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Abstract

Interaction of colloidal particle with planar polymer brush im-
mersed into a solvent of variable thermodynamic quality is studied
by numerical self-consistent field method combined with analytical
mean-field theory. The effect of embedded particle on the distribution
of polymer density in the brush is analyzed and the particle insertion
free energy profiles are calculated for variable size and shape of the
particle and sets of polymer-particle and polymer-solvent interaction
parameters. In particular, both cases of repulsive and attractive in-
teractions between particle and brush-forming chains are considered.
It is demonstrated that for large particles the insertion free energy is
dominated by repulsive (osmotic) contribution and is approximately
proportional to the particle volume in accordance with earlier theo-
retical predictions [Halperin, A. et al, Macromolecules 2011, 44,3622].
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For the particles of smaller size or/and large shape asymmetry the ad-
sorption or depletion of polymer from the particle surface essentially
contributes to the insertion free energy balance. As a result, depend-
ing on the set of the polymer-solvent and polymer-particle interaction
parameters and brush grafting density the insertion free energy pro-
file may exhibit complex patterns, i.e., from pure repulsive effective
potential barrier to attractive well. The results of our study allow for
predicting equilibrium partitioning and controlling diffusive transport
of (bio)nanocolloids across (bio)polymer brushes of arbitrary geometry
including polymer-modified membranes or nanopores.
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1 Introduction

Understanding transport and partitioning of nanocolloids and large molecules
in polymeric media, e.g., concentrated solutions, melts, gels, promotes com-
prehension of processes occurring in technological applications (separation,
purification) and living tissues. The principals of selective transport and
partitioning of macromolecules adopted from nature can be successfully ex-
ploited in bioinspired nanotechnology.

For instance, the membranes of bacterial and endothelial cells are deco-
rated by anchored biopolymers (lipopolysaccharides, glycoproteins) that form
brushlike interfacial layers.1–4 Similar structural motif for intrinsically disor-
dered proteins is found inside nucleopores perforating membrane of nucleus.
These brushlike arrays of biopolymers constitute steric penetration barriers
providing selective permeability of globular proteins and macromolecules.5–10

In the realm of medicine, polymer brushes formed by biocompatible hy-
drophilic polymers, e.g. PEG, PMOXA etc. are used for fabrication of
biocompatible non-fouling surfaces11–17 of artificial implants and medical de-
vices, as well as providing stealth properties for nanoscale drug delivery sys-
tems.18–22 In spite of broad use, the mechanisms of interaction (selective
penetration, accumulation or expulsion) of (bio)nanocolloidal particles, first
of all globular proteins, in polymer brushes are still not fully understood.

In particular, balance of steric repulsive and short-range attractive inter-
actions between brush-forming polymers and particles may have an impact on
dependencies of the partition coefficients on the size of the particles and brush
grafting density. There are indications from experiments that some proteins,
e.g. BSA, may exhibit weak affinity to PEG chains and therefore accumu-
late in PEG brushes.23,24 Furthermore, solubility of partially hydrophobic or
thermosensitive brush-forming chains may provide additional control param-
eters for manipulating partitioning and transport of bionanocolloids through
polymer brushes.

Theories of interactions of nanocolloids with planar polymer brushes
were developed in the past decades mostly on the basis of strong stretching
self-consistent field approximation. In solvent-free (dry) brushes, a penalty
for nanoparticle insertion was described in terms of the pressure field act-
ing at nano-object.25 Polymer-soluble nanoparticles smaller than a brush-
determined threshold were shown to disperse in the film to a depth scaling
inversely with particle volume. In solvated brushes penetration of nano-
objects, e.g., small proteins26,27 and ultrathin AFM tips28 invoked short
ranged perturbation of the brush concentration profile, in agreement with
the simulation results.29,30

In the seminal paper by Halperin et al31 a fundamental relation between
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particle insertion free energy and osmotic pressure inside a planar polymer
brush was established. This theory accounted for the thermodynamic quality
of the solvent to quantify the osmotic contribution to the insertion free energy
of nano-object. The latter was proportional to the particle volume, depended
on the particle-solvent interactions, and served as a good approximation for
sufficiently large particles. However, for particles of smaller size (comparable
to polymer density correlation length) such approximation becomes inaccu-
rate. Furthermore, the details of short-range interactions between monomer
units of the brush-forming chains and particle surface are crucially important
and may strongly affect the shape of the insertion free energy profiles and
thus particle transport through the brush.

The aim of the present paper is to study interaction of nanocolloidal
particle with non-ionic polymer brush and calculate the position-dependent
insertion free energy with the account of most relevant interactions, particle
size and shape and brush grafting density. The effect of embedded particle
on the density distribution of polymer in the brush was analyzed as well.
Knowledge of the shape of the free energy versus particle position curves
does not only allow predicting equilibrium distribution of particles between
the brush and solution, but also paths the way to study diffusion of particles
across polymer-modified membranes. Because of the high complexity of the
system, the problem cannot be adequately treated neither analytically, nor
with the aid of direct computer simulations, which would require long compu-
tational times for exploring relevant range of control (thermodynamic solvent
quality for polymers, polymer-particle interaction) and architectural (poly-
mer grafting density, particle size and shape) parameters. Therefore, we em-
ploy molecular realistic self-consistent field modelling which is the most ap-
propriate technique. Specifically, we use the Scheutjens-Fleer self-consistent
field (SF-SCF) lattice method32 in its two-gradient version. The SF-SCF nu-
merical method allows obtaining structural and thermodynamic properties of
complex polymer systems with the accuracy close to that provided by coarse-
grained molecular simulation (Brownian Dynamics, Monte Carlo) techniques,
but with orders of magnitude higher computational efficiency, that is crucial
in sdudies of many-chains systems (e.g. polymer brushes). On the other
hand, this method is free of many approximations (e.g., strong stretching of
polymer chains) unavoidably used by analytical theory of polymer brushes.
The comparison of the obtained numerical results to those derived within
simplified analytical model enables us to rationalize the main features in the
insertion free energy patterns and, at the same time, to estimate accuracy
and identify limits of applicability of the mean-field analytical approach.

