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Abstract

Mesoscale elasto-plastic models, with statistically distributed structural properties and elastic coupling between discrete
blocks, have been shown to quantitatively reproduce the main phenomenology observed in the stationary flow state
of glasses as modelled at the atomic scale [1]. In the present study, an extension of such approaches is proposed
to describe the transient mechanical response of glasses from different off-equilibrium states in the athermal quasi-
static limit. Equilibrated liquids are simulated using two-dimensional molecular dynamics, quenched instantaneously to
zero temperature, and then sheared. The mechanical observables measured in atomistic and elasto-plastic models are
compared at the same length scales to calibrate a state-dependent constitutive law. A physical mechanism is proposed
where the structural properties’ evolution rate depends on the magnitude of local plastic deformation events, introducing
an effective local memory of previous states in the system. This mechanism naturally leads to a brittle-ductile transition
in the mechanical response of glasses, which depends exclusively on the quenched structure. Specifically, initially stable
glasses exhibit strain-softening and localization, where the memory of the initial states is lost abruptly after the first
plastic rearrangements. On the other hand, systems quenched from high-temperature liquids show a slow strain-hardening
with statistically homogeneous plastic deformation. In these initially soft glasses, numerous plastic rearrangements are
required to converge toward the stationary flow state. The elasto-plastic model successfully reproduces the stress-strain
curves in the transient regime for the whole range of parent temperatures by including this local memory mechanism.
The limitations of the model are finally discussed, together with possible improvements.

Keywords: Multi-scale modelling, Amorphous solids, Plasticity, Mesoscale, Atomistic, Yield threshold, Transient
response, Off-equilibrium states

1. Introduction

Understanding the physical mechanisms that lead to
the deformation of amorphous solids is still an ongoing
fundamental problem [2, 3], with implications in engineer-
ing and microstructural designs [4, 5]. Amorphous solids,
and specifically glasses, are out-of-equilibrium systems,
implying a dependence on past thermal [6] and mechani-
cal history [7]. Consequently, preparation protocols lead to
highly contrasted mechanical responses depending on the
degree of structural stability [8]. Glasses quenched from
equilibrated states at low parent temperature exhibits a
brittle-like behaviour, characterized by a stress-overshoot
followed by strain-softening and permanent shear-banding.
On the other hand, glasses obtained from high parent tem-
peratures exhibit ductile-like behaviours characterized by
a more compliant response, slow strain-hardening, and sta-
tistically homogeneous plastic activity.

IFully documented templates are available in the elsarticle pack-
age on CTAN.
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In addition to history dependency [9], the complex-
ity of their plastic behaviour arises from their microscopic
disordered structures. Any coarse-grained description of
amorphous plasticity has thus to deal with the statistical
nature of their structures and their complex energy land-
scapes [10, 11, 12, 13]. Their properties are locally hetero-
geneous, and they feature prestresses, even in the reference
state, before any plastic deformation [14]. In glassy sys-
tems, plasticity results from localized atomistic rearrange-
ments known as shear transformations (STs) [15, 16] that
give rise to long-range internal stress fields [17, 18]. Elastic
coupling induced by the STs gives rise to intermittent de-
formation in the form of strain bursts [19]. To date, there
are no physically motivated standard constitutive laws for
amorphous media, in sharp contrast with crystal plasticity
models where dislocation densities along local slip systems
play the role of internal variables [20, 21, 22].

Numerous mesoscale elasto-plastic models of the plas-
tic deformation of amorphous solids have been proposed
in the literature over the last decades [23, 24, 25, 26,
27, 28, 29, 30] with the goal of shedding light on the
physical mechanisms at play at the lowest scales. These
models attempt to reduce the complexity of the prob-
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lem by coarse-graining atomistic details into a discrete-
continuum description. Spatially, STs are modelled as
Eshelby inclusions [31, 32, 33, 34] with purely deviatoric
eigenstrains. On the other hand, structural heterogeneity
is accounted for by considering a statistically distributed
local yield stress field [35]. Such models are well-known
for reproducing the main features of the plastic deforma-
tion of amorphous solids in the stationary flow regime [36].
These models have also been successfully extended to ad-
dress mechanical response at finite temperature, e.g., for
creep [24, 37, 38, 39]. However, comparatively little atten-
tion has been given to the dependence upon initial quench
states and to the transient regime [40, 41, 38, 42]. In ad-
dition, the ingredients of the models are most often phe-
nomenological, and only a few works rely on microscopic
insight from atomistic methods [43, 44, 45].

In this work, we take advantage of the two-dimensional
tensorial elasto-plastic model developed in [1]. This model
has shown quantitative agreement with atomistic simula-
tions in the stationary flow regime. Thanks to its ability
to deal with ST flow in different directions, it was shown
to capture emergent phenomena such as the Bauschinger
effect, i.e. deformation-induced anisotropy. This model
is extended here by introducing a new constitutive rela-
tion that explicitly considers non-stationarity in the lo-
cal structural renewal process. This relation accounts for
the history-dependent mechanical response observed in the
atomistic glasses. This framework introduces a simple and
physically motivated memory effect at the local scales.

Both models are compared in the athermal quasi-static
limit for a wide range of parent temperatures, establishing
a rigorous connection between elasto-plastic and atomistic
descriptions. These preparation protocols lead to highly
contrasted mechanical responses, from soft to hard glasses,
showing a progressive strain-hardening or a sudden strain-
softening and localization, respectively. The frozen matrix
method [35, 1] is employed to probe the local mechan-
ical response of the atomistic and elasto-plastic samples
at the same length scales. These measurements allow us
to calibrate the elasto-plastic model in the quench states
and transient regimes while keeping some elements of mi-
croscale physics, thus shedding light on history-dependent
processes and the origins of the brittle-ductile transition.

