
HAL Id: hal-03867357
https://hal.science/hal-03867357

Preprint submitted on 23 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Universal out-of-equilibrium dynamics of 1D critical
quantum systems perturbed by noise coupled to energy

Alexios Christopoulos, Pierre Le Doussal, Denis Bernard, Andrea de Luca

To cite this version:
Alexios Christopoulos, Pierre Le Doussal, Denis Bernard, Andrea de Luca. Universal out-of-
equilibrium dynamics of 1D critical quantum systems perturbed by noise coupled to energy. 2022.
�hal-03867357�

https://hal.science/hal-03867357
https://hal.archives-ouvertes.fr


Universal out-of-equilibrium dynamics of 1D critical quantum systems perturbed by
noise coupled to energy

Alexios Christopoulos,1 Pierre Le Doussal,2 Denis Bernard,2 and Andrea De Luca1
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We consider critical one dimensional quantum systems initially prepared in their groundstate
and perturbed by a smooth noise coupled to the energy density. By using conformal field the-
ory, we deduce a universal description of the out-of-equilibrium dynamics. In particular, the full
time-dependent distribution of any 2–pt chiral correlation function can be obtained from solving
two coupled ordinary stochastic differential equations. In contrast with the general expectation
of heating, we demonstrate that the system reaches a non-trivial and universal stationary state
characterized by broad distributions. As an example, we analyse the local energy density: while
its first moment diverges exponentially fast in time, the stationary distribution, which we derive
analytically, is symmetric around a negative median and exhibits a fat tail with 3/2 decay exponent.
We obtain a similar result for the entanglement entropy production associated to a given interval
of size `. The corresponding stationary distribution has a 3/2 right tail for all `, and converges
to a one-sided Levy stable for large `. Our results are benchmarked via analytical and numerical
calculations for a chain of non-interacting spinless fermions with excellent agreement.

Introduction. — The coherent dynamics of macro-
scopic quantum systems has attracted a lot of interests
in the last years, both for its fundamental importance and
for its relevance to experimental setups [1–4]. From the
theoretical point of view, recent advances have led to a
much deeper level of understanding about the mechanism
of equilibration and thermalisation of isolated many-
body quantum systems brought out-of-equilibrium. In
most cases, the eigenstate thermalisation hypothesis en-
sures relaxation to the canonical Gibbs ensemble and
the emergence of standard thermodynamics. In recent
years, the quest for intriguing out-of-equilibrium phases
which escape thermalisation has pinpointed a few phe-
nomena, such as many-body localization (MBL) [5], equi-
libration towards generalized Gibbs ensembles due to in-
tegrability [6], quantum scars [7–9] and Hilbert space
fragmentation [10, 11]. In particular, for integrable sys-
tems, anomalous transport has been observed beyond
the expected ballistic, with superdiffusive behavior [12–
15]. Nevertheless, weak integrability breakings have been
shown to eventually lead to thermalisation [16–18].

Recently, the possibility of exploring periodically
driven systems has led to a larger class of setups, which
culminated in the discovery of discrete time crystalline
order [19, 20]. The stability of these phases is based
either on MBL which prevents heating to infinite tem-
perature or on high-frequency expansion which leads to
long-lived prethermal behavior [21].

Stochastic unitary dynamics in discrete time has re-
cently also attracted a lot of interest, with several exact
results involving random unitary circuits [22–24]. Al-
though the finite time dynamics exhibits interesting con-
nections to growth processes, at large time the system
relaxes to a trivial infinite temperature ensemble. Other

results were obtained the context of stochastic dynamics
in continuous time [25–27], on the Fredrickson-Andersen
model [28], and the quantum simple symmetric exclusion
process (QSSEP) [29, 30]. In these case, by looking at
the average dynamics over noise realisations, one obtains
an effective Lindbladian description, which once again
admits only the infinite temperature state as stationary
point. It is not obvious however that the average dy-
namics is representative of the typical one. Recent stud-
ies have thus explored the statistical behavior beyond the
average dynamics [26], including large deviations [31–34].
In particular, for the finite QSSEP with periodic bound-
ary conditions, it was shown that the stationary state
is uniformly distributed among Gaussian states with the
same occupancy of the initial state [32]. In the presence
of appropriate open boundary conditions, a non-trivial
steady state can be attained in the QSSEP [30, 35]. An-
other remarkable mechanism involves the use of quantum
measurements which compete with the inner unitary dy-
namics of the system to produce non-trivial stationary
states visible in the statistics of entanglement [36]. In
general, an important question for quantum stochastic
dynamics is whether non-trivial stationary distribution
can emerge when the thermodynamic limit is taken be-
fore the large time one. In this direction, the finite time
fluctuations were studied for QSSEP in [37].

In this paper, we consider critical one dimensional
quantum systems initially prepared in their groundstate.
In practice, the starting Hamiltonian is homogeneous and
gapless so that scale invariance is present. In this case, its
low energy spectrum is independent on the microscopic
details and is well-described by a conformal field theory
(CFT). The behavior of quantum systems perturbed by
different sources of noises has attracted great interest in
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the recent years [38–40], in particular investigating their
stability properties under 1/f noise [41, 42]. Here, we
introduce a spatially-smooth white noise at t > 0 cou-
pled to the energy density and bring the system out-of-
equilibrium by evolving it under the corresponding uni-
tary dynamics. Here, we show that the full distribution
of correlation functions reaches a non-trivial stationary
limit, not visible at the level of noise averages which in-
stead exhibit apparent heating. By using conformal field
theory, we deduce a universal description of the out-
of-equilibrium dynamics. Following Ref. [43], the noise
coupled to the energy density is interpreted as a ran-
dom metric in the CFT formulation. As a result, the
dynamics of chiral operators can be solved in terms of
stochastic trajectories. In [43] the focus was on quench
protocols resulting in an initial state with short spatial
correlation length, while here the initial state is gapless
with quasi long-range order. By studying in detail the
stochastic trajectories we show that any 2–pt chiral cor-
relation function can be obtained from solving the two
coupled ordinary stochastic differential equations in (7).
Remarkably, this leads to a stationary state characterized
by broad distributions. We analyse in particular the local
energy density. We are able to obtain the first moment
at all time and show that, as a consequence of conformal
invariance, it diverges exponentially fast in time; never-
theless, the average is not indicative of the typical be-
havior: the stationary distribution reaches a simple and
universal form with a fat tail with 3/2 decay exponent
(see (16)) and thus no finite integer moments. We obtain
a similar result for the entanglement entropy production
associated to a given interval of size `. The correspond-
ing stationary distribution still has a 3/2 right tail for
all `, and converges to a one-sided Levy stable for large
`, see (23), whose physical origin can be related to the
return probability of a Brownian process.

To test the universality of this theory, we study analyt-
ically and numerically a chain of non-interacting spinless
fermions at half-filling. At low energy, they are well de-
scribed by Dirac fermions corresponding to a c = 1 CFT.
We identify a scaling limit where the noise correlation
length on the lattice diverges and the CFT predictions
are recovered, as confirmed numerically by computing the
local energy and entanglement entropy on the lattice.

Model and CFT. — We consider a 1d model at a sec-
ond order quantum phase transition, initially prepared
in the groundstate |0〉 of its gapless Hamiltonian Ĥ0. To
simplify the notation we will indicate the groundstate
averages as 〈. . .〉 = 〈Ψ0| . . . |Ψ0〉. To simplify, we will as-
sume continuous space, but the treatment can be readily
extended to lattice systems. At time t = 0, a pertur-
bation Ĥ1 is turned on, by coupling a space-dependent
noise term with the system energy density. The total
Hamiltonian then takes the form

Ĥ = Ĥ0 + Ĥ1 =

ˆ
dx(1 + η(x, t))ĥ(x) (1)

where ĥ(x) is the hamiltonian density and η(x, t) is
the noise characterised by the space-time correlation
η(x, t)η(x′, t′) = δ(t− t′)f(x−x′). The function f(x) pa-
rameterises the noise correlation, and has the dimension
of a (turnover) time; it is even and has positive Fourier
transform and we choose it smooth, monotonously de-
creasing for x > 0, with a fast decay at infinity when
x � 1. In the following, we will indicate as Ō the av-
erage of any quantity O over the noise realisations. An
effective low-energy description of Ĥ0 can be obtained
using the scale invariance which holds at the second-
order critical point. This in turns implies an emergent
conformal symmetry of the unperturbed theory [44]. A
powerful description can then be obtained by means of
conformal field theory (CFT), which has been success-
fully employed even in out-of-equilibrium dynamics and
quantum quenches [45, 46]. In particular, all local op-
erators splits into chiral (∼ right moving) and antichiral
(∼ left moving) components organised into families [47].
All operators within each chiral family descend from a
primary field φ̂±(x) with given conformal dimension ∆±.
In particular, the hamiltonian density can be represented
as ĥ(x) ∼ v(T̂+(x) + T̂−(x)) where v is the light velocity
and T̂+ and T̂− are the two components of the stress-
energy tensor, with T̂+(x)− T̂−(x) the momentum den-
sity. This implies that under Ĥ0, chiral primary fields
simply translate in time φ̂±(x, t) = φ̂(x∓ vt). In [43], it
has been recently shown that the time evolution of pri-
mary fields under Ĥ in (1) can be interpreted as a con-
formal transformation. In practice, one introduces the
stochastic trajectories q±(s) as solution of the Langevin
equation

dq±(s)

ds
= ±v(1 + η(q±(s), s)) (2)

where the Ito convention is assumed. We define the func-
tions X±t (y) as the initial condition for (2) at t = 0 (i.e.
q±(0) = X±t (y)) such that q±(t) = y. Then, the evo-

lution of a primary field is simply given by φ̂±(y, t) =

(X±′t (y))∆± φ̂(X±t (y), 0) and arbitrary correlation func-
tions at time t can be reduced to those in the initial
state via〈

n∏
i=1

φ̂+
i (yi, t)

〉
= J (y1, . . . , yn)

〈
n∏
i=1

φ̂+
i (X+

t (yi))

〉
(3)

where the factor J (y1, . . . , yn) =
∏
i(X

+′
t (yi))

∆+
i ac-

counts for the jacobian of the conformal transformation.
An analogous equation can be written for the antichiral
component with X+

t → X−t and ∆+
i → ∆−i .