The rest of the paper is organized as follows:
We start in Section 2 with brief reviewing principles of analytical the-
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ory of polymer brushes in solvent of arbitrary quality based on analytical
strong-stretching self consistent field (SS-SCF) approximation and formulate
analytical approach for calculating insertion free energy of a particle into the
brush in Section 3. In Section 4 we present results of our numerical calcula-
tions for variable polymer-particle interaction parameter and solvent quality
for the brush-forming chains and confront them to the results derived using
analytical theory. Finally, in Section 5 we summarize our conclusions.

2 Analytical theory of polymer brushes: poly-

mer concentration profile and osmotic pres-

sure

We consider a brush formed by long flexible polymer chains with degree of
polymerization (DP) N and one unit length Kuhn segment grafted by one
end to an impermeable planar surface and immersed into a solvent. The
grafting density is characterized by the area per chain s (or the inverse value
σ). The solvent quality is characterized by the Flory-Huggins parameter χPS
where subscript PS refers to polymer-solvent interactions.

Theory of structural properties of planar polymer brushes formed by non-
ionic polymer chains in solvent of arbitrary thermodynamic quality was de-
veloped in original papers of the authors33–35 where a virial approximation
valid at small volume fraction of monomer units in the brush, φ � 1, was
employed. The virial approximation accounts only for binary and ternary
monomer-monomer interactions in the brush and allows for exploring proper-
ties of relatively sparsely grafted brushes under good or close to theta-solvent
conditions. Below we formulate a more general scheme which is operative
at arbitrary polymer concentration. This allows us to explore the effects
of solvent strength and polymer-particle interactions in a wide range of pa-
rameters, including collapsed in poor solvent brushes with polymer volume
fraction approaching unity, φ ' 1.

Within the analytical strong-stretching self-consistent field (SS-SCF) ap-
proximation the self-consistent molecular potential inside the brush exhibits
a parabolic dependence on the distance z from the grafting surface.

∂f{φ(z)}
∂φ(z)

=
3

2
κ2(Λ2 − z2) (1)

where φ(z) is the profile of volume fraction of monomer units in the brush,
f{φ(z)} is the free energy of interactions in the brush per unit volume, κ is
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a coefficient dependent on the DP and topology of the brush-forming chains
(for linear chains κ = π/2N) and parameter Λ is specified below.

Eq. 1 presumes Gaussian (linear) conformational elasticity of the brush-
forming chains on all the length scales and absence of dead zones proximal
to the grafting surface and depleted of the chain ends. Remarkably eq 1
is applicable irrespectively of the specific type of interactions (functional
form of f{φ(z)}) in the brush. Here we apply the mean field Flory-Huggins
approximation

f{φ(z)}
kBT

= (1− φ(z)) ln(1− φ(z)) +χPSφ(z)(1− φ(z)) + φ(z)(1−χPS) (2)

Combining eqs 1 and 2 we obtain implicit dependence of the polymer
volume fraction in the brush on z as

− ln(1− φ(z))− 2χPSφ(z) =
3

2
κ2(Λ2 − z2) (3)

The cut-off length for polymer volume fraction profile (the brush thick-
ness) D has to be found from the normalization condition∫ D

0

φ(z)dz =
N

s
(4)

The osmotic pressure inside the brush is given by

Π(z) = φ(z)
∂f{φ(z)}
∂φ(z)

− f{φ(z)} =

kBT [− ln(1− φ(z))− φ(z)− χPSφ2(z)] ≈

kBT [(
1

2
− χPS)φ2(z) +

1

3
φ3(z) + ...] (5)

where the last equality corresponds to the virial expansion in terms of φ
valid at φ� 1.

If we define the polymer volume fraction at the edge of the brush, z = D
as φ(D) ≡ φD, then, from the condition of vanishing osmotic pressure at the
edge of the brush, Π(z = D) = 0, we find an equation for φD as a function
of χPS

− ln(1− φD)− φD − χPSφ2
D = 0 (6)

By substituting z = D into eq 3 we find that

Λ2 = D2 − 2

3κ2
[ln(1− φD) + 2χPSφD] (7)
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Figure 1: Cylindrical colloidal particle embedded in a polymer brush,
schematic representation of SF-SCF 2-gradient version implementation with
cylindrical symmetry. Concentric circles on the left side represents grafting
surface (z = 0), the particle center position is denoted as zc, particle diameter
and height are w and h, respectively.

As follows from eq 6, φD = 0 at χPS ≤ 1/2, (i.e., under good or theta-
solvent conditions) and φD ≥ 0 at χPS ≥ 1/2 (poor solvent conditions).
Evidently, under poor solvent conditions φD defined by eq 6 coincides with
the polymer volume fraction in a large globule (precipitate polymer phase).
Then, as follows from eq 7, Λ2 = D2 at χPS ≤ 1/2 and Λ2 ≤ D2 at χPS ≤ 1/2.

3 Free energy of the particle insertion into

the brush: an analytical approach

Without major loss of generality and having in mind implementation of SF-
SCF numerical self-consistent field scheme in its 2-gradient version, we con-
sider the brush with embedded particle which possesses cylindrical symmetry
with respect to the axis perpendicular to the grafting surface (Figure 1).