The paper starts by introducing the atomistic system
in Sec. 2 and the elasto-plastic model ingredients in Sec. 3.
The frozen matrix methods to probe the local mechanical
properties at different length scales in both models are
then presented. The elasto-plastic model is enriched to
deal with the local evolution of structural properties under
plastic deformation. This model is then calibrated to re-
produce the quench states obtained from a set of different
parent temperatures. Sec. 4 deals with the transient me-
chanical response of glasses focusing on the characteristic
strain needed to converge toward steady flow microscopic
properties. The variation of shear modulus and strain lo-
calisation under imposed deformation are analysed. We
finally discuss in Sec. 5 the discrepancies between the two

models and the insights gained from this multi-scale ap-
proach.

2. Atomistic model

We consider a two-dimensional binary model for gen-
erating and probing the mechanical response of glasses.
Its plastic behaviour has been extensively studied in
[46, 47, 7]. This model has been employed as a reference
system for a systematic and quantitative calibration of an
enriched elasto-plastic model in [1]. The simulations are
performed with periodic boundary conditions for systems
made of 104 atoms with number density ≈ 1.02. The
atoms interact through Lennard-Jones (LJ) interatomic
potentials parametrized by their energy ε and length σ
scales. The mass m of each particle is unity, and the unit
of time is σ

√
m/ε. Boltzmann’s constant is taken as unity,

and the LJ units are used in the following. The LJ expres-
sion for an interatomic distance greater than Rin = 2 is
replaced by a quartic polynomial vanishing function at the
cutoff distance Rcut = 2.5.

The glasses are obtained from instantaneous quenches
of liquids at thermodynamic equilibrium simulated by
molecular dynamics (MD) over a duration equal to 100
times the liquid relaxation times. A wide range of par-
ent temperatures is studied from Tp = 0.32 to 0.7, ranging
from the supercooled liquid regime to the simple liquid dif-
fusion regime. This temperature range is chosen to overlap
the mode coupling temperature TMCT ≈ 0.373[47] while
still being able to achieve thermodynamic equilibrium with
conventional MD, i.e. above of the computer glass transi-
tion temperature Tg ≈ 0.31. After the quench, the glasses
are relaxed by a conjugate gradient algorithm and then de-
formed in simple shear along the xy direction following the
athermal quasi-static (AQS) method [19]. This procedure
consists in applying small increments of affine deformation
to the simulation box ∆γext = 10−4 followed by a static
relaxation. Depending on initial states, the stationary flow
state for this system under AQS can be reached for strains
of the order of γext & 5 [7]. Here we shall investigate only
the transient regime and deform the resulting glasses to
a total strain of γext = 0.5. In addition to the plastic
response, the overall system’s elastic shear modulus G is
computed as a function of γext. The data reported in the
article correspond to ensemble averages computed over 30
independent samples simulated for each preparation pro-
tocol.

As previously reported [6, 46, 8], the average mechan-
ical response shown in figure Fig. 1 presents a marked de-
pendence on the thermal history of the glass. The lower
the equilibrium parent temperature, the stiffer and harder
the glass. For the lowest Tp, the amorphous solid exhibits
a stress-overshoot marking the start of strain-softening as-
sociated with the appearance of shear bands. On the other
hand, glasses obtained from a high Tp are more compliant
and exhibit a progressive slow hardening behaviour with a
statistically homogeneous plastic deformation field.

2



-40

-20

0

20

40

-40 -20 0 20 40

c
τ,~ c

δτ,
~
Σ

vm

~

l
R

γ
ext

x

y

α

Figure 1: Left and middle: Atomistic and elasto-plastic models, respectively. The regular square grid is the mesh used in this work. The glass
experiences a local shear transformation. The frozen matrix method is employed to probe the local mechanical response on different scales
R (blue patches) and directions α. Right: Global stress-strain curves under simple shear in the xy direction for atomistic (dashed lines) and
elasto-plastic (continuous lines) models for glasses prepared from different parent temperatures Tp. The horizontal dotted line corresponds
to the stationary flow stress.

In addition to the overall response, local yield stresses
are computed with the frozen matrix method developed
in [35, 46]. The method consists in deforming a patch of
radius R (see the blue area in Fig. 1, left) following AQS
pure shear boundary conditions. To this end, an affine
pure shear in the direction α is applied to the atoms of
the surrounding matrix. Starting from the internal patch-
scale shear stress τ̃ , the patch is loaded up to the onset of
instability at the patch-scale yield stress τ̃ c, from which
the residual plastic strength (or equivalently the distance
to threshold ∆τ̃ c = τ̃ c − τ̃) is obtained. Following the
instability, a ST occurs, leading to a stress drop δτ̃ c within
the patch. Patches are defined on a regular square grid of
mesh parameter 2.5, every ∆α = 10◦, and for patch radii
ranging from R = 2.5 to 30.

3. Elasto-plastic model

The elasto-plastic model employed in this work is a
direct extension of the one introduced in [1]. A contin-
uum body discretized into a two-dimensional lattice of
mesoscale elements is considered as depicted in Fig. 1, mid-
dle. Each element has a size l × l where l is larger than
the typical scale of a ST. Microscopic details below the
element scale are not resolved. Consequently, the stress
and strain fields are considered homogeneous within each
element but can fluctuate over the material domain.

3.1. Local slip systems

The amorphous microstructure is represented by con-
sidering that each mesoscale element contains several local
slip systems with statistically distributed properties. The
rationale behind using a discrete set of local slip planes
per element is that STs can only occur in specific weak
directions on a local scale, as shown in [46] from atomistic
simulations. In the presence of strong structural disor-
der, planes that qualify as weak under the action of shear

stress may not qualify as such in other shear directions
α. While the slip system concept is more often used in the
context of crystal plasticity to describe dislocation glide, it
recently allowed us to reproduce the anisotropy induced by
the plastic deformation in the same elasto-plastic frame-
work [1].