To study the correlation functions in (3) and their sam-
ple to sample fluctuations, we thus need the joint prob-
ability distribution function (jpdf) of the set of 2n ran-
dom variables X±t (yj), j = 1, . . . , n. Let us first focus
on the jpdf of X±t (yj) = xj for a fixed chirality, choosing
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either ±, which we denote P±t (x|y). Given n trajecto-
ries q±j (s) satisfying Eq. (2) with endpoints q±j (0) = xj ,

q±j (t) = yj , P
±
t (x|y) is thus the jpdf of the initial posi-

tions x = (x1, . . . , xn) of these n trajectories conditioned
to the positions of their final point y = (y1, . . . , yn). As
shown in [48], it satisfies the Fokker-Planck (FP) equa-
tion also studied in the context of turbulence and passive
scalar [49–51]

∂tP
±
t (x|y) = (±v

n∑
i=1

∂i+
v2

2

n∑
i,j=1

∂i∂jf(xi−xj))P±t (x|y)

(4)
where ∂i = ∂/∂xi. Since all trajectories are evolving
according to Eq. (2) within the same realisation of the
noise, they are correlated, which appears as an interac-
tion in (4). The martingale property from the initial time
implies xi = yi ∓ vt; additionally the trajectories cannot
cross one another, so that the coordinates y and x are
always ordered in the same way.

Two-point correlations. — Consider a primary field
Φ̂(x, t) = φ̂+(x, t) × φ̂−(x, t) with a scaling dimension
∆ = ∆+ + ∆−. According to (3), the time evolution of
the 2-point correlation function satisfies

C(y1, y2, t) ≡ a2∆
0 〈Φ̂(y1, t)Φ̂(y2, t)〉 =

= C(y1, y2, t = 0)e−∆+κ
+−∆−κ

−
(5)

where we assume y1 > y2 and we set

κ±(y1, y2, t) = ln

∣∣∣∣ (X±t (y1)−X±t (y2))2

(y1 − y2)2X±′t (y1)X±′t (y2)

∣∣∣∣ (6)

This expression gives access to the full statistics of the
correlation function. We first focus on either κ+ or κ−.
Indeed the trajectories corresponding to the chiral and
antichiral components are typically separated by a dis-
tance ∼ 2vt. Therefore, at large time for 2vt � 1, the
noises they feel become uncorrelated, and we expect the
two components to decorrelate (this is discussed in more
details below). Let us define ` := y1− y2 > 0 and the ra-
tio r = (X±t (y1)−X±t (y2))/`. Using spatial homogeneity
the one point pdf of κ = κ±(y1, y2, t) is only a function
of ` and t and independent on the chirality. Although
this pdf does not obey a closed equation, we can derive
a FP equation for the jpdf Pt(r, κ) of κ and r.

By considering four trajectories, i.e. n = 4 in (4), one
first obtains a FP equation for the jpdf of r, X±′t (y1) = x′1
and X±′t (y2) = x′2. This is achieved through the linear
change of variable r = (x1 − x2)/`, x′1 = (x3 − x1)/ε,
x′2 = (x4 − x1)/ε, and taking the limit ε→ 0 (the center
of mass variable x1 + x2 decouples). Remarkably, per-
forming another change of variable, one finds that the
random variables r and κ = log(r2/(x′1x

′
2)) are solution

[52] of the Stochastic differential equation (SDE) in Ito’s
form [48]

dr = v dW1(t) , dκ = v2g(r)dt+ v dW2(t) (7)

where v2g(r) is a drift term and dW1(t), dW2(t) are two
centered Gaussian white noises in time of r-dependent
variances dW1(t)2 = 2A(r)dt, dW2(t)2 = 2C(r)dt and
cross correlation dW1(t)dW2(t) = B(r)dt [53]. Here, we
introduced

A`(r) =
f(0)− f(`r)

`2
, B`(r) =

2f ′(`r)

`
+

4(f(0)− f(`r))

`2r
,

C`(r) =
4(f(0)− f(`r) + `rf ′(`r))

`2r2
− f ′′(0)− f ′′(`r) ,

g`(r) = −f ′′(0)− 2(f(0)− f(`r))

`2r2
. (8)

Eqs. (7) must be solved with the initial condition r = 1
and κ = 0 at t = 0.

Since the equation for r does not involve κ, one may
first solve for r(t) and then insert the solution for r(t)
in the equation for κ(t). For finite `, Eq. (7) cannot be
solved explicitly for an arbitrary f(x). Nevertheless, one
can understand its behavior at finite time in two regimes
` = y1 − y2 � 1 and ` = y1 − y2 � 1, as well as in the
large time limit.

Small separation ` � 1. — In this case, Taylor ex-
panding the function f in (8) one finds the leading be-
havior at small ` of each function as

A`(r) ' −
1

2
f ′′(0)r2 B`(r) '

`2

6
f (4)(0)r3 (9)

C`(r) ' −
`4

72
f (6)(0)r4 g`(r) '

`2

12
r2f (4)(0) (10)

We see that (7) can be rewritten, after a redefinition of

the noises dW1(t) = rdB1(t) and dW2(t) = − `
2

6 r
2dB2(t),

in the form

dr = rvdB1(t) , dκ = −`
2

6
r2v(−v

2
f (4)(0)dt+ dB2(t))

(11)
where now dB1(t), dB2(t) are r-independent Gaussian
white noises with fixed correlation matrix dB1(t)2 =
−f ′′(0)dt, dB2(t)2 = −f (6)(0)dt, dB1(t)dB2(t) =
−f (4)(0)dt.

Let us first discuss the marginal distribution Pt(r)
of r in this regime ` � 1. One can first solve the
stochastic equation for r and obtain after an applica-
tion of Ito’s lemma: r(t) = e−θt+vB1(t). We have de-
fined θ = −v2f ′′(0)/2 > 0, which is the inverse of a
characteristic time. Alternatively, one can change vari-
able to ρ = log r, which obeys the stochastic equation
dρ = −θdt + vdB1(t), implying that ρ(t) is a Brownian
motion with a drift. Hence Pt(r) is a log-normal distri-
bution for the variable r, with

ln r = −θt , Var[ln r] = 2θt . (12)

Since θ > 0, this shows, interestingly, that the trajecto-
ries Xt(y1), Xt(y2) tend to get closer as time grows, a
manifestation of the phenomenon of sticky particles ob-
served in turbulent fluids [54–57]. On the other hand,



4

r = 1 holds independently of time, which shows that
although the typical value of r decreases to zero, the dis-
tribution of r is broadening with time. Hence higher
moments, such as r2, grow with time.

Using this result it is easy to calculate the noise average
of κ = κ± by simply averaging (11) using that dB2 = 0.
Evaluating r2 ' e2θt and integrating over time one finds

κ =
v2f (4)(0)`2

24θ
(e2θt − 1) +O(`4) (13)

This result allows to obtain the noise average of
lnC(y1, y2, t), irrespective of the possible correlations be-
tween κ+ and κ−, by averaging the logarithm of (5). It is
possible to calculate the higher integer moments κn and
one finds [48] that they all grow exponentially with time
within the validity of the small ` regime. However, upon
averaging (7) over the noise, we observe that κ ≤ 2θt
is an exact bound since g(r) ≤ g(∞) = −f ′′(0). Thus,
while the moments are still diverging at large time, the
exponential growth is only valid when `2e2θt . 1.

Nevertheless, as we now show, the pdf of κ remark-
ably converges to a stationary distribution at large time.
This distribution is very broad and consistently does not
possess any integer moments for n ≥ 1. To obtain the
pdf of κ, we proceed in two steps: first we plug the so-
lution r(t) = e−θt+vB1(t) into the equation (11) for κ;
secondly, we use time-reversal [48] to recast the result-
ing stochastic equation in the standard form studied by
Bougerol [58, 59]. This equation is best expressed with a
change of variable from κ to Y

κ = `2κ̃0

(
sinhY

ω0
− 1

)
, κ̃0 = − 1

12

f (4)(0)

f ′′(0)
(14)

where we defined ω0 =
( f(6)(0)f ′′(0)

f(4)(0)2
− 1
)−1/2

> 0. This

leads to

dY = −2θ tanhY dt+
√

8θdB̃(t) (15)

where B̃(t) is a standard Wiener process with dB̃(t)2 =
dt. Eq. (15) describes the Langevin motion of a particle
in a confining potential U(y) = 2θ log cosh y ' 2θ|y| at
temperature 4θ. Hence it reaches an (equilibrium) sta-
tionary measure at large time, Pstat(Y ) = C/

√
cosh(Y )

with C =
√

2π/Γ(1/4)2. Thus, in the limit ` → 0, the
scaled variable ω ≡ sinhY = ω0(1 + κ/(`2κ̃0)) is de-
scribed by the stationary distribution

B(ω) ≡ C

(1 + ω2)3/4
(16)

Consistently, the power-law tail ∝ |ω|−3/2 implies that ω
(and κ as well) does not have finite integer moments.

We remark that, because of the time-reversal transfor-
mation, the stochastic process (15) for Y and the orig-
inal one for κ in (11) are not equivalent: the former is
ergodic in time, while the latter has a finite (random)
limit κ(t→∞). Nevertheless, they are equivalent in law
at fixed t.

Large interval ` � 1. — The leading behavior at
large ` of each function up to O(1/`2) reads

A`(r) '
f(0)

`2
B`(r) ' 4

f(0)

`2r
(17)

C`(r) ' −f ′′(0) + 4
f(0)

`2r2
g`(r) ' −f ′′(0)− 2f(0)

`2r2

where we assume that f(x) decays faster than a power
law. At leading order one can set B`(r) ' 0 which implies
that the equation (7) for κ becomes independent of r.
Using g`(r) ' −f ′′(0) and C`(r) ' −f ′′(0) to leading
order one obtains

κ = 2θt+
√

4θW (t) , r = 1 +

√
2f(0)v

`
W̃ (t) (18)

where W (t), W̃ (t) are two uncorrelated standard Brow-

nian motion with dW (t)2 = dW̃ (t)2 = dt. Note that
the growth of κ saturates the exact bound κ < 2θt. To
obtain this result we have assumed not only that ` � 1
but also that `r � 1. Although this condition holds for
finite time, since r is undergoing diffusion, we see from
(18) that for t ∼ `2/f(0), r(t) may become close to zero
and the condition is violated.

