
1
2
𝑒

(︀𝜎𝑒
ℎ𝑒

)︀ 1
2 ‖[uℎ − g𝐷]‖[𝐿2(𝑒)]𝑑 ; (59)

this bounds trivially the penalty jumps of the velocity.
For the remaining steps, we use the localisation technique introduced by

Verfürth (see, for instance, [33]).
3) For any element 𝐸 of 𝒯ℎ, let 𝑏𝐸 be the usual element-bubble function (see

[33]). We first take

v = 𝜓𝐸 := 𝑏𝐸 (fℎ + 𝜇Δuℎ −∇𝑝ℎ),

and vℎ = 0 in (16). Since 𝜓𝐸 = 0 on the boundary of 𝐸, (16) reduces to:

𝜇𝑎−1(u− uℎ,𝜓𝐸) + 𝑏(𝜓𝐸 , 𝑝− 𝑝ℎ) =

∫︁
𝐸

(f − fℎ) ·𝜓𝐸

+

∫︁
𝐸

(fℎ + 𝜇Δuℎ −∇𝑝ℎ) ·𝜓𝐸

+𝜇

∫︁
ℰ0
ℎ∩𝜕𝐸

[uℎ] · {∇𝜓𝐸n𝑒}+ 𝜇

∫︁
ℰ𝜕
ℎ∩𝜕𝐸

(∇𝜓𝐸 n) · (uℎ − g𝐷) .

Therefore, by expanding the two bilinear forms, passing the expression of interest
to the left-hand side, and cancelling some terms, this leads to∫︁

𝐸

(fℎ + 𝜇Δuℎ −∇𝑝ℎ) ·𝜓𝐸 = 𝜇

∫︁
𝐸

∇(u− uℎ) : ∇𝜓𝐸

−
∫︁
𝐸

(𝑝− 𝑝ℎ)∇ ·𝜓𝐸 −
∫︁
𝐸

(f − fℎ) ·𝜓𝐸 .
(60)

Since fℎ+𝜇Δuℎ−∇𝑝ℎ belongs to a finite dimensional space in 𝐸, a local equivalence
of norms yields∫︁

𝐸

(fℎ + 𝜇Δuℎ −∇𝑝ℎ) ·𝜓𝐸 ≥ 𝐶 ‖fℎ + 𝜇Δuℎ −∇𝑝ℎ‖2[𝐿2(𝐸)]𝑑 , (61)

and by a local inverse inequality,

‖∇𝜓𝐸‖[𝐿2(𝐸)]𝑑×𝑑 ≤ 𝐶 ℎ−1
𝐸 ‖fℎ + 𝜇Δuℎ −∇𝑝ℎ‖[𝐿2(𝐸)]𝑑 . (62)

Of course,
‖𝜓𝐸‖[𝐿2(𝐸)]𝑑 ≤ ‖fℎ + 𝜇Δuℎ −∇𝑝ℎ‖[𝐿2(𝐸)]𝑑 . (63)
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Therefore, by applying the Cauchy-Schwarz inequality on the right-hand side of
(60), using (61), (62) and (63), cancelling the common factor on both sides and
multiplying both sides by ℎ𝐸 , we obtain that

𝜂𝑚,𝐸 ≤ 𝐶
(︁
𝜇 |u− uℎ|[𝐻1(𝐸)]𝑑 + ‖𝑝− 𝑝ℎ‖𝐿2(𝐸) + ℎ𝐸 ‖f − fℎ‖[𝐿2(𝐸)]𝑑

)︁
. (64)

4) Now we consider the interface jump of the momentum, 𝜂𝑚,𝑒. Let 𝑒 be an
interior edge or face shared by two elements, 𝐸1 and 𝐸2 and let 𝜔𝑒 = 𝐸1 ∪𝐸2. Let
𝑏𝑒 be the usual edge or face bubble function (see [33]), and denote

𝜌𝑒 = 𝑏𝑒[(−𝜇∇uℎ + 𝑝ℎI)n𝑒].