Each local slip system is defined by a plane of normal
unit vector n and a slip direction s, from which a Schmid
tensor M = 1

2 (s⊗ n + n⊗ s) can be constructed. In
two-dimension, this tensor can be written in terms of the
angle θ between the local slip plane and the horizontal axis
as

M(θ) =
1

2

(
−sin2θ cos2θ
cos2θ sin2θ

)
(3.1)

with θ ∈ (−π/2, π/2] due to symmetry. The resolved shear
stress τ on a local slip plane is given by

τ = M(θ) : Σ, (3.2)

where Σ is the stress on the element. Each local slip sys-
tem has a critical resolved shear stress, or slip threshold,
τ c > 0. Whenever a local slip system fulfills τ = τ c, it be-
comes active and a slip event takes place. This event aims
at accounting, at the mesoscale, for the coarse-grained ef-
fects of a ST. To this end, a local (plastic) eigenstrain
increment ∆εpl is added to the element in which the event
takes place,

∆εpl = ∆γplM , (3.3)

where the slip amplitude ∆γpl along the local slip sys-
tem is statistically distributed due to the (unresolved)
microstructural heterogeneity. The following bounded
power-law distribution is used

P (∆γpl|γmax, χ) =
χ

γmax
(1− ∆γpl

γmax
)χ−1 (3.4)

with ∆γpl ∈ [0, γmax). This form is chosen, as discussed in
[1], since it allows to establish bounds to ∆γpl while still
allowing to tune its shape with a single parameter χ.
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To avoid negative dissipation [48], the parameter γmax

writes

γmax(τ) =
−2τ

(C : (S− I) : M) : M
, (3.5)

and defines the plastic shear strain amplitude that would
cancel a resolved shear stress τ , assuming linear elasticity,
where C is the fourth-order Hooke’s tensor, and S is the
Eshelby tensor of the mesoscale elements. In [1], the limit
γmax(τ) was used, meaning that the locally acting shear
stress gives the amplitude of the events. In the present
work, however, a limit γmax(τ c) based on the maximum
shear stress τ c that a specific local slip plane can hold
was found to reproduce better the transient flow regime,
and hence this choice was adopted. After model calibra-
tion, both choices lead to similar results in the stationary
regime.

The slip angles and thresholds are statistically dis-
tributed to represent structural heterogeneity. As dis-
cussed in [1], to ensure that elements have a finite critical
resolved shear stress defined for any shear orientation α, N
local slip systems, in groups of four, are introduced, with
orientations θ + nπ/4 where n = 1, 2, 3 and 4. θ is uni-
formly distributed in the interval (−π/2, π/2]. The slip
thresholds are independently renewed from the Weibull
distribution

P (τ c|λ, k) =
k

λ

(
τ c

λ

)k−1

exp

[
−
(
τ c

λ

)k]
, (3.6)

where the parameter λ and the exponent k define the scale
and the shape of the distribution, respectively. When
an element undergoes a slip event, the orientations and
thresholds of its N local slip systems are renewed from
their respective probability distributions. This mechanism
accounts for unresolved changes in the local microstruc-
tural properties induced by plastic deformation.

3.2. Dynamics

Whenever one or more local slip systems are active, slip
events are simultaneously performed in all those systems.
Influenced by stress redistribution, additional local slip
systems might become active. The activation process is
repeated in a series of steps until no local slip system is ac-
tive. During this process, the external strain is kept fixed.
If several local slip systems within the same mesoscale ele-
ment are active simultaneously, only the local slip system
with the lowest distance to threshold ∆τ c = τ c− τ under-
goes a slip event. A quasi-static driving protocol is applied.
To this end, whenever there is no active local slip system,
discrete external shear strain increments are applied along
the xy direction with the same amplitude ∆γext = 10−4

as in the atomistic model.

3.3. Computing the elastic fields

The Finite Element Method (FEM) is used to compute
the displacement field at every time step, so that compat-
ibility, balance, and constitutive relations are all obeyed.

[24, 49, 28, 50, 37, 38, 30]. A two-dimensional quadrilat-
eral structured mesh of finite elements (FEs) is considered
with linear shape functions. Each FE defines the spatial
domain of a mesoscale element.

The total strain, i.e., the symmetric part of the dis-
placement gradient, is the sum of the elastic εel and the
plastic strain εpl. The stress is related to the elastic strain
through the linear elastic law Σ = C : εel, where C is
the fourth-order Hooke’s tensor, and the plastic strain εpl
is updated according to the model dynamics. The fields
associated with each mesoscale element are naturally the
coarse-grained average of the same quantity occurring at a
smaller (microscopic) scale that cannot be resolved. Thus,
we associate to each mesoscale element the average of each
field computed over its associated FE.

Bi-periodic boundary conditions are used with an ex-
ternally applied shear strain γext along the xy direction.
The external shear stress Σxy

ext is computed as the average
shear stress over the system.

3.4. Transient properties

Atomistic measurements [35, 7] evidence that quenched
state structural properties differ from the stationary state
ones. In the elasto-plastic model, this difference is intro-
duced by considering that the distribution parameters of
the distribution Eq. 3.6 evolve as a function of local plas-
tic deformation, thus spatially fluctuating. We consider a
linear evolution law for parameter evolutions as a conse-
quence of local plastic deformation. Thus, for the param-
eter λ,

∆λ = (∂λ/∂γpl)∆γpl, (3.7)

and
(∂λ/∂γpl) = (λs − λ)/γt, (3.8)

where λs is the stationary state value, and γt > 0 is a
characteristic plastic strain scale. This law can be inter-
preted as the dominant term (i.e., with the largest relax-
ation strain γt) in a small perturbation expansion of a
possibly more complex law. If the scale γt is constant,
Eq. 3.9 reduces to an exponential function of the local ac-
cumulated plastic strain.

Nonetheless, we consider a more general approach in
which no constraints on γt are imposed, and the values of λ
are updated based only on local changes ∆γpl instead of on
accumulated values. To this end, we first index the system
history according to the number n of plastic events that
have occurred so far. Thus, transition from n to n+1 takes

place due to a local plastic increment of amplitude ∆γ
(n
pl .