Let the z-coordinate of the center of the particle be zc. The radius of the
particle is described by the function rc(z

′), where z′ ∈ [zc − h/2, zc + h/2]
and h is the dimension of the particle in the z direction.

If one can neglect gradient in polymer density inside the brush in the z-
direction on the length scale of the order of the particle size, h · |dφ(z)/dz| �
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φ(z), then the insertion free energy (with the reference state of the particle
outside the brush) can be approximated as

∆F (zc) =∆Fosm(zc) + ∆Fsurf (zc) =

Π(zc) · V + γ{φ(zc)} · A
(8)

where

V = π

∫ zc+h/2

zc−h/2
r2c (z

′)dz′ (9)

and

A = 2π

∫ zc+h/2

zc−h/2
[rc(z

′)+
1

2
δ(z′ − (zc − h/2))r2c (z

′)+

1

2
δ(z′ − (zc + h/2))r2c (z

′)]dz′
(10)

are the volume and the surface area of the particle, respectively and γ{φ(zc)}
is the excess free energy per unit area of the particle in contact with polymer
solution of concentration φ(zc).

A more general expression for the insertion free energy which we use in
our numerical calculations is

∆F (zc) = π

∫ zc+h/2

zc−h/2
Π(z′)r2c (z

′)dz′+

2π

∫ zc+h/2

zc−h/2
γ{φ(z′)}[rc(z′) +

1

2
δ(z′ − (zc − h/2))r2c (z

′)+

1

2
δ(z′ − (zc + h))r2c (z

′)]dz′

(11)

Eqs 8, 11 without the second (proportional to the particle surface) term
are equivalent to those derived in ref.31 Importantly, the particle is treated as
a probe, that is, upon evaluating ∆F we use unperturbed profiles of polymer
concentration φ(z) and osmotic pressure Π(z) in the brush (in the absence of
a particle). Moreover, splitting of the insertion free energy into volume and
surface terms is justified only if the particle size is much larger than the width
of the zone of perturbed by the particle polymer density distribution (the
correlation length or adsorbtion layer thickness). As demonstrated below,
a significant deviation between approximate analytical and exact numerical
results are found for small particles.

The insertion free energy ∆F (zc) is directly related to the partition co-
efficient K(zc) = exp(−∆F (zc)/kBT ). The particles can be either expelled
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from the brush, K ≤ 1 (depletion regime) or accumulated in the brush,
K ≥ 1 (absorption regime). The concentration of particles inside the brush
is either small or larger than in the bulk of the solution at K ≤ 1 or K ≥ 1,
respectively.

While the volume contribution to the insertion free energy (the first term
in eq. 8 or 11) is always positive, since Π(φ(z)) ≥ 0, the sign of parti-
cle surface contribution (the second term in eq 8 or 11 proportional to γ)
depends on polymer-particle interactions and can be either positive or neg-
ative depending on the set of interaction parameters, {χPS, χPC , χCS}, and
local concentration of polymer φ(z), i.e γ(z) = γ{χPS, χPC , χCS;φ(z)}. Here
χPS, χPC , χCS describe direct polymer-solvent (PS), polymer-colloid (PC)
and colloid-solvent (CS) interactions, respectively, within employed below
discrete lattice model. Without loss of generality we set χCS = 0. Then
physically relevant control parameter describing polymer-colloid interaction
is

χads = χPC − χPS(1− φ) (12)

(free energy change upon replacement of a contact of monomer unit with
solvent by a contact with the surface).

If the surface of the particle is repulsive (χads ≥ 0) or even weakly at-

tractive (χ
(crit)
ads ≤ χads < 0) for polymers, then, because of imposed by the

impermeable surface steric constraint on the available set of polymer con-
formations, polymer is depleted from the particle surface and γ ≥ 0. At
χads = χ

(crit)
ads conformational entropy losses due to presence of the surface

and free energy gain upon monomer-surface contact cancel each other and
γ vanishes.32,36–38 The value of χ

(crit)
ads depends on the local properties of the

lattice where polymer chain performs its random walk. For the simple cubic
lattice χ

(crit)
ads = 6ln(5/6). Finally, at χads ≤ χ

(crit)
ads polymer is sufficiently

strongly attracted to the surface of the particle and forms enriched by poly-
mer adsorbed layer entrapping the particle, and γ ≤ 0.

The difference χads−χ(crit)
ads serves as a universal parameter characterizing

switch between adsorption and depletion regimes at vanishing polymer con-
centration. However, as it will be confirmed below by SF-SCF calculations,
γ(z) varies throughout the brush and exhibits more complex dependence on

φ(z) than it follows from eq 12. Furthermore, for small particles χ
(crit)
ads and

γ may exhibit dependence on the surface curvature.
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Figure 2: Polymer density (a) and osmotic pressure profile (b).
Strong stretching self-consistent approximation (ASCF) and SF-SCF numer-
ical results at χPS = {0, 0.5, 0.6, 0.8} for N = 1000, σ = 0.02

4 Particle insertion into the brush: the SF-

SCF numerical results

4.1 Impact of an embedded particle on the brush struc-
ture

For numerical SF-SCF calculations of the particle insertion a polymer brush
with a degree of polymerization N = 1000 and the grafting density of
σ = 0.02 has been selected. The embedded particle has a cylindrical shape,
with the height h and the diameter of the base w. The symmetry axis of
the cylindrical particle is directed perpendicular to the grafting surface and
coincides with the z-axis of our cylindrical coordinate system. (Figure 1).

