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On an almost sharp Liouville type theorem for fractional

Navier-Stokes equations

Diego Chamorro∗, Bruno Poggi†

November 23, 2022

Abstract

We investigate existence, Liouville type theorems and regularity results for the 3D stationary and incom-

pressible fractional Navier-Stokes equations: in this setting the usual Laplacian is replaced by its fractional

power (−∆)
α
2 with 0 < α < 2. By applying a fixed point argument, weak solutions can be obtained in the

Sobolev space Ḣ
α
2 (R3) and if we add an extra integrability condition, stated in terms of Lebesgue spaces, then

we can prove for some values of α that the zero function is the unique smooth solution. The additional inte-

grability condition is almost sharp for 3/5 < α < 5/3. Moreover, in the case 1 < α < 2 a gain of regularity

is established under some conditions, however the study of regularity in the regime 0 < α ≤ 1 seems for the

moment to be an open problem.

Keywords: Liouville type theorems; Fractional Navier-Stokes equations.

Mathematics Subject Classification: 76D03; 35A02; 35B65.

1 Introduction and presentation of the results

In this article we study existence, regularity and uniqueness properties of the 3D fractional Navier-
Stokes equations which are given by the following system:(−∆)

α
2 ~u(x) + (~u · ~∇)~u(x) + ~∇p(x)− ~f(x) = 0, with 0 < α < 2,

div(~u)(x) = 0, x ∈ R3.
(1.1)

Here, the fractional operator (−∆)
α
2 is defined at the Fourier level by the symbol |ξ|α. Using the

traditional notation, the vector field ~u : R3 −→ R3 represents the velocity of the fluid, p : R3 −→ R is
the internal pressure of the fluid and ~f : R3 −→ R3 is a given external force.

Before presenting our results related to the system (1.1), it is convenient to recall some facts about
the usual stationary Navier-Stokes equations. Indeed, note that when α = 2, (1.1) is exactly the
problem given by the classical incompressible Navier-Stokes equations−∆~u(x) + (~u · ~∇)~u(x) + ~∇p(x)− ~f(x) = 0,

div(~u)(x) = 0, x ∈ R3.
(1.2)
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The problem (1.2) can be studied from different points of view; we first remark that the pressure p can
be easily deduced from the velocity field ~u and the external force ~f since, due to the divergence-free
property of ~u, we have that

p =
1

(−∆)
div
(
(~u · ~∇)~u− ~f

)
,

and this fact allows us to focus our study on the velocity field ~u (note that the same identity can
be easily deduced from the system (1.1) since in both cases we have div(~u) = 0). Now, concerning
existence problems for the usual Navier-Stokes equations (1.2), if we assume that ~f ∈ Ḣ−1(R3) and
that div(~f) = 0, then it is an easy exercise to construct solutions ~u ∈ Ḣ1(R3) (see, for instance, [12,
Theorem 16.2]) and moreover it is not hard to prove that these solutions are regular. However, a
priori it is not known whether these solutions are unique, and an interesting open problem (initially
mentioned in [6] and also stated in [16]) is the following: show that any solution ~u of the problem

−∆~u+ (~u · ~∇)~u+ ~∇p = 0, (1.3)

which satisfies the conditions

~u ∈ Ḣ1(R3) and ~u(x)→ 0 as |x| → +∞, (1.4)

is identically equal to zero.

Note that, by the classical Sobolev embeddings, we have Ḣ1(R3) ⊂ L6(R3), but this seems not
enough to conclude that a solution ~u ∈ Ḣ1(R3) of the equation (1.3) is null. Nevertheless, if we
assume some additional hypotheses, for example ~u ∈ E(R3) where E is a nice functional space, then
statements of the following form have been shown:

if ~u ∈ Ḣ1(R3) ∩ E(R3) is a solution of the equation (1.3) in R3, then we have ~u ≡ 0,

and this sort of result is known in the literature as a Liouville theorem for the Navier-Stokes equations.
In [6] the case E = L

9
2 (R3) was studied. The space E = BMO−1(R3) was considered in [10] and other

funcional spaces can also be taken into account, see for example the articles [8], [11], [15].

Remark that if we want to consider only one “simple” additional hypothesis, then a general
Liouville-type theorem was proven in [5] with E = Lq(R3) for some

3 ≤ q ≤ 9

2
. (1.5)

It is very interesting to note here that there is a gap between this set of values and the integrability
condition given in (1.4) -which is ~u ∈ L6(R3) due to the Sobolev embedding- as at present we do not
know how to fill the distance between 9

2 and 6. Thus the following problem: “show that any solution

~u of (1.3) with ~u ∈ Ḣ1(R3) and ~u ∈ Lq(R3) for some 9
2 < q < 6, is identically equal to zero” remains,

to the best of our knowledge, an open problem.

Let us come back now to the fractional Navier-Stokes equations (1.1). In particular, we are inter-
ested in understanding how the previous uniqueness results vary if we replace the Laplacian ∆ by the
operator (−∆)

α
2 with 0 < α < 2. In [17], the authors use the Caffarelli-Silvestre extension [2] to show

that for 0 < α < 2, a smooth weak solution u ∈ Ḣ
α
2 (R3) to (1.1) is trivial if u ∈ L

9
2 (R3). On the
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other hand, since Ḣ
α
2 (R3) embeds into L

6
3−α (R3), then for α < 5/3 it is reasonable to expect that the

assumption ~u ∈ L
9
2 (R3) may be replaced by a more natural Lebesgue space whose exponent depends

on the value of α.

We begin by proving that, under some mild assumptions over the external force ~f , there exists at
least one solution ~u ∈ Ḣ

α
2 (R3). Indeed we have:

Theorem 1 (Existence) Fix 0 < α < 2 and consider ~f ∈ Ḣ−1(R3)∩Ḣ−
α
2 (R3) an external force such

that div(~f) = 0. There exists a divergence-free vector field ~u ∈ Ḣ
α
2 (R3) and a pressure p ∈ Ḣα− 3

2 (R3),
such that (~u, p) is a solution of the stationary fractional Navier-Stokes equations (1.1).

Existence of certain weak solutions to the fractional Navier-Stokes equations (1.1) has already been
studied in [14] via the Caffarelli-Silvestre extension [2]; our approach is quite different. We use the
Schaefer fixed point theorem, which is a useful tool when dealing with the existence of solutions for
partial differential equations. In order to apply this general fixed point theorem, we will regularize
the equation (1.1), and to recover the initial equation we will need to study a limit by considering
subsequences. This will give us a solution but we will lose uniqueness.

