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Abstract 

 

Dinoflagellates are an extremely diverse group of unicellular eukaryotes that represent 

an important part of marine plankton communities. Amongst other secondary metabolites, 

these microorganisms are known to produce potent toxins such as the saxitoxins, which can 

affect marine fauna and ultimately humans who consume seafood in which these toxins have 

accumulated. The extreme biodiversity of dinoflagellates undoubtedly mirrors an 

inexhaustible reservoir of compounds, yet the chemodiversity of dinoflagellates is still poorly 

studied, due in part to constraints linked to the difficulty of isolating and cultivated these 

organisms. Nevertheless, a number of new dinoflagellate secondary metabolites have been 

described in recent years. Here we review these new advances in the isolation and 

characterization of bioactive metabolites from dinoflagellates, some of which might be of 

therapeutic interest in human health applications. 
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1. Introduction 

 

Dinoflagellates (Dinoflagellata, Alveolata) are a lineage of protists that are ecologically 

important components of marine and freshwater microbial communities. To date, about 2400 

species of dinoflagellate belonging to 260 genera have been described [1], making this one of 

the most diverse protist lineages. Approximately half of dinoflagellate species are 

photosynthetic, therefore being considered as microalgae. Most photosynthetic dinoflagellates 

have reddish brown chloroplasts containing chlorophylls a and c2, beta-carotene and a group 

of unique xanthophylls including peridinin. Some, however, contain golden brown or green 

chloroplasts originating from independent tertiary endosymbiotic events. Dinoflagellates 

characteristically possess two dissimilar flagella, one of which (the transverse flagellum) lies 

in a groove around the cell (the cingulum) and the other that beats posteriorly (longitudinal 

flagellum). Dinoflagellates have a complex cell covering called an amphiesma composed of a 

series of membranes, flattened ‘amphiesmal vesicles’ and related structures. In many 

dinoflagellates these support overlapping cellulose plates to create a sort of armour called the 

theca (as opposed to ‘athecate’ or ‘naked’ dinoflagellates). Most dinoflagellates have a 

peculiar form of nucleus, called a dinokaryon, in which the permanently condensed 

chromosomes are attached to the nuclear membrane. Most dinoflagellates are pelagic, but 

many benthic forms exist, and some dinoflagellates, such as the genera Symbiodinium [2–4], 

Pelagodinium [5], Brandtodinium [6] (can form symbiotic relationships with invertebrate 

animals or other protists). Dinoflagellates are a rich source of bioactive compounds. Many 

dinoflagellates are well known producers of toxins that can be harmful to humans via 

syndromes like Paralytic Shellfish Poisoning (PSP) [7–11], Neurotoxic Shellfish Poisoning 

(NSP) [12–14], Azaspiracid Shellfish Poisoning (AZP) [15,16], Diarrheic Shellfish Poisoning 

(DSP) [17] and Ciguatera Fish Poisoning (CFP) [18,19]. These metabolites are generally 
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detected because of their bioaccumulation through the marine food-chain into marine 

organisms including fish, crustaceans and mollusks, which are consumed by humans. It is 

known that these neurotoxins interact with specific neurotransmitter receptors or voltage-

sensitive ion channels [20]. Voltage-gated Na
+
, Ca

2+
, and K

+ 
ion channels lead to the 

generation of electrical signals involved in muscle contraction, hormone secretion, sensing of 

the environment, processing of information in the brain and nervous output from the brain 

[21]. It is therefore important to obtain information on the molecular structure of these 

metabolites in order to attempt to develop means to regulate/control their effects. Other 

dinoflagellate metabolites may have beneficial biological properties, such as amphidinol 

macrolides that have been shown to exhibit anti-bacterial and anti-fungal activities [22]. The 

constraints for isolation and characterization of new molecules produced by dinoflagellates 

remain cumbersome. Most significantly, large-scale cultivation of dinoflagellates to obtain 

sufficient biomass for purification and characterization of new molecules is relatively 

complicated because of (i) their relatively low growth rate, and (ii) the difficulty of attaining 

high cell density in culture. In addition, some heterotrophic or mixotrophic species cannot be 

cultivated in monoclonal or axenic culture conditions, being dependent on acquisition of 

eukaryotic or bacterial prey. The extreme biodiversity of dinoflagellates means that they 

undoubtedly represent a huge potential reservoir of compounds to be discovered and/or 

molecularly characterized. Interest in this potential source of bioactive compounds is reflected 

in the recent use of cutting edge technologies for the characterization of chemical structures, 

leading to a growing number of new secondary metabolites from dinoflagellates having been 

described. A set of these metabolite structures was selected in this review to highlight these 

recent advances.  

 

 

2. Chemical diversity sorted by genus 

 

 

The present review can be considered as an update of the previous chapter “Bioactive 

metabolites from marine dinoflagellates” in Comprehensive Natural Products II: Chemistry 

and Biology (2010). In light of the vast and diverse chemical reservoir produced by 

dinoflagellates, this review is not intended to be exhaustive. Rather, we provide here an 

overview of new advances on the isolation and the structural characterization of metabolites 

from dinoflagellates that have been shown to exhibit bioactivities of potential interest for 

applications related to human health (Table 1). 



5 
 

 



6 
 

Table 1. Selected set of metabolites characterized from dinoflagellates.  