Large-time limit. — To search for a stationary distri-
bution for any `, we derive in [48] an evolution equation

for the characteristic function of κ, Qk(r0, t) = e−ikκ
r0

,
where the superscript r0 = r(t = 0) indicates the ini-
tial condition for the variable r in (7), ultimately setting
r0 = 1. Looking for a time dependent solution in the
large time limit Qk(r0, t)→ Qk(r0), we obtain that

Qk(r) =

(
`2r2f ′′(0)

2(f(`r)− f(0))

)ik
Gk(r) . (19)

where Gk(r) satisfies the Schrodinger–like equation for
r ≥ 0

−G′′k(r)− k(k + i)V (r)Gk(r) = 0 (20)

with boundary conditions are Gk(0) = 1 and
limr→+∞Gk(r) = 0 and the potential

V (r) = − d2

dr2
log[f(0)− f(`r)] +

`2f ′′(0)

f(0)− f(`r)
. (21)

Studying this equation (see [48]), we find that the station-
ary distribution Pstat(κ) (obtained by Fourier inversion
of Qk(r = 1)) depends non-trivially on ` and f(x), with
however a symmetry valid in all cases

Pstat(−κ0 + β)

Pstat(−κ0 − β)
= eβ , κ0 = − log

(2(f(`)− f(0))

`2f ′′(0)

)
(22)

reminiscent of a fluctuation theorem [60]. Beyond the
asymptotic solution at small ` given in (16), one can also
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derive at large ` → +∞, κ = θ`2χ/f(0) + O(`) with χ
distributed according to

L(χ) ≡ 1√
2π

e−
1
2χ

χ3/2
Θ(χ) (23)

i.e. to the stable one sided Levy distribution of index
1/2. Eqs. (16) and (23) characterise asymptotic behavior
of the stationary distribution for κ at small and large `
respectively. For intermediate values of `, an explicit
expression is not available for generic f(x). However we
provide some cases which are explicitly solvable for any
`, e.g. for f(x) = 1/ coshn x with n = 1, 2.

One can show that for sufficiently smooth f(x),
Qk(r) = 1 + O(

√
k) at small k, irrespectively of `. This

translates onto a −3/2 power–law tail on the positive κ
side. For the left tail κ → −∞, it follows from Eq. (22)
that Pstat(κ) decays exponentially for any for ` > 0.

An intuition on why the 3/2 exponent appears is as
follows: the random variable r is attracted to r = 0 since
for r < `, log r is approximately Brownian with a neg-
ative drift (see (12)). In this regime, κ remains almost
constant as dκ ∝ r2dt. However, r starts from 1 and
has a finite probability to move right towards r > `;
in this case, κ increases by ∼ ∆t (see Eq. (18)) where
∆t is the time interval before r(t) hits again `. Since in
this regime, r(t) is approximately an unbiased Brownian,
∆t is the corresponding first-passage time, distributed as
1/(∆t)3/2.

Finally, let us recall for time t � 1/(2v) the two chi-
ral components κ+ and κ− decorrelate hence their joint
distribution reaches in the large time limit the factorized
form Pstat(κ

+)Pstat(κ
−). We expect that κ±(t) defined

in Eq. (6) as a stochastic process in time has Pstat(κ
±) as

the one-time ergodic measure. This is not in contradic-
tion with the fact that κ defined in the auxiliary stochas-
tic system (7) has a (random) finite limit κ±(t→∞).

Entanglement production. — An interesting applica-
tion of the above results is the calculation of the entangle-
ment entropies. Let us define as ρA,t the reduced density
matrix for the interval A = [y1, y2] at time t. Then, the

Renyi entropies are defined as S(n)
t = 1/(1−n) ln Tr ρnA,t.

Introducing the twist fields Φ̂n(y, t) [61], one can identify
Tr ρnA,t ∝ 〈Φ̂n(y1, t)Φ̂n(y2, t)〉. We can thus express the

entropy production S
(n)
t ≡ S(n)

t − S(n)
t=0 using (5) as

S
(n)
t =

(n+ 1)c

24n
(κ+ + κ−) (24)

where we used that for twist fields ∆± = c(n− 1/n)/24.
The Von Neumann entropy corresponds to n = 1 and we
denote it simply as St. Eq. (24) shows that all the Renyi
entropies are controlled by the same random variable,
and that the details of the model enter only in the pref-
actor via the central charge. From [62], it implies that
the entanglement spectrum retain the same form in each

noise realization, i.e. the density of log λ/ log λmax is in-
dependent of the noise, while log λmax = −c/24(κ++κ−).

Using that the noise average S
(n)
t = (n+1)c

12n κ, we see that
at early times two different growth regimes exists: for
large intervals (` � 1) the average entropy production
grows linearly with time as in (18), while for small in-
tervals it grows as in (13). Finally, at large time, we
find that the entropy production (24) reaches a station-
ary distribution given up to a scale by the convolution
Pstat ∗ Pstat determined above, still with a −3/2 power
law tail and no integer moments.

Distribution of the energy density. — An interesting
quantity to look at is the dynamics of the energy den-
sity, which, in the CFT mapping, is encoded in the stress
energy tensor T̂+(x) and T̂−(x). Their time evolution
can be obtained either by direct calculation of the com-
mutators [Ĥ, T̂±(x)] in the Heisenberg equation [48]. Al-
ternatively, one can use the fact that time evolution can
be seen as a conformal mapping and the corresponding
transformation of the stress energy reads (for simplicity,
we omit the ± superscript)

T̂ (y, t) = |X ′t(y)|2T̂ (Xt(y), t = 0)− c

24π
(S ·Xt)(y) (25)

where the second term is proportional to the central
change c and the Schwarzian derivative

(S ·Xt)(y) =
2X ′′′(y)X ′(y)− 3X ′′(y)2

2X ′(y)2
(26)

Since in the initial state 〈T̂ (y, 0)〉 = 0, one has simply

〈T̂ (y, t)〉 = − c

24π
(S.Xt)(y) (27)

The time evolution of this quantity can be simply ob-
tained from the above analysis of κ± in the regime `→ 0.
Indeed, expanding (6) in small y1 − y2 we see that

lim
`→0

1

`2
κ(y2 + `, y2, t) = −1

6
(S.Xt)(y2) . (28)

Eq. (28) is well-known in the CFT context: it reflects
the occurence of the conformal anomaly in the trans-
port of the stress-tensor in a gaussian free field theory,
see [47]. Here, it implies that the distribution T± can
be obtained from the one of κ± in the limit of small
`. In particular, we observe a remarkable identifica-
tion between the entanglement of an infinitesimal in-
terval and the local energy density. Indeed, denoting
the time dependent local energy density as the quan-
tum expectation h(x, t) ≡ 〈ĥ(x, t)〉 = v(〈T̂+〉 + 〈T̂−〉),
one has h(x, t) = lim`→0 vSt/(π`

2). Additionally, denot-
ing the noise average (which is space independent) as
e(t) ≡ h(x, t), one has from (13)

e(t) =
cv3 f (4)(0)

48πθ

(
e2θt − 1

)
. (29)
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FIG. 1. Top: The average energy eF (τ) vs t = τ/ξ, the
scaled time, for different values of the noise correlation length
ξ. Continuous line are obtained from the numerical solution
of the Wigner function equation (34), while the markers cor-
responds to the exact dynamics of (31) for L = 2048. The
dotted dashed line is the CFT result (29), which from (35)
is predicted to hold for large ξ. Bottom: The median of the
distribution of ξ2(〈ĥi〉τ −〈ĥi〉0) vs the scaled time τ/ξ. In the
limit of ξ → ∞, the median is expected to decrease towards
the negative asymptotic value predicted by CFT (dot dashed
horizontal line). For finite ξ, the median starts to grow at
large times, suggesting that heating may eventually dominate
on the lattice.

For t� 1/(2v) we expect 〈T±〉 to decorrelate; thus from
(14), we extract the exact stationary distribution of the
one-point energy density

lim
t→∞

h(x, t)
in law
=

vcκ̃0

4π
(Ω/ω0 − 2) (30)

where Ω = ω+ + ω− and ω± are independent random
variables both distributed according to B(ω) in (16).

Comparison with free fermions. — We consider a
model of non-interacting spinless fermions, where we de-
note τ the time in the lattice model with Hamiltonian

ĤF =
∑
i

(1 + ηi(τ))ĥi , (31)

ĥi = −J(â†i âi+1 + â†i+1âi) .

Note that the local energy density is only defined up to
a total derivative. A good way to fix such an ambiguity
and preserve the continuous limit is to impose parity-
which is verified in (31) [63–65]. On the contrary, in the

presence of a finite chemical potential, a different defini-
tion is required (see [48]). In the absence of noise, this
corresponds to a dispersion relation ε(k) = −2J cos(k).
For the noise, we choose the correlation

ηi(τ)ηj(τ ′) = τ0δ(τ−τ ′)F (i−j) , F (j) = f(j/ξ) (32)

where ξ is the characteristic correlation length of the
discrete model and in the numerics we choose f(x) =
1/ cosh(x), as it corresponds to an analytically solv-
able case. The dynamics induced by (31) is better
studied in terms of the noise averaged Wigner function

nτ (k) =
∑
j′ 〈â

†
j+j′ âj〉τe

ikj′ where 〈. . .〉τ denotes the

quantum average at time τ under the evolution ĤF in
(31). We choose the initial state as the groundstate so
that nτ (k) does not depend on the lattice site j. Also,
nτ=0(k) = Θ(k+kf )−Θ(k−kf ), where Θ(z) is the Heavi-
side function and kf is such that ε(kf ) = 0 and kf = π/2,
which corresponds to half filling. The system is critical
and can be described with a conformal field theory with
central charge c = 1 [66]. Using the Wigner function,
we can express the noise averaged energy density with
respect to the groundstate

eF (τ) ≡ 〈ĥi〉τ − 〈ĥi〉0 =

ˆ
dk

2π
ε(k)(nτ (k)− n0(k)) (33)

One can derive [48] an exact evolution equation for
nτ (k) which reads

∂τnτ (k) = τ0

ˆ
dk′

2π
F̃ (k′)ε(k+k′/2)2(nτ (k+k′)−nτ (k))

(34)
The study of this equation [48] shows that around the
Fermi points nτ (k) takes the scaling form nτ (k) =
n((kf ∓k)ξ, t = τ/ξ). In turns this leads to the result for
fixed t as ξ → +∞

lim
ξ→∞

ξ2eF (tξ) = e(t) (35)

where e(t) is given in Eq. (29). Hence the CFT predicts,
upon rescaling, the mean energy for the fermion system.

This explicit calculation suggests that in the scaling
limit of large ξ, the noisy dynamics in (31) is fully cap-
tured by the universal description provided by the CFT,
upon rescaling space and time as j = xξ, τ = tξ and set
τ0 = ξ.

In order to validate this hypothesis, we have computed
numerically the two-point correlation matrix Cij(τ) ≡
〈a†iaj〉τ . Since the model (31) is non-interacting and the
initial groundstate is Gaussian, for each realisation of
the noise, all quantities can be expressed via the Wick
theorem in terms of the coefficients Cij . In Fig. 1 top,
we show the convergence for ξ →∞ of the noise-averaged
energy density eF (τ) to its CFT prediction, consistently
with (35). We observe the emergence of a characteristic
time scale τ∗(ξ), diverging with ξ, after which the CFT
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FIG. 2. Left: Noise–averaged Von Neumann entanglement entropy production S(1)(τ) vs t = τ/ξ evolving in time under (31),
for increasing values of ξ and fixed ratio `F /ξ = ` = 1/2. The dotted line is obtained from the numerical solution of Eqs. (7)

and using (24) for n→ 1, i.e. SF (τ) = cκ/6 with c = 1. Middle: Distribution of the scaled energy density ξ2〈ĥi(τ)〉 at ξ = 64..

