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We investigate the magnetocaloric effect obtained by the rotation of a magnetic field applied to an
exchange-coupled multilayer system composed of two different ferromagnetic (FM) materials. We
specifically consider a system in which the two FMs have perpendicular uniaxial anisotropy axes and
utilise conditions which yield a reorientation of the total magnetization when compensation between
the anisotropies of the two layers occurs. We calculate the consequent entropy change associated
with the ”artificial” reorientation. By using known parameters from MnBi and Co we predict an
entropy change of ∆s = 0.34 Jkg−1K−1 for perfect coupling. Lastly, we study the behavior of the
multilayer under a rotating magnetic field via a micromagnetic model. When the layer thicknesses
are of the order of the local domain wall width, the magnetic field-induced entropy change can be
obtained with magnetic fields one order of magnitude lower than in the uncoupled case.

I. INTRODUCTION

The magnetocaloric effect (MCE) is the thermody-
namic response of a material to a change in the level of
an applied magnetic field. It is quantified in terms of an
isothermal entropy change, ∆s and an adiabatic temper-
ature change, ∆Tad and was first observed by Weiss and
Piccard in 1917 [1]. A resurgence of interest in the mea-
surement and application of the MCE has resulted from
the more recent discovery of giant MCEs in a range of
materials with first order magnetic phase transitions [2].
In almost all of those cases, the MCE is associated with
the ordering or disordering of magnetic spins.

However, the magnetocaloric effect (MCE) also has an
additional contribution from the magnetic anisotropy en-
ergy [3]. Even if the entropy change is not high with re-
spect to other magnetocaloric materials [4], this fact cre-
ates an interesting possibility for magnetocaloric cooling
since the thermal effects are generated by simply turning
a magnetic field with constant amplitude [3]. The magne-
tocaloric effect associated with a spin reorientation tran-
sition has been observed in hexagonal ferrites [5–8] and
in compounds with rare earths such as Er2Fe14B [9, 10]
and NdCo5 [11]. In this paper we investigate the pos-
sibility of creating an artificial spin reorientation by ex-
change coupling of two ferromagnetic materials with uni-
axial anisotropies oriented in perpendicular directions.

For uniaxial anisotropy, the Gibbs free energy density
of a magnetic material can be expressed as:

gL(T,H; θ) =K1(T ) sin2 θ

− µ0Ms(T )
(
H‖ cos θ +H⊥ sin θ

) (1)

whereK1 is the anisotropy constant, θ is the angle formed
by the magnetization vector with the anisotropy axis, Ms

is the saturation magnetization and H‖ and H⊥ are the
component of the field parallel and perpendicular to the
magnetization. The entropy is given by the expression

s = −∂gL(H,T ; θeq)

∂T
(2)

where θeq is given by the minimization of the energy by
the conditions ∂gL/∂θ = 0 and ∂2gL/∂θ

2 > 0. The en-
tropy change is then

∆s = −dK1

dT
sin2 θeq + µ0

dMs

dT

(
H‖ cos θeq +H⊥ sin θeq

)
(3)

The term proportional to dMs/dT describes the contri-
bution associated with ordering or disordering of mag-
netic spins, while the term proportional to dK1/dT
is an additional contribution related to the magnetic
anisotropy energy. The microscopic origin of the
term proportional to dK1/dT has to be found in the
anisotropic magnetization mechanism [12]: the spin sys-
tem is more disordered (high entropy state) when the
magnetization points along an hard direction. A par-
ticularly interesting case is when K1 is positive and the
magnetic field is applied parallel (‖) or perpendicular (⊥)
to the easy axis [9]. We have for (‖):

∆s(H‖) = µ0
dMs

dT
H‖ (4)

and for (⊥)
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∆s(H⊥) = −
(
dK1

dT
− µ0

dMs

dT
HAN

)(
H⊥
HAN

)2

(5)

for H⊥ < HAN and

∆s(H⊥) = −dK1

dT
+ µ0

dMs

dT
H⊥ (6)

for H⊥ > HAN where HAN is the anisotropy field
HAN = 2K1/µ0Ms. At H⊥ < HAN the entropy change
depends on the difference dK1/dT−µ0(dMs/dT )HAN . If
the temperature derivatives of the saturation magnetiza-
tion, dMs/dT , and of the anisotropy constant, dK1/dT ,
both have the same sign, the resulting MCE under al-
ternating field will be the difference of the two contri-
butions giving no possibility to exploit the anisotropy
effect. However, at magnetic fields above the anisotropy
field, and for a magnetic field rotation from (⊥) to (‖)
the term dMs/dT is eliminated and only the anisotropy
contribution remains:

∆s(H‖)−∆s(H⊥) =
dK1

dT
(7)

When looking for relevant materials, one has to con-
sider that the deviation from the easy axis must be ob-
tained by not too large fields, (i.e. small with respect
to HAN ). This situation naturally occurs in materials
with a spin reorientation transition in which the main
anisotropy constant K1 crosses zero at the spin reorien-
tation temperature, T = TSR. As we describe in the
next section, our model of an artifical SRT in a ferro-
magnetic multialyer requires us to find conditions on the
anisotropy properties of the two layers such that the over-
all anisotropy of the multilayer vanishes at a particular
temperature.

The remainder of this article is organised as follows:
in section II we describe our model of a system of two,
magnetically hard ferromagnetic layers with perpendicu-
lar anisotropy axes, and make a prediction of the magni-
tude of the rotating field MCE if MnBi and Co are used
as the two layer materials. Results of the micromagnetic
model of exchange coupling are given in section III and
conclusions are drawn in section IV.

II. ARTIFICIAL REORIENTATION MODEL

The field of thin film spin reorientation (SRT) has been
explored widely, albeit not with a magnetocaloric moti-
vation. SRT studies have included those of ultrathin fer-
romagnetic films, where film thickness, temperature or
magnetic field can be used to drive a transition from out-
of-plane to in-plane magnetisation [13]. Theoretical work
predicted that a ferroelectric layer be used to provide

electrical switching of the magnetisation of a neigbour-
ing ferromagnetic layer, via SRT [14] and this concept has
been demonstrated in Cu/Ni multilayers on BaTiO3 [15].

Our focus is on the magnetocaloric properties of a lay-
ered system in which the SRT is of a different physical
origin to that found in ultrathin ferromagnetic films. We
consider a multilayer stacked in the x-direction in which
two ferromagnetic materials A and B both have uniaxial
anisotropy but perpendicular orientations of their easy
axes in the y − z plane. As a specific case we consider
material A with an easy axis directed along z and mate-
rial B with an easy axis directed along y perpendicular
to z. Considering uniaxial anisotropy to the first order,
we have that the anisotropy energy of A is K1A sin2 θA
while for B is K1B sin2(θB − π/2) where θA and θB are
the angle between the magnetisation of the A- or B-layer
and their respective easy axes. For independent layers
(without interlayer exchange) the free energy density is
the sum of the two individual layer energies:

fL = vAK1A sin2 θA + vBK1B sin2(θB − π/2) , (8)

where vA and vB are the volume fractions of A and B. As
the anisotropy of B can be expressed as K1B sin2(θB −
π/2) = K1B cos2 θB = K1B (1 − sin2 θB), the orientation
of the easy axis of layer B along y corresponds to an
effective negative anisotropy constant (along z). We may
then use energies KA sin2 θ with KA = K1A > 0 for A
and KB sin2 θ with KB = −K1B and KB < 0 for B.

When interlayer exchange is taken into account one has
to make a full micromagnetic model of the multilayer. If
the exchange interaction dominates, the magnetization
of A and B will be perfectly coupled θ = θA = θB . The
free energy will be:

fL = (vAKA(T ) + vBKB(T )) sin2 θ . (9)

If the condition vAKA = −vBKB is realized the total
anisotropy will vanish. If the anisotropy constants are
both temperature dependent, there will be a particular
temperature TSR at which this condition will be fulfilled
and at which we will have an artificial reorientation of the
magnetization. The contribution to the entropy is s =
−df/dT and the entropy difference between the state of
the multilayer in a magnetic field which is parallel (‖) or
perpendicular (⊥) with respect to z will be ∆s = s‖−s⊥:

∆s = vA
dKA

dT
+ vB

dKB

dT
, (10)

because with θ = 0 (‖) s‖ = 0 and with θ = π/2 (⊥)
s⊥ = −(vAdKA/dT +vBdKB/dT ). If the A material has
dKA/dT > 0 and the B material has dKB/dT > 0 (i.e.
dK1B/dT < 0) the two contributions in Equation 10 will
add constructively as shown in Figure 1 and the entropy
change between (‖) and (⊥) will be maximized.
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FIG. 1: Sketch of the anisotropy constants as a function of
temperature for layers A and B which give a maximum en-
tropy change at the transition temperature (KA +KB = 0).

A. Predictions of the properties of a composite Co
and MnBi system

To maximize the MCE under field rotation we select
two materials A and B such that dK1A/dT > 0 and
dK1B/dT < 0. As an example we take MnBi as ma-
terial A and Co as material B. The selected materials
have the following intrinsic properties at room tempera-
ture (T = 293 K).

• The low temperature phase (LTP) of MnBi has
µ0Ms = 0.72 T, K1 = 9 × 105 Jm−3 [19],
dK1/dT = 5.5×103 Jm−3 [25]. Its physical density
is 9350 kgm−3 [27].

• Cobalt has µ0Ms = 1.81 T, K1 = 4.1 × 105 Jm−3

[19] and dK1/dT = −2.1×105 Jm−3 [26]. Its phys-
ical density is 8900 kgm−3

Among ferromagnets, MnBi has the unusual property of
having dK1/dT > 0 at room temperature. This is the
consequence of an intrinsic spin reorientation at around
100 K [18]. In MnBi, K1 reaches a maximum at around
500 K and then decreases. By taking ideal exchange cou-
pling, to obtain zero anisotropy at room temperature, the
ratio of layer thicknesses in the proposed multilayer has
to be the inverse of the ratio of the anisotropy constants:

dCo

dMnBi
=
K1,MnBi

K1,Co
' 2.2 (11)

The phase fractions in this example will therefore be
pCo = 0.69 and pMnBi = 0.31. The typical entropy
change ∆s = dK/dT results in ∆s = 0.34 Jkg−1K−1.
In order to determine the conditions for the exchange
coupling between A and B we perfrom a micromagnetic
analysis of the multilayer.

B. Micromagnetics of exchange-coupled multilayers

The problem of the magnetization configuration
adopted by a multilayer can be well expressed by mi-
cromagnetic theory where the energy of the system is a
functional of the magnetization vector field M(r) and is
the sum of several contributions: exchange, anisotropy,
magnetostatic and applied field [17]. The configurations
of minimum energy are given by the solution of a varia-
tional problem and can be expressed as m×Heff = 0 in
terms of the reduced magnetization m = M/Ms and of
the effective field, Heff :

Heff =
2

µ0Ms
∇·(A∇m)− 1

µ0Ms

∂fAN

∂m
+HM+Ha (12)

where the first term on the right hand side is the ex-
change term and ∇ · (A∇m) is a shorthand notation
for ∇ · (A∇mx)i + ∇ · (A∇my)j + ∇ · (A∇mz)k. The
anisotropy energy is fAN and it also contains the presence
of a unit vector n, indicating magneto-crystalline orien-
tations. HM is the magneto-static field given by the so-
lution of the magneto-static equations (∇·HM = −∇·M
and ∇×HM = 0) and Ha is the applied magnetic field.
In a magnetic multilayer, all parameters change from
layer to layer but the exchange term tends to favor the
parallel configuration between layers.

The application of micromagnetic theory to exchange
coupling in multilayers has been studied in several con-
texts and for different magnetic materials. Gonzales et
al.[23] and Navarro et al. [21] discussed the exchange
coupling in hard-soft composites. The problem of the
exchange coupling in a magnetic multilayer structure in
micromagnetic theory has been studied by Asti et al. [16]
who studied the nucleation field of hard-soft multilayer.
Alvarez-Prado et al. [20] solved numerically the micro-
magnetic equation for the case of a bilayer with orthog-
onal anisotropy axis. Dubuget et al. [22] solved numeri-
cally the integral equation for the bilayer. Here we solve
our problem numerically under rotating magnetic field in
order to determine the typical thicknesses which lead to
exchange-coupled layers.
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FIG. 2: Illustration of the angle of the magnetization θ(x) in
the multilayer. The midpoints of layers A and B are at xA
and xB , respectively.