The study of the potential uniqueness of such solutions is in general a completely different open
problem (besides the case α = 5/3 which was studied in [17]). However, if we add some extra conditions
we can obtain interesting conclusions and in this sense we have our next result:

Theorem 2 (Liouville type) Consider the stationary fractional Navier-Stokes equations

(−∆)
α
2 ~u+ (~u · ~∇)~u+ ~∇p = 0, div(~u) = 0, 0 < α < 2. (1.6)

Assume that ~u, p are smooth functions that satisfy (1.6) and consider a positive parameter 0 < ε < 2α.

1) Let α = 1. If ~u ∈ Ḣ
1
2 (R3) ∩ L

6−ε
2 (R3), then we have that ~u = 0.

2) Let 1 < α < 2 and fix the parameter 0 < ε < 2α such that

1 +
ε

3
≤ α ≤ 5

3
+

2

9
ε. (1.7)

If ~u ∈ Ḣ
α
2 (R3) ∩ L

6−ε
3−α (R3), then we have ~u = 0.

3) Let 3
5 < α < 1 and consider a parameter 0 < ε < 2α such that

1− ε

3
≤ α ≤ 5

3
− 2

9
ε. (1.8)

If ~u ∈ Ḣ
α
2 (R3) ∩ L

6−ε
3−α (R3) ∩ L

6+ε
3−α (R3), then we have ~u = 0.

Some remarks are in order. Indeed, we first note that the general condition ~u ∈ Ḣ
α
2 (R3), stated in all

the items above, is rather natural since from Theorem 1 we know how to construct solutions in this

functional space. Second, by the classical Sobolev embeddings we have Ḣ
α
2 (R3) ⊂ L

6
3−α (R3) but we do
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not have ~u ∈ L
6−ε
3−α (R3) nor ~u ∈ L

6+ε
3−α (R3) for ε > 0, and we can thus see that the conditions stated in

the theorem are actual additional hypotheses which help us to obtain this Liouville-type result. Next
we note that if α→ 2 then by the condition (1.7) we have 3

2 ≤ ε ≤ 3 and this lead us to the Lebesgue
spaces Lq(R3) with 3 ≤ q ≤ 9

2 , which is exactly the condition (1.5) stated above and we recover the
known results for the classical stationary Navier-Stokes equations regarding additional Lebesgue space
hypotheses. We remark also that in the range 1 ≤ α ≤ 5

3 then, following the relationship (1.7) (or
(1.8)), we can consider very small values for the parameter ε > 0 and thus the additional information

L
6−ε
3−α (R3) (or L

6+ε
3−α (R3)) becomes closer and closer to the critical space L

6
3−α (R3): in the case of the

stationary fractional Navier-Stokes equation we can almost fill the gap between the space L
6

3−α (R3)
and the additional information required to deduce Liouville-type theorems. However, we can not sim-
ply take ε → 0 as the information conveyed by the hypotheses (with ε > 0) is needed to obtain our
results. Note finally that the lower limit 3

5 stated in the third item is related to some technical issues.
To finish, let us mention that we do not claim any optimality on the different relationships stated here.

To continue, we remark now that smoothness was taken for granted in the previous theorem, but
this condition is redundant in some cases. Indeed, if we study the regularity of the solutions obtained
in Theorem 1, we have the following result.

Theorem 3 (Regularity) Consider the stationary fractional Navier-Stokes equations (1.6).

1) If 5
3 < α < 2, then the solutions ~u ∈ Ḣ

α
2 (R3) obtained via Theorem 1 above are smooth.

2) Let 1 < α ≤ 5
3 and consider a solution ~u ∈ Ḣ

α
2 (R3). If we assume that ~u ∈ L∞(R3), then these

solutions are smooth.

We can see that the smoothness hypothesis in Theorem 2 is actually not necessary in the case
5
3 < α < 2. Nevertheless, if 1 < α ≤ 5

3 the regularizing effect of the operator (−∆)
α
2 seems to

be too weak in order to obtain a gain of regularity and an additional hypothesis is thus warranted.
For the sake of simplicity we assumed here a very strong condition, namely ~u ∈ L∞(R3), but we
believe that other more general conditions can be considered. The study of the regularity in the case
0 < α ≤ 1 is considerably more difficult and technical to handle and, to the best of our knowledge, it
constitutes an open problem that will not be treated here.

As a final remark, we point out that other functional spaces (such as Besov, Triebel-Lizorkin,
Lorentz, Morrey spaces, etc.) can be used to develop all the previous theorems. However, the L2-
based Sobolev spaces are enough to highlight the behavior of the fractional Navier-Stokes equations
considered here.

The plan of the article is the following: in Section 2 we recall some notation and useful results. In
Section 3 we prove Theorem 1 and in Section 4 we prove Theorem 2. The last section is devoted to
prove Theorem 3.

2 Preliminaries

For 1 < p < +∞ and for s > 0 we define the homogeneous Sobolev spaces Ẇ s,p(R3) by the condition

‖f‖Ẇ s,p = ‖(−∆)
s
2 f‖Lp < +∞.
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In the special case when p = 2 we simply write Ẇ s,2(R3) = Ḣs(R3). The non-homogeneous Sobolev
spaces W s,p(R3) are defined by the condition

‖f‖W s,p = ‖f‖Lp + ‖(−∆)
s
2 f‖Lp < +∞,

from which we easily deduce the embedding W s,p(R3) ⊂ Ẇ s,p(R3). Note also that, if s1 > s0 > 0 then
we have the space inclusion W s1,p(R3) ⊂ W s0,p(R3). As the Sobolev spaces will constitute our main
framework, we recall in the following lemmas some classical and useful results.

Lemma 2.1 (Sobolev embeddings)

1) For 0 < s < 3
p and 1 < p, q < +∞, if we have the relationship −3

q = s − 3
p , then we have the

classical Sobolev inequality

‖f‖Lq ≤ C‖f‖Ẇ s,p , for each f ∈ C∞c (Rn).

2) If 0 < s0 < s1 and 1 < p0, p1 < +∞ are such that s0 − 3
p0

= s1 − 3
p1

, then we have the following
Sobolev space inclusion:

Ẇ s1,p1(R3) ⊂ Ẇ s0,p0(R3).

Lemma 2.2 (Rellich-Kondrachov) Let Ω ⊂ R3 be a bounded Lipschitz domain. If 0 < s < 3
p , then

for all 1 ≤ q < 3p
3−sp we have the following compact inclusion

Ẇ s,p(Ω) ⊂⊂ Lq(Ω).