For the analytical prediction, we used that in the scaling limit ξ2〈ĥj〉 → h(x, t) and at large time h(x, t) is distributed as (30),

which in the present case reduces to h
in law

= (3Ω− 5)/(24π). In the inset, the right tail of the distribution is shown in log–log

scale, showing the predicted ∝ h−3/2 tail. Right: Distribution of the entanglement entropy SF (τ) at ξ = 64. for an interval

of size `F = 32. For the analytical prediction, we used that in the stationary limit limτ→∞ SF (τ)
in law

= c(κ+ + κ−)/12, with
κ± independently distributed according to Pstat(κ). The stationary distribution Pstat(κ) is obtained by numerically inverting
its Fourier transform Qk(1) for ` = 1/2, defined in (19) and (S5.39) of [48]. All simulations are performed on systems of total
length L = 2048 and are repeated for Nsample = 800 samples.

description breaks down. A simple argument based on
the broadening of the Wigner function around the Fermi
points suggests τ∗(ξ) ∝ ξ ln ξ [48], which is in agreement
with our numerics.

The correlation matrix C can also be used to com-
pute explicitly the Renyi entropies for any interval I
of size `F . Indeed, setting CI as the `F × `F ma-
trix obtained restricting the indexes of C(τ) to I, we
have for the Von Neumann entropy of the interval I:
SF (τ) ≡ −Tr[CI lnCI + (1 − CI) ln(1 − CI)]. In Fig. 2
left, we show the noise averaged entanglement entropy
production SF (τ) ≡ SF (τ) − SF (0) for the fermion sys-
tem for intervals of various sizes `F on the lattice. Our
prediction is that it should equal at large ξ the CFT

value S
(1)
t (without any prefactor) with ` = `F /ξ. Once

again, a good agreement is found and corrections emerge
at τ & τ∗(ξ).

Our prediction is that the CFT describes also the dis-
tribution of these quantities. We show in Fig. 2 middle,
the one-point PDF for the local energy density ξ2〈ĥi〉τ
at the largest time τ available. As one sees it compares
reasonably well, with no free parameters, with the pre-
diction from the CFT, i.e. the convolution Pstat ∗ Pstat

where Pstat was obtained in (16). This confirms that
with the chosen f(x), at this observation time, 2vF τ/ξ
is large enough, so that the two chiral components have
decoupled. As we see on Fig. 1 top, the average energy
grows with time, consistent with Pstat having infinite first
moment. The median of the energy distribution, shown
in Fig. 1 bottom, is thus a better probe of the typi-
cal behavior. Remarkably, it is found to decrease with
time, approaching at large ξ a stationary value compat-
ible with the CFT prediction emedian

stat = − c
2π κ̃0 < 0, see

Eq. (14). However, for any finite ξ, we expect lattice ef-

fects to eventually break the CFT description. Although
we have not studied it in detail, it is expected that the
ultraviolet cutoff induces heating and stationarity does
not hold anymore, as hinted by the rebounce in the me-
dian observed at larger times. Finally, in Fig. 2 right,
as a representative of the finite-` behavior, we compare
the distribution of the entanglement entropy at different
times for intervals of size `F = `ξ, and ` = 1/2, with the
analytic prediction obtained from CFT.

Conclusion. — We have identified an out-of-
equilibrium protocol which leads to a non-trivial station-
ary state for generic gapless one-dimensional system.

Several questions and directions remain open. First, it
would be of great interest to obtain the full space-time
statistics of the local energy, or of any other local oper-
ator, beyond the one-point distribution, especially since
the latter exhibit heavy tails. It also remains a chal-
lenge to extend the present method to four-point (and
higher) quantum correlation functions, thus providing a
full characterization of the quantum state. Although we
focused on the infinite system, coupling between the chi-
ral components becomes relevant at finite volume and
can modify the behavior of the system at large times.

From a more concrete perspective, it would be inter-
esting to test the theory at other quantum critical points
beyond non-interacting systems, in particular to observe
the role played by interactions.

Finally, the surprising existence of a stationary state
in our setup, raises the question about the fundamental
ingredients to observe similar phenomenology in other
quantum stochastic systems. It is possible that the
stationary state that we identified within the continu-
ous field theory description corresponds to a long-lived
prethermal state that delays heating in the correspond-
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ing lattice system, similarly to what has been observed in
the context of many-body quantum scars [67]. More gen-
erally, it remains an open question whether lattice effects
or the presence of finite correlation length are compati-
ble with the emergence of non-trivial steady states in the
thermodynamic limit.
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Supplementary Material
Universal out-of-equilibrium dynamics of 1D critical quantum systems perturbed

by noise coupled to energy

In this supplementary material we provide additional details about the calculations in the Letter.
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Appendix 1: Fokker-Planck equation

In this section we derive the Fokker-Planck equation (4) of the text, for the joint PDF of the backward stochastic
trajectories x1 = X+

t (y1), . . . , xn = X+
t (yn) associated to the Langevin equation (2). We thus consider only a given

chirality, here we choose +, but the same Fokker-Planck equation holds for the chirality −, with v → −v. We do not
consider here the joint PDF of both chiralities. So here we denote simply X+

t → Xt.
One can show that Eq. (2) translates into a stochastic equation for the variable Xt(yi) as a function of t which

takes the form (see Eq. (58-59) in Supp. Mat. of [43])

dXt(yi) =
v2

2
X ′′t (yi)f(0)dt−X ′t(yi)v

(
dt+ dWt(yi)

)
(S1.1)

where dXt(yi) = Xt+dt(yi)−Xt(yi). The Wt(yi) are mutually correlated Wiener processes in time t, which relates to
the noise in Eq. (1) and (2) via

Wt(y) =

ˆ t

0

ds η(y, s) , dWt(y)dWt(y′) = dtf(y − y′) (S1.2)

Here dWt(y) = Wt+dt(y)−Wt(y) and f(y) is the noise correlation function defined in the text.
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Consider an arbitrary smooth function of n-variablesG(x1, . . . , xn). In the case of these variables being the backward
stochastic trajectories xi = Xt(yi) of (2), we define:

gt(y1 . . . yn) = G
(
Xt(y1) . . . Xt(yn)

)
(S1.3)

By Ito calculus the time variation dgt = gt+dt − gt of this observable is obtained by expanding up to second order.

dgt =

n∑
j=1

∂jG
(
Xt(y1), . . . , Xt(yn)

)
dXt(yj) +

1

2

n∑
j,m=1

∂j∂mG
(
Xt(y1), . . . , Xt(yn)

)
dXt(yj)dXt(ym) (S1.4)

Here we shortened the notation setting ∂xj . . . ∂xmG(x1 . . . xn) = ∂j . . . ∂mG(x1 . . . xn). Using (S1.1) and (S1.2), we
derive

dXt(yi) dXt(yj) = v2X ′t(yi)X
′
t(yj)f(yi − yj)dt+O(dt3/2) . (S1.5)

Averaging over the noise we obtain

dgt
dt

= −v
n∑
j=1

∂jG
(
Xt(y1), . . . , Xt(yn)

)
X ′t(yj) +

v2f(0)

2

n∑
j=1

∂jG
(
Xt(y1), . . . , Xt(yn)

)
X ′′t (yj)+

+
v2

2

n∑
j,m=1

f(yj − ym)∂j∂mG
(
Xt(y1), . . . , Xt(yn)

)
X ′t(yj)X

′
t(ym) (S1.6)

From the chain rule for the derivation with respect to the variables {yi} it is easy to check that

∂yj∂ymgt = X ′t(yj)X
′
t(ym)∂j∂mG+ δj,mX

′′
t (yj)∂jG (S1.7)

which finally leads to:

dgt
dt

=
[
− v

n∑
j=1

∂yj +
v2

2

n∑
j,m=1

f(yj − ym)∂yj∂ym

]
gt . (S1.8)

It is useful to re-express (S1.8) in terms of the Fokker-Planck Hamiltonian (and its hermitian adjoint). In order to do
so, we introduce the operators qj and pj , defined by their action on any smooth function ω(y) as qj · ω(y) = yjω(y)
and pj ·ω(y) = −ı∂jω(y). For these conjugate variables the canonical quantization holds [qi, pj ] = ıδi,j . We can then
define

HFP ≡ −iv

n∑
i=1

pi +
v2

2

∑
ij

pipjf(qi − qj) , (S1.9)

so that we can rewrite

dgt
dt

= −H†FP · gt , H†FP ≡ iv

n∑
i=1

pi +
v2

2

∑
ij

f(qi − qj)pipj . (S1.10)

To deduce the Fokker-Planck equation for P (x|y), defined in the text, we need one more step. From the definition
of P (x|y), we have

gt(y) =

ˆ
dx′ G(x′)Pt(x

′|y) (S1.11)

Since G is an arbitrary function we choose G(x′) = δ(x′−x) to recover gt(y)→ P (x|y) the jpdf for the initial points
x = (x1, . . . , xn) of the stochastic trajectories and finally deduce from (S1.10)

∂tPt(x|y) = −HTFP[y] · Pt(x|y) (S1.12)

This equation can be formally solved starting from the initial condition at t = 0 is Pt=0(x|y) = δ(x− y). It is useful
to employ the bra 〈y| and ket |x〉 notation for the eigenstates of the position operators q̂j . Then, we can represent
the probability distribution as:

Pt(x|y) ≡ 〈y|e−tH
†
FP |x〉 = 〈x|e−tHFP |y〉 (S1.13)
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where the last equality follows from the hermitian conjugation. Therefore, the following equation must also holds:

∂tPt(x|y) = −HFP[x] · Pt(x|y) (S1.14)

where the action of the differential operator HFP[x] is now over the variables x. More explicitly using (S1.9), we
arrive at

∂tPt(x|y) = v

 n∑
i=1

∂i +
v

2

n∑
i,j=1

∂i∂jf(xi − xj)

Pt(x|y) . (S1.15)

which coincides with Eq. (4) given in the main text.

Appendix 2: Joint evolution of r and κ

In this section we give two equivalent methods to derive the joint evolution of the variables r and κ defined in
the text. The first one uses the Fokker-Planck equation and the second one is a direct derivation using stochastic
equations.