As shown in Figures 2a and 2b the profiles of polymer density φ(z) and
the profiles of osmotic pressure Π(z) calculated analytically (SS-SCF) and
numerically (SF-SCF) for particle-free brush at different values of χPS rang-
ing from good (χPS = 0) to theta- (χPS = 1/2) and poor (χPS ≥ 1/2)
solvents almost perfectly match each other. A smoother decay in the nu-
merically calculated density profiles near the edge of the brush are due to
non-stretched terminal segments of the chains that exhibit Gaussian fluctu-
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ations not accounted for in the SS-SCF scheme. For plotting ”numerical”
osmotic pressure profiles Π(z) presented in Figure 2b we used analytical eq
5 where numerically calculated by SF-SCF density profiles φ(z) were substi-
tuted. A contraction of the brush caused by decreasing solvent strength is
accompanied by an increase in polymer density inside the brush and concomi-
tant decrease in the osmotic pressure. A zone of negative osmotic pressure
appearing under poor solvent conditions (χPS ≥ 1/2) close to the edge of the
brush is a manifestation of positive surface tension at the interface between
collapsed polymer brush and poor solvent.39

Two-gradient SF-SCF calculations of a polymer brush with an embedded
particle allows obtaining detailed information about spatial polymer density
distribution in the brush. In Figures 3, 4 spatial polymer density diagrams
and profiles are presented for the brush with an embedded particle.

An embedded particle causes perturbation of the polymer density distri-
bution both in the directions perpendicular (z−axis) and parallel (x−axis)
to the grafting surface, as one can see it as a halo of different color around
the particle in Figures 3 or wells in Figure 4.

Let us take a closer look on the polymer density depletion and enrichment
regions. To examine disturbances in polymer density a volume (highlighted
with a red borders rectangle in upper right frame of Figure 3a) proximal to an
embedded particle replotted in Figure 3b in a different scale. The sequence
which diagrams are presented in corresponds to the ones on Figure 3a and
follows the next order χPC = [[−0.5,−0.75][−1.0,−1.25]].

The diagrams of Figure 4 show the difference between an unperturbed
particle-free polymer brush and a polymer brush with an embedded particle
φ − φ∗, where φ∗ is the polymer concentration of the corresponding unper-
turbed polymer brush. The difference φ − φ∗ is color-coded with diverging
color scale, where blue color means polymer depletion, red color means an ex-
cess of polymer, while white means that the polymer concentration remains
unchanged.

In Figure 4 the polymer concentration profiles in z- (Figure 4a, 4b) and
in x- directions (Figure 4c) are plotted. (The x-axis perpendicular to the
z-axis z has its origin in the particle center zc). Figure 4a illustrates polymer
concentration of an unperturbed brush φ∗(z) and the ones with an embedded
particle of the same size and position but different affinity to the polymer
(χPC = {−0.5,−0.75,−1.0,−1.25}). To make the profiles in the vicinity of
the particle easier to trace we present Figure 4b as a zoomed version.

Note that the polymer concentration profiles in the lateral x-direction in
unperturbed brush (Figure 4c) has the shape of a straight horizontal line,
meaning no disturbances in the brush when no particle is introduced.

In the case of weakly attractive particle χPC = −0.5 (the upper left
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Figure 3: Perturbation of the polymer density in a brush caused by an
embedded particle for zc = 40, h = w = 10, χPS = 0.5, N = 1000,
σ = 0.02, at different polymer - colloid interaction parameters χPC =
{−0.5,−0.75,−1.0,−1.25}
(a) - general view of the polymer density distribution. Polymer density is
mapped with blue to yellow palette. Black contour lines trace selected poly-
mer density values. Red viewport highlights space proximal to the embedded
particle.
(b) - proximal polymer density change (φ− φ∗), where φ∗ - polymer density
of an unperturbed brush.)
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Figure 4: Perturbation of the polymer density profiles in a brush with em-
bedded particle in lineal and lateral directions for zc = 40, h = w = 10,
χPS = 0.5, N = 1000, σ = 0.02, at different polymer - particle interaction
parameters χPC = {−0.5,−0.75,−1.0,−1.25} and corresponding polymer
volume fraction profile in unperturbed brush (φ∗)
(a) - polymer density profile φ(z) in lineal direction
(b) - polymer density profile φ(z) in lineal direction, zoomed view
(c) - polymer density profile in lateral direction φ(x)z=zc

13



frame in Figures 3a, 3b and blue trace in Figure 4), there is pronounced
depletion of the polymer near the embedded particle, which can be seen as
the blue halo in Figure 3b. In contrast, around strongly attractive particles
χPC = −1.0,−1.25 (the frames in the second row in Figures 3a,3b and the
green and red traces in Figure 4), polymer density is increased in the vicinity
of the embedded particle. Note the red halo around the particle in the
corresponding frames of Figure 3b.

The behavior of polymer density in the vicinity of the particle in case of
χPC = −0.75 is more complex (see the diagram with the red borders rectangle
in Figure 3a and the diagram with red axis spines Figure 3b or the orange
color trace in Figure 4). Since χPS = 0.5 is chosen for these calculations,
the value of χPC = −0.75 at zc = 40 corresponds approximately to critical
adsorption conditions, i.e., χads ≈ χcrit, so that γ(zc) ≈ 0. Despite of the
vanishing surface term in free energy change ∆Fsurf ∼ γ ≈ 0, the weak
depletion and enrichment regions near the particle are observed.

4.2 Insertion free energy profiles: good solvent condi-
tions, varied polymer-particle interactions

In Figure 5 we present particle insertion free energy profiles ∆F (zc) normal-
ized by the particle volume V = πhw2/4, for particles with variable dimen-
sions w = h = {4, 6, 8, 10, 12}, and different strengths of polymer-particle
interaction, χPC = {−0.5,−1.1,−1.5}. The solvent is good (athermal) for
polymers, χPS = 0. The case χPC ≥ 0 would corresponds to pure repulsive
polymer-particle interactions, whereas at χPC ≤ 0 a short-range attraction
operates between monomer units of the brush-forming chains and particle
surface.