III. RESULTS

A. Competition between exchange and
perpendicular anisotropies

The main feature of the multilayer with perpendicular
uniaxial anisotropies is the competition between the ex-
change, which favors the parallel alignment of different
layers, and the local anisotropies, which favor the align-
ment with the local easy axis. We consider an infinite
multilayer composed by an alternating sequence of lay-
ers A and B (shown in Fig. 2). We limit to the case in
which the magnetic field is in the (y − z) plane and the
magnetization changes in space only along x. We have
mx = 0 and my = sin θ, mz = cos θ. We let the limits of
the system in the (y − z) plane to go to infinity and in
this way the configurations are stray field free (HM = 0).
The thickness of the layer A is dA and the thickness of
the layer B is dB . The sum is 2d = dA + dB . We place
the point xA in the middle of layer A, the point xB in
the middle of layer B and the point x0 at the conjunc-
tion of the two layers. Any solution must have a pe-
riod 2d in space and the points xA and xB are extrema
with ∂θ/∂x|xA,xB

= 0. For our case, the only relevant
component of the micromagnetic effective field is the one
perpendicular to the local magnetization

Heff⊥ = Msl
2
EX

∂2θ

∂x2
−HAN sin θ cos θ +Ha sin(θH − θ)

(13)
where l2EX = 2A/(µ0M

2
s ) is the exchange length, HAN =

2K/(µ0Ms) is the anisotropy field and θH is the angle
formed by the applied field with the z axis. In the pres-
ence of different layers, the parameters Ms, lEX and HAN

change values from layer A to layer B and in particular we
have positive HAN,A and negative HAN,B . The exchange
boundary condition at the interface is

AA
∂θ

∂x

∣∣∣∣
x−0

= AB
∂θ

∂x

∣∣∣∣
x+
0

. (14)

The configurations of minimum energy are given by
Heff⊥ = 0. In the following we will derive the config-
urations realized by a rotating applied field.

B. Rotating applied field

To simplify the problem we select |HAN,A| =
|HAN,B | = HAN and normalize all the the fields to HAN .
We have the normalized effective field

heff⊥,i = l2wi

∂2θ

∂x2
− κi sin θ cos θ + ha sin(θH − θ) (15)

where l2wi
= Ai/|Ki| is the typical domain wall width for

the layer i = A,B and κi = sgn(Ki). We also choose
AA = AB and therefore lw = lwA

= lwB
. The config-

uration of the energy minimum is obtained for each θH
by a relaxation method in which the angle θ is changed
according to the equation ∂θ/∂t = αGheff,⊥, where αG

is the Gilbert damping, until the condition heff⊥,i = 0
is met. The solutions were computed numerically with
κA = 1 and κB = −1 by discretization of the space in
∆x/lw = 0.05 and with time steps ∆tαG = 10−3 and
equilibrium was assumed when |heff,⊥| < 10−3. Fig-
ures 3 and 4 give example outputs for θ(x). Fig.3 shows
the angle θ for several values of d/lw. Fig. 4 shows the
case d/lw = 10 for several values of magnetic field ha and
θH = 0.

Under rotating magnetic field we are interested in the
minimum amplitude of heff = h0 for which the full so-
lution θ(x) has a compete rotation over a distance 2d in
the x-direction. Fig. 5 shows the difference between the
average magnetization angle < θ >= (1/d)

∫
θ(x)dx and

magnetic field angle θH for different values of amplitude
ha with d/lw = 1. In Fig. 6 we see that with h0 = 0.01
the magnetization does not follow the magnetic field. Fi-
nally, Fig. 7 shows h0 as a function of d/lw. From Fig. 7
one can determine the thicknesses of the layers necessary
to achieve the desired coupling. With typical thickness
d ' lw the exchange coupling is sufficient to reduce the
magnetic field necessary for the full rotation by a factor
of 10 with respect to the uncoupled case.