2.1. Derivation of the evolution equation for Pt(r, x
′
1, x
′
2)

We will first derive the evolution equation for the jpdf Pt(x1, x2, x
′
1, x
′
2) of the random variables x1, x2, x

′
1, x
′
2 defined

in the text. The starting point is the application of the Fokker-Planck equation (S1.15) in the case of 4 trajectories
(x1, x2, x3, x4). To fix the variables yi, we remind that y1 and y2 are kept fixed while two additional variables are
taken infinitesimally away from y1 and y2. More explicitly

x1 = X±t (y1), x2 = X±t (y2), x3 = X±t (y1 + ε), x4 = X±t (y2 + ε) (S2.1)

We then perform the change of variables x1, x2, x
′
1 = (x3 − x1)/ε, x′2 = (x4 − x2)/ε together with the limit= ε → 0.

By applying this change of variables in the Fokker-Planck equation above and taking the limit ε→ 0, one obtains the
following equation for Pt = Pt(x1, x2, x

′
1, x
′
2):

∂tPt = v

(
(∂x1

+ ∂x2
) +

v

2
f(0)(∂2

x1
+ ∂2

x2
) + v∂x1

∂x2
f(x1 − x2)− v

2
F ′′(0)(∂2

x′1
(x′1)2 + ∂2

x′2
(x′2)2)

+v∂x2∂x′1x
′
1f
′(x1 − x2)− v∂x1∂x′2x

′
2f
′(x1 − x2)− v∂x′1∂x′2x

′
1x
′
2f
′′(x1 − x2)

)
Pt (S2.2)

Then, we exploit the invariance under translation by making the change of variables from (x1, x2, x
′
1, x
′
2) to (R =

x1+x2

2 , r = (x1 − x2)/`, x′1, x
′
2). Finally, integrating out the center of mass variable R, we obtain

∂tP = v2

(
1

`2
∂2
r (f(0)−f(r`))− f

′′(0)

2
(∂2
x′1

(x′2)2 +∂2
x′1

(x′2)2)−f ′′(r`)∂x′1∂x′2x
′
1x
′
2−

1

`
∂rf
′(r`)(∂x′1x

′
1 +∂x′2x

′
2)

)
P (S2.3)

From this result we now obtain the Fokker-Planck equation for the joint distribution Pt(κ, r) of the variable κ and
the variable r defined as

Pt(κ, r) ≡
ˆ
dx′1dx

′
2 P (r, x′1, x

′
2)δ

(
κ− ln

( r2

x′1x
′
2

))
. (S2.4)

Interestingly, Pt(κ, r) satisfies a closed evolution equation. To obtain it, we compute the time derivative of (S2.4)
using (S2.3), then we integrate by part and obtain

`2

v2
∂tP =

[
∂2
r (f(0)− f(`r)) + 4

f(0)− f(`r) + `rf ′(`r)

r2
∂2
κ + `2f ′′(0)(∂κ − ∂2

κ)− `2f ′′(`r)∂2
κ

+2`∂r∂κf
′(`r) + 4∂r(f(0)− f(`r))

1

r
∂κ + 2

f(0)− f(`r)

r2
∂κ

]
P . (S2.5)

Then, it is easy to see that the FP equation in Eq. (S2.5) is equivalent to the stochastic equations for r and κ (in Ito
convention) given in (7) of the main text.
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2.2. Direct derivation of the stochastic equations for r and κ

Instead of working with the Fokker-Planck equation (4), we consider now an equivalent system of stochastic equa-
tions. It is equivalent in the sense that the Fokker-Planck equation associated with this system coincides with (4). It
provides an alternative way to derive Eq. (7) in the main text. This stochastic system involves the set of trajectories
xi(t), with dxi(t) = xi(t+ dt)− xi(t), and reads

dxi(t) = ∓vdt+ dWi(t) , dWi(t)dWj(t)
∣∣∣
t

= f(xi(t)− xj(t))dt (S2.6)

where the Wi(t)’s are mutually correlated Wiener processes in time and shall not be confused with Wt(y) introduced
in (S1.2). Formally, the expectation value O

∣∣
t

used here is conditioned to the position of the trajectories xi(t) at time
t. The ∓ refers to ± chiralities, but the drift term plays no role in the following, so will be omitted in the following.
Here, the initial condition xi(t = 0) = yi is assumed. Note that this system of equation can be also seen as the
time-reversal of Eq. (2).

Let us set ` = 1 and restore ` later. One performs the linear change of variable x3 = x1 + εx′1, x4 = x2 + εx′2 and
x1 − x2 = r, which leads to (we keep the time dependence implicit for convenience)

dr = dW1 − dW2 , dx′1 =
1

ε
(dW3 − dW1) , dx′2 =

1

ε
(dW4 − dW2) (S2.7)

The correlations can be expressed in terms of r, x′1, x
′
2 (the center of mass decouples) and performing the limit ε→ 0

one finds with j = 1, 2

dr2 = 2(f(0)− f(r))dt , drdx′j = −f ′(r)x′jdt , (dx′j)
2 = −f ′′(0)(x′j)

2dt , dx′1dx
′
2 = −f ′′(r)x′1x′2dt (S2.8)

Now we have for κ = log(r2/x′1x
′
2) using Ito’s rule

dκ = 2
dr

r
− dx′1

x′1
− dx′2

x′2
+ g(r)dt (S2.9)

where g(r)dt is the Ito drift which can be computed using (S2.8)

− 1

r2
dr2 +

1

2

(dx′1)2

(x′1)2
+

1

2

(dx′2)2

(x′2)2
= g(r)dt , g(r) =

2

r2
(f(0)− f(r))− f ′′(0) (S2.10)

and depends only on r. We also need the correlations of the noise part

dκdr = 2
dr2

r
− drdx′1

x′1
− drdx′2

x′2
= B(r)dt , B(r) =

4

r
(f(0)− f(r)) + 2f ′(r) (S2.11)

dκ2 = 4
dr2

r2
+

(dx′1)2

(x′1)2
+

(dx′2)2

(x′2)2
−4

drdx′1
rx′1

−4
drdx′2
rx′2

+2
dx′1dx

′
2

x′1x
′
2

= 2C(r)dt , C(r) = 4
f(0)− f(r) + rf ′(r)

r2
−f ′′(0)−f ′′(r)

(S2.12)
to which we must add dr2 = 2A(r) with A(r) = f(0)− f(r). Restoring ` one finds the equations in the text.

Appendix 3: Numerical solution of Eq. (7)

In this section, we provide some details about how to numerically solve the stochastic equations for κ and r. The
main difficulty arises because r can become typically very small (see Eq. (12)). It is thus useful to rewrite such a
system of SDE in terms of another variable:

ρ = ln r , r = eρ (S3.1)

Then, using Ito’s lemma, the stochastic equation for ρ takes the form

dρ = e−ρvdW1 − e−2ρv2A(r(ρ))dt (S3.2)
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To solve the equation, we then discretize time dt→ ∆t and define

∆W1 =
√

2A(r)β1 , ∆W2 =

√
B(r)2

2A(r)
β1 +

√(
2C(r)− B(r)2

2A(r)

)
β2 (S3.3)

where β1, β2 are independently gaussian random variables with zero average and ∆t variance. To rewrite the equation
in a more numerically stable way, we extract from the quantities A(r), B(r), their leading behavior at small r

Ã(r) = A(r)/r2 , B̃(r) = B(r)/r3 . (S3.4)

so that Ã(r), B̃(r) are both finite in the limit r → 0. So we finally have the discrete evolution equations

ρ(t+ ∆t) = ρ(t) + v

√
2Ã(r)∆tβ1 − v2Ã(r)∆t (S3.5)

κ(t+ ∆t) = κ(t) + v2g(r)∆t+ vr2

√
B̃(r)2

2Ã(r)
∆tβ1 +

√√√√(2C(r)− r4B̃(r)2

2Ã(r)

)
∆tβ2 (S3.6)

Appendix 4: Analysis of the short distance regime for κ

In the limit `� 1, one has Eq. (11) in the main text that we report for convenience

dr = rvdB1 , dκ = −`
2

6
r2v(−v

2
f (4)(0)dt+ dB2) (S4.1)

dB1dB1 = −f ′′(0)dt , dB2dB2 = −f (6)(0)dt , dB1dB2 = −f (4)(0)dt (S4.2)

We will now show from these equations, that κ satisfies a closed SDE which leads to the stationary measure given in
the main text. We first of all solve the equation for the variable r, which takes the form

r(t) = exp

[
vB1(t) +

1

2
v2f ′′(0)t

]
(S4.3)

Injecting this solution in the equation for κ and integrating in time we arrive at

κ(t) = −`
2

6

ˆ t

0

e2vB1(s)+v2f ′′(0)sv
(
−v

2
f (4)(0)ds+ dB2(s)

)
(S4.4)

This equation gives already a closed representation for κ(t).
We can further simplify Eq. (S4.4) by making use of the time-reversal symmetry.
We denote s = t− s′ and introduce new processes as dB̃i(s

′) = dBi(t− s′). Therefore for both i = 1, 2, we have

Bi(t− s′) =

ˆ t−s′

0

dBi(s
′′) =

ˆ t

0

dBi(s
′′) +

ˆ t−s′

t

dBi(s
′′) = Bi(t)−

ˆ s′

0

dB̃i(s
′′) = B̃i(t)− B̃i(s′) (S4.5)

where B̃i(s) are equivalent Wiener processes which move in the opposite direction. We want now to rewrite Eq. (S4.4)
in terms of the reversed processes B̃i. A little bit of care is needed for the stochastic integral. Indeed, writing explicitly
the Ito’s integral, we have

ˆ t

0

e2vB1(s)+v2f ′′(0)sdB2(s) = lim
n→∞

∑
i

e2vB1(si)+v
2f ′′(0)si(B2(si+1)−B2(si)) =

= e2vB̃1(t)+v2f ′′(0)t lim
n→∞

∑
j

e−2vB̃1(s̃j)−v2f ′′(0)s̃j (B̃2(s̃j)− B̃2(s̃j−1)) (S4.6)

where the si’s are a partition of [0, t] and s̃j = t− si defines an equivalent partition, with j = N − i. Clearly, the last
expression does not converge to a stochastic integral in the Ito form. We thus expand the exponent arriving at

ˆ t

0

e2vB1(s)+v2f ′′(0)sdB2(s) = e2vB̃1(t)+v2f ′′(0)t

[ˆ t

0

e−2vB1(s)−v2f ′′(0)sdB̃2(s) + 2vf (4)(0)

ˆ t

0

e−2vB1(s)−v2f ′′(0)sds

]
(S4.7)
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Applying these transformations to (S4.4) we arrive at

κ(t) = −`
2

6
e2vB̃1(t)+v2f ′′(0)t︸ ︷︷ ︸

κ1

ˆ t

0

e−2vB̃1(s)−v2f ′′(0)sv

(
3v

2
f (4)(0)ds+ dB̃2(s)

)
︸ ︷︷ ︸

κ2

(S4.8)

Using Ito’s lemma, dκ = κ2dκ1 + κ1dκ2 + dκ1dκ2, which, after collecting different contributions, leads to

dκ = v2

(
`2

12
f (4)(0)− f ′′(0)κ

)
dt− `2v

6
dB̃2(t) + 2vdB̃1(t)κ (S4.9)

The correlations of the dB̃j(t) are the same as the ones of the dBj(t) in Eq. (S4.2). However, κ(t) defined by Eq.
(S4.8) is a different process in t than κ(t) defined by Eq. (S4.4). At fixed t the two random variables have the same
law, but as t is varied the trajectories are different (since the relation between B̃i and Bi involves t explicitly). As a
consequence, the two stochastic equations (S4.9) and (S4.4) are inequivalent although they lead to the same single-
time distribution for κ(t). One illustration of that is that while the second process converges, i.e. κ(t)→ κ∞, where
the distribution of κ∞ is given below, the first process is ergodic (with the same law) as we show below.