Dinoflagellates (Genus) Metabolites Chemical class Biological Activity Reference 

Amphidinium 

Amphidinin A (1) 

Polyketides Antifungal/Antibacterial 

Bacillus subtilis: MIC of 16 μg/mL                                    

Aspergillus niger: IC50 of 4 μg/mL  
[23,24] 

Amphidinin C  (2) 

Staphylococcus aureus: MIC of 32 μg/mL                              

Bacillus subtilis:  MIC of 32 μg/mL                                   

Aspergillus niger:  IC50 of 12 μg/mL                              

Trichophyton mentagrophytes:  IC50 of 16 μg/mL 

[25] 

Amphidinin D  (3) Trichophyton mentagrophytes:  IC50 of 16 μg/mL [25] 

Amphidinin E  (4) 

Staphylococcus aureus: MIC of 32 μg/mL                             

Bacillus subtilis: MIC of 32 μg/mL                                    

Aspergillus niger: IC50 of 16 μg/mL                              

Trichophyton mentagrophytes: IC50 of 16 μg/mL 

[25] 

Amphidinin F  (5) Trichophyton mentagrophytes: IC50 of 16 μg/mL [25] 

Amphidinin G (7) Trichophyton mentagrophytes: IC50 of 8 μg/mL [23,24] 

Amphidinol 17 (9) 

Polyketides 

Hemolytic Activity EC50 of 4.9 μM in a hemolytic assay [26] 

Amphidinol 18 (10) Antifungal Candida albicans: IC50 of 9 μg/mL [27] 

Amphidinol 19 (11) - - [27] 

Amphidinol 20 (12) Hemolytic Activity EC50 of 3 μM in a hemolytic assay [28] 

Amphidinol 21 (13) - - [28] 

Amphirionin-2 (14) 

Polyketides 

Cytotoxicity/Toxic 
Caco-2: IC50 0.1 μg/mL; A549: IC50 0.1 μg/mL 

T/C 120% at dose of 0.5mg/kg  (Murine tumor)                                                              
[29] 

Amphirionin-4 (15) 

Cells proliferation 

activity 

950% proliferation propotion of ST-2 cells at 0.1 ng/mL. [30] 

Amphirionin-5 (16) 

282%  proliferation propotion of ST-2 cells at                                 

320% proliferation propotion of MC3T3-E1 cells at 10 

ng/mL. 

[31] 
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Dinoflagellates (Genus) Metabolites Chemical class Biological Activity Reference 

Amphidinium 

Iriomoteolides-1a (17) 

Macrolides Cytotoxicity 

DG-75: IC50 of 0.004μg/mL  [32] 

Iriomoteolides-1b (18) DG-75: IC50 of 0.9μg/mL  [32] 

Iriomoteolides-1c (19) DG-75: IC50 of 0.004μg/mL  [32] 

Iriomoteolides-2 (20) DG-75: IC50 of 0.006μg/mL; HeLa: IC50 of 0.03μM  [33] 

Iriomoteolides-3a (21) DG-75: IC50 of 0.08μg/mL  [34] 

Iriomoteolides-3b (22) DG-75: IC50 of 0.02μg/mL  [34] 

Iriomoteolides-4 (23) DG-75: IC50 of 0.8μg/mL  [35] 

Iriomoteolides-5 (24) DG-75: IC50 of 1μg/mL  [35] 

Iriomoteolides-9 (25) Hela: IC50 of 15mM  [36] 

Iriomoteolides-10 (26) 
DG-75: IC50 of 1.5 μM; HeLa: IC50 of 1.5μM  

MH134: IC50 of 3.3μM 
[37] 

Iriomoteolides-11 (27) DG-75: IC50 of 1.5 μM; HeLa: IC50 of 2μM  [36] 

Iriomoteolides-12 (28) DG-75: IC50 of  50μM  [37] 

Amdigenol-A (29) 

Polyketides 

ND ND [38] 

Amdigenol-E (30) ND ND [39] 

Amdigenol-G (31) ND ND [39] 

Azadinium 

Azaspiracids-33 (33) 

Polyether Cytotoxic 

TIB-152: EC50 of 5.2 nM [16] 

Azaspiracids-34 (34)  TIB-152: EC50 of 0.2 nM [16] 

Azaspiracids-36 (35)  TIB-152: EC50 of 1.70 nM [40] 

Azaspiracids-37 (36) TIB-152: EC50 of 0.85 nM [40] 

Dinophysis Acuminolide-A (37) Polyether ATPase activity 250% ATPase activity in skeletal muscles at 1μM [41] 
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Dinoflagellates (Genus) Metabolites Chemical class Biological Activity Reference 

Gambierdiscus 
Gambierone (38) Polyether Ladder-shaped toxin 

 A slight cytosolic Ca
2+

 increase was observed (at 30 nM to SH-

SY5Y) 
[42] 

Gambieroxide (40) Polyether ND ND [43] 

Karlodinium 

Karlotoxin-1a (42) 

Polyketides Hemolytic Activity 

EC50 of 63 nM in a hemolytic assay [44] 

Karlotoxin-1b (43) EC50 of 56 nM in a hemolytic assay [45] 

Karlotoxin-1c (44) EC50 of 300 nM in a hemolytic assay [45] 

Karlotoxin-2 (45) - [45] 

Karlotoxin-3a (46) EC50 of 200 nM in a hemolytic assay [45] 

Karlotoxin-3b (47) EC50 of 110 nM in a hemolytic assay [45] 

Karlotoxin-3c (48) EC50 of 2400 nM in a hemolytic assay [45] 

Karmitoxin (49) Polyketides Toxic 
RTgill-W1: LC50 of 125 ± 1nM                                                 

Aciarta tonsa (copepod): LC50 of 400 ± 100nM  
[46] 

Ostreopsis 

Ostreol-A (50) 

Polyketides 

Toxic Artemia salina: LD50 of 0.9 μg/mL. [47] 

Ostreol-B (51) Cytotoxic 
HepG2: IC50 of 4.8 μM ; HCT-116: IC50 of 0.1 μM                                                   

Neuro2a: IC50 of 0.9 μM  
[48] 

Prorocentrum 

Prorocentin-1 (52) 
Polyketides 

Cytotoxic 
DLD-1: IC50 of 16.7μg/mL                                            

RPMI7951: IC50 of 83.6μg/mL   
[49] 