As a reference line, the osmotic pressure Π(zc) in the particle-free brush
is also plotted in Figure 5. It is expected that for large particles or/and
vanishing interfacial tension at the particle-polymer solution interface, γ ≈ 0,
the normalized insertion free energy profiles ∆F (zc)/V should match Π(zc)
curves (see eq 8).

As we can see from Figure 5 in the case of weakly attractive, χPC = −0.75
(or, similarly, repulsive) particle, with χads ≥ χ

(crit)
ads , the normalized inser-

tion free energy ∆F (zc)/V curves go systematically beyond Π(zc) because of
excess positive free energy contribution due to depletion layer formed by the
polymer around the particle, leading to γ ≥ 0. Hence, even without polymer
adsorption on the particle, the proportionality of the insertion free energy to
the particle volume is violated for sufficiently small particles.

In the case of strongly attractive particle, χPC = −1.5, (χads < χ
(crit)
ads )
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the ∆F (zc)/V curves go beneath Π(zc), since γ ≤ 0 and the surface con-
tribution to the insertion free energy is negative. Remarkably, for small
particles regions with negative total insertion free energy appears, as the
surface contribution outbalances the volume contribution. Which is corre-
sponds to spontaneous particle absorption into such regions of the brush and
increased concentration of particles compared to the bulk of the solution, as
the partition coefficient becomes K(zc) ≥ 1.

As expected, the larger the particle, the smaller its surface-to-volume,
A/V ratio, the closer the ∆F (zc)/V curves to the osmotic pressure profile
Π(zc) are.

The middle drawing of Figure 5 corresponds to the case when χads ≈
χPC ≈ χ

(crit)
ads (we remind that here χPS = 0) and the surface contribution

to free energy fairly vanishes, i.e. γ ≈ 0. In this case the normalized free
energy ∆F (zc)/V curves are close to osmotic pressure profile regardless of

the particle size. Indeed, as follows from eq 12 at χPS = 0, χads − χ(crit)
ads is

independent of polymer concentration and can be tuned to zero throughout
the brush. For any other arbitrary selected value of χPS 6= 0 there is no
single value of χPC which would assure that χads − χ(crit)

ads = 0 and γ(zc) = 0
∀zc ∈ [0, D] and ∆F (zc)/V and Π(zc) profiles match each other in the whole
zc range.

4.3 γ(φ(z)): Impact of polymer-particle interface

Obviously, γ = γ(z) essentially depends not only on the set of χ-parameters,
but also on local polymer concentration φ(z). The value of γ{χPS, χPC ;φ(z)}
can be evaluated from numerical SF-SCF data by subtracting the volume
contribution from the calculated insertion free energy, using eq. 11

γnum(zc) =
∆F (zc)−∆Fosm(zc)

A
=

∆F (zc)

A
− π
A

∫ zc+h/2

zc−h/2
Π(z′)r2c (z

′)dz′ (13)

where A = π
2
(w2 + 2wh) is the particle surface area.

We remind that calculated according to eq 13 value of γ{χPS, χPC ;φ(z)}
should be considered as an apparent one because the width of the interface
between the particle and surrounding polymer solution (the brush interior)
in our calculations is comparable to the particle dimensions.

In Figure 6 we present γ as a function of χPC calculated for selected
values of χPS and different particle position zc inside the brush using SF-
SCF numerical data and eq. 13. The observed trends are consistent with
expected dependence γ ∼ (χads−χ(crit)

ads ) ≡ χPC−χPS(1−φ(zc))−χ(crit)
ads : All
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Figure 6: Excess of surface free energy per unit particle area γ(zc) as a
function of χPC at different particle center positions zc, at different solvent
regimes χPS = {0.0, 0.3, 0.5} for particle size h = w = 10, N = 1000,
σ = 0.02.
Positions zc are shown in the legend. Red circe highlights common intersec-
tion point.

the curves are approximately linear and cross the horizontal axis (crossover

from adsorption to depletion regimes) at χPC = χPS(1−φ(zc))+χ
(crit)
ads . In the

case of athermal solvent, χPS = 0, all the curves corresponding to different
values of zc (and thus to different local polymer concentrations) cross the

horizontal axis in the same point χPC ≈ χ
(crit)
ads (marked with the red circle in

Figure 6). For χPS ≥ 0 the value of χPC corresponding to inversion of sign
of γ gets systematically smaller as zc decreases (i.e. φ(zc) increases). This
observation illustrates the fact that even if critical adsorption conditions are
met at some distance zc from the surface, they are violated for other particle
locations in the brush. Notably, the slope of γ(χPC , zc) curves in Figure 6
slightly increases upon a decrease in zc, that is, upon an increase of local
polymer concentration φ(zc) inside the brush.

In Figure 7 we present apparent (calculated by eq 13 from numerically
evaluated insertion free energy) values of γ at different solvent strength (cor-
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responding to different color of the points), different values of the parameter
χPC of polymer-particle interactions and different particle position zc in the
brush. In the 3D plot γ is plotted as a function of χads = χPC−χPS(1−φ(zc)
and local polymer concentration φ(zc).

Columns of points with the same {χads, φ} correspond to different particle
size. Closer inspection indicates that the points get closer to each other upon
an increase in the particle size, that is, weakening of the effect of the particle
curvature and approaching of the apparent values of γ calculated from eq.
13 to real interfacial tension between polymer solution with concentration φ
and solid particle.