We can recast (S4.9) as an equation with a single Brownian process dB (we are using that a1dB1 + a2dB2 =√
−a2

1f
′′(0)− a2

2f
(4)(0)− 2a1a2f (6)(0)dB̃, where dB̃ is a new Wiener process with standard normalization, dB̃2 = dt)

dκ = v2

(
`2

12
f (4)(0)− f ′′(0)κ

)
dt+

vdB̃

6

√
−
(
`4f (6)(0)− 24`2f (4)(0)κ+ 144f ′′(0)κ2

)
(S4.10)

With the change of variable κ = κ0(ω/ω0 − 1) where we defined as in the main text (14)

κ0 = − `
2

12

f (4)(0)

f ′′(0)
, ω0 =

1√
f(6)(0)f ′′(0)
f(4)(0)2

− 1
(S4.11)

Note that ω0 is real and positive as it is guaranteed by the positivity of the Fourier transform f̂(k) > 0 of f(x).
Indeed,

f (6)(0)f ′′(0)− f (4)(0)2 =

ˆ
k2f̂(k)

ˆ
k6f̂(k)−

(ˆ
k4f̂(k)

)2

> 0 (S4.12)

which is a consequence of the Cauchy-Schwartz inequality.

The SDE for ω becomes

dω = 2θωdt+
√

8θ
√

1 + ω2 dW (S4.13)

Accounting for the initial condition ω(t = 0) = ω0, the solution of this SDE takes the form

ω(t) = e
√

8θB(t)−2θt

(
ω0 +

√
8θ

ˆ t

0

e−
√

8θB(s)+2θsdγs

)
(S4.14)

which is then a Bougerol variable with drifted Brownian motion in the exponent [59]. It is useful to do the change of
variable (S4.13)

ω = sinhY , Y = Y (ω) = argsinhω (S4.15)

One has

Y ′(ω) =
1√

1 + ω2
=

1

coshY
, Y ′′(ω) = − ω

(1 + ω2)3/2
(S4.16)

and from Ito’s rule, it follows Eq. (15) in the main text.
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Appendix 5: Stationary measure for κ for any finite `

5.1. Backward method

We now apply the backward method to the full stochastic equation for r(t), κ(t) in (7). We define

Qk(r0, t) ≡ e−ikκ(t)
r0

(S5.1)

where the superscript r0 = r(t = 0) indicates the initial condition for the variable r. In the end we will set r0 = 1 as
it is required in our case, but it is useful to keep it free. One has

Qk(r0, t+ dt) = e−ik(v2g(r0)dt+v dW2(0))Q(r0 + vdW1(0), t)
r0

(S5.2)

expanding with Ito’s lemma and averaging we arrive at

∂tQk = v2
(
A`(r)∂

2
r − ikB`(r)∂r − k2C`(r)− ikg`(r)

)
Qk(r, t) . (S5.3)

with the boundary conditions

Qk(r0, 0) = 1 , Qk(r0 = 0, t) = 1 , lim
r0→+∞

Qk(r0, t) = e−2θ(k2+ik)t (S5.4)

and we recall that

A`(r) =
f(0)− f(`r)

`2
, B`(r) = 2

f ′(`r)

`
+ 4

f(0)− f(`r)

`2r

C`(r) = 4
f(0)− f(`r) + `rf ′(`r)

`2r2
− f ′′(0)− f ′′(`r)

g`(r) = −f ′′(0)− 2
f(0)− f(`r)

`2r2
(S5.5)

The second condition in (S5.4) comes from the fact that dκ = 0 and dr = 0 for r = 0 since g(0) = 0 and C(0) = 0.
The third condition is obtained using the fact that the dynamics of κ is pure diffusion at large r0.

Let us denote Qk(r) the stationary solution of (S5.3). It thus satisfies

A`(r)Q
′′
k(r)− ikB`(r)Q′k(r)− (k2C`(r) + ikg`(r))Qp(r) = 0 (S5.6)

with the boundary conditions

Qk(r0 = 0) = 1 , Qk(r0 → +∞) = 0 (S5.7)

From this stationary solution one obtains the stationary measure Pstat(κ) for κ by Fourier inversion

Pstat(κ) =

ˆ +∞

−∞

dk

2π
eikκQk(r = 1) (S5.8)

5.2. Schrodinger equation for the stationary measure

We can further simplify Eqs. (S5.4) and (S5.6) by removing the first derivative term. This can be achieved setting

Qk(r) = φk(r)Gk(r) . (S5.9)

If one chooses φk(r) so that

φ′k(r)

φk(r)
= ik

B(r)

2A(r)
, φk(r) = e

ik
´ r
0
dr′

B(r′)
2A(r′) =

(
`2r2f ′′(0)

2(f(`r)− f(0))

)ik
(S5.10)

then one finds that Gp(r) satisfies the Schrodinger equation

−G′′k(r)− k(k + i)V (r)Gk(r) = 0 (S5.11)
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with the potential

V (r) =
`2
(
f ′(`r)2 + (f(0)− f(`r)) (f ′′(`r) + f ′′(0))

)
(f(0)− f(`r))2

= − d2

dr2
log[f(0)− f(`r)] +

`2f ′′(0)

f(0)− f(`r)
(S5.12)

on the positive half-space r ≥ 0 with the boundary condition

Gk(0) = 1 , lim
r→∞

Gk(r) = 0 . (S5.13)

Before solving various cases, let us indicate a nice symmetry property. One notes that the dependence in k in
(S5.11) is only via the prefactor γ ≡ k(k + i) of the potential: Gk(r) ≡ G(γ; r). This implies thatˆ

dκPstat(κ)e−ikκ = φk(1)Gk(1) = eikκ0G(γ; 1) (S5.14)

where κ0 is explicitly

κ0 =
1

ik
log φk(1) = − log

(2(f(`)− f(0))

`2f ′′(0)

)
(S5.15)

Hence, from Eq. (S5.8)

Pstat(κ) =

ˆ
dk

2π
eik(κ+κ0)G(k(k + i); 1) = e

κ+κ0
2

ˆ
du

2π
eiu(κ+κ0)G(u2 +

1

4
; 1) (S5.16)

where in the last equality we changed variable k = u− i/2. It implies in particular that

Pstat(κ) = e
κ+κ0

2 P̃ (|κ+ κ0|) , P̃ (y) =

ˆ
du

2π
eiuyG(u2 +

1

4
; 1) (S5.17)

or equivalently the symmetry (reminiscent of a Nishimori condition, or a Galavotti-Cohen theorem)

Pstat(−κ0 + β)

Pstat(−κ0 − β)
= eβ (S5.18)

5.3. Proof of the right 3/2–tail

Here, we show that for a smooth noise correlation f(x), the right tail of the stationary distribution is always a
power-law Pstat(κ) ∝ κ−3/2 for κ → +∞, independently of `. Thanks to (S5.1), it is enough to prove the following
expansion at small k for its Fourier transform

Qk(r = 1) = 1 + C
√
k +O(k). (S5.19)

with C is a constant (see below). To prove Eq. (S5.19), we proceed as follow. First of all, since φk(r) is analytic in
k, using (S5.9), we can focus on the small k expansion of Gk(r). The small k behavior of the solution of Eq. (S5.11)
can be obtained setting x = r

√
γ, with γ = k(k + i). Then, setting Gk(r) = g(r

√
γ), we can rewrite (S5.11) in the

limit k → 0 as

− g′(x)− V∞g(x) = 0 ⇒ g(x) = e−
√
−V∞x (S5.20)

where we set V∞ = limr→∞ V (r) and enforced the boundary conditions (S5.13). This implies

Gk(r) ∼ g(r
√
γ) = e−

√
−V∞γr , ∀r = O(γ−1/2) (S5.21)

This is still not enough because we require the expansion (S5.19) for r = 1. However, fixing δ > 0 and r, we can write

|G′k(r)−G′k(δ/
√
γ)| =

∣∣∣∣∣
ˆ r

δ/
√
γ

dr′G′′k(r′)

∣∣∣∣∣ ≤ γ
ˆ r

δ/
√
γ

dr′|V (r′)Gk(r′)| ≤ Kγ(r − δ/√γ) (S5.22)

where we set K = supr |V (r)Gk(r)|, which is finite for a sufficiently smooth f(x) ∈ C6. As a consequence, at small γ,

G′k(r) = G′k(δ/
√
γ) +O(δ

√
γ) = −

√
−V∞γ (g(δ) +O(δ))

δ→0−→ −
√
−V∞γ +O(γ) (S5.23)

Finally, integrating over r

Gk(1) = 1 +

ˆ 1

0

dr G′k(r) = 1−
√
−V∞γ +O(γ) (S5.24)

which proves Eq. (S5.19) with C =
√
−V∞.
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5.4. Small ` limit

At small ` one finds that the potential is a harmonic oscillator

V (r) =
`4r2

(
f (4)(0)2 − f (6)(0)f ′′(0)

)
36f ′′(0)2

+O(`6r4) (S5.25)

and

κ0 = κ̃0`
2 +O(`4) , κ̃0 = − f (4)(0)

12f ′′(0)
(S5.26)

We see that κ0 is O(`2) as ` → 0, so the random variable κ = O(`2) in this limit. Therefore, we can obtain a `
independent limit by scaling k = k̃/`2. In terms of this variable the potential term in the Schrodinger equation has a
finite limit

t− k(k + i)V (r) ' 4k̃2r2κ̃2
0

ω2
0

(S5.27)

where we have defined as in the text

ω0 =
1√

f ′′(0)f(6)(0)
f(4)(0)2

− 1
(S5.28)

A solution of Eq. (20) with the potential (S5.25) and the boundary conditions (S5.13) can be expressed in terms of
Bessel function as

Gk(r) =
23/4

Γ(1/4)

(
κ̃0|k̃|
ω0

)1/4
√
rK 1

4

(
|k̃|r2κ̃0

ω0

)
(S5.29)

and the prefactor has been fixed imposing that Gk(r = 0) = 1. This leads to

Qk(r = 1) =
23/4

Γ(1/4)

(
κ̃0|k̃|
ω0

)1/4

eik̃κ̃0K 1
4

(
|k̃|κ̃0

ω0

)
(S5.30)

which allows to determine Pstat(κ) by Fourier inversion from (S5.8).