We integrate Eq. 3.8 between the current state n and the
next state n + 1, and consider the limits λ ∈ [λ(n, λ(n+1]

and ∆γpl ∈ [0,∆γ
(n
pl ], which result in the exponential form

λ(n+1 = (λ(n − λs) · exp

(
−

∆γ
(n
pl

γt

)
+ λs (3.9)

For the sake of simplicity, an analogous form is considered
for the shape parameter k of Eq. 3.6, with an asymptotic
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value ks. To keep the model formulation simple enough,
χ is assumed to be constant so that the plastic rearrange-
ment amplitude relations (see Eq. 3.4 and Eq. 3.5) do not
change with the deformation. The following limits hold,

λ(n+1 → λ(n if ∆γ
(n
pl /γt → 0

λ(n+1 → λs if ∆γ
(n
pl /γt →∞

Thus, as intuitively expected, plastic events with a small
plastic strain amplitude ∆γpl result in renewed structural
properties that remain statistically close to the previous
ones. On the other hand, events with a larger amplitude
result in a comparatively more significant change toward
the asymptotic stationary value.

The model considers the evolution of the shear modulus
G as a function of local plastic deformation. On the other
hand, since the model is mainly sensitive to shear stresses,
we make the simplifying assumption of a constant bulk
modulus B, which is set to its stationary state value. We
assume that the shear modulus G evolves locally according
to a law with the same form as Eq. 3.9. Then, the model
relies on an approximation for computational performance.
Namely, the shear modulus is homogenized by replacing it
with its spatial average. With the global values of G and
B, a homogeneous and isotropic Hooke’s tensor C is cre-
ated and used for computing the elastic fields as described
in Sec. 3.3. Let us stress that the goal is to describe the
effects of the variation of the elastic properties with strain
only to the leading order. These homogeneous values will
be compared to the effective atomistic ones measured at
the sample scale in Fig. 6 below.

Finally, in order to implement recursive evolution laws
with the form of Eq. 3.9, the initial values λ(1, k(1, and
G(1 are needed. These values are respectively given by the
quench state values λq, kq, and Gq, which correspond to
model-free parameters to be fitted. On the other hand, the
stationary state values λs, ks and Gs are known from [1].

4. Results

As explained in Sec. 2, atomistic glass samples are
prepared with parent liquid temperatures of Tp = 0.32,
0.34, 0.37, 0.4, 0.5 and 0.7. The goal is to reproduce the
atomistic quench state properties and the transient flow
regime for the whole temperature range using the elasto-
plastic model. To this end, the stationary state results of
[1] are leveraged. The mesoscale element length is set to
l = 6.6 and the number of local slip systems per element to
N = 36. For this model configuration, the optimum values
for the stationary state parameters λs, ks, χ, Gs and Bs

are given in Tab. B.1. These values are independent of the
initial conditions and thus of the parent temperature Tp.

4.1. Quenched state

The quenched shear modulus Gq is measured from the
macroscale elastic response of atomistic glasses with dif-
ferent parent temperatures Tp. The bulk modulus is set to

its stationary state value Bs, independently of Tp. These
values are used as input for the elasto-plastic model, con-
sidering isotropic and homogeneous elastic properties.

To calibrate the local properties, the frozen matrix
method is employed as schematized in Fig. 1 (left and
middle, blue areas). It allows us to compare the local
mechanical response independently of model implementa-
tion details and at different length scales. The method is
applied to the atomistic samples as described in Sec. 2. On
the other hand, the implementation of the same method,
presented in [1], is used for the elasto-plastic model. Lo-
cal properties are calibrated by requiring that patch-scale
values, when measured at the largest patch size available,
are statistically similar between both models. In the case
of the atomistic model, the largest patch has a radius of
R = 30. As detailed in [1], this is compared with square
elasto-plastic patches of the same area. For the chosen
mesoscale length of l = 6.6, such patches are composed
of 8 × 8 = 64 mesoscale elements. Moreover, since the
quenched state is statistically isotropic, aggregated mea-
surements do not depend on the shear orientation α. Thus,
we compute aggregated quantities by pooling patch-scale
data from local shear tests with different shear orienta-
tions.

To induce an internal stress field akin to the resid-
ual quenched stresses resulting from the atomistic sample
preparation history and mimic the supercooled liquid re-
laxation process [51], a quenched eigenstrain plastic field
ε0pl is generated. We neglect the quenched state pressure
field since the system dynamics are mostly sensitive to
shear stresses. Thus, ε0pl is assumed to be a purely devi-
atoric field. The two deviatoric components are (element-
wise) independently drawn from a Gaussian distribution
with zero average and standard deviation std[dev(ε0pl)].
The standard deviation is calibrated by requiring that the
patch-scale von Mises stress Σ̃vm is statistically similar
between both models. The process is repeated for each
parent temperature Tp (see Fig. 2 top).

The initial slip configuration must be stable, given the
stress field induced by ε0pl. Thus, if an initial local slip
system is active, all mesoscale element local slip systems
are re-drawn from Eq. 3.6. This process is repeated until
all local slip systems are stable, thus implementing a re-
jection sampling algorithm for constructing stable initial
configurations.

The frozen matrix method is then applied to sample
the patch-scale local yield stress values τ̃ c. The individual
slip thresholds, drawn from Eq. 3.6, and the measured
coarse-grained yield stress τ̃ c are observed to be different
due to stress heterogeneity and patch-scale effects. The
values of λq and kq are calibrated by requiring statistically
similar measurements of τ̃ c in both models. The process
is repeated for each parent temperature Tp as reported in
Fig. 3 and Fig. 4.

As discussed in [46, 1, 45], small patches lead to an
overestimation of τ̃ c measurements in the atomistic model
due to rigid boundary conditions (see Fig. 3 in the small
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Figure 2: Average von Mises stress Σ̃vm (top) and stress drop δτ̃c

(bottom) vs. patch radius R for parent temperatures from Tp = 0.32
to 0.7.

Tp

Tp

Figure 3: Average (top) and standard deviation (bottom) quench
state local yield stress τ̃c vs. patch radius R, for parent temperatures
from Tp = 0.32, to 0.7.