We consider 𝜓𝑒 = 𝐿(𝜌𝑒), where 𝐿 is an appropriate lifting operator from 𝐻
1/2
00 (𝑒)

into 𝐻1
0 (𝜔𝑒). As usual, 𝐿 is first constructed on two adjacent reference elementŝ︁𝜔𝑒 and then passed to 𝜔𝑒 by a continuous, locally affine transformation in the

case of simplices. On quadrilateral (𝑑 = 2) or hexahedral elements (𝑑 = 3), the
affine transformation is replaced by the inverse of a locally bilinear or trilinear
transformation, according to the dimension, so that

∀𝑓 ∈ 𝐻
1/2
00 (𝑒), |𝐿(𝑓)|𝐻1(𝜔𝑒) ≤ 𝐶|𝑓 |

𝐻
1/2
00 (𝑒)

, (65)

with a constant 𝐶 independent of ℎ, 𝑒, 𝜔𝑒. Therefore, by Poincaré’s inequality,

‖𝐿(𝜌𝑒)‖[𝐿2(𝜔𝑒)]𝑑 ≤ 𝐶 ℎ𝑒|𝐿(𝜌𝑒)|[𝐻1(𝜔𝑒)]𝑑

≤ 𝐶 ℎ𝑒|𝜌𝑒|[𝐻1/2
00 (𝑒)]𝑑

≤ 𝐶 ℎ
1
2
𝑒 ‖𝜌𝑒‖[𝐿2(𝑒)]𝑑 ,

(66)

by a local inverse inequality valid in finite-dimensional spaces on 𝑒. Similarly,

ℎ
1
2
𝑒 |𝐿(𝜌𝑒)|[𝐻1(𝜔𝑒)]𝑑 ≤ 𝐶 ‖𝜌𝑒‖[𝐿2(𝑒)]𝑑 . (67)

On the one hand, we have by equivalence of norms in finite dimensional spaces on
𝑒, ∫︁

𝑒

[(−𝜇∇uℎ + 𝑝ℎI)n𝑒] · 𝜌𝑒 ≥ 𝐶‖[(−𝜇∇uℎ + 𝑝ℎI)n𝑒]‖2[𝐿2(𝑒)]𝑑 . (68)

On the other hand, by testing (16) with v = 𝐿(𝜌𝑒) and vℎ = 0, and taking into
account that 𝐿(𝜌𝑒) does not jump, we obtain∫︁

𝑒

[(−𝜇∇uℎ + 𝑝ℎI)n𝑒] · 𝜌𝑒 = 𝜇

∫︁
𝜔𝑒

∇(u− uℎ) : ∇𝐿(𝜌𝑒)−
∫︁
𝜔𝑒

(𝑝− 𝑝ℎ)∇ · 𝐿(𝜌𝑒)

−
∫︁
𝜔𝑒

(f − fℎ) · 𝐿(𝜌𝑒) −
∫︁
𝜔𝑒

(fℎ + 𝜇Δuℎ −∇𝑝ℎ) · 𝐿(𝜌𝑒) ,
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where it is understood that the integrals over 𝜔𝑒 are taken element by element.
Finally, (68), (66), and (67) yield,

𝜂𝑚,𝑒 ≤ 𝐶
(︁
𝜇‖∇(u− uℎ)‖[𝐿2(𝜔𝑒)]𝑑×𝑑 + ‖𝑝− 𝑝ℎ‖𝐿2(𝜔𝑒)

+ ℎ𝑒 ‖f − fℎ‖[𝐿2(𝜔𝑒)]𝑑 + ℎ𝑒 ‖fℎ + 𝜇Δuℎ −∇𝑝ℎ‖[𝐿2(𝜔𝑒)]𝑑

)︁
,

which together with (64) and the regularity of the triangulation gives the bound,

𝜂𝑚,𝑒 ≤ 𝐶
(︁
𝜇‖∇(u− uℎ)‖[𝐿2(𝜔𝑒)]𝑑×𝑑 + ‖𝑝− 𝑝ℎ‖𝐿2(𝜔𝑒)