A useful consequence of this lemma is that any uniformly bounded sequence in Ẇ s,p(Ω) has a subse-
quence that converges in Lq(Ω).

Lemma 2.3 (Fractional Leibniz rule)

1) Consider f, g two smooth functions. Then we have the estimate

‖(−∆)
s
2 (fg)‖Lp ≤ C‖(−∆)

s
2 f‖Lp0‖g‖Lp1 + C‖f‖Lq0‖(−∆)

s
2 g‖Lq1 ,

where 1
p = 1

p0
+ 1

p1
= 1

q0
+ 1

q1
, with 0 < s, 1 < p < +∞ and 1 < p0, p1, q0, q1 ≤ +∞.

2) For 0 < s, s1, s2 < 1 with s = s1 + s2 and 1 < p, p1, p2 < +∞ with 1
p = 1

p1
+ 1

p2
, we have

‖(−∆)
s
2 (fg)− (−∆)

s
2 (f)g − (−∆)

s
2 (g)f‖Lp ≤ C‖(−∆)

s1
2 f‖Lp1‖(−∆)

s2
2 g‖Lp2 .

See [13] and [7] for a proof of these estimates. In the case of the L2-based Sobolev spaces we also have
the following useful estimate:

Lemma 2.4 (Product rule in Sobolev spaces) For 0 ≤ s < +∞ and 0 < δ < 3
2 ,

‖fg‖
Ḣs+δ− 3

2
≤ C

(
‖f‖Ḣδ‖g‖Ḣs + ‖g‖Ḣδ‖f‖Ḣs

)
.

See [12, Lemma 7.3] for a proof of this inequality.
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3 Proof of Theorem 1

We apply the Leray projector P(~ψ) = ~ψ + ~∇ 1
(−∆)(~∇ · ~ψ) to obtain on the one hand the following

equation of the velocity (recall that div(~u) = div(~f) = 0):

(−∆)
α
2 ~u+ P((~u · ~∇)~u)− ~f = 0, (3.1)

and on the other hand, using the divergence free condition of ~u and ~f , we have the equation for the
pressure

p =
1

(−∆)

(
div((~u · ~∇)~u)

)
. (3.2)

We can thus focus our study on the velocity field ~u and then we will deduce the properties needed for
the pressure p. In order to solve equation (3.1) we will first consider a function φ ∈ C∞0 (R3) such that
0 ≤ θ(x) ≤ 1 with φ(x) = 1 if |x| ≤ 1 and θ(x) = 0 if |x| > 2, then for R > 1 we set θR(x) = θ( xR).
With this auxiliar function and for some 0 < ε < 1 we study the following equation

− ε∆~u+ (−∆)
α
2 ~u+ P

([
(θR~u) · ~∇

]
(θR~u)

)
− ~f = 0, div(~u) = 0. (3.3)

Remark that, at least formally, if we make ε→ 0 and R→ +∞, we recover the equation (3.1).

The previous equation (3.3) can be seen as a perturbation of the stationary Navier-Stokes system
(1.3) and we will study the existence of solutions for this modified problem using the structure of the
usual stationary Navier-Stokes. Indeed, we note that this equation can be rewritten as

~u = TR,ε(~u), (3.4)

where

TR,ε(~u) =
−1

[−ε∆ + (−∆)
α
2 ]

(
P
([

(θR~u) · ~∇
]

(θR~u)
)
− ~f

)
. (3.5)

Thus, in order to obtain a solution for the problem ~u = TR,ε(~u) we will apply the Schaefer fixed point
theorem (see [12, Theorem 16.1]):

Theorem 4 (Schaefer) Consider the following functional space:

E =
{
~v : R3 −→ R3 : ~v ∈ Ḣ1(R3) and div(~v) = 0

}
. (3.6)

If we have the following points:

1) the application TR,ε defined in (3.5) is continuous and compact in the space E,

2) if ~u = λTR(~u) for all λ ∈ [0, 1], then we have ‖~u‖Ḣ1 ≤M ,

then the equation (3.4) admits at least one solution ~u ∈ E.

As we can see, in order to obtain a solution of the modified problem (3.3), it is enough to verify the
two points of the previous theorem. We decompose our study in some propositions and corollaries
that will be helpful in the sequel.

Proposition 3.1 The application TR,ε is continuous and compact in the space E.
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Proof. We start writing

‖TR,ε(~u)‖Ḣ1 =

∥∥∥∥ −∆

[−ε∆ + (−∆)
α
2 ]

−1

(−∆)
P
([

(θR~u) · ~∇
]

(θR~u)− ~f
)∥∥∥∥

Ḣ1

=

∥∥∥∥ −∆

[−ε∆ + (−∆)
α
2 ]
TR(~u)

∥∥∥∥
Ḣ1

,

where the operator TR(~u) is given by

TR(~u) =
−1

(−∆)
P
([

(θR~u) · ~∇
]

(θR~u)− ~f
)
. (3.7)

Observe now that the symbol σε associated to the operator −∆

[−ε∆+(−∆)
α
2 ]

is σε(ξ) = |ξ|2
ε|ξ|2+|ξ|α , which is

a bounded Fourier multiplier i.e. we have the uniform estimate σε(ξ) ≤ C
ε so we can write

‖TR,ε(~u)‖Ḣ1 =

∥∥∥∥ −∆

[−ε∆ + (−∆)
α
2 ]
TR(~u)

∥∥∥∥
Ḣ1

≤ C

ε
‖TR(~u)‖Ḣ1 ,

but from the proof of the Theorem 16.2 in [12], we know that the operator TR(~u) is a continuous and
compact operator in the space E (recall that we have the hypothesis ~f ∈ Ḣ−1(R3)) and we can deduce
from this fact that the operator TR,ε is itself continuous and compact in the space E. �

We need now to establish some additional estimates.

Proposition 3.2 If ~u belongs to the functional space E given in (3.6) and if ~u satisfies

~u =
−1

[−ε∆ + (−∆)
α
2 ]

(
P
([

(θR~u) · ~∇
]

(θR~u)
)
− ~f

)
,

then we have ~u ∈ Ḣ1(R3) ∩ Ḣ
α
2 (R3), with 0 < α < 2.