R range). For this reason, the comparison between mod-
els is performed with the largest patch size available. For
this coarse length scale of R = 30, an excellent calibra-
tion is achieved in the quenched states for all the parent
temperatures.

Regarding the patch-scale local stress drops δτ̃ c in-
duced by plastic deformation, we observe an excellent
agreement between both models (see Fig. 2 bottom) once
the local stress and yield thresholds have been calibrated.

Tp

Figure 4: Average (top) and standard deviation (bottom) quench
state local yield stress τ̃c vs. parent temperature Tp, measured with
patch radius R = 30.

4.2. Transient regime

With the quantitative calibration of the quench state
discussed in Sec. 4.1 and the steady-state flow provided in
[1], we focus now in the transient regime. It was suggested
previously that the transient regime, and its memory ef-
fects, are ruled by Eq. 3.9. In principle, the value of γt
is expected to be intrinsic to the athermal system dynam-
ics and thus does not depend on parent temperature or
initial conditions. In Fig. 5, different orders of character-
istic strains γt are used, namely γt = 0.02, 0.2, and 2.
The smallest γt = 0.02 approaches the no-memory limit
γt → 0. For this value, the model reproduces the mechan-
ical response of samples close to the mode coupling tem-
perature TMCT , since in this case, the properties of the
quenched state are similar to the steady-state flow ones
(disregarding polarization effects [7, 1]). However, it fails
to generalize to other temperatures. Specifically, we ob-
serve too fast convergence toward the steady-state. This
observation motivates using a non-vanishing characteristic
strain γt and supports the modelling approach chosen for
the transient regime.

On the other hand, both γt = 0.2 and γt = 2 show
excellent agreements but their best fits correspond to dif-
ferent Tp ranges. We find that γt = 0.2 reproduces al-
most quantitatively the stable glasses response obtained
from the lowest parent temperatures. In particular, the
model describes the stress peak and the subsequent strain-
softening observed for Tp = 0.32. However, for γt = 2,
the elasto-plastic model misses the stress overshoot with a
much too slow strain-softening, as shown in Fig. 5 bottom.
This result can be compared with previous works [47, 45]
employing the same atomic model and glass stability
ranges. In [47], a characteristic rearrangement plastic
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strain of ε∗pl ≈ 0.054 was estimated from the evolution
of τ̃ c with a coarse-graining length of R = 5. Taking into
account the factor 2 for a slip γ = 2ε and the length scale
difference between the patch and the element area, one
finds a corresponding strain scale 2ε∗plπR

2/l2 ≈ 0.195, in
close agreement with γt = 0.2.

The interpretation of γt in the framework of the present
elasto-plastic model is not straightforward because of the
involved distributions of slip amplitudes in Eq. 3.4. Start-
ing from the quench state, if one assumes constant γt and

slip orientation, then ∆γ
(n
pl can be interpreted in Eq. 3.9 as

an accumulated plastic strain. However, the model deals
with randomly oriented local slip systems. The character-
istic strain γt is thus expected to be an upper estimate of
the local plastic strain necessary to converge to the steady-
state. One can estimate the average slip amplitude of the
first plastic rearrangement in the quenched state to assess
the rapid relaxation toward a steady-state. A rough ap-
proximation of this first slip amplitude for Tp = 0.32 is
given at the element scale by the average 〈δτ̃ c〉/Gq ≈ 0.06
which is slightly smaller. This estimate is, however, closer
if we consider the optimized γt ≈ 0.1 computed from
Eq. 4.1 (see below). In any case, this result confirms that
the renewal process in hard glasses takes place almost in-
stantaneously, and stable amorphous solids locally forget
their initial state after the very first plastic events.

In sharp contrast, the convergence toward steady-state
found in atomistic simulations is much slower for the high
parent temperatures, as shown in Fig. 5. In this case, the
unstable glasses experience progressive hardening akin to
mechanical annealing. A good match is found between
the atomistic and elasto-plastic models for a value γt ≈ 2,
meaning that each element has to undergo many plastic
rearrangements before reaching a 〈Σxy

ext〉 value comparable
to the steady-state plateau.

A critical parent temperature, featuring the quickest
asymptotics between the fast strain-softening and slow
strain-hardening regimes, is found in the vicinity of the
mode coupling temperature [47], for 0.37 < Tp < 0.4. As
discussed above, the reason is that for the mode coupling
temperature, the quench state properties are very close
to the steady-state ones if we ignore plasticity-induced
anisotropy [7, 1]. In this case, the transient regime van-
ishes, leading to a negligible parameter gap (λ− λs), and
thus an undeterminate value of the relaxation strain γt.
In summary, the picture reported above suggests a depen-
dency of the characteristic plastic strain γt on the par-
ent temperature Tp. This finding is key to understanding
the plasticity of glasses better. Since the systems evolve
in athermal conditions, under the same loading protocol,
and the compositions of all the glass samples are identi-
cal, differences in the dynamics must be necessarily linked
to differences in local quench structural properties. Thus,
to account for a dependency on structural properties, we
generalize the memory model of Eq. 3.9 by considering a

Tp

t
=0.02

t
=0.2

t
=2.0

Figure 5: Stress-strain curves obtained with different fixed values of
the γt parameter in Eq. 3.9. The continuous lines correspond to the
elasto-plastic model and the dashed lines to the atomistic one. The
dotted line is the steady-state value.

correction that depends on the local value of λ as

γt = γ̄t

(
λ(n

λs

)β
(4.1)

In this equation, the parameters γ̄t and β are intrinsic
to the athermal system dynamics and do not depend on
parent temperature or initial conditions. It means that γt
now depends on (λ − λs); hence, we have lost the simple
first-order character of Eq. 3.8, but still, everything is local
during the structural evolution process.

For simplicity, the same correction based on λ is used
for the other structural properties k and G. Strikingly, this
corrected model allows for a rather accurate quantitative
agreement in the stress-strain response, but this time over
the whole temperature range as reported in Fig. 1 with
γ̄t = 0.2 and β = −3.3. Additional comparisons between
the elasto-plastic model with the enriched relation Eq. 4.1
and the atomistic model are provided in Sec. Appendix A.
Details of the fitting procedure and the estimated param-
eters are given in Sec. Appendix B.