One can check that this coincides with the result in the text, identifying κ̃ = κ̃0

(
ω
ω0
− 1
)

. Equivalently, we obtain

the scaling form

Pstat(κ)
`�1' 1

`2
P̃ (

κ

`2
) , P̃ (κ̃) ≡ Cω0

κ̃0

[
1 + ω2

0

( κ̃+ κ̃0

κ̃0

)2
]−3/4

(S5.31)

and one can check that the Fourier transform of P̃
ˆ

dk̃

2π
eik̃κ̃P̃ (κ̃) = Qk(r = 1) (S5.32)

as given in (S5.30). This can be seen using the identity

ˆ
dxeikx

1

(1 + x2)3/4
=
√

2π
(2|k|)1/4K 1

4
(|k|)

Γ
(

3
4

) (S5.33)

5.5. Large ` limit

At large `, under the hypothesis that f(x) and its derivatives decay at infinity, the potential term reaches a constant
value

− k(k + i)V (r) ' −k(k + i)`2
f ′′(0)

f(0)
∼ 2ik̃θ

f(0)
. (S5.34)
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f(x) V (r)/`2 f̂(k) Smoothness

e−|x| 1
(1−e−r`)2

2
1+k2

C0

2e−|x| − e−2|x| − 2
1−e−`r

12
k4+5k2+4

C2

1
cosh x

− tanh(`r)2 π
cosh(kπ/2)

C∞

1
(cosh x)2

−2 tanh(`r)2 πk
sinh(kπ/2)

C∞

TABLE S1. A few examples of noise correlation functions f(x) leading to Schrödinger equations with a solvable potential V (r).

where we used once again the scaling k = k̃/`2, which implies κ = `2κ̃, but with ` → ∞ in this case. From this
potential, we immediately derive the solution respecting the boundary conditions (S5.13) in the form

Gk(r) = e−
√

2ik̃θ/f(0)r (S5.35)

Note that at large `

κ0
`→∞

= log(`2(−f ′′(0))/2f(0)) (S5.36)

so that kκ0
`→∞−→ 0 and therefore Qk(r) = Gk(r). Inverting the Fourier transform (S5.8), we obtain once again the

stationary distribution

Pstat(κ)
`�1' 1

`2
p̃
( κ
`2
)
, p̃(κ̃) ≡

√
θ

2πf(0)

e−
θ

2f(0)κ̃

κ̃3/2
Θ(κ̃) (S5.37)

Equivalently, denoting κ = θ`2ξ/f(0) one finds that ξ is distributed according to L(ξ) in Eq. (23) in the text, i.e. the
stable one sided Levy distribution of index 1/2.

5.6. Solvable cases for f(x)

For some particular choice of the noise correlation function f(x), the potential Vk(r) takes a form which is explicitly
integrable. In Table S1, we list a few interesting cases. Here, we focus on the case

f(x) = 1/ cosh(x) (S5.38)

which is analytic and fastly decaying. Setting γ = k(k + i), the solution Gk(r) respecting the boundary conditions
(S5.13) can be expressed in terms of hypergeometric function

Gk(r) = e−
√
γ`r(1 + tanh(`r))

√
γ

2F1

(√
γ

2 −
1
2

√
γ + 1

4 + 1
4 ,
√
γ

2 + 1
2

√
γ + 1

4 + 1
4 ;
√
γ + 1; 1

cosh(`r)2

)
2F1

(√
γ

2 −
1
2

√
γ + 1

4 + 1
4 ,
√
γ

2 + 1
2

√
γ + 1

4 + 1
4 ;
√
γ + 1; 1

) (S5.39)

Equivalently, this expression can be represented in terms of generalised Legendre functions

Gk(r) =
P
−√γ
1
2 (
√

1+4γ−1)
(tanh(`r))

P
−√γ
1
2 (
√

1+4γ−1)
(0)

(S5.40)

As a first check, we verify that the solution Eq. (S5.39) reproduces the known solutions in the small/large ` limits.

Asymptotic limits `→∞

At large `, we simply have

lim
`→∞

Qk′/`2(r) = lim
`→∞

Gk′/`2(r) = e−r
√
ik′ (S5.41)
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in agreement with (S5.35) (θ = 1/2 for (S5.38)). The limit in (S5.41) can be easily obtained using (S5.39) using that

lim
γ→0

2F1

(√
γ

2
− 1

2

√
γ +

1

4
+

1

4
,

√
γ

2
+

1

2

√
γ +

1

4
+

1

4
;
√
γ + 1;x

)
= 2F1(0,

1

2
, 1;x) = 1 (S5.42)

irrespectively of x.

Small ` check

In this case, the limit is less trivial as k = k′/`2 becomes large in the limit of small `. So that simultaneously
the parameters of the hypergeometric are diverging, while its argument is going to 1. Thus, we first apply the
transformation between hypergeometric functions

2F1(a, b, c; z) =
(1− z)−a−b+cΓ(c)Γ(a+ b− c)2F1(c− a, c− b;−a− b+ c+ 1; 1− z)

Γ(a)Γ(b)
+

+
Γ(c)Γ(−a− b+ c) 2F1(a, b; a+ b− c+ 1; 1− z)

Γ(c− a)Γ(c− b)
(S5.43)

Then, we use that

lim
`→0

2F1

(
1

4

(
2
√
γ −

√
1 + 4γ + 1

)
,

1

4

(
2
√
γ +

√
1 + 4γ + 1

)
;

1

2
; tanh(`)2

)
=
ek
′/2(k′)1/4Γ

(
3
4

)
I− 1

4
(k′/2)

√
2

(S5.44)

to recover, after some manipulations, Eq. (S5.30).

Appendix 6: Distribution of the stress-energy tensor

As we saw in the main text, the distribution of the stress energy tensor can be deduced from the one of κ in the
limit of small `, simply using (28). An alternative approach is to compute explicitly the time evolution of the stress
energy tensor directly from the expression of the Hamiltonian.

6.1. Direct derivation

Consider the explicit expression of the Hamiltonian (1) in terms of the stress energy tensor

Ĥ = v

ˆ
dx(1 + η(x, t))(T̂+(x) + T̂−(x)) . (S6.1)

To derive the time evolution of an operator, we introduce the infinitesimal generator of time evolution

dĤ = v

ˆ
dx(dt+ dWt(x))(T̂+(x) + T̂−(x)) . (S6.2)

and define the time evolution Ut operator up to time t with the equation

Ut+dt = e−idĤUt (S6.3)

The evolution of an operator Ô(t) ≡ U†t ÔUt takes the form

dÔ(t) = U†t eıdĤÔe−ıdĤUt − Ô(t) = U†t
(
ı[dĤ, Ô]− 1

2
[ ˆdH, [ ˆdH, Ô]] + . . .

)
Ut (S6.4)

Note that because of the Ito’s convention we need to keep terms up to the double commutators.
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Consider the particular case of Ô = T̂±(y), the stress energy tensor at the point y. We have for the equal-time
commutator

[T̂+(x), T̂+(y)] = −ı(2δ′(x− y)T̂+(y)− δ(x− y)T̂+′(y)− c

24π
δ′′′(x− y)) (S6.5)

[T̂−(x), T̂−(y)] = ı(2δ′(x− y)T̂−(y)− δ(x− y)T̂−′(y)− c

24π
δ′′′(x− y)) (S6.6)

From this we deduce

[dĤ, T̂±(y)] = ±2ıT̂±(y)vdW′t(y)± ı(dt+ dWt(y))vT̂±′(y)∓ ı c

24π
vdW′′′t (y) (S6.7)

where dW′t(x) = ∂xdWt(x) (the noise is smooth in space) and similarly for the higher derivatives. This implies the
evolution equation for the operators T̂±(y, t), which reads

dT̂±(y, t) = ∓(2T̂±(y, t)vdW′t(y) + (dt+ dWt(y))vT̂±′(y, t)− c

24π
vdW′′′t (y))+

+
cv2f (4)(0)

48π
dt− f ′′(0)v2T̂±(y, t)dt+

1

2
f(0)v2∂2

y T̂
±(y, t)dt . (S6.8)

Although the two chiral components do not couple at the CFT level, their evolutions are not statistically independent
since they feel the same noise.There are several quantities that one can study from there. One is the noise average

T̂±(y, t), which is still a quantum operator. Its evolution is obtained by taking the noise average of (S6.8) and reads

∂tT̂±(y, t) =
cv2f (4)(0)

48π
− f ′′(0)v2T̂±(y, t) +

1

2
f(0)v2∂2

y T̂
±(y, t)∓ v∂yT̂ (y, t) (S6.9)

Another observable is the quantum expectation 〈T̂±(y, t)〉 ≡ 〈Ψ0|T̂±(y, t)|Ψ〉 on any translational invariant state |Ψ〉
in a given noise realisation. It satisfies a stochastic differential equations obtained by taking the quantum expectation
of (S6.8) (which leads to a similar equation as (S6.8) but now for a scalar 〈T̂±(y, t)〉). Note that it describes the
coupled stochastic evolution of the two fields 〈T̂±(y, t)〉, a complicated problem. Here we will only focus on (i) noise
moments, which have a solvable dynamics (ii) the one-point PDF of 〈T̂±(y, t)〉. This one-point distribution being
independent of y at t = 0, it remains independent of y for all times. In addition it does not depend on the chirality,
thus we omit the ± superscript and denote T (t) ≡ 〈T̂±(y, t)〉 the corresponding random variable. Then, one can show
that its PDF can be obtained from the stochastic equation (S6.10)

dT = 2TvdB1(t)− c

24π
vdB2(t) +

cv2f (4)(0)