Prorocentin-4 (53) - - [50] 

Belizentrin (54) Macrolides Neurotoxic 
50% reduction in maximum neuronal survival after 24 h EC50 

was estimated at 193 ± 7 nM. 
[51] 

Limaol (55) Polyketides Cytotoxic 
HepG2: IC50 of 3.7 μM ; HCT-116: IC50 of 7.3 μM    

Neuro2a: IC50 of 9.6 μM  
[52] 

Vulcanodinium 

Pinnatoxin-E (56) 

Macrolides Toxic 

LD50 of 57.0μg/kg (mice by intraperitoneal injection) [53] 

Pinnatoxin-F (57) LD50 of 12.7μg/kg  (mice by intraperitoneal injection) [53] 

Pinnatoxin-G (58) LD50 of 48.0μg/kg  (mice by intraperitoneal injection) [53] 

Pinnatoxin-H (59) LD50 of 67μg/kg  (mice by intraperitoneal injection) [54] 

Footnote: Statistics: IC50 half maximal inhibitory concentration, EC50 median effective concentration, MIC minimum inhibitory concentration, T/C Treatment to control (comparative tumor size between 

treated tumor and control tumor), LD50 median lethal dose. Cell lines: A549 lung carcinomatous tissue, Caco-2 human epithelial colorectal adenocarcinoma, DG-75 human B-lymphocyte; HeLa human cervix 
adenocarconoma ST-2 bone marrow-derived stroma, MC3T3-E1 osteoblastic, SH-SY5Y Neuroblastoma, RTgill-W1 trout epithelial cell line, HepG2 liver hepatocellular, HCT-116 colorectal carcinoma, 

Neuro2a mouse neuroblastoma,  DLD-1 colorectal adenocarcinoma, RPM1751 Human Malignant Melanoma.  
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2.1. Amphidinium 

 

Amphidinium is a widespread dinoflagellates genus, found in both free-living and 

benthic states in temperate and tropical marine waters. Amphidinium species are often 

amongst the most abundant dinoflagellates in benthic ecosystems [55]. Over 100 species have 

been described in this genus [1]. These dinoflagellates are known producers of several 

families of bioactive macrolides including amphidinolides [56], amphidinols [22,27,57–60], 

colopsinols [61], luteophanols [62,63] and amdigenols [38,39]. Furthermore, this genus also 

produces characteristic linear polyketides such as amphidinins [23–25] and amphirionins [29–

31]. 

 

 

2.1.1. Amphidinin 

 

Amphidinins are a family of cytotoxic linear polyketides isolated from the marine 

dinoflagellate Amphidinium. Since 2010, six amphidinins have been isolated, the structures of 

which are illustrated in Figure 1. The first amphidinin (1) was isolated in 1994 from a 

symbiotic strain of Amphidinium sp. [64]. (1) is composed of 17 linear carbons that form a 

tetrahydrofuran ring. This long backbone is substituted by different chemical groups including 

3 hydroxy groups, 2 olefins, 1 methylene and 4 methyls. The absolute configurations of the 

six stereogenic centers was solved in 2014 [23]. 

In 2014, four new amphidinins: C-F (2-5) were isolated from the same culture of 

symbiotic Amphidinium sp.. The structures of these planar molecules are very similar. (4-5) 

have a hydroxyl on position 6 which is replaced by a ketone group on (2-3). Substituents on 

C4 introduce also a structural diversity: (2) and (4) have an hydroxyl group in this position 

while (3) and (5) have a ribofuranosyl group [25]. In 2015, another linear polyketide was 

isolated from the same species: Amphidinin G (7). This metabolite is directly related to 

amphidinin A (1). (7) was expected to be a precursor of amphidinin A (1). In fact, (1) is 

obtained by the formation of tetrahydrofuran ring by the addition of hydroxyl group at C12 to 

an olefinic carbon at C9 of (7). These molecules are directly associated with another 

metabolite produced by Amphidinium: amphidinolide Q (6) [46]. This metabolite corresponds 

to the cyclization of (2) on positions 4-5. 
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Figure 1. Structures of amphidinins A,C-G and amphidinolide Q (1-7). 

 

Amphidinins have been tested for their cytotoxicity, anti-fungal and anti-bacterial 

activities. Only compound (5) showed modest cytotoxicity against murine lymphoma P388 

cells (IC50 of 5.8 μg/mL). The majority of compounds were active against the Trichophyton 

mentagrophytes fungus (IC50 of 8 μg/mL (8) IC50 of 16 μg/mL (2-4) and 32 μg/mL (5-6)). 

Amphidinin A (1), C (2) and E (4) showed antimicrobial activities against Bacillus subtilis 

(MIC 16 μg/mL (1) and 32 μg/mL (2)(4)) and Aspergillus niger (IC50 of 4 μg/mL, IC50 of 12 

μg/mL, IC50 of 16 μg/mL, respectively) [11]. Only amphidinin C (2) and E (4) exhibited 

activity against Staphylococcus aureus (MIC 32 μg/mL for both).  

 

2.1.2. Amphidinols 

 

Amphidinols form a group of polyhydroxylated and polyunsaturated polyketides very 

characteristic of dinoflagellates from the genus Amphidinium. The first member of the series: 

AM 1 (8) (Figure 2) was isolated from Amphidinium klebsii in 1991 [57]. These secondary 

metabolites are constituted by 2 tetrahydropyran rings linked by a short C6 chain [45,65]. 

Structural modifications occur at the two ends that contain respectively a polyunsaturated 
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alkyl chain and a long irregular polyhydroxylated chain. In 2017, 21 amphidinols have been 

described [22,27,57–60]. Only metabolites isolated between 2010-2017 are described here. 

Amphidinol 17 (AM17; 9) was isolated from a Bahamas strain of Amphidinium carterae [26]. 