4.3. Evolution of elastic modulus

Plastic deformation is known to induce changes not
only in the local yield stresses but also in the elastic mod-
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uli [33] as a consequence of structural rejuvenation. As dis-
cussed in Sec. 3.4, the model considers the local evolution
of the shear modulus with plastic deformation, assuming
an evolution law first similar to Eq. 3.9, and then cor-
rected by Eq. 4.1. However, elastic fields were computed
for computational efficiency by considering only an average
homogeneous G. To further check the consistency of the
proposed approach, we compute these average shear mod-
uli and compare them with the effective ones computed
in atomistic simulation as a function of strain. To in-

Tp

Figure 6: Global effective shear modulus vs. applied strain for
different parent temperatures Tp, obtained from the elasto-plastic
model (continuous lines), and the atomistic model in loaded states
(open circles, dotted lines) and in unloaded states (full circles, dashed
lines).

vestigate elastic nonlinearities, the shear moduli are mea-
sured in the atomistic simulations in the loaded and the
unloaded states, as shown in Fig. 6. The unloading is car-
ried out quasi-statically down to zero macroscopic shear
stress. The unloading generates little plastic activity in
agreement with [7]. This procedure, therefore, allows us
to separate elastic nonlinearities from the effect of struc-
tural rejuvenation induced by plasticity.

Changes in modulus in the loaded state show a rapid
drop in stiffness, especially at large external stresses, in
stable glasses that feature a stress overshoot. This rapid
drop is absent from the data in the unloaded state, which
leads to the conclusion that it is mainly due to the in-
creased external stress and, thence, elastic nonlinearities.
The variation of the modulus of structural origin in the
elasto-plastic model is described from the threshold evolu-
tion equations by replacing λ withG in Eq. 3.9 and Eq. 4.1.
The comparison is made between the atomic simulations in
the unloaded state and the calibrated elasto-plastic model
in Fig. 6.

Although the evolution of the shear modulus was not
part of the model calibration, this simplified modelling ap-
proach for the evolution of elastic properties can qualita-
tively reproduce the variations in the effective shear mod-
ulus obtained from atomistic simulations. Nevertheless, in
agreement with [45], we note that the average macroscopic
stress response is nearly unaffected if we neglect the global

elastic property variations.

4.4. Local strain fluctuation

In addition to stress response, the mesoscopic model con-
sistency is evaluated by analyzing the strain fields, which
strongly depend on the thermal history of the glasses. For
this, the local strain tensor ε is calculated from the defor-
mation gradient tensor F. For the elasto-plastic model, F
is numerically integrated for each element by multiplying
the tensors F = FnFn−1 · · · F2F1 where Fi is the de-
formation gradient tensor between the states i and i + 1
separating each plastic event.
For the atomistic simulations, F is computed from the
Zimmerman’s approach [52] defining the atomic level de-
formation gradient tensor Fαij for the atom α from the
(least square) minimization of the function

Bα =

n∑
β=1

2∑
i=1

(xαβi − F
α
ijX

αβ
j )2, (4.2)

where the sum is performed over the n nearest neighbours
of α located at a distance less than RCG with Xαβ and
xαβ the distances between the atoms α and β in the ref-
erence (the quench state here) and current configurations,
respectively.
To quantitatively compare the local deformations of the
two models, the strains are calculated on a length scale
corresponding to the size of the elements of the elastoplas-
tic model l. We employ a length RCG = l/

√
π so that

the considered area is the same for the atomistic coarse-
grained strains and the mesoscopic elements. In addition,
F are spatially sampled on the same regular grid as the
elasto-plastic model (see the mesh reported in Fig. 1) by
assigning to each grid point the atomic value Fαij corre-
sponding to its nearest atom. The linear strain tensor ε is
then calculated from F and finally reduced to a scalar by
considering the second invariant of the strain tensor εVM .
Local strain maps are shown in Fig. 7(top) for the most
contrasting parent temperatures, Tp = 0.32 and 0.7, in
order to highlight the dependence of plastic strain fluctu-
ations with the system’s initial preparation. The strain
fields calculated from the atomistic simulations (AT) and
the elastoplastic model (EP) are illustrated for three im-
posed macroscopic strains equal to γext = 0.15, 0.3 and
0.45.
The elasto-plastic model reproduces with a remarkable
agreement the overall strain patterns observed in the atom-
istic model. For low parent temperatures, the strain field
concentrates in the form of shear bands nucleated just af-
ter the stress peak, with a surrounding matrix almost not
plastically deformed. Thereafter, the band widens with the
increase in imposed deformation. While small fluctuations
are still present in systems prepared from a high parent
temperature, these soft glasses show statistically homoge-
neous plastic strain. The elasto-plastic model, therefore,
consistently captures the ductile-fragile transition with the
system preparation.
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Figure 7: Top: local von Mises strain εvm maps for different applied
deformations γext (columns) and parent temperatures Tp (rows)
computed from atomistic simulations (AT) and the elastoplastic
model (EP). Bottom: εvm standard deviation as a function of γext
for different Tp obtained from the elasto-plastic model (continuous
lines) and the atomistic model (open circles, dashed lines).