+
(︁ ∑︁

𝐸∈𝜔𝑒

ℎ2𝐸‖f − fℎ‖2[𝐿2(𝐸)]𝑑

)︁ 1
2
+
(︁ ∑︁

𝐸∈𝜔𝑒

(︀
𝜂𝑚,𝐸

)︀2)︁ 1
2
)︁
. (69)

5) Finally, to bound the pressure jump 𝜂𝑗,𝑝 from above, we consider an interpo-
lation operator of the Scott–Zhang type, see for example [17] 𝑇ℎ : 𝐿2

0(Ω) → 𝑀1
0 (𝒯ℎ)

so that 𝑇ℎ(𝑝) does not jump. We consider again an interior edge or face 𝑒 ∈ ℰ0
ℎ,

shared by two elements 𝐸1 and 𝐸2, and denote 𝜔𝑒 = 𝐸1 ∪ 𝐸2. Then,

𝜂𝑗,𝑝 = ℎ
1
2
𝑒 ‖[𝑇ℎ(𝑝)− 𝑝ℎ]‖𝐿2(𝑒)

= ℎ
1
2
𝑒 ‖(𝑇ℎ(𝑝)− 𝑝ℎ)|𝐸1

− (𝑇ℎ(𝑝)− 𝑝ℎ)|𝐸2
‖𝐿2(𝑒)

≤ 𝐶 ‖𝑇ℎ(𝑝)− 𝑝ℎ‖𝐿2(𝜔𝑒)

≤ 𝐶 ‖𝑇ℎ(𝑝)− 𝑝‖𝐿2(𝜔𝑒) + 𝐶 ‖𝑝− 𝑝ℎ‖𝐿2(𝜔𝑒) ,

(70)

again by an equivalence of norms in finite dimensions in ̂︁𝜔𝑒.
By collecting inequalities (64), (58), (59), (69), and (70), we obtain the desired

efficiency bound.

Theorem 2. Under the assumptions of Theorem 1, there exists a positive constant
𝐶, independent of ℎ, 𝐸 and 𝑒, such that

𝜂2𝐸 ≤ 𝐶
(︁
‖u− uℎ‖2𝐸𝐺,𝜔(𝐸) + ‖𝑝− 𝑝ℎ‖2𝐿2(𝜔(𝐸))

+ ‖𝑇ℎ(𝑝)− 𝑝‖2𝐿2(𝜔(𝐸)) + ℎ2𝐸‖f − fℎ‖2[𝐿2(𝜔(𝐸))]𝑑

)︁
where 𝜔(𝐸) = ∪{𝐸′ ∈ 𝒯ℎ : 𝐸′ shares at least an edge (face) with 𝐸}.

5 Numerical results

We implemented the adaptive algorithm based on the a posteriori error indicator
𝜂𝐸 defined in (55) in a parallel code in FreeFem++ [20] and tested it over the
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following example. We consider the L-shaped domain Ω = [−1, 1]2 ∖ ([0, 1]× [−1, 0])

with the data 𝜇 = 1, f = 0 and

g𝐷 =

⎧⎪⎨⎪⎩
(4𝑦(1− 𝑦), 0)t if 𝑥 = 1 ,

(0,−4𝑥(𝑥+ 1))t if 𝑦 = −1 ,

0 otherwise .

Note that g𝐷 satisfies (1),
∫︀
Γ
g𝐷 · n = 0. The choice of parameters is 𝜎𝑒 = 8,

∀ 𝑒 ∈ ℰℎ, and 𝛼 = 0.5. Since the exact solution is not known, the performance of our
method is evaluated by comparing its output with the discrete solution obtained
using the Hood-Taylor element over a very fine mesh with 160 075 triangles and
723 643 degrees of freedom (DOF).