Proof. By the previous proposition we already know that if ~u ∈ Ḣ1(R3) then the quantity

−1

[−ε∆ + (−∆)
α
2 ]

(
P
([

(θR~u) · ~∇
]

(θR~u)
)
− ~f

)
,

also belongs to Ḣ1(R3): we only need to study if ~u ∈ Ḣ
α
2 (R3). We thus write

‖~u‖
Ḣ
α
2

= ‖(−∆)
α
4 ~u‖L2 =

∥∥∥∥∥ (−∆)
1
2

+α
4

[−ε∆ + (−∆)
α
2 ]

(−∆)
1
2

(−∆)

(
−P
([

(θR~u) · ~∇
]

(θR~u)
)

+ ~f
)∥∥∥∥∥

L2

,

note that the symbol σ̃ε(ξ) = |ξ|1+
α
2

ε|ξ|2+|ξ|α is a bounded Fourier multiplier as we have σ̃ε(ξ) ≤ C
ε and we

write

‖~u‖
Ḣ
α
2
≤ C

ε

∥∥∥∥∥(−∆)
1
2

(−∆)

(
−P
([

(θR~u) · ~∇
]

(θR~u)
)

+ ~f
)∥∥∥∥∥

L2

=
C

ε

∥∥∥∥ −1

(−∆)

(
P
([

(θR~u) · ~∇
]

(θR~u)
)
− ~f

)∥∥∥∥
Ḣ1

≤ C

ε
‖TR(~u)‖Ḣ1 ,
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where we used the definition of the operator TR given in (3.7) above. We recall now that the operator
TR is bounded in the space Ḣ1(R3) (recall that we have ~f ∈ Ḣ−1(R3)) then, as we are assuming that
~u ∈ Ḣ1(R3), we have:

‖~u‖
Ḣ
α
2
≤ CR

ε
‖~u‖Ḣ1‖~u‖Ḣ1 < +∞.

We have thus proven that ~u ∈ Ḣ1(R3) ∩ Ḣ
α
2 (R3). �

This proposition shows us that, although the operator TR,ε defined in (3.5) is bounded in the space
Ḣ1(R3), we have some additional boundedness properties in the space Ḣ

α
2 (R3) with 0 < α < 2.

Proposition 3.3 Let 0 ≤ λ ≤ 1. If ~u belongs to the functional space E given in (3.6) and if ~u satisfies

~u = λ

[
−1

[−ε∆ + (−∆)
α
2 ]

(
P
([

(θR~u) · ~∇
]

(θR~u)
)
− ~f

)]
, (3.8)

for 0 < α < 2, then we have the inequality

ε‖~u‖2
Ḣ1 + ‖~u‖2

Ḣ
α
2
≤ λ‖~u‖

Ḣ
α
2
‖~f‖

Ḣ−
α
2
. (3.9)

Proof. Let us first remark that since we are working in the space E, we have enough regularity to

show that P
([

(θR~u) · ~∇
]

(θR~u)
)
∈ Ḣ−1(R3). Indeed, we write by the properties of the Leray projector

and by the Sobolev embedding Ḣ−1(R3) ⊂ L
6
5 (R3):∥∥∥P([(θR~u) · ~∇

]
(θR~u)

)∥∥∥
Ḣ−1
≤ C

∥∥∥[(θR~u) · ~∇
]

(θR~u)
∥∥∥
Ḣ−1
≤ C

∥∥∥[(θR~u) · ~∇
]

(θR~u)
∥∥∥
L

6
5
,

now, by the Hölder inequalities we obtain

≤ C
3∑
j=1

‖(θRuj)∂j(θR~u)‖
L

6
5
≤ C

3∑
j=1

‖θRuj‖L3‖∂j(θR~u)‖L2

≤ C

3∑
j=1

‖θR‖L6‖uj‖L6 (‖(∂jθR)~u‖L2 + ‖θR(∂j~u)‖L2)

≤ C
3∑
j=1

‖θR‖L6‖uj‖L6 (‖∂jθR‖L3‖~u‖L6 + ‖θR‖L∞‖∂j~u‖L2) ≤ CR‖~u‖L6(‖~u‖L6 + ‖~u‖Ḣ1)

≤ CR‖~u‖Ḣ1‖~u‖Ḣ1 < +∞,

where we used the Sobolev embedding Ḣ1(R3) ⊂ L6(R3) in the last estimate above. With this
information at hand and since div(~u) = 0 we can write, by the properties of the Leray projector:∫

R3

~u · P
([

(θR~u) · ~∇
]

(θR~u)
)
dx =

∫
R3

~u ·
([

(θR~u) · ~∇
]

(θR~u)
)
dx,

but since by an integration by parts we have∫
R3

~u ·
([

(θR~u) · ~∇
]

(θR~u)
)
dx = −

∫
R3

~u ·
([

(θR~u) · ~∇
]

(θR~u)
)
dx,
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we deduce that ∫
R3

~u ·
([

(θR~u) · ~∇
]

(θR~u)
)
dx = 0. (3.10)

With this information, we rewrite now the equation (3.8) in the following form

[−ε∆ + (−∆)
α
2 ]~u = −λ

[(
P
([

(θR~u) · ~∇
]

(θR~u)
)
− ~f

)]
= −λP

([
(θR~u) · ~∇

]
(θR~u)

)
+ λP

(
~f
)
,

from which we deduce

−ε
∫
R3

∆~u · ~u dx+

∫
R3

(−∆)
α
2 ~u · ~u dx = −λ

∫
R3

P
([

(θR~u) · ~∇
]

(θR~u)
)
· ~u dx+ λ

∫
R3

P
(
~f
)
· ~u dx.

Using the identity (3.10), by the properties of the Leray projector, since div(~u) = 0, and using the
properties of the operators ∆ and (−∆)

α
2 , we obtain

ε‖~u‖2
Ḣ1 + ‖~u‖2

Ḣ
α
2

= λ

∫
R3

(−∆)−
α
4 ~f · (−∆)

α
4 ~u dx ≤ λ‖~f‖

Ḣ−
α
2
‖~u‖

Ḣ
α
2
,

and we have proven the estimate (3.9). �

This estimate has several consequences and we gather them in the following corollary:

Corollary 3.1 In the general framework of the Proposition 3.3, i.e. if ~u belongs to the functional
space E given in (3.6) and if ~u satisfies the equation (3.8), then we have the following points:

1) For ε > 0 one has the inequality

‖~u‖Ḣ1 ≤
1√
2ε
‖~f‖

Ḣ−
α
2
. (3.11)

2) We also have the uniform estimate

‖~u‖
Ḣ
α
2
≤ ‖~f‖

Ḣ−
α
2
. (3.12)

Proof. From the estimate (3.9) we write, by the Young inequalities for the product:

ε‖~u‖2
Ḣ1 + ‖~u‖2

Ḣ
α
2
≤ λ

2

(
‖~f‖2

Ḣ−
α
2

+ ‖~u‖2
Ḣ
α
2

)
,

from which we easily obtain ε‖~u‖2
Ḣ1 +(1− λ

2 )‖~u‖2
Ḣ
α
2
≤ λ

2‖~f‖
2

Ḣ−
α
2

and since 0 ≤ λ ≤ 1 we easily deduce

the two wished estimates. �

End of the proof of the Theorem 1. By the Schaefer fixed-point theorem, in order to obtain
the existence of a solution of the problem (3.4)-(3.5) we only need to prove the two points given in
Theorem 4. Thus, for some fixed parameters R > 1, ε > 0 we know by the Proposition 3.1 that
the application TR,ε is continuous and compact in the space E given in (3.6). The second point of
Theorem 4 is given by the estimate (3.11) stated in the Corollary 3.1. We have thus the existence of
a solution of the problem

~u =
−1

[−ε∆ + (−∆)
α
2 ]

(
P
([

(θR~u) · ~∇
]

(θR~u)
)
− ~f

)
,

where ~u ∈ Ḣ1(R3) ∩ Ḣ
α
2 (R3).
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Remark 3.1 Note that the solution obtained above depends on the parameters R > 1 and ε > 0 and
they will be denoted by ~uR,ε.

Now we need to recover the initial problem by making R→ +∞ and ε→ 0 in the solutions ~uR,ε. To
do so, we will first fix ε > 0 and then we will take the limit when R→ +∞. Indeed, we remark that for
a fixed ε > 0, we have the uniform (in R) estimate (3.12), and thus there exists a sequence Rk → +∞
such that ~uRk,ε converges weakly in Ḣ

α
2 (R3) to some limit ~uε. Moreover, by the Lemma 2.2, we have

for all 0 < α < 2 the strong convergence of ~uRk,ε to some limit ~uε in the space L2
loc(R3). These two

facts allows us to obtain a weak convergence (in D′) of the nonlinear term
([

(θR~uR,ε) · ~∇
]

(θR~uR,ε)
)

to
([
~uε · ~∇

]
~uε

)
when R→ +∞. We thus obtain a function ~uε which is a solution of the problem

−ε∆~uε + (−∆)
α
2 ~uε + P

([
~uε · ~∇

]
~uε

)
− ~f = 0.

Similarly, since we have the uniform (in ε) control ‖~uε‖Ḣ α
2
≤ ‖~f‖

Ḣ−
α
2

given in the estimate (3.12),

there exists a subsequence εk → 0 such that ~uεk convergence weakly to a limit ~u in the space Ḣ
α
2 (R3).

Again, by the Lemma 2.2, we obtain the strong convergence of ~uεk to ~u in L2
loc(R3) and from these

facts we obtain the weak convergence (in D′) of the quantity
[
~uε · ~∇

]
~uε to (~u · ~∇)~u when ε→ 0. We

have thus obtained a solution ~u of the equation

(−∆)
α
2 ~u+ P

(
(~u · ~∇)~u

)
− ~f = 0,

which belongs to the space Ḣ
α
2 (R3) and satisfies ‖~u‖

Ḣ
α
2
≤ ‖~f‖

Ḣ−
α
2

.

To end the proof, we need to study the pressure p. By the equation (3.2) and by the divergence
free property of ~u we can write

‖p‖
Ḣα− 3

2
=

∥∥∥∥(−∆)
α− 3

2
2 p

∥∥∥∥
L2

=

∥∥∥∥∥∥(−∆)
α− 3

2
2

(−∆)
div(div(~u⊗ ~u))

∥∥∥∥∥∥
L2

=

∥∥∥∥(−∆)
α− 3

2
2 (~u⊗ ~u)

∥∥∥∥
L2

= ‖~u⊗~u‖
Ḣα− 3

2
.

Now by the Product rule in Sobolev spaces given in the Lemma 2.4 we have

‖~u⊗ ~u‖
Ḣα− 3

2
≤ C‖~u‖

Ḣ
α
2
‖~u‖

Ḣ
α
2
< +∞,

from which we easily deduce that ‖p‖
Ḣα− 3

2
< +∞ and this ends the proof of the Theorem 1. �

4 Proof of Theorem 2

We start the proof of this theorem with a brief remark:

Lemma 4.1 Let (~u, p) be a solution of the fractional Navier-Stokes equation

(−∆)
α
2 ~u+ (~u · ~∇)~u+ ~∇p = 0, div(~u) = 0.

If we have ~u ∈ Lq(R3) for some 2 < q < +∞ then the pressure p belongs to the space L
q
2 (R3).
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Proof. Applying the divergence operator to the equation above and using the divergence free property
of ~u we obtain div((~u · ~∇)~u) + div(~∇p) = 0 which leads us to the equation ∆p = −div(div(~u ⊗ ~u))
from which we deduce the expression p = 1

(−∆) div(div(~u ⊗ ~u)). Thus, taking the L
q
2 (R3) norm, we

have

‖p‖
L
q
2

=

∥∥∥∥ 1

(−∆)
div(div(~u⊗ ~u))

∥∥∥∥
L
q
2

.

Since 1 < q
2 < +∞, the Riesz transforms are bounded in the space L

q
2 (R3) and we can write∥∥∥∥ 1

(−∆)
div(div(~u⊗ ~u))

∥∥∥∥
L
q
2

≤ C‖~u⊗ ~u‖
L
q
2
≤ C‖~u‖Lq‖~u‖Lq < +∞,

and we obtain that p ∈ L
q
2 (R3). �

This simple remark allows us to deduce some integrability results for the pressure from the infor-
mation available on the velocity field ~u.

We will prove now that in the framework of the Theorem 2, the unique solution of the equation
(1.6) is the trivial solution. For this we consider θ ∈ C∞0 (R3) a smooth cut-off function given by
0 ≤ θ ≤ 1, θ(x) = 1 if |x| < 1

2 and θ(x) = 0 if |x| ≥ 1. For R > 1 a real parameter, we define the
function

θR(x) = θ
( x
R

)
,

in particular we have θR(x) = 1 if |x| < R
2 and θR(x) = 0 if |x| ≥ R and thus supp(θR) ⊂ BR, where

BR denotes the ball B(0, R). With this auxiliary function, we multiply the equation (1.6) by (θR~u)
and we integrate: ∫

R3

(−∆)
α
2 ~u · (θR~u)︸ ︷︷ ︸
(1)

+ (~u · ~∇)~u · (θR~u)︸ ︷︷ ︸
(2)

+ ~∇p · (θR~u)︸ ︷︷ ︸
(3)

dx = 0, (4.1)

and we study each one of these terms separately. For the first term in (4.1) we write, using the
properties of the operator (−∆)

α
2 :∫

R3

(−∆)
α
2 ~u · (θR~u) dx =

∫
R3

(−∆)
α
4 ~u · (−∆)

α
4 (θR~u) dx

=

∫
R3

(−∆)
α
4 ~u ·

[
((−∆)

α
4 ~u)θR + (−∆)

α
4 (θR~u)− ((−∆)

α
4 ~u)θR

]
dx,

and we have∫
R3

(−∆)
α
2 ~u ·(θR~u) dx =

∫
BR

|(−∆)
α
4 ~u|2θRdx+

∫
R3

(−∆)
α
4 ~u ·

[
(−∆)

α
4 (θR~u)− ((−∆)

α
4 ~u)θR

]
dx, (4.2)

where we used the fact that supp(θR) ⊂ BR in the second integral above.