However, closer inspection of the strain fields computed
in the mesoscopic model shows discrepancies with respect
to the atomistic simulations. We indeed observe that
the profile of the shear bands is less rough in the model,
which features straighter bands. Similarly, the elastoplas-
tic model for the high parent temperatures shows spa-
tial correlations organising themselves into quasilinear pat-
terns aligned with the mesh. We attribute part of this be-
haviour to the presence of soft modes in the elastic prop-
agator as shown in [53].
To quantitatively compare the strain fluctuations of the
two models, we report in Fig. 7(bottom) the strain stan-
dard deviation std(εVM ) as a function of γext. As ex-

pected, we observe an increase in std(εVM ) with the ap-
plied strain and a decrease in the parent temperature. If
the elasto-plastic model reproduces these trends qualita-
tively, it underestimates (overestimates) the fluctuations
for high (low) parent temperatures. For the lowest Tp,
the difference can be explained in particular by a slower
spreading of the shear band with γext and by the plas-
tic event scarcity outside the band with respect to the
atomistic simulations. In the case of soft glasses, the un-
derestimation of std(εVM ) can be explained by the pres-
ence of large amplitude localised plastic rearrangements.
Nevertheless, an excellent agreement is found around the
ductile-brittle transition parent temperature for Tp = 0.34.
Bearing in mind that the local strain fluctuations were not
part of the adjustment, the model calibration thus appears
here as a compromise that calls for considering other phys-
ical ingredients as discussed in the next section.

5. Discussion

We have shown that the extended elasto-plastic model
can quantitatively match the macroscale mechanical re-
sponse in the transient regime. This match is especially
true for small Tp, which display a softening behaviour well
captured by the calibration. Specifically, stable glasses are
characterized by a memory of their quenched state much
shorter than in unstable glasses quenched from relatively
higher temperatures. Locally, this behaviour can be under-
stood considering that glasses equilibrated at low Tp tend
to have higher yield stresses, but as soon as refreshed by a
plastic slip, the stable packing is almost entirely reshuffled
and becomes, on average, softer. On a global scale, the ob-
servable softening behaviour is caused by the rapid local-
ization of the deformation into a shear band. Shear bands
are characterized by their softness compared to the sur-
rounding matrix [47], which again supports a short mem-
ory. In contrast, for large Tp, the unstable glasses are ”slow
learners”. In this case, it is difficult to reproduce a long
memory in this elasto-plastic framework because the entire
element is renewed. Hence, the model might compensate
for excessive structural renewal with an increased apparent
memory given by a larger value of γt. If we exclude the in-
dependent quench and steady-state calibrations, only the
two parameters of the extended model given by Eq. 4.1
are required to match all the glass preparation protocols
consistently.
While the physical interpretation of the γt value was dis-
cussed in Sec. 4.2, another question lies in the consistency
of the calibrated exponents k reported in Tab. B.1 and B.2.
In the limit ∆τ c → 0, a scaling law p(∆τ c) ∝ (∆τ c)θ is in-
deed expected, but with a significantly smaller pseudogap
exponent θ (in the range 0.5− 0.7 [46, 54]). The exponent
k−1 (to compare with θ) however correspond to the τ c re-
newal distributions and not to ∆τ c. Once decorated from
internal stresses, we recover probability distribution func-
tions for ∆τ c in the steady state with an exponent θ ≈ 0.6,
in excellent agreement with the literature results [55] (with
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a plateau at low ∆τ c due to finite size effects [56, 57]).
For the quench states, the scaling is nevertheless less con-
vincing. We ascribe this discrepancy to the caricaturally
simple procedure employed to mimic the quench states,
which only requires mechanical equilibrium and ignores
the stress correlations observed in the inherent states [14].
Note that if atomistic simulations have shown that θ is
almost independent of the quench state [58, 59, 60], this is
not the case for elasto-plastic models for which the ques-
tion of a relevant preparation protocol remains open. The
approaches developed in our work provide a first step to
answering this.

As for the strain fluctuations discussed in Sec. 4.4,
some small discrepancies regarding the stress response be-
tween the elasto-plastic and atomistic models should also
be pointed out. First, Fig. 1 shows that the elasto-plastic
model predicts slightly larger stresses than atomistic simu-
lations in the pseudo-elastic regime at small applied strains
for unstable glasses produced from high parent temper-
atures. Second, stress fluctuations are slightly overesti-
mated as shown in Fig. A.8 for stable glasses. The ori-
gin of these two discrepancies can be presumably traced
back to the statistics of plastic rearrangement amplitudes.
For high Tp, the slip amplitudes are underestimated in the
pseudo-elastic regime, slightly overestimating the stress re-
sponse.

On the other hand, part of the overestimation of the
fluctuation in the low Tp glasses comes from the constant
coupling relationship between local thresholds and stress
drops. These amplitudes are controlled by Eq. 3.4, sup-
posedly independent of plastic strain in contrast to yield
stress renewal distributions, which links structure relax-
ation through its dependence on the overcome slip thresh-
olds. However, at the small scales at which slip events oc-
cur, elastic heterogeneity becomes relevant [61, 62]. Thus,
a more accurate description of a slip event would explicitly
consider the effects of local elastic heterogeneity as part of
the event. Locally evolving elastic properties might also
impact the event amplitude and the statistics of slip ori-
entations.

The small strain regime may also suffer from the in-
dependent set of stresses and local slip systems during
the quench state calibration, which neglects possibly more
complex correlations beyond those introduced by the sta-
bility requirement discussed in Sec. 4.1. The effect of
such a naive preparation protocol is presumably more sig-
nificant in the case of high parent temperature glasses,
where yield stresses are lower than for low Tp glasses. A
modelling approach able to reproduce quenched states by
explicitly incorporating the physics of the parent liquid
state might thus be a way to improve the small strain re-
sponses [51]. Moreover, the observed discrepancies might
be linked to some simplifying modelling assumptions, such
as the postulated linearity, the neglection of finite defor-
mation/rotation effects, the use of highly structured mesh,
or the lack of convection [63] as discussed at length in [1].

6. Conclusions

In this paper, we have extended the description of the
mechanical response of an elasto-plastic model of amor-
phous solids to the transient regime and for a wide range
of initial system stabilities. The calibration of the model
reproduces the different quench states obtained from the
local atomistic data. A statistical model of the evolution
of slip thresholds based on local plastic strain increments is
proposed. This model shows an excellent agreement with
atomistic simulations and makes it possible to reproduce
the transient mechanical responses of glasses.