The set of obtained data points was fitted by the analytical function

γ(χads, φ) = (χads − χ(crit)
ads )(a1φ+ a2φ

2) (14)

where χads = φPC−φPS(1−φ) and a1, a2 are numerical fitting parameters
and we neglected higher order terms in φ in the last bracket in eq 14. The
rough estimate of a1 and a2 are 0.16 and 0.08, respectively.

As follows from eq. 12 and one can see in Figure 7, at sufficiently low
polymer concentration in the brush, φ � 1, the value of γ is controlled
by the parameter χads(φ = 0) = χPC − χPS. Hence, a decrease in χPC
or/and an increase in χPS result in stronger polymer affinity to the particle
surface and smaller net free energy penalty for the particle insertion into the
brush. In the first approximation, the sign of γ is controlled by the difference
χads − χ(crit)

ads ≈ χads(φ = 0)− χ(crit)
ads ≈ χPC − χPS − χ(crit)

ads .
Note that, dγ

dχads
= (a1φ + a2φ

2) so the slope of γ(χads) increases with
polymer concentration, which can be seen as a counter-clockwise rotation of
the grey surface around the χads = χ

(crit)
ads line. Thus the sign of γ remains

the same for χads(φ = 0) and χads at arbitrary φ or z. Since χads is a function
of φ too - the aforesaid approximation is invalid for arbitrary φ especially in
the poor solvent regime with χPS > 0.5. With higher values of χPS and φ
the approximation gets off, underestimating γ.

The region with φ(z)� 1 in poor solvent regime is either absent or has a
very narrow interval of z, φ(z) profile according to ASCF predictions is not
continuous and has a sharp edge, numerical results confirms this prediction
exhibiting very steep change in polymer concentration at the polymer brush’s
edge. In Figure 7 this caused the absence of numerical results for χPS = 0.6
in low concentration range.

Having γ(χads, φ) calculated, we can evaluate insertion free energy as
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Figure 7: The dependence of γ and γnum on {χads, φ(z)} at different sol-
vent regimes χPS ∈ [0.0, 0.6] and particle affinity to the polymer χPC ∈
[−1.5,−0.5] for N = 1000, σ = 0.02
SF-SCF numerical results (scatter) and corresponding analytical model sur-
face. Green line corresponds to γ = 0
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∆F (χPS, χPC , φ{zc}) =

π
w2

4

∫ zc+h/2

zc−h/2
Π(φ(z′))dz′ +

π

2
(2wh+ w2)γ(χPS, χPC , φ{zc})

(15)

where the osmotic pressure Π(φ(z)) is given by eq 5 and we use the poly-
mer density profile φ(z) calculated by SF-SCF method for the particle-free
(unperturbed) brush.

In Figure 8 we compare theoretically calculated (by eq 15) insertion free
energy (red trace) with SC-SCF numeric results (blue scatter). The ana-
lytically calculated osmotic term ∆Fosm(zc) and interfacial term ∆Fsurf (zc)
are presented by grey dashed line and grey dotted line, respectively. The
results are presented for selected values of χPS = {0.0, 0.3, 0.6} and χPC =
{−0.5,−1.0,−1.5} for a cylindrical particle with dimensions h = w = 10.

The solvent quality is decreasing from the left (athermal solvent, χPS = 0)
to the right (down to moderately poor solvent, χPS = 0.6).

According to ASCF, for the poor solvent regime χPS > 0.5 the polymer
concentration profile became a step-like function, with φ(z = 0) 6= 0. Using
ASCF approximation, polymer concentration for a brush with N = 1000
and σ = 0.02 at χPS = 0.6 has been evaluated to be φ(z = 0) ≈ 0.325,
φ(z = D) ≈ 0.245 where D ≈ 66.2, which can also be seen in the Figure
2. In Figure 8 the right panel correspond to the poor solvent regime, thus
covers only the cases where φ /∈ [0, φ(z = 0)]. Note that χads ≈ χads(φ = 0)
can not deliver right result and more rigorous eq. 12 has to be used.

The polymer-particle contact attraction energy is increasing from up to
down. The adsorption strength |χads| = |χPC − χPS(1− φ)| for a given φ is
thus increasing from upper left to lower right corner.

In the upper line χPC = −0.5 and at any solvent quality χads ≥ χ
(crit)
ads ,

that is, there is a depletion layer around the particle. For χPS = 0.6 for
∀φ ∈ [φ(z = D), φ(z = 0)] γ > 0. As a result, γ ≥ 0 and both, the
osmotic and the surface contributions to ∆Fzc are positive though decreasing
in magnitude upon a decrease in solvent strength.

The middle line corresponds to moderately strong polymer colloid at-
traction, χPC = −1.0. At χPS = 0 and χPS = 0.3 nearly critical adsorption
conditions, χads ≈ χ

(crit)
ads are fulfilled and surface contribution ∆Fsurf ∼ γ

to the free energy fairly vanishes. The net free energy is dominated by the
osmotic term. Under poor solvent conditions , χPS = 0.6 adsorption of poly-
mer on the particle takes place, because χads = χPC − χPS(1 − φ) ≤ χ

(crit)
ads ,

∀φ ∈ [φ(z = D), φ(z = 0)], γ < 0 and, as a result, negative surface free
energy overcompensate weak positive osmotic contribution: the free energy
balance upon particle embedding into the brush is negative.
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The lower line in Figure 8 corresponds to strong polymer-particle attrac-
tion, χPC = −1.5, that is, polymer is adsorbed onto the particle surface,
χads ≤ χ