This compound is characterized by the presence of a polyol arm shorter than other 

amphidinols [26]. Moreover, the polyunsaturated alkyl chain also has one less double bond. 

Nevertheless, this metabolite did not exhibit an antifungal activity [26].   

 

Figure 2. Structures of novel amphidinols 17-21 (9-13). 

 

 

In 2017, a new antifungal amphidinol, AM18 (10), and a sulfate analogue, AM 19 (11), 
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were isolated from Amphidinium carterae [27]. The main difference from AM17 is on the 

hydroxyl chain with 15 hydroxyl groups (14 for (10)) and 1 ketone group. From a bioactivity 

point of view, AM18 (10) showed moderate antifungal activity against Candida albicans (9 

μg/mL)[27]. The addition of a sulfate group reduces the antifungal activity of the compounds. 

Two other amphidinols have recently been isolated and characterized:  AM20 (12) and AM21 

(13), with the longest polyol chain for compound (13) [28]. The dose dependency of 

hemolysis of AM17 (9), AM20 (12) and AM21 (13) were determined using human red blood 

cells but only (9) and (12) were active (EC50 of 4.9 μM and 3 μM, respectively) [26,28]. 

Additionally, AM20 and AM21 were tested for their antifungal activity on Aspergillus niger 

but no activity was found [28]. 

 

2.1.3. Amphirionin 

 

2.1.3.1. Amphirionin-2 

 

Amphirionin-2 (14) is a polyketide consisting of a linear C30 carbon chain. This is the 

first Amphidinium polyketide possessing a hexahydrofuro[3,2-b]furan moiety [29]. 

Amphirionin-2 (14) showed a modest cytotoxicity against human colon carcinoma (IC50 of 

0.1μg/mL) and human lung adenocarcinoma (IC50 of 0.6μg/mL). The cytotoxicity against 

human cervix adenocarcinoma Hela cells was also determined, but proved to be low with a 

20% growth inhibition at 1 μg/mL. In addition (14) exhibited activity against an in vivo 

murine tumor (T/C (Treatment to control) 120% at a dose of 0.5 mg/kg). A surface plasmon 

resonance assay was used to demonstrate an interaction of amphirionin-2 (14) with the actin 

cytoskeleton [29]. 

 

 

2.1.3.2. Amphirionin-4 

 

A linear polyketide, amphirionin-4 (15), was isolated (0.0031% of dry weight) from 

cultivated cells of Amphidinium [30]. This polyketide consists of a linear C22 carbon chain 

forming a tetrahydrofuran ring. This linear chain is substituted by 3 hydroxyl groups, with 2 
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on the cycle. Compound (15) exhibited potent proliferation-promoting activity on murine 

bone marrow stromal ST-2 cells with a value of 950% at a concentration of 0.1 ng/mL [30].  

 

 

 

 

 

 

 

2.1.3.3. Amphirionin-5 

 

Amphirionin-5 (16) was isolated from Amphidinium in 2014 [31]. This metabolite is a 

linear C28 polyketide forming 2 tetrahydrofuran rings and containing 2 ketone groups, 1 

epoxide and 1 hydroxyl group. Like (14) and (15), amphirionin-5 (16) promotes cell 

proliferation: a treatment with 10 ng/mL of (16) resulted in a 282% increase in the 

proliferation of murine bone-marrow derived stromal ST-2 cells and 320% increase in the 

proliferation of murine osteoblastic MC3T3-E1 cells [30]. 

 

 

2.1.4. Iriomoteolides 

 

Table 2. Lactone ring size and cytotoxicity for iriomoteolides. The various reported IC50 are 

mentioned in the table. 

 

Iriomoteolides 
Lactone 

size 

Cytotoxicity activity 

Reference 
Human B-lymphocyte cells 

Human adenocarcinoma 

HeLa cells 

Iriomoteolides-1a 20 0.004 μg/mL  [32] 

Iriomoteolides-1b 20 0.9 μg/mL  [32] 

Iriomoteolides-1c 20 0.004 μg/mL  [32] 

Iriomoteolides-2 23 0.006 μg/mL 0.03 μg/mL [33] 

Iriomoteolides-3a 15 0.08 μg/mL  [34] 

Iriomoteolides-3b 15 0.02 μg/mL  [34] 

Iriomoteolides-4 16 0.8 μg/mL  [35] 

Iriomoteolides-5 20 1 μg/mL  [35] 

Iriomoteolides-9 15  15 mM [36] 

Iriomoteolides-10 21 1,5 μM 1,5 μM [37] 

Iriomoteolides-11 19 1,5 μM 2 μM [36] 

Iriomoteolides-12 12 50 μM   [37] 
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Iriomoteolides are macrolides directly related to amphidinolides that are produced by 

Amphidinium species. They have a variety of backbone skeletons and different size 

macrolactone rings (Table 2). All iriomoteolides contain a vicinal carbon branch, but they 

differ in the number of hydroxyl groups and methylene units. Most iriomoteolides are potent 

cytotoxic compounds and with putative antitumor activity (Table 2).  

 

2.1.4.1. Iriomoteolide-1a, 1b and 1c 

 

Iriomoteolides-1a, b and c (17-19) are 20-membered macrolides isolated from 

Amphidinium sp.. Iriomoteolide-1a (17) has a six-membered hemiacetal ring, a methylene 

group and 4 hydroxyl groups [32]. It has a hydroxyl group at C9 and a ketone at C13 

conjugated with an E-double bond. Iriomoteolide-1c (19) is considered a homologue of (17) 

with a 4-hydroxy-3-methylpentyl side chain instead of a 3-hydroxy-2-methylbutyl side chain 

[32]. Iriomoteolide-1a, b and c (17-19) exhibited potent cytotoxicity against human B-

lymphocytes with a value of IC50 of 0.004 μg/mL for (17) and (19). 