In stable glasses, showing a stress peak followed by
strain-softening and localization, the transition to the sta-
tionary state is extremely rapid and occurs from the first
plastic rearrangements. Conversely, the unstable glasses,
quenched from high temperatures, require a much larger
plastic strain and slowly harden towards the steady state.
However, we show that to match the full range of be-
haviours within a unified model, it is necessary to explicitly
consider the effects of the initial structure in the system’s
memory. With this correction, the model reproduces the
transient responses with good precision for all the parent
temperatures.
In total, two parameters are used to capture the instanta-
neous mechanical state (k and λ), and a third parameter
(γt) is introduced to describe their evolution along shear.
In this respect, the main message of our work is not the
parameter fitting procedure but the fact that with only
three parameters, it is possible to account precisely for
the mean behaviour, its transient evolution from different
initial states and its fluctuation in a continuous setting.

Future improvements should be considered regarding
the consistent match between atomistic and elasto-plastic
models. First, in the elastoplastic model, one could deal
explicitly with elastic heterogeneity and anisotropy, which
are known to become dominant at small scales [61, 62].
Another point would consist in assessing the effects of a
constant FEM mesh. It is indeed expected that the ST size
and density depend on thermomechanical history [64]. In
this respect, the usage of non-uniform [50, 29] and history-
dependent discretization would be of interest to explore
the limit under which the continuous approach breaks
down. As shown here and in previous studies [1, 45], the
frozen matrix method seems to overestimate the measure-
ments of the threshold values in atomistic simulations be-
cause of rigid boundary conditions. Another avenue would
therefore consist in taking into account the deformation
of the surrounding matrix, for instance, by resorting to
flexible and elastic boundary conditions developed initially
for dislocations [65]. All these enrichments are related to
small-scale responses. As such, they could serve not only
for more quantitative multi-scale approaches but also as
a guide for a fundamental understanding of amorphous
plasticity.

Several perspectives can be drawn from the present
study for larger and continuous scales. To leverage the
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computational efficiency of elasto-plastic models, homog-
enization techniques and coarser descriptions are logical
next steps. Here, we have assumed that any deforma-
tion completely renews the local slip systems configura-
tion within a deforming element. However, this is true
only if the discretization length l is close to or below the
ST size. In general, for larger l, the structure of a portion
of the element is expected to remain unaltered. The non-
renewed portion leads to a scale-dependent memory term,
which could be translated to evolution laws with the same
procedure as in this work, but with a γt appropriately
weighted by the relative size of the non-renewed structure
relative to the element size. Another avenue would be to
study the relevant statistical fluctuations retained during
a coarse-graining procedure. A goal could be to transfer
the knowledge acquired from mesoscale elasto-plastic ap-
proaches to existing engineering codes for submicron scale
applications, where large plastic fluctuations and intermit-
tency cannot be ignored. Finally, the presented approach
could be straightforwardly generalized to other amorphous
materials, such as covalent glasses or granular media, po-
tentially enriching our understanding of the similarities (or
lack of) between these materials regarding plastic activ-
ity and structural evolution. The mechanical response for
three-dimensional systems [66] and at finite temperature
could also be considered. In principle, these developments
do not pose a problem, allowing this method to be gener-
alized to more realistic systems.
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Appendix A. Evolution of stress fluctuations

The macroscopic stress fluctuations are computed as
a function of the applied strain. The comparison is
made between the atomic simulations and the calibrated
elasto-plastic model, taking into account the memory ef-
fect through the nonlinear relation Eq. 4.1.

Tp

Figure A.8: External stress drops (top) and increments (bottom) vs.
applied strain, for different parent temperatures Tp. The continuous
lines correspond to the elasto-plastic model and the dashed lines to
the atomistic one.

The fluctuations are quantified through the variations
of stress increments ∆Σxy

ext and stress drops δΣxy
ext as re-

ported in Fig. A.8. The drops (increments) of macro-
scopic stresses increase (decrease) during the pseudo-
elastic regime to quickly stabilize around a plateau, slowly
converging to a steady state. A good agreement is ob-
tained between the elasto-plastic model and atomistic sim-
ulations. However, a deviation is observed for the most
stable glasses obtained from Tp = 0.32 for which the incre-
ments and drops are slightly greater than atomistic simula-
tions. The two effects nevertheless compensate each other,
thus giving an average of the macroscopic stresses in good
agreement with the microscopic model as shown in Fig. 1.
Since this discrepancy is observed only for the most stable
glass and after the peak stress, it is presumably related

to shear banding and strain localization where the small
strain framework of the elastoplastic model ceases to be
valid.

Appendix B. Fitting procedure

The stationary state parameters are known from [1],
except for the value of χ. This change is due to the law
γmax(τ c) in Eq. 3.5 that is used in this work, in contrast
with the law γmax(τ) of [1]. The stationary state parame-
ters are given in Tab. B.1.

The values of Gq are measured from the quenched ef-
fective elastic response of the atomistic samples. The value
of std[dev(ε0pl)] is calibrated from the quenched state aver-

age von Mises stress Σ̃vm. The value of λq and kq are cal-
ibrated from the quenched state average local yield stress
〈τ̃ c〉 and the standard deviation std(τ̃ c). These local quan-
tities are measured using the biggest patch size available,
i.e., R = 30. The quenched state parameters are given in
Tab. B.2.

Finally, the transient parameters γ̄t and β were cali-
brated by using the stationary and quenched state calibra-
tions. In this case, a global fit to all the stress-strain curves
corresponding to different parent temperatures Tp was per-
formed. These parameters are reported in Tab. B.3.

λs 2.05
ks 2.18
χ 1.81
Gs 13.2
Bs 59.0

Table B.1: Stationary state parameters.

Tp std[dev(ε0pl)] Gq λq kq
0.32 0.012 17.6 2.47 3.42
0.34 0.012 15.6 1.97 3.49
0.37 0.013 14.5 1.53 4.09
0.40 0.014 13.0 1.30 4.20
0.50 0.015 11.7 1.14 4.39
0.70 0.015 10.9 0.94 5.40

Table B.2: Quenched state parameters.

γ̄t 0.2
β -3.3

Table B.3: Transient regime parameters.
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