(crit)
ads irrespectively of the solvent strength. Under good solvent con-

ditions, χPS, the left panel, the insertion free energy is dominated by osmotic
repulsion and is positive at any particle position, except the very edge of the
brush, where polymer concentration is low and osmotic repulsion is insuffi-
cient to overcome gain the free energy due to adsorption of terminal segments
of the brush forming chains onto the particle: As a result, a shallow potential
well emerge at the periphery of the brush. Upon a decrease in the solvent
strength (an increase in χPS) the adsorption strength increases whereas the
magnitude of osmotic repulsion decreases. As a result, the minimum in the
insertion free energy becomes more pronounced and extends deeper into the
brush. Only in the pre-surface region with higher polymer concentration the
osmotic repulsion dominates over attractive surface term. Eventually, under
poor solvent conditions (lower right corner of the Figure), osmotic contribu-
tion is small whereas adsorption strength is large so that ∆F (zc) is negative
throughout the brush, which implies spontaneous accumulation of particles
in the brush due to high polymer-particle affinity; the osmotic repulsive term
∆Fosm ≥ 0 under these conditions is negligible ∀z ∈ [0, D].

Altogether, Figure 8 demonstrates good quantitative agreement between
insertion free energy profiles ∆F (zc) obtained by exact numerical SF-SCF
calculations and by approximate analytical approach.

4.4 Effects of particle size and shape

As discussed above, in the cases of inert or weakly attractive for polymer
segments particle, both terms in the insertion free energy are positive and
∆F (zc) monotonously grows upon a decrease in zc (deeper embedding of

the particle into the brush). If χads ≤ χ
(crit)
ads and γ ≤ 0, then the short-

range attraction operating between polymer segments and the particle leads
to (partial) cancellation of the osmotic penalty for the particle insertion into
the brush. However, for large particle the osmotic contribution, which is
proportional to the particle volume, remains dominant even if the brush-
forming chains do adsorb onto the particle surface, γ ≤ 0.

In Figure 9 we plot ∆F/V as a function of χads at constant zc for varied
particle volume V (the case of d = h) and varied solvent strength.

The osmotic pressure Π(φ(zc) at given distance z = zc is controlled by
grafting density σ, degree of polymerization N and the solvent strength χPS.
Hence, for a given particle position the osmotic pressure is a function of χPS,
which is depicted by horizontal lines on Figure 9.
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Figure 8: Apparent insertion free energy ∆F on zc at χPS = {0.0, 0.3, 0.6}
and χPC = {−0.5,−1.0,−1.5} for N = 1000, σ = 0.02, h = w = 10.
SF-SCF numerical results (scatter) and analytical model (red line). By gray
dashed and dotted lines the osmotic, ∆Fosm(zc) and the surface, ∆Fsurf (zc),
contributions to the analytically calculated free energy are depicted.
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The normalized by the particle volume insertion free energy then can be
approximated as

∆F (zc, χPS, χPC)

V
≈ Π(zc, χPS) + γ(zc, χPS, χPC)

A

V
(16)

in the limit of large particles A
V
→ 0, thus

∆F (zc, χPS)

V
≈ Π(zc, χPS) (17)

As the particles get bigger the contribution related to the particle surface
have less impact on the overall apparent insertion free energy. In Figure 9 we
see that the slope of SF-SCF numerical results decreases with an increasing
particle volume. For sufficiently big particles the curves are expected to
collapse to horizontal lines Π(zc, χPS).

The ∆F (zc) curves may acquire more complex shape for adsorbing poly-
mer particles, γ ≤ 0, with smaller volume-to-surface ratio, that is for suffi-
ciently small and asymmetric (h� d or d� h) particles.

In Figure 10 we present ∆F (zc) curves for adsorbing polymer particles
with constant volume and varied ratio d/h for γ ≤ 0.

Intuitively it is expected that an increase in A/V ratio would cause sur-
face term in free energy ∆Fsurf to grow in magnitude proportional to the
particle surface A, while osmotic term proportional to the particle volume
remains constant. So the curves should go systematically beneath the os-
motic pressure profile in a manner, that the higher value of A is, the lower
the corresponding curve goes, since γ ≤ 0. Thus we should have observed
the next order in which all the curves lie in Figure 10: the particle with
h = 8, w = 8 would be the closest to Π(z)/kBT profile, having the smallest
surface; the particle with h = 2, w = 16, on the other hand, would be the
lowest one.

As we can see Figure 10 SF-SCF numerical results evidence more complex
behavior of the ∆Fzc as a function of the particle shape. As expected, the
insertion free energy for ”cigar-like” particle (h = 32, w = 4) is systematically
lower than for a symmetric (h = 8, w = 8) particle with the same volume
because of larger surface area A for the former one: the minimum in ∆F (zc)
is shifted towards center of the brush and gets deeper. However, the profile of
the insertion free energy ∆F (zc) for the disk-like particle (h = 2, w = 16) is
going beyond that for the symmetric particle, particularly in the inner denser
part of the brush in spite of larger surface area of the disk. This effect can
be attributed to stronger perturbation of conformations of the brush-forming
chains upon embedding of the disk-like particle in quanched orientation with
the base parallel to the grafting surface. A proper account of rotational
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Figure 11: Apparent insertion free energy change ∆F on zc at σ =
{0.01, 0.015, 0.02, 0.025, 0.03} and χPC = {−0.5,−1.5} for w = h = 10,
χPS = 0.3 and N = 1000. SF-SCF numerical results (connected dots) and
analytical model (dashed lines). Weak adsorbing particles (χPC = −0.5) on
the left and strong adsorbing particles (χPC = −1.5) on the right

diffusion may lead to systematically lower free energy of the disc-like particle
penetrating into the brush.