 

 

 
 

Figure 3. Structures of iriomoteolides-1a, 1b and 1c. (17-19). 

 

However, the IC50 value (0.9 μg/mL) of iriomoteolide-1b (18) against human B 

lymphocytes was weak compared to (17) and (19) [32]. This result suggests that the six-

membered hemiacetal ring (C9–C13) and/or the methylene unit (C11) in iriomoteolide-1a (17) 

is important for cytotoxic activity. 

 

2.1.4.2. Iriomoteolide-2a 
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Iriomoteolide-2a (20) is the first reported natural product possessing a 23-membered 

macrolactone ring consisting of a polyketide chain with 2 tetrahydrofuran rings [29]. (20) 

exhibited potent cytotoxicity against human B-lymphocyte DG-75 cells (IC50 of 0.006 μg/mL) 

and human cervix adenocarcinoma HeLa cells (IC50 of 0.03 μg/mL) [29]. Moreover, this 

compound exhibited activity against murine tumor in vivo (T/C 132%) at a dose of 0.2 mg/kg 

[29]. 

 

 
 

 

2.1.4.3. Iriomoteolide-3a et 3b 

 

Iriomoteolide-3a (21) and its 7,8-oisopropylidene derivative (22) (Figure 4) are 15-

membered macrolides with an allyl epoxide, 3 hydroxyl groups and 2 methyl groups [34]. 

Although two classes of 15-membered macrolides (amphidinolides J and O) have been 

isolated from the symbiotic dinoflagellate Amphidinium, the carbon chain length and oxygen-

substituted positions for (21) are quite different from those of these known 15-membered 

macrolides [34,66]. A cell-based screening on cytotoxicity and antiviral activities showed that 

iriomoteolide-3a (21) and iriomoteolide-3b (22) are potently cytotoxic against human B-

lymphocyte DG-75 cells (IC50 of 0.08 and 0.02 μg/ mL, respectively) and Raji cells (IC50 of 

0.05 and 0.02 μg/mL, respectively) [34]. 

  

 

Figure 4. Structures of iriomoteolides-3a and b. (21-22). 
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2.1.4.4. Iriomoteolide-4a 

 

Iriomoteolide-4a (23) is a 16-membered macrolide possessing 5 hydroxyl groups and 

substituted by an isoprene chain on the side chain. This metabolite is the second Amphidinium 

macrolide with a 16-membered macrocyclic ring [35].  

. 

 

 
 

 

Iriomoteolide-4a (23) was tested in vitro for the capacity to inhibit the growth of tumor 

cells: (23) showed a moderate toxicity against human B-lymphocyte DG-75 cells with an IC50 

of 0.8 μg/mL [35]. 

 

2.1.4.5. Iriomoteolide-5a 

 

Iriomoteolide-5a (24) is a 20-membered macrolide with a unique carbon skeleton 

associated with five hydroxyl groups [35]. Although two classes of 20-membered macrolides 

(amphidinolides A [67] and U [68]) had been isolated from the symbiotic dinoflagellate 

Amphidinium, the carbon chain length and C1-branches of (24) are different from those of 

these macrolides. Iriomoteolide-5a (24) exhibited moderate toxicity against human B-

lymphocyte DG-75 cells with an IC50 of 1 μg/mL [35]. 

 

 

 
 

2.1.4.6. Iriomoteolide-9a 

 



17 
 

Iriomoteolide-9a (25) is another macrolide isolated from Amphidinium in 2017. It is a  

15-membered macrolide with 2 epoxy rings, 4 methyl groups, and 1 hydroxyl group [36]. 

Several 15-membered macrolides had previously been isolated such as amphidinolides O and 

P [66] and iriomoteolide-3a [34]. This molecule is only slightly cytotoxic against human 

cervix adenocarcinoma HeLa cells with an IC50 of 15 mM [36]. 

 

 

 

2.1.4.7. Iriomoteolide-10a 

 

Iriomoteolide-10a (26) is the first 21-membered macrolide containing 1 

tetrahydrofuran ring, 2 hydroxyl groups, 6 methyl groups and 2 ketone groups on the C1-

carbon chain [37].  Iriomoteolide-10a (26) exhibited cytotoxic activity against human cervix 

adenocarcinoma HeLa (IC50 of 1.5 μM), human B-lymphocyte DG-75 cells (IC50 of 1.5 μM), 

and murine hepatocellular carcinoma MH134 cells (IC50 of 3.3 μM) [37]. 

 

 
 

 

2.1.4.8. Iriomoteolide-11a 

 

Iriomoteolide-11a (27) is a unique 19-membered macrolide possessing a methyl 

carboxylic group and an exo-ketone on side chains in addition to 1 epoxy ring, 3 methyl 

groups, 2 hydroxyl groups [36]. Compound (27) exhibited cytotoxic activity against human 

cervix adenocarcinoma HeLa cells with an IC50 of 2μM. Moreover, experiments using SPR 

revealed that compounds (25) and (27) are able to interact with actin [36].  
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2.1.4.9. Iriomoteolide-12a 

 

Irimoteolide-12a (28) is one of the smaller macrolides produced by Amphidinium with 

a 12-membered lactone ring [37] possessing 2 ketone groups, 1 hydroxyl group and 6 methyl 

groups. This metabolite can be directly associated to amphidinolide Q macrolides. Compound 

(28) showed moderate cytotoxicity against DG-75 cells (IC50 of 50μM) [37].  

 

 
 

 
 

 

2.1.5. Amdigenol  

 

 The polyol compound amdigenol A (29), isolated from the dinoflagellate 

Amphidinium sp., consists of a C98-linear carbon backbone likely formed linearly by 2 

amphidinol analogs [38]. In 2014, two other polyols were isolated from Amphidinium sp.. 