For the second term of (4.1) we have:∫
R3

(~u · ~∇)~u · (θR~u)dx =
3∑

i,j=1

∫
R3

uj(∂xjui)(θRui)dx =

3∑
i,j=1

∫
R3

θRuj(∂xjui)uidx

=
3∑

i,j=1

∫
R3

θRuj(∂xj

(
u2
i

2

)
)dx,
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and by an integration by parts we obtain

3∑
i,j=1

∫
R3

θRuj(∂xj

(
u2
i

2

)
)dx = −

3∑
i,j=1

∫
R3

θR
(
∂xjuj

) u2
i

2
dx−

∫
R3

~∇θR ·
(
|~u|2

2
~u

)
dx.

Now, using the fact that div(~u) = 0, we have that the second integral above is null and we can write∫
R3

(~u · ~∇)~u · (θR~u)dx = −
∫
BR

~∇θR ·
(
|~u|2

2
~u

)
dx, (4.3)

where we used the support property of the auxiliar function θR.

Finally, for the last term of (4.1), by an integration by parts, using again the fact div(~u) = 0 and the
support property of θR, we obtain∫

R3

~∇p · (θR~u)dx =

3∑
i=1

∫
R3

(∂xip)θRuidx = −
3∑
i=1

∫
R3

p ∂xi(θRui)dx

= −
3∑
i=1

∫
R3

p(∂xiθR)(ui)dx = −
∫
BR

~∇θR · (p~u)dx. (4.4)

Thus, with the expressions (4.2), (4.3), and (4.4), we can rewrite equation (4.1) in the following
manner: ∫

BR

|(−∆)
α
4 ~u|2θRdx +

∫
R3

(−∆)
α
4 ~u ·

[
(−∆)

α
4 (θR~u)− ((−∆)

α
4 ~u)θR

]
dx

−
∫
BR

~∇θR ·
(
|~u|2

2
~u

)
dx−

∫
BR

~∇θR · (p~u)dx = 0,

from which we obtain the equation∫
BR

|(−∆)
α
4 ~u|2θRdx =

∫
R3

(−∆)
α
4 ~u ·

[
((−∆)

α
4 ~u)θR − (−∆)

α
4 (θR~u)

]
dx+

∫
BR

~∇θR ·
(
|~u|2

2
~u

)
dx

+

∫
BR

~∇θR · (p~u)dx.

We recall now that since 0 ≤ θR(x) ≤ 1 and θR(x) = 1 if |x| < R
2 , we have the estimate∫

BR
2

|(−∆)
α
4 ~u|2dx ≤

∫
BR

|(−∆)
α
4 ~u|2θRdx,

and we can write∫
BR

2

|(−∆)
α
4 ~u|2dx ≤

∫
R3

(−∆)
α
4 ~u ·

[
((−∆)

α
4 ~u)θR − (−∆)

α
4 (θR~u)

]
dx︸ ︷︷ ︸

(Ia)

+

∫
BR

~∇θR ·
(
|~u|2

2
~u

)
dx︸ ︷︷ ︸

(Ib)

+

∫
BR

~∇θR · (p~u)dx︸ ︷︷ ︸
(Ic)

. (4.5)

We will now show that we have lim
R→+∞

Ia = 0, lim
R→+∞

Ib = 0 and lim
R→+∞

Ic = 0. Indeed:
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(a) For the first term above, we write by the Cauchy-Schwarz inequality

Ia =

∫
R3

(−∆)
α
4 ~u ·

[
((−∆)

α
4 ~u)θR − (−∆)

α
4 (θR~u)

]
dx

≤ ‖(−∆)
α
4 ~u‖L2

∥∥∥((−∆)
α
4 ~u)θR − (−∆)

α
4 (θR~u)

∥∥∥
L2

≤ ‖~u‖
Ḣ
α
2

(∥∥∥(−∆)
α
4
(
θR~u

)
−
(
(−∆)

α
4 ~u
)
θR −

(
(−∆)

α
4 θR

)
~u
∥∥∥
L2

+
∥∥∥((−∆)

α
4 θR

)
~u
∥∥∥
L2

)
.

We apply now the second point of Lemma 2.3 to obtain the estimate

Ia ≤ ‖~u‖Ḣ α
2

(
‖(−∆)

α1
4 θR‖Lp1‖(−∆)

α2
4 ~u‖Lp2 +

∥∥∥((−∆)
α
4 θR

)
~u
∥∥∥
L2

)
,

where α = α1 + α2, 0 < α,α1, α2 < 2 and 1
2 = 1

p1
+ 1

p2
.

Recall now that we have 0 < α < 2 and that we are assuming in all the cases stated in Theorem 2

the condition ~u ∈ L
6−ε
3−α (R3) with 0 < ε < 2α, thus by the Hölder inequality with 1

2 = 2α−ε
12−2ε + 3−α

6−ε
we have

Ia ≤ ‖~u‖
Ḣ
α
2

(
‖(−∆)

α1
4 θR‖Lp1‖(−∆)

α2
4 ~u‖Lp2 + ‖(−∆)

α
4 θR‖

L
12−2ε
2α−ε
‖~u‖

L
6−ε
3−α

)
≤ ‖~u‖

Ḣ
α
2

(
CR

−α1
2

+ 3
p1 ‖(−∆)

α2
4 ~u‖Lp2 + CR−

α
2

+3 2α−ε
12−2ε ‖~u‖

L
6−ε
3−α

)
,

where we used the properties of the function θR in the last estimate above. Let us also note that,
due to the complex interpolation theory (see [1, Theorem 6.4.5.]) we have[

Ḣ
α
2 , L

6−ε
3−α
]
ν

= Ẇ
α2
2
,p2 and ‖(−∆)

α2
4 ~u‖Lp2 = ‖~u‖

Ẇ
α2
2 ,p2
≤ C‖~u‖ν

Ḣ
α
2
‖~u‖1−ν

L
6−ε
3−α

,

with the relationships

α2 = να,
1

p2
=
ν

2
+ (1− ν)

3− α
6− ε

for some 0 < ν < 1, (4.6)

and then we can write

Ia ≤ ‖~u‖Ḣ α
2

(
CR

−α1
2

+ 3
p1 ‖~u‖ν

Ḣ
α
2
‖~u‖1−ν

L
6−ε
3−α

+ CR−
α
2

+3 2α−ε
12−2ε ‖~u‖

L
6−ε
3−α

)
.