4.5 Effects of grafting density

Evidently, an increase in grafting density leads to both an increase in the
brush thickness and (under good and theta-solvent conditions) to an increase
in the polymer concentration in the brush. As soon as polymer density φ(zc)
affects in a different ways the osmotic and to the surface parts of the insertion
free energy, we may expect that increasing grafting density may affect not
only the extension and the magnitude, but also the shape of the insertion
free energy ∆F (zc) profiles.

The result of SF-SCF numerical calculations for varied grafting density σ
compared to the predictions of the analytical model presented in Figure 11.

As expected, for non-adsorbing polymer particles, the magnitude of ∆F (zc)
progressively increases and the onset of the brush-particle repulsion is shifted
to larger zc (due to increasing brush thickness) upon an increase in grafting
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density.
On the contrary, in the case of polymer-adsorbing (χads ≤ χ

(crit)
ads particles,

at large grafting densities pronounced peripheral minimum and proximal
to the grafting surface maximum are observed. A decrease in the grafting
density leads to a significant decrease in the maximum magnitude (and its
eventual disappearance) and simultaneous deepening and widening of the the
peripheral minimum in the insertion free energy profiles.

5 Discussion and conclusions

We have used self-consistent field SF-SCF numerical method to study in-
sertion of a (nano)colloidal particle into a polymer brush. The effect of
embedded particle on the polymer density distribution in the brush and the
free energy penalty (or gain) upon particle insertion into the brush were an-
alyzed. The latter controls equilibrium partitioning of particles between the
brush and surrounding solution.

The position-dependent insertion free energy of the particle in the brush
was analyzed as a function of (i) thermodynamic quality of the solvent for
the polymer; (ii) short-range polymer-particle attraction/repulsion; (iii) par-
ticle size and shape; (iv) grafting density of polymer chains. The effect of
embedded particle on the density distribution of polymer in the brush was
analyzed as well.

The obtained by numerical SF-SCF method insertion free energy profiles
were systematically compared to those calculated within approximate analyt-
ical scheme. The latter was developed using strong stretching self-consistent
field theory of polymer brushes and is based on the assumption that the in-
sertion free energy can be decoupled into two contributions proportional to
the partial volume and partial surface, respectively. This decoupling scheme
is asymptotically exact for large particles embedded in quasi-infinite reservoir
of polymer solution. However, it can serve as a quantitatively reasonable ap-
proximation even for small particles inserted into finite-size brush considered
here.

The free energy term ∆Fosm proportional to the product of particle vol-
ume and local osmotic pressure is always positive and provides repulsive
contribution to the net free energy balance. It grows upon increasing solvent
strength and grafting density. For sufficiently large particles this term is
always the dominant one. However, for the particles of small size and thus
smaller surface-to-volume ratio the surface-related contribution ∆Fsurf may
be comparable and even outperforming the volume term. As a result, in
the case of short-range attractive interactions between polymer chains and
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the particle surface the net insertion free energy may become negative. We
remind that for small particles splitting of the free energy into volume and
surface controlled terms is ambiguous and can serve only as an approxima-
tion.

Depending on the sign of ∆F and shape of insertion free energy profile,
different scenario of particle exclusion from or accumulation in the brush may
take place.

If the particles are ”inert” or weakly adsorbing for polymer chains, the
insertion free energy profile has a shape of a potential barrier with the height
increasing towards grafting surface. Remarkably, both the width (extension)
and the magnitude of the barrier can be efficiently controlled by solvent
strength for the brush-forming chains and decrease upon a decrease in the
solvent strength. At given solvent strength the insertion free energy grows
upon an increase in the grafting density, but is relatively insensitive to the
DP of the brush-forming chains (the latter parameter affects primarily the
width of the barrier). Hence, an increase in either grafting density or/and in
solvent strength lead to exclusion of particles from the brush. This is a target
in application of water-soluble polymer brushes in prevention of non-specific
protein adsorption and design of antifouling surfaces.

The short-range attractive interactions between the particle and polymer
chains may not only reduce the free energy penalty for particle insertion into
the brush and lower the potential barrier, but also qualitatively change the
insertion potential profile. The latter may acquire non-monotonic shape and
exhibit local minima at the periphery of the brush followed by a repulsive
barrier close to the grafting surface. The height of this barrier decreases upon
increasing polymer-particle attraction energy or/and decreasing grafting den-
sity. In this case instead of exclusion, the particles will be accumulated inside
the brush. Hence, our theory explains maximum in the dependence of ab-
sorbed by the brush number of nanoparticles on the brush grafting density,
as observed in experiments.40,41

As demonstrated above, the shape of the ∆F (z) curves can be tuned not
only by solvent strength or polymer-particle affinity, but also by changing
surface-to-volume ratio which depends on the size and shape asymmetry of
the particles. This allows, for example, separating particles with respect to
their shape.

We remind that within our theory we disregard either direct or indi-
rect (by perturbation of the structure of the brush) interactions between the
particles localized inside the brush. Hence, this theory is applicable at suffi-
ciently low particle concentration inside the brush which is usually the case
for pure repulsive shape of ∆F , though may be violated upon accumulation
of particles in the brush.
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If the brush is tethered to a (semi) permeable membrane, tuning of the
width and shape of the barrier by changing solvent strength may allow con-
trolling permeability of the polymer-modified membrane for particles. Ob-
tained in this work results allow us to study quantitatively diffusion of par-
ticles across membrane-attached polymer brushes that will be in the scope
of the forthcoming publication. Furthermore, because the developed in the
present paper scheme enables calculating the insertion free energy as a func-
tion of local polymer concentration, solvent strength and polymer-particle
interaction parameter, it can be further applied to analysis of partitioning
and diffusion of nanoparticles in polymer brushes of more complex architec-
tures, e.g., in polymer-modified nanopores.
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