We start the adaptive algorithm on a coarse mesh with 84 triangles. In every
adaptive step, we rebuild the mesh and control its shape-regularity by bounding
the gradient of the mesh size function; for more details, see [7]. Figure 3 depicts the
graph of the total error versus the DOF for the SIPG, NIPG and IIPG versions of the
enriched Galerkin method. We observe that the adaptive algorithm converges faster
than the one based on uniform refinement. Figures 4 and 5 present, respectively, the
graph of the velocity 𝐸𝐺 error and the pressure 𝐿2-error versus the DOF for the
SIPG, NIPG and IIPG versions of the enriched Galerkin method. Although they
are not presented here, we tested some individual error indicators and found that
in the example considered here, the boundary penalty error on the velocity (29)
was the dominant contribution to the total error 𝜂. For instance, the divergence
error (27) was negligible. Figure 6 shows the graph of the global indicator 𝜂,
𝜂2 :=

∑︀
𝐸∈𝒯ℎ

𝜂2𝐸 , versus the DOF for the SIPG, NIPG and IIPG versions of the
enriched Galerkin method. In Figures 3-6, the (green) dashed line indicates the
theoretical order of convergence.

We define the efficiency index as the ratio of the global indicator 𝜂 to the total
error. In Figure 7 we can see the efficiency index versus the DOF for the SIPG,
NIPG and IIPG versions of the enriched Galerkin method. The efficiency indices
for the algorithms based on adaptive refinement tend to the value 3.6 in all cases.
They are somewhat larger than in the case of a uniform mesh because the adaptive
algorithm produces a highly distorted mesh, see Figure 8.

Finally, Figure 8 depicts the initial mesh and the mesh obtained after 9

iterations with the adaptive SIP-EG method. We observe that the refinement is
highly concentrated around the origin.



28 V. Girault, M. González & F. Hecht

Error USIPG
Error ASIPG
exp(2.5)DOF -1/2

To
ta

l e
rro

r

0,01

0,1

1

DOF
102 103 104 105 106 107

Total error vs DOF in SIPG - uniform & adaptive

Error UNIPG
Error ANIPG
exp(3)DOF -1/2

To
ta

l e
rro

r

0,01

0,1

1

DOF
102 103 104 105 106 107

Total error vs DOF in NIPG - uniform & adaptive

Error UIIPG
Error AIIPG
exp(2.2)DOF -1/2

To
ta

l e
rro

r

0,01

0,1

1

DOF
102 103 104 105 106 107

Total error vs DOF in IIPG - uniform & adaptive

Fig. 3: Total error vs. DOF for SIPG (up), NIPG (center) and IIPG (bottom).
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Fig. 4: Velocity 𝐸𝐺 error vs. DOF for SIPG (up), NIPG (center) and IIPG (bottom).
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Fig. 5: Pressure 𝐿2-error vs. DOF for SIPG (up), NIPG (center) and IIPG (bottom).
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Fig. 8: SIP-EG method: Initial mesh, with 366 DOF (left), and mesh after 9 iterations, with
31 862 DOF (right).

6 Appendix

6.1 Approximation of the boundary data

In practical situations, the boundary data g𝐷 is given by measurements or by
the results of a previous computation; in both cases, it is a discrete set of values.
To simplify the a posteriori error analysis, it is convenient to assume that this
discrete set is interpolated so as to be the trace of a function of [𝑀𝑘

0 (𝒯ℎ)]𝑑 on Γ,
say Πℎ(g𝐷), and the condition (1) is enforced by adding a correction of the form

c(x) = − 1

𝑑 |Ω|

(︁∫︁
Γ

Πℎ(g𝐷) · n
)︁
x. (71)

This is adequate since the function x is a polynomial of degree one, thus is in the
discrete space, and its divergence is the constant 𝑑, the dimension; clearly,∫︁

Γ

x · n =

∫︁
Ω

∇ · x = 𝑑 |Ω|.

Then the discrete set g𝐷 is approximated by

gℎ,𝐷 = Πℎ(g𝐷) + c(x). (72)

By construction, gℎ,𝐷 satisfies (1), and the discrete problem (8) is solved with the
data gℎ,𝐷. To simplify notation, the index ℎ in g𝐷 was dropped in the previous
analysis.

The same approach is used in the case of a manufactured solution, but in this
case we can measure the error made when replacing g𝐷 with gℎ,𝐷. For Πℎ, we
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use the Scott–Zhang interpolation operator of degree 𝑘 in each element, globally
continuous. First,

gℎ,𝐷 − g𝐷 = Πℎ(g𝐷)− g𝐷 − 1

𝑑 |Ω|

(︁∫︁
Γ

(︀
Πℎ(g𝐷)− g𝐷

)︀
· n

)︁
x.