But since we have α = α1 + α2 and 1
2 = 1

p1
+ 1

p2
, following the conditions (4.6) above, we obtain

that α1 = (1− ν)α and 1
p1

= (1− ν) 2α−ε
12−2ε and we can write

Ia ≤ C‖~u‖
Ḣ
α
2

(
R(1−ν)[−α

2
+ 6α−3ε

12−2ε
]‖~u‖ν

Ḣ
α
2
‖~u‖1−ν

L
6−ε
3−α

+R−
α
2

+ 6α−3ε
12−2ε ‖~u‖

L
6−ε
3−α

)
.

Remark that since 0 < α < 2 and 0 < ε < 2α we always have 6α−3ε
12−2ε <

α
2 and thus all the powers

of the parameter R in the right-hand side above are negative. Moreover we have ‖~u‖
Ḣ
α
2
< +∞

and ‖~u‖
L

6−ε
3−α

< +∞, so we obtain

lim
R→+∞

Ia = 0. (4.7)
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Remark 4.1 Note that in all the cases α = 1, 1 < α < 2 and 3
5 < α < 1 stated in Theorem 2, in

order to obtain the previous limit (4.7) we only require the information ~u ∈ L
6−ε
3−α (R3) for some

0 < ε < 2α and no further conditions are needed for the parameter ε. The conditions (1.7) and
(1.8) will appear in the study of the limits lim

R→+∞
Ib and lim

R→+∞
Ic.

(b) For the second term of (4.5) we recall that θR(x) = 1 if |x| < R
2 and θR(x) = 0 if |x| ≥ R and

thus we have

supp
(
~∇θR

)
⊂
{
x ∈ R3 : R2 < |x| < R

}
= C(R2 , R), (4.8)

and with this remark we can write

Ib =

∫
BR

~∇θR ·
(
|~u|2

2
~u

)
dx =

∫
C(R

2
,R)

~∇θR ·
(
|~u|2

2
~u

)
dx.

In order to study the limit when R → +∞, we decompose our study following the values of α
and the information available. Indeed:

• If α = 1, we have ~u ∈ Ḣ
1
2 (R3) and thus, by the Sobolev embeddings we also have ~u ∈ L3(R3),

so we can write:

Ib ≤ C‖~∇θR‖L∞(C(R
2
,R))‖~u‖

3
L3(C(R

2
,R))
≤ CR−1‖~u‖3

L3(C(R
2
,R))

, (4.9)

from which we easily deduce that

lim
R→+∞

Ib = 0.

• If 1 < α < 2, we know by hypothesis that ~u ∈ L
6−ε
3−α (R3) and recall that we have in this case

the condition (1.7), i.e. 1 + ε
3 ≤ α ≤ 5

3 + 2
9ε. Thus, if 1 + ε

3 < α ≤ 5
3 + 2

9ε, by the Hölder
inequality with 3α−3−ε

6−ε + 3(3−α
6−ε ) = 1, we can write

Ib ≤ C‖~∇θR‖
L

6−ε
3α−3−ε (C(R

2
,R))
‖~u‖3

L
6−ε
3−α (C(R

2
,R))

≤ CR−1+3 3α−3−ε
6−ε ‖~u‖3

L
6−ε
3−α (C(R

2
,R))

.

Then if 1 + ε
3 < α < 5

3 + 2
9ε the power of the parameter R above is negative and then the

quantity above will tend to 0 if R → +∞. But if α = 5
3 + 2

9ε, we have −1 + 33α−3−ε
6−ε = 0,

then since ~u ∈ L
6−ε
3−α (R3), we will have ‖~u‖

L
6−ε
3−α (C(R

2
,R))
−→ 0
R→+∞

. Finally if 1 + ε
3 = α then we

have L
6−ε
3−α (R3) = L3(R3) < +∞, moreover the power of R is negative and equal to −1 and

we can proceed as in (4.9). Thus, in any case we obtain

lim
R→+∞

Ib = 0.

Note that in the case 1 < α < 2 besides the condition 0 < ε < 2α we need the relationship
(1.7) between α and ε.
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• If 3
5 < α < 1, in this case we have the additional condition ~u ∈ L

6+ε
3−α (R3) with the relationship

1 − ε
3 ≤ α ≤ 5

3 −
2
9ε (recall the condition (1.8)). As above, if 1 − ε

3 < α ≤ 5
3 −

2
9ε, by the

Hölder inequality with 3α−3+ε
6+ε + 3(3−α

6+ε ) = 1, we obtain

Ib ≤ CR−1+3 3α−3+ε
6+ε ‖~u‖3

L
6+ε
3−α (C(R

2
,R))

.

Note that if 1− ε
3 < α < 5

3−
2
9ε, the power of the parameter R is negative, while if α = 5

3−
2
9ε

we have−1+33α−3+ε
6+ε = 0, but we have ‖~u‖

L
6+ε
3−α (C(R

2
,R))
−→ 0
R→+∞

. Remark also that if α = 1− ε
3 ,

then L
6+ε
3−α (R3) = L3(R3) < +∞, the power of R is equal −1 and we can proceed as in (4.9).

In any case we have
lim

R→+∞
Ib = 0.

Remark 4.2 Note that when 3
5 < α < 1 we need the information ~u ∈ L

6−ε
3−α (R3) with the

condition 0 < ε < 2α in order to obtain the limit (4.7) for the term Ia, but we also need the

information ~u ∈ L
6+ε
3−α (R3) with the constraint (1.8) to obtain that lim

R→+∞
Ib = 0.

Note also that the lower limit 3
5 < α is a consequence of the conditions 1 − ε

3 ≤ α and
0 < ε < 2α. We recall that these conditions are technical and we do not claim any optimality
on them.