Amdigenol G (31) is a typical amphidinol analog with 2 linear carbon side chains connected 

to the core portion. Its structure is similar to that of luteophanol-A [69], but an oxymethine 

and a methylene (C43 and C47) position are switched [39]. In amdigenol E [39], the carbon 

chain is inserted between the 2 tetrahydropyrans, also possessing 2 epoxide groups. 

Amdigenols A (29), E (30), and G (31) inhibited an increase of the intracellular Ca
2+

 

concentration in differentiated IMR-32 neuroblastoma cells. The effect on Ca
2+

 concentration 

was observed in the presence of amdigenols A, E, and G at 10 μM for (29) and 40μM for (30) 

and (31) [38,39]. The amdigenols were tested for their antimicrobial activity against 



19 
 

Streptomyces aureus, Escherichia coli and Pseudomonas aeruginosa, but did not show 

inhibition [38,39].  

 

 

 

 

 

 

Figure 6. Structures of amdigenol A (29), E (30) and G (31). 

 

2.2. Azadinium 

 

2.2.1. Azapiracids 
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 Azaspiracids (AZA) are a family of marine lipophilic polyether metabolites having 2 

spiro-ring assemblies, a cyclic amine and a carboxylic acid functionality at one terminus [48]. 

They were first detected in 1995 following human illness following ingestion of contaminated 

mussels (Mytilus edulis) from Ireland. In 2009, a novel dinoflagellate species, Azadinium 

spinosum, was identified and described as the source of AZA production [15]. Several AZA-

related structures were subsequently isolated from other Azadinium species: A. poporum, A. 

dexteroporum, and A. spinosum [16]. However, the genus Azadinium is not the only producer 

of Azaspiracids. Recently, the Amphidomataceae lineage was also shown to produce 

Azaspiracids. Specifically, Amphidoma languida has been found to produce a novel toxin 

belonging to the azaspiracids and implicated in a molluscan contamination event in the 

southern Atlantic coast [70].  

 

Figure 7. Structures of novel azaspiracids (AZA1, AZA 33, 34, 36, 37) (36-41). 
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  In 2015, three new azaspiracids were isolated from Azadinium spinosum (AZA-33 

(33), AZA-34 (34) and AZA-35). These compounds differ significantly at the carboxyl end of 

the molecule from known AZA analogues. The cytotoxicity of two analogues was tested on 

Jurkat T-lymphocyte cells, revealing that AZA-33 (33) and AZA-34 (34) are less and more 

toxic respectively compared to AZA-1 (32) [16]. New structures from Azadinium poporum 

were identified to be 3-hydroxy-8-methyl-39-demethyl-azaspiracid-1 (AZA-36 (35)) and 3-

hydroxy-7,8-dihydro-39-demethyl-azaspiracid-1 (AZA-37 (36)). Compound (35) was found 

to be less toxic to T-lymphocyte cells (EC50 of 1.70 nM) compared to (36) (EC50 of 0.85 nM) 

and (31) (EC50 of 0.28 nM) [16]. From a structure-activity point of view, the addition of a 

hydroxyl function or the addition of a methyl on the heterocycle would decrease the activity, 

whereas decrease of the aliphatic chain length would increase the bioactivity. 

 

2.3. Dinophysis 

 

Over 50 species have been described in the genus Dinophysis [1], some of which are well-

known harmful dinoflagellates. Dinophysis has received special attention because it can 

seriously impact the bivalve culturing industry when DSP toxins that it produces, such as 

okadaic acid (OA) [17], dinophysistoxin (DTX) [71,72] and pectenotoxin (PTX) [72], are 

found in commercialized mussels. These compounds have already been well-characterized 

and described in the literature, but a new macrolide, Acuminolide [41] was described from 

Dinophysis in 2014. 

 

2.3.1. Acuminolide  

 

Acuminolide-A (37) is a new 33-membered polyether macrolide isolated from the 

dinoflagellate Dinophysis acuminata. This compound is composed of  2 tetrahydrofurans, 2 

dihydropyrans, 1 dihydroisobenzofuran, 1 octahydroisochromene, and 1 epoxide [41]. This 

compound did not show any cytotoxicity against four cancer cell lines [41].  
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2.4. Gambierdiscus  

 

Eleven species have been described in the genus Gambierdiscus [1] which is one of the 

most extensively studied dinoflagellate genera. These dinoflagellates are well-known 

producers of hazardous metabolites such as ciguatoxin [73], gambieric acid [74], and 

maitotoxin [75–78]. Since 2010, two novel families of compounds have been described from 

these dinoflagellates: gambierone [42] and gambieroxide [43].  

 

2.4.1. Gambierone 

 

Isolated from Gambierdiscus belizeanus, gambierone (38) is a new macrolide described in 

2017 [42]. The structure of this compound features an unprecedented polyether skeleton and 

an unusual right-hand side chain. Its relative configuration was fully determined by 

interpretation of several NMR analyses. The succession of cycles is very different from that of 

ciguatoxin, but compound (38) has a molecular formula and biological activity similar to 

those of ciguatoxin-3C (39) [79]. 
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2.4.2. Gambieroxide 

 

A novel epoxy polyether compound named gambieroxide (40) was isolated from the 

benthic dinoflagellate Gambierdiscus toxicus. It is intriguing that the chemical structure of 

(40) is similar to that of yessotoxin (YTX) (41) produced by the dinoflagellate Protoceratium 

reticulatum [43], which is phylogenetically distant from Gambierdiscus. The bioactivity of 

this metabolite has not been studied, but from a structural point of view it is likely to show 

similar biological properties to YTX (41) [43].  

 

 

 
 

 
2.5. Karlodinium 
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The genus Karlodinium, which only contains 12 described species [1,80], is known to 

produce karlotoxins [45] and karmitoxins [46] which act as anti-grazing or allelopathic 

compounds.  