Now,

|x|
[𝐻

1
2 (Γ)]𝑑

=
(︁∫︁

Γ

∫︁
Γ

|x− y|2

|x− y|𝑑
𝑑x𝑑y

)︁ 1
2
,

which is a bounded quantity and of course, ‖x‖[𝐿2(Γ)]𝑑 is also a bounded quantity.
Therefore the approximation error of g𝐷 is bounded as follows:

‖gℎ,𝐷 − g𝐷‖[𝐿2(Γ)]𝑑 ≤ ‖Πℎ(g𝐷)− g𝐷‖[𝐿2(Γ)]𝑑 +
𝐶

𝑑 |Ω| ‖Πℎ(g𝐷)− g𝐷‖[𝐿1(Γ)]𝑑 ,

and

|gℎ,𝐷 − g𝐷|
[𝐻

1
2 (Γ)]𝑑

≤ |Πℎ(g𝐷)− g𝐷|
[𝐻

1
2 (Γ)]𝑑

+
𝐶

𝑑 |Ω| ‖Πℎ(g𝐷)− g𝐷‖[𝐿1(Γ)]𝑑 .

The a posteriori error analysis developed in the previous sections holds with gℎ,𝐷
instead of g𝐷 and (u, 𝑝) replaced by (u(ℎ), 𝑝(ℎ)) ∈ 𝐻1(Ω)𝑑 × 𝐿2

0(Ω), solution of⎧⎪⎪⎨⎪⎪⎩
−𝜇Δu(ℎ) + ∇𝑝(ℎ) = f in Ω ,

∇ · u(ℎ) = 0 in Ω ,

u(ℎ) = gℎ,𝐷 on Γ .

(73)

As gℎ,𝐷 is a continuous piecewise polynomial, it belongs to [𝐻1(Γ)]𝑑 and so there
exists some 𝑠, 0 < 𝑠 < 1

2 , such that u(ℎ) ∈ [𝐻1+𝑠(Ω)]𝑑 and 𝑝(ℎ) ∈ 𝐻𝑠(Ω). Hence
the error equalities of Section 4.1 are well-defined and all reliability and efficiency
bounds derived above hold with u and 𝑝 replaced by u(ℎ) and 𝑝(ℎ). To express
the reliability bounds in terms of u and 𝑝, we use the following:

|u− u(ℎ)|[𝐻1(Ω)]𝑑 ≤ 𝐶‖g𝐷 − gℎ,𝐷‖[𝐻1/2(Γ)]𝑑 ,

‖𝑝− 𝑝(ℎ)‖𝐿2(Ω) ≤ 𝐶
𝜇

𝛽
‖g𝐷 − gℎ,𝐷‖[𝐻1/2(Γ)]𝑑 . (74)

Regarding efficiency, we must add to the right-hand side of (64) the terms

|u− u(ℎ)|[𝐻1(𝐸)]𝑑 and ‖𝑝− 𝑝(ℎ)‖𝐿2(𝐸),

and to that of (69),

|u− u(ℎ)|[𝐻1(𝜔𝑒)]𝑑 and ‖𝑝− 𝑝(ℎ)‖𝐿2(𝜔𝑒).

These quantities can be bounded by the global estimates in (74), but this is not
optimal. Sharper bounds can be derived by applying the localizing techniques
of [34], but this is outside the scope of this work.
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6.2 Choice of penalty parameters

The penalty parameters 𝜎𝑒 are chosen to guarantee that the form 𝑎𝜖 is elliptic in
[𝑉 𝐸𝐺

ℎ,𝑘 ]𝑑. In the symmetric or incomplete case, we consider an interior edge or face
𝑒 (the case of a boundary 𝑒 is simpler) and evaluate (∇uℎ · n𝑒, [vℎ])𝑒, where uℎ

denotes the value of uℎ restricted to one of the elements 𝐸 adjacent to 𝑒,

|(∇uℎ · n𝑒, [vℎ])𝑒| ≤ ‖(∇uℎ)|𝐸‖[𝐿2(𝑒)]𝑑×𝑑‖[vℎ]‖[𝐿2(𝑒)]𝑑 .