For a MnBi/Co multilayer, the average saturation
magnetization is µ0 < Ms >= 1.47 T and the aver-
age anisotropy field is µ0 < HAN >= 0.95 T. By us-
ing A = 10−11 Jm−1 and K ' 5.6 × 105 Jm−3 as the
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(x-x0)/d

θ/
(π
/2
)

d/lw= 20
10

5

3
2
1

FIG. 3: Numerical solution of the equilibrium angle θ(x) be-
tween the magnetization and the z− axis (the easy axis of
layer A) for several values of the effective layer thickness to
domain wall ratio d/lw. In this case, ha = 0.

(x-x0)/d

θ/
(π

/2
)

d/lw=10 0.0
0.1

0.2
0.3

0.4
0.5

1.0

ha = 

0.6

0.7

0.8

0.9

FIG. 4: Numerical solution of the equilibrium angle θ(x) for
θH = 0 and several values of ha with d/lw = 10.

average amplitude of the anisotropy constants, one has
lw ∼ 4.2 nm. With the relation 2d = dCo + dMnBi,
we finally obtain dCo = 6.9 nm and dMnBi = 3.1 nm.
These typical sizes can be achieved by several modern
technologies such as sputtering, evaporation, nanoparti-
cles fabrication techniques, etc. With these values the
entropy change of the reorientation can be obtained with
rotating magnetic field of amplitude ∼ 0.034 T than can
be easily generated within iron yokes by both permanent
magnets and electric current windings.

IV. CONCLUSIONS

In this paper we have computed the magnetocaloric
effect associated with the rotation of the magnetization

θH/(2π)

(<
θ>

 - 
θ H

)/(
2π

)

d/lw=1
ha
0.5

0.1

0.05

0.025

FIG. 5: Difference between the average magnetization angle
< θ > and magnetic field angle θH for different values of
amplitude ha with d/lw = 1

θH/(2π)

(<
θ>

 - 
θ H

)/(
2π

)

d/lw=1ha
0.5

0.1

0.05

0.025

0.01

FIG. 6: Difference between the average magnetization angle
< θ > and magnetic field angle θH for different values of am-
plitude ha with d/lw = 1. With h0 = 0.01 the magnetization
does not follow the magnetic field for 0.01 < h0 < 0.025

in an exchange coupled multilayer composed of two fer-
romagnetic materials A and B with uniaxial anisotropy
axis perpendicular to each other. Layers A and B are
exchange-coupled and their aniostropy constants have
different temperature dependences (positive for A and
negative for B). Such conditions present a spontaneous
reorientation of the magnetization at TSR between the
easy axes of A and B. We compute the maximum entropy
change associated with the reorientation at T = TSR.
For A=MnBi and B=Co we have an entropy change of
∆s = 0.34 Jkg−1K−1 for perfect exchange coupling.

The behavior of the system under rotating magnetic
field depends on the ratio between the layer thicknesses
and the intrinsic length lw =

√
A/K. Micromagnetic

calculations provide the minimum field amplitude neces-
sary to have a complete rotation of the magnetization as
a function of the ratio d/lw where d is the layer thickness.
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0.0

0.1

0.2

0.3

0.4

d/lw

h 0
sin3(π/4)

FIG. 7: Minimum amplitude of rotating magnetic field h0 for
which the solution θ(x) has a compete rotation. In the limit
of large d one has the behavior of independent layers with
the switching field predicted by the Stoner Wohlfarth model
h0 = sin3(π/4).

Our micromagnetic calculations show that for d ' lw the

switching field is reduced by a factor 10 with respect to
the Stoner Wohlfarth field in the case of no exchange
coupling and the maximum entropy change, while small
(0.34 Jkg−1K−1), is reached in a very small magnetic
field of only ∼ 0.034 T. This represents a ∆s/µ0∆H
response of around 10 Jkg−1K−1T−1 which is compa-
rable with that of large magnetocaloric effect materials.
These first results therefore indicate that layer materials
with optimized dK1

dT values should yield yet higher ∆s
and ∆s/µ0∆H values.
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