 

2.5.1. Karlotoxin 

 

 The karlotoxins (Figure 8) (42-48) represent a class of metabolites that are 

structurally close to the amphidinols [44,45] produced by Amphidinium, having three distinct 

regions: (i) a polyol arm with variable hydroxylation and methylation, (ii) a hinge region 

containing 2 ether rings, (iii) and a lipophilic arm that often includes conjugated trienes in 

amphidinols [22,27,57,58]. Note here that the terminal diene is chlorinated in several 

karlotoxins [45]. Three types of karlotoxins, type-1 (42-44), type-2 (45) and type-3 (46-48), 

have been described, differing in the length of the lipophilic arm. Several analogues also exist, 

with a sulfate group replacing a hydroxyl group or variable terminal chlorination of the 

lipophilic chain [45] (Figure 8).  

Various biological activities have been reported for these metabolites, including hemolytic 

properties [45]. The length of the lipophilic arm appears to modulate their hemolytic activity. 

Sulfated compounds have lower activity, whereas the presence of a chloric group on the C-

terminal increases the hemolytic activity. 

 

 

 

 

Name n R1 R2 
Hemolytic Activity 

EC50 (nM) 

KmTx 1a (42) 3 OH H 63 

KmTx 1b (43) 3 OH Cl 56 

KmTx 1c (44) 3 OSO3H H 300 

KmTx 2 (45) 1 OH Cl NB 

KmTx 3a (46) 2 OH H 200 

KmTx 3b (47) 2 OH Cl 110 

KmTx 3c (48) 2 OSO3H H 2400 
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Figure 8. Structures of karlotoxins (KmTxs). 

 

2.5.2. Karmitoxin 

 

 Karmitoxin (49) is a macrolide isolated in 2016 from the dinoflagellate Karlodinium 

armiger. Its structure is related to those of the amphidinols and karlotoxins. Karmitoxin (49) 

differs by having a longer aliphatic chain with a primary amine at the end [46]. Compound 

(49) exhibited cytotoxic activity against RTgill-W1 cells from the fish Oncorhynchus mykiss 

(LC50 of 125 nM) and toxicity to copepods has also been observed (LC50 of 400 nM) [46]. 

 

 

 

 

2.6. Ostreopsis 

 

Ostreopsis species are epiphytic benthic dinoflagellates, and some species are harmful to 

marine organisms (and to humans). Many studies have reported that these organisms produce 

the potent biotoxins palytoxin [81] and ovatoxin [82]. In 2013, 2 macrolides, specifically 

ostreols, were isolated and described from Ostreopsis ovata [47,48]. These new polyhydroxyl 

chain compounds are called Ostreol A (50) and B (51).  
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The former has 3 linear polyhydroxyls separated by 2 tetrahydropyrane like amphidinols or 

karlotoxins. The specificity is the presence of a primary amino group, an amide bond and a 

double bond. Ostreol A (50) was determined to have in vitro cytotoxicity against Artemia 

salina with a LD50 value of 0.9 μg/mL [47]. Ostreol B (51) is structurally different from 

Ostreol A (50) which contains only a hydroxyl function at number 21 and only 1 

tetrahydropyran [48]. Ostreol B was shown to exhibit moderate cytotoxicity against 

hepatocarcinoma HepG2 (IC50 of 4.8 μM), neuroblastoma Neuro-2a (IC50 of 0.1 μM) and 

colon cancer HCT-116 (IC50 of 0.9 μM) cell lines [48]. 

 

2.7. Prorocentrum  

 

Prorocentrum is well-known for producing DSP toxins. Apart from these compounds, 

skeletally diverse bioactive compounds have also been isolated from cultured Prorocentrum 

species, including prorocentrolide [83], hoffmanniolide [84], prorocentin [49, 50], 

formosalides A and B [85], belizentrin [51], belizeanolide [86] and limaol [52]. 

 

2.7.1. Prorocentin 
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Prorocentins 1 and 4 (52-53) are linear polyketides produced by Prorocentrum sp. and 

Prorocentrum lima, respectively [50]. Prorocentin-1 (52) exhibited a moderate cytotoxic 

activity against the human colon adenocarcinoma cell line DLD-1 (IC50 = 16.7 µg/mL) and 

the human malignant melanoma cell line RPMI-7951 (IC50 = 83.6 µg/mL) [49]. By contrast, 

prorocentin-4 (53) was not cytotoxic when tested on the same cell lines.  

 

2.7.2. Belizentrin 

 

Belizentrin (54) is a 25-membered polyketide-derived macrocycle isolated from the 

marine dinoflagellate Prorocentrum belizeanum [51]. This macrolide is composed of an 

unsaturated 25-membered cycle containing 2 hydroxyls. This ring is substituted by a linear 

chain with 6 hydroxyls and 1 carboxylic acid moiety at the end of the chain. Several 

biological experiments have been performed on belizentrin (54), revealing toxicity against 

several neublastoma cell lines (EC50 approximately 200 nM) [51].  
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2.7.3. Limaol 
 

Limaol (55) is a linear polyketide isolated from the benthic marine dinoflagellate 

Prorocentrum lima. Limaol (55) is constituted by a long aliphatic chain with 4 terahydropyran 

and 8 hydroxyl groups. From a biological point of view, limaol (55) exhibited moderate 

cytotoxicity against three tumoral cell lines: HepG2 (hepatocellular carcinoma), HCT-116 

(colon adenocarcinoma), and Neuro2a (neuroblastoma) with EC50s of 3.7, 7.3 and 9.6 µM, 

respectively [52].  

 

 

2.8. Vulcanodinium 

 

The dinoflagellate genus Vulcanodinium, first described in 2010, is found in many 

locations around the world, including Australia, Japan, China, France and Hawaii [53,87]. 

Vulcanodinium is a producer of a potent neurotoxin, pinnatoxin [53,54], and of the macrolide, 

portimine [88]. 