Thus, we must estimate ‖(∇uℎ)|𝐸‖[𝐿2(𝑒)]𝑑×𝑑 . In the case of general 𝑘, or in the
case of quadrilaterals or hexahedra, we use the fact that, after transformation,
the function ∇uℎ belongs to a finite dimensional space in the reference element
and apply an equivalence of norms to switch from the surface norm to the volume
norm; this brings a constant, say 𝐷̂, that depends only on 𝑑 and the degree of the
polynomials in the reference element, hence is independent of ℎ. But in the simplex
case when 𝑘 = 1, this is trivial because ∇uℎ is a constant tensor. To simplify, we
study this case here but keep in mind that there is an additional constant in the
quadrilateral or hexahedral cases. We have

‖(∇uℎ)|𝐸‖[𝐿2(𝑒)]𝑑×𝑑 =
(︁ |𝑒|
|𝐸|

)︁ 1
2 ‖∇uℎ‖[𝐿2(𝐸)]𝑑×𝑑 .

Therefore, when 𝐸1 and 𝐸2 are the two elements sharing 𝑒, we have⃒⃒⃒
({∇uℎ · n𝑒}, [vℎ])𝑒

⃒⃒⃒
≤

≤ 1

2
|𝑒|

1
2

(︁
ℎ𝑒
𝜎𝑒

)︁ 1
2
(︁

1

|𝐸1|
+

1

|𝐸2|

)︁ 1
2 ‖∇uℎ‖[𝐿2(𝐸1∪𝐸2)]𝑑×𝑑

(︁
𝜎𝑒
ℎ𝑒

)︁ 1
2 ‖[vℎ]‖[𝐿2(𝑒)]𝑑 .

Now, we sum over all interior 𝑒:⃒⃒⃒ ∑︁
𝑒∈ℰ0

ℎ

({∇uℎ · n𝑒}, [vℎ])𝑒

⃒⃒⃒
≤

≤ 1

2

(︁∫︁
ℰ0
ℎ

𝜎𝑒
ℎ𝑒

|[vℎ]|2
)︁ 1

2
(︁ ∑︁

𝑒∈ℰ0
ℎ

ℎ𝑒
𝜎𝑒

|𝑒|
(︀ 1

|𝐸1|
+

1

|𝐸2|
)︀
‖∇uℎ‖2[𝐿2(𝐸1∪𝐸2)]𝑑×𝑑

)︁ 1
2
.

Let us take the maximum of the factor

ℎ𝑒
𝜎𝑒

|𝑒|
(︀ 1

|𝐸1|
+

1

|𝐸2|
)︀
≤ 2

ℎ𝑒
min𝜎𝑒

|𝑒|
min (|𝐸1|, |𝐸2|)

,

and observe that the second factor is of the order of ℎ−1
𝑒 , whatever the dimension.

Therefore,
ℎ𝑒
𝜎𝑒

|𝑒|
(︀ 1

|𝐸1|
+

1

|𝐸2|
)︀
≤ 2

𝐶

min𝜎𝑒
,
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where 𝐶 depends only on the regularity of the mesh. It remains to count the
number of occurrences of an element 𝐸 in the sum over 𝑒. Each face involves its
two adjacent elements. Since a simplex has 𝑑+ 1 faces, it is counted 𝑑+ 1 times.
Therefore,⃒⃒⃒ ∑︁

𝑒∈ℰ0
ℎ

({∇uℎ · n𝑒}, [vℎ])𝑒

⃒⃒⃒
≤

√︀
2(𝑑+ 1)

2

(︁
𝐶

min𝜎𝑒

)︁ 1
2
(︁∫︁
ℰ0
ℎ

𝜎𝑒
ℎ𝑒

|[vℎ]|2
)︁ 1

2 |uℎ|ℎ.