(c) For the last term of (4.5) we write, using the support property (4.8):

Ic =

∫
BR

~∇θR · (p~u)dx =

∫
C(R

2
,R)

~∇θR · (p~u)dx.

The study of this term is very similar of the previous one since by Lemma 4.1 we also have some
information over the pressure p. Indeed:

• If α = 1, we have ~u ∈ Ḣ
1
2 (R3) and thus, by the Sobolev embeddings we have ~u ∈ L3(R3) but

we also have p ∈ L
3
2 (R3) by Lemma 4.1, and we write

Ic ≤ C‖~∇θR‖L∞(C(R
2
,R))‖p‖L 3

2 (C(R
2
,R))
‖~u‖L3(C(R

2
,R)) ≤ CR

−1‖p‖
L

3
2 (R3)

‖~u‖L3(R3), (4.10)

from which we easily deduce that
lim

R→+∞
Ic = 0.

• If 1 < α < 2, we have ~u ∈ L
6−ε
3−α (R3) and by Lemma 4.1 we have p ∈ L

6−ε
6−2α (R3). If

1 + ε
3 < α ≤ 5

3 + 2
9ε, by the Hölder inequality with 3α−3−ε

6−ε + 6−2α
6−ε + 3−α

6−ε = 1 we obtain

Ic ≤ ‖~∇θR‖
L

6−ε
3α−3−ε (C(R

2
,R))
‖p‖

L
6−ε
6−2α (C(R

2
,R))
‖~u‖

L
6−ε
3−α (C(R

2
,R))

≤ CR−1+3 3α−3−ε
6−ε ‖p‖

L
6−ε
6−2α (C(R

2
,R))
‖~u‖

L
6−ε
3−α (C(R

2
,R))

.

If 1+ ε
3 < α < 5

3 + 2
9ε, the power of the parameter R is then negative and we have lim

R→+∞
Ic = 0,

while if α = 5
3 + 2

9ε we use the fact that ‖p‖
L

6−ε
6−2α (C(R

2
,R))

, ‖~u‖
L

6+ε
3−α (C(R

2
,R))

−→ 0
R→+∞

. Now in
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the case α = 1 + ε
3 , we have ~u ∈ L3(R3), p ∈ L

3
2 (R3)and we can proceed as in (4.10). We

thus have lim
R→+∞

Ic = 0.

• If 3
5 < α < 1 we have ~u ∈ L

6+ε
3−α (R3) and by Lemma 4.1 we also have p ∈ L

6+ε
6−2α (R3). As

above, if 1 − ε
3 < α ≤ 5

3 −
2
9ε, by the Hölder inequality with 3α−3−ε

6−ε + 6−2α
6−ε + 3−α

6−ε = 1, we
obtain

Ic ≤ CR−1+3 3α−3−ε
6−ε ‖p‖

L
6−ε
6−2α (C(R

2
,R))
‖~u‖

L
6−ε
3−α (C(R

2
,R))

.

Note that if 1− ε
3 < α < 5

3−
2
9ε, the power of the parameter R is negative, while if α = 5

3−
2
9ε

we have−1+33α−3+ε
6+ε = 0, but we have ‖~u‖

L
6+ε
3−α (C(R

2
,R))
−→ 0
R→+∞

. Remark also that if α = 1− ε
3 ,

then ~u ∈ L
6+ε
3−α (R3) = L3(R3) < +∞ by hypothesis, p ∈ L

3
2 (R3) < +∞ by the Lemma 4.1

and we can proceed as in (4.10). In any case we have lim
R→+∞

Ic = 0.

We have proven that
lim

R→+∞
Ia = 0, lim

R→+∞
Ib = 0 and lim

R→+∞
Ic = 0,

thus making R→ +∞ in the both sides of the inequality (4.5) we easily obtain that

‖~u‖
Ḣ
α
2

= 0,

from which we deduce by the Sobolev embeddings that ‖~u‖
L

6
3−α

= 0 and we finally obtain that ~u ≡ 0.

Theorem 2 is proven. �

5 Proof of Theorem 3

• We start proving the first point of the Theorem 3. Recall that in this case we have 5
3 < α < 2.

Thus, applying the Leray projector P to the fractional Navier-Stokes equation and using the
divergence free condition, we have the equation (−∆)

α
2 ~u = −P(div(~u⊗~u)) which can be rewritten

as

~u = −P(div(~u⊗ ~u))

(−∆)
α
2

.

Now, for some index σ > 0 that will be defined later, we write

‖(−∆)
σ
2 ~u‖L2 =

∥∥∥∥(−∆)
σ
2
P(div(~u⊗ ~u))

(−∆)
α
2

∥∥∥∥
L2

≤ C‖(−∆)
σ−α+1

2 (~u⊗ ~u)‖L2 ,

where we used the boundedness properties of the Leray projector in the L2 space. At this point
we apply the product law given in the Lemma 2.4 to obtain (since ~u ∈ Ḣ

α
2 (R3))

‖(−∆)
σ−α+1

2 (~u⊗ ~u)‖L2 = ‖~u⊗ ~u‖Ḣσ−α+1 ≤ C‖~u‖Ḣ α
2
‖~u‖

Ḣ
α
2
< +∞, (5.1)

as long as σ−α+ 1 = α− 3
2 , from which we deduce that σ = 2α− 5

2 . Now, since α > 5
3 we have

that σ > α
2 . We have thus proved that

‖(−∆)
σ
2 ~u‖L2 = ‖~u‖Ḣσ < +∞,

which is a gain of regularity. By iterating this process we easily obtain that the solutions of the
equation (1.6) are smooth.
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• We study now the second point of Theorem 3, where we have 1 < α ≤ 5
3 . In this case, we have

~u ∈ Ḣ
α
2 (R3) which seems to be not enough to obtain a gain of regularity when applying the

Lemma 2.4 in the estimate (5.1). To circumvent this issue, we will use the additional hypothesis
given by ~u ∈ L∞(R3) and instead of Lemma 2.4 we use the Leibniz fractional inequality given in
Lemma 2.3 and in (5.1) we write:

‖(−∆)
σ−α+1

2 (~u⊗ ~u)‖L2 ≤ C‖(−∆)
σ−α+1

2 ~u‖L2‖~u‖L∞ ,

which is a finite quantity as long as σ − α + 1 = α
2 , which gives σ = 3

2α − 1. Since 1 < α ≤ 5
3

we have σ > α
2 and we have obtained a gain of regularity as we have proved that ~u ∈ Ḣσ(R3).

Again, by iteration we obtain that the solutions of the equation (1.6) are smooth.

Theorem 3 is now proven. �
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