 

2.8.1. Pinnatoxin 

 

In 1995, a potent neurotoxin called Pinnatoxin, a polycyclic ether with a spiroimine 

function, was isolated from an Okinawan bivalve [89]. Since this discovery, several 

Pinnatoxin analogues have been isolated and characterized [90]. It was only in 2010 that 

Vulcanodinium rugosum was recognized as a producer of pinnatoxin E (56), F (57) and G 

(58) [53]. In 2014, a new Pinnatoxin H (59) was isolated from V. rugosum. (59) shares close 

structural similarities with other pinnatoxins, having an identical carbon skeleton but 

harboring different substituents [54]. The LD50 value of (59) in mice by intraperitoneal 

injection was 67 μg/kg and by gavage was 163 μg/kg [54], similar to the values for other 
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pinnatoxin compounds.  

 

 
Figure 9. Structures of Pinnatoxins from Vulcanodinium rugosum 

 

2.8.2. Portimine 

 

A five-membered cyclic imine called portimine (60) was isolated from Vulcanodinium 

rugosum [88]. This compound shares some similarities with pinnatoxins: a spiro-linked 

cyclicimine and a polycyclic ether backbone. Compared to pinnatoxins, portimine (60) 

exhibited relatively low toxicity on mice, but higher toxicity on P388 mouse leukemia cells 

(EC50  of 2.7 nM) by inducing cell death in an apoptotic manner [88].  
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3. Concluding remarks 

 

Dinoflagellates have developed unique biosynthetic pathways leading to the production of 

sophisticated and specific metabolites, many of which are likely involved in protection 

mechanisms in the highly competitive environment in which the cells live. The set of 

bioactive molecules so far known to be produced by dinoflagellates includes various 

polyketide compounds such as amphidinols, lutheophanol and ostreols, as well as macrolides 

including acuminolide and iriomoteolides. It is noteworthy that these molecules have been 

isolated from a very broad diversity of species, including members of most of the main 

dinoflagellate families: Gymnodiniales (Amphidinium, Karlodinium), Peridiniales 

(Vulcanodinium), Gonyaulacales (Gambierdiscus, Ostropsis), Prorocentrales (Prorocentrum) 

and Dinophysiales (Dinophysis). Phylogenetic trends in metabolite structure may exist (as 

would appear to be the case for example for the structural similarity between amphidinols and 

karlotoxins which are both produced by members of the Gymnodiniales), but much more data 

on other dinoflagellate species would be required to assess whether these trends are robust 

(which might lead to development of a certain degree of predictive capability). It should be 

noted that a huge number of metabolites have been found firstly into macro-organisms as 

fishes, sponges and crustaceans derived of the bioaccumulation or molecular transfer pro-

symbiotic with microorganisms. It is very likely that other marines compounds described is 

initially derived from dinoflagellates. The interest will be to determine the real producer of 

bioactive metabolites to be controlled or promoted. However, the discovery and 

characterization of new metabolites from dinoflagellates is the result of a long process 

including: (i) isolation of culture strains and their characterization; (ii) scale-up from 

laboratory scale cultivation (from mL up to 100L) to production scale (up to several m
3
); (iii) 

extraction, fractionation and structural elucidation of metabolites; (iv) screening of the 

purified compounds using disease-relevant assays. Despite some of the recently discovered 

natural products from dinoflagellates being too toxic, the majority have potential therapeutic 

value as anti-cancer, anti-fungal and/or anti-bacterial agents. The road from identification of 

an interesting bioactivity to marketable product is long and restrictive, involving for example 

intensive medicinal chemistry studies in order to improve the efficiency and selectivity of 

products, but there are numerous examples of successful development of natural products, 

such as the multi-kinase inhibitor Midostaurin (Rydapt, Novartis Pharmaceuticals, Inc.), 

approved in 2017 in the EU and USA for the treatment of FMS-like tyrosine kinase 3 (FLT3) 
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mutation-positive acute myeloid leukemia [92]. Midostaurin is an indolocarbazole and a 

direct derivative of staurosporin, a natural alkaloid purified from the bacterium Streptomyces 

staurosporeus (first described in 1977). This natural product, considered as a “pan-kinase” 

inhibitor (high‐ affinity inhibitor of nearly all mammalian protein kinases), and its 

derivatives were under investigation for decades before reaching the market for cancer 

treatment in combination notably with the marine natural product, cytarabin [91]. With 

current technological advances, notably in bioinformatics, mass spectrometry, and 

microfluidics for miniaturization of high-throughput screening assays, a growing number of 

metabolites from microorganisms will be isolated and characterized, and in this context we 

hope that the present review highlights the potential potency of dinoflagellate metabolites for 

human therapeutics. Specific new cultivation techniques will be needed as a key step towards 

further exploring this potential, and further efforts should be made to influence the induction 

of metabolite synthesis (via the use of specific culture media and/or co-cultures with several 

organisms for example) in order to reveal minor compounds. Pharmaceutical companies need 

access to new chemical diversity. We believe that the development of dinoflagellates as 

producers of high value chemicals will pave the way for promising new therapeutic 

applications.  
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AZA: Azaspiracid 

CTX: Ciguatoxins 

CFP: Ciguatera fish poisoning  

DSP: Diarrheic shellfish poisoning  

EC50: Half maximal effective concentration  

GI50: Half maximal inhibition of cell proliferation 

GTX: Gonyautoxins 

IC50: Half maximal inhibitory concentration 

KmTx: Karlotoxin 

LD50: Median Lethal Dose  

MTX: Maitotoxin 

NSP: Neurotoxic shellfish poisoning 

OA: Okadaic acid 

PTX: Palytoxin 

PSP: Paralytic shellfish poisoning 

STX: Saxitoxin  

YTX: Yessotoxin 
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