In the case of a quadrilateral or hexahedral element, 𝑑+ 1 is replaced by 2𝑑, the
number of faces, and the constant 𝐶 is multiplied by 𝐷̂. Of course, this formula

is also valid for boundary faces, except that the factor
√

2(𝑑+1)
2 is replaced by

1 and the sums are taken over ℰ𝜕
ℎ . It is used with Young’s inequality to deduce

the value of min𝜎𝑒 that guarantees ellipticity of 𝑎𝜖 when 𝜖 = 0 or 𝜖 = −1. When
𝜖 = 1 (non-symmetric case) strictly speaking 𝜎𝑒 could be zero but experiments
have shown that the choice 𝜎𝑒 = 1 brings more stability.

6.3 The case of hexahedra with curved faces

From the computer implementation point of view, handling curved faces is more
difficult, in particular because the normal vector to each face n𝑒 is now a function of
its position x. But when the family of meshes is regular, this function does not vary
much and from a theoretical point of view, all the preceding work applies immedi-
ately to regular families of hexahedra with straight edges but non planar faces, with
the possible exception of the inf-sup condition. To establish the inf-sup condition in
this case, we proceed as in [10], namely use Fortin’s Lemma. This amounts to con-
structing a suitable approximation operator 𝑃ℎ ∈ ℒ([𝐻1

0 (Ω)]
𝑑;𝑉 𝐸𝐺

ℎ,𝑘,0), satisfying
for all v ∈ [𝐻1

0 (Ω)]
𝑑,

𝑏(𝑃ℎ(v)− v, 𝑞ℎ) = 0, ‖𝑃ℎ(v)‖𝐸𝐺 ≤ 𝐶|v|[𝐻1(Ω)]𝑑 . (75)

In [10], such an operator is constructed by correcting a Scott–Zhang approxima-
tion operator, say Πℎ ∈ ℒ([𝐻1

0 (Ω)]
𝑑; [𝑀𝑘(𝒯ℎ) ∩𝐻1

0 (Ω)]
𝑑) by means of piecewise

constants,
𝑃ℎ(v) = Πℎ(v) + c(v),

where c(v) is a constant vector in each cell. It is shown in [10] that a sufficient
condition for the equality in (75) is that c(v) satisfy on all faces 𝛾𝑖 of 𝐸 with
interior normal n𝛾𝑖 , ∫︁

𝛾𝑖

c(v) · n𝛾𝑖 =

∫︁
𝛾𝑖

(︀
v −Πℎ(v)

)︀
· n𝛾𝑖 . (76)
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In the case when 𝛾𝑖 is a plane face, (76) reads

c(v) · n𝛾𝑖 =
1

|𝛾𝑖|

∫︁
𝛾𝑖

(︀
v −Πℎ(v)

)︀
· n𝛾𝑖 . (77)

The regularity of the element 𝐸 implies that this system is solvable provided the
maximum number of such faces per element is no more than three in 3-D or two in
2-D and none are opposite faces, in other words, these faces are part of a conical
angle. The situation is the same when 𝛾𝑖 is a curved face and the mesh is regular,
because the normal vector to a face varies little. In this case (77) is replaced by

c(v) · 1

|𝛾𝑖|

∫︁
𝛾𝑖

n𝛾𝑖 =
1

|𝛾𝑖|

∫︁
𝛾𝑖

(︀
v −Πℎ(v)

)︀
· n𝛾𝑖 . (78)

Again, we assume that an element has no more than 𝑑 faces with interior normals
and none are opposite faces. Take the 3-D case of exactly three such faces, say 𝛾1,
𝛾2, 𝛾3. When written in matrix form, (78) reads

Nc(v) = b,

where b is the vector with 𝑖-th component

1

|𝛾𝑖|

∫︁
𝛾𝑖

(︀
v −Πℎ(v)

)︀
· n𝛾𝑖 ,

and the 𝑖-th line of the matrix N is

N𝑖 =
1

|𝛾𝑖|

∫︁
𝛾𝑖

n𝑇
𝛾𝑖
.

Of course, the fact that n𝛾𝑖 are unit normals imply that N is uniformly bounded.
Moreover, the regularity assumption on the family of triangulations implies that
N is nonsingular and its inverse is uniformly bounded. The second part of (75)
follows from this.
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