48π
dt− f ′′(0)v2Tdt (S6.10)

with dB1(t) = ∓dW ′(y, t) and dB2(t) = ∓dW ′′′(y, t). This can be seen intuitively: indeed, we expect that the spatial
derivative terms in (S6.8) are irrelevant since the one point PDF of T ≡ 〈T̂±(y, t)〉 does not depend on y. More
formally, one can prove that (S6.10) and (S6.8) lead to the same evolution equation for the noise average Z(T ) for
any smooth function Z. Although Eq. (S6.10) was obtained here by a completely different method, one can check
that Eq. (S6.10) is equivalent to (S4.9) with the correspondence

T = lim
`→0

c

4π`2
κ , (S6.11)

noting also that the noise satisfies (S4.2).
For the translationally invariant initial state chosen here, it is easy to obtain from (S6.10) the recursive equation

for the moments (over the noise) of the quantum expectation of T as

∂tTn = −v
2c2f (6)(0)n(n− 1)

1152π2
Tn−2 +

cv2f (4)(0)(4n− 3)n

48π
Tn−1 − n(2n− 1)v2f ′′(0)Tn; (S6.12)

These can be solved with T (t = 0) = 0, which corresponds to |Ψ〉 = |Ψ0〉 being the ground state. This leads to the
first two moments

T =
c f4(0)

48πf ′′(0)

(
1− e−v

2f ′′(0)t
)

(S6.13)

T 2 =
c2

3456π2

[
1

2

(f (4)(0)

f ′′(0)

)2

(e−6v2f ′′(0)t − 6e−v
2f ′′(0)t + 5) +

f (6)(0)

f ′′(0)
(e−6v2f ′′(0)t − 1)

]
(S6.14)
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Appendix 7: Free fermion dynamics

7.1. Evolution equation for the Wigner function

Here, we will derive the evolution equation Eq. (34) for the Wigner function. We consider a model of spinless
non-interacting fermions in one dimension. Let us first consider the Hamiltonian in the absence of the noise

Ĥ0 =
∑
i

ĥi . ĥi = −J(â†i+1âi + â†i âi+1 − µâ†i âi) (S7.1)

where we have introduced a chemical potential µ (chosen to be zero in the text).
In general, it is useful to represent densities which are conserved under the H0 evolution with support around the

site j in the following form

ẑj =
∑
j′

ζj′ â
†
j+j′ âj =

ˆ π

−π

dk

2π

∑
j′

e−ıkj
′
ζ(k)â†j+j′ âj ,

∑
j

ẑj , Ĥ0

 = 0 (S7.2)

where ζ(k) =
∑
j ζje

ikj is the Fourier transform of ζj and consider the coupling

Ĥ = Ĥ0 +
∑
j

ηj(τ)(ẑj + ẑ†j ) (S7.3)

where the correlation of the noise ηj(τ) is defined in the main text. We will keep ζ(k) arbitrary and specify its value
only at the end.

One can introduce the Wigner function which completely characterizes all correlation functions in any gaussian
state. Here, we will focus on the noise average Wigner function which is defined as

nτ (k) ≡
∑
j′

eıkj
′
〈â†j+j′ âj〉τ =

1

L

∑
jj′

eıkj
′
Tr[â†j+j′ âj%τ ] . (S7.4)

where 〈. . .〉τ = 〈Ψ0(τ)| . . . |Ψ0(τ)〉 denotes the quantum average at time τ and we introduced the density matrix
%τ ≡ |Ψ0(τ)〉 〈Ψ0(τ)|. Although we are interested in the groundstate of Ĥ0, these considerations apply to any
translational invariant gaussian initial state |Ψ0〉. In this case, because of the noise average, Eq. (S7.4) is independent
of the position j.

We now consider the quantum evolution of %τ . It is easy to verify that, after the noise average, one obtains the
Lindblad form

d%τ
dτ

= −ı[H0, %τ ]− τ0
2

∑
j,j′

F (j − j′)[ẑj + ẑ†j , [ẑj′ + ẑ†j′ , %τ ]] (S7.5)

We can use (S7.4) and Eq. (S7.5) to obtain an evolution equation for nτ (k). Note that the first term in (S7.5) does
not contribute because of translational invariance and (S7.2). Using (S7.2) we obtain explicitly

∂τnτ (k) = −τ0
2

∑
n,n′,m,j,j′

F (n− n′)eikm
(
ζjζj′

〈
[a†n+j ân, [a

†
n′+j′ ân′ , a

†
mâ0]]

〉
τ
+

+ζ∗j ζ
∗
j′

〈
[a†nân+j , [a

†
n′ ân′+j′ , a

†
mâ0]]

〉
τ

+ ζ∗j ζj′
〈

[a†nân+j , [a
†
n′+j′ ân′ , a

†
mâ0]]

〉
τ

+ ζjζ
∗
j′

〈
[a†n+j ân, [a

†
n′ ân′+j′ , a

†
mâ0]]

〉
τ

)
(S7.6)

We can expand all the commutators applying twice

[â†j1 âj2 , a
†
j3
âj4 ] = δj2j3 â

†
j1
âj4 − δj1j4 â

†
j3
âj2 . (S7.7)

from the anti-commutation rules {â†i , â
†
j} = 0, {â†i , âj} = δij , and one gets

[â†j1 âj2 , [a
†
j3
âj4 , a

†
j5
âj6 ] = δj2j3δj4j5a

†
j1
âj6 − δj1j6δj4j5a

†
j3
âj2 − δj3j6δj2j5a

†
j1
âj4 + δj3j6δj1j4a

†
j5
âj2 (S7.8)
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As a result, a single correlator survives. This is expected since the full Hamiltonian (S7.13) is quadratic, so the

correlation matrix 〈â†j âj′〉 must satisfy a closed and linear evolution equation. Next one obtains, using the parity of
the noise correlation F (x) = F (−x) and translational invariance

∂τnτ (k) = −τ0
2

∑
m,j,j′

eikm
(

2(ζjζj′ + ζ∗−jζ
∗
−j′) (S7.9)

×(F (j)− F (m+ j)) + (ζjζ
∗
−j′ + ζ∗−jζj′)(F (0) + F (j + j′)− F (m)− F (m+ j + j′))

)
〈â†m+j+j′ â0〉τ

Using that ζ(k)∗ =
∑
j e
ikjζ∗−j we finally obtain

∂τnτ (k) = τ0

ˆ
q

F̃ (q)|ζ(−k) + ζ(−q − k)∗|2(n(k + q)− n(k)) (S7.10)

where

F̃ (q) =
∑
j

eiqjF (j) (S7.11)

Consider first half-filling, i.e. µ = 0, as in the main text. To recover the coupling with the noise defined there, we
must choose ζ(k) = −Jeik. With this choice,

|ζ(−k) + ζ(−q − k)∗|2 = ε(k + q/2)2 (S7.12)

and one recovers (34) given in the main text.
For finite −2 < µ < 2, the Hamiltonian in (S7.1) remains critical and described by a c = 1 CFT. In order to preserve

parity and time-reversal symmetry, a simple choice is ζ(k) = ε(k)/2 with ε(k) = −J(2 cos k − µ), which corresponds
to the coupling to the noise of the form

Ĥ = Ĥ0 +
1

2

∑
j

ηj(τ)(ĥj + ĥj−1) (S7.13)

In this case, we obtain after replacing ζ(k)→ ε(k)/2 in (S7.10)

∂τnτ (k) =
τ0
4

ˆ
q

F̃ (q)(ε(k) + ε(q + k))2(n(k + q)− n(k)) . (S7.14)

7.2. Scaling limit

Here we study the evolution equation for the Wigner function (S7.14). In the scaling limit of large ξ described in
the main text, we look for a solution which has the following scaling form around the two Fermi points

nτ (k) ' n(ξ(kf − k), τ/ξ) + n(ξ(k + kf ), τ/ξ) (S7.15)

The initial condition which corresponds to the ground state reads

nτ=0(k) = Θ(k + kf )−Θ(k − kf ) = −1 + Θ(k + kf ) + Θ(kf − k) (S7.16)

which gives for the initial scaling function n(p, t = 0) = −1/2+Θ(p). We can now derive directly an evolution equation

for the scaling function n(p, t). In order to do this we replace in Eq. (S7.14) ζ̂(k) with the energy dispersion relation
ε(k), which gives Eq. (34) in the text. Next, we inject the scaling form Eq. (S7.15) around each Fermi point (choosing

+kf ) and replace k = kf − p/ξ, k′ = −p′/ξ. From (32) and (S7.11), we obtain that at large ξ, F̃ (k) ' ξf̂(ξk), which
leads to (using τ0 = ξ)

∂tn(p; t) ' ξ2

4

ˆ πξ

−πξ

dp′

2π
f̃(p′)

(
ε
(
kf −

p

ξ

)
+ ε
(
kf −

p+ p′

ξ

))2

(n(p+ p′; t)− n(p; t))
ξ→∞−→

v2

ˆ ∞
−∞

dp′

2π
f̃(p′)

(
p+

p′

2

)2

(n(p+ p′; t)− n(p; t)) = v2

ˆ ∞
−∞

dq

2π
f̃(p− q)

(
q + p

2

)2

(n(q; t)− n(p; t)) (S7.17)
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We can now compute the mean energy density with respect to the ground state eF (τ), which is expanded as

eF (τ = tξ) =

ˆ π

−π

dk

2π
ε(k)[nτ (k)− n0(k)] ' 1

ξ2
(ẽ+(t) + ẽ−(t)) (S7.18)

ẽ+(t) ≡ lim
ξ→∞

ξ

ˆ ∞
−∞

dp

2π
ε(kf −

p

ξ
)[n(p, t)− n(p, 0)] = −v

ˆ ∞
−∞

dp

2π
p [n(p, t)− n(p, 0)] (S7.19)

and similarly for e−F (t) with k ∼ −kf .
We now prove the validity of Eq. (35) in the main text. We show that ẽ+(t) satisfies a a first order differential

equation. Indeed, differentiating (S7.18) w.r.t. the variable t and using (S7.17), we obtain

∂tẽ
+(t) = −v3

ˆ ∞
−∞

dp

2π

dq

2π
pf̃(p−q)

(
q + p

2

)2

(n(q; t)−n(p; t)) = −v
3

2

ˆ ∞
−∞

dq

2π

dp

2π
f̃(p−q)(p−q)

(
q + p

2

)2

[n(q; t)−n(p; t)]

(S7.20)
where in the last equality we symmetrized the integrand with respect to the exchange p↔ q. The integral in (S7.20)
is finite but to proceed further, we need to split the integral in two terms involving n(q; t) and n(p; t), which are both
divergent. To avoid this issue, we change variables p = q + u and integrate by parts with respect to q using that
n(q; t)− n(q + u; t)|∞q=−∞ = 0 to arrive at

∂tẽ
+(t) = v3

ˆ
dq

2π

du

2π
f̃(u)u

(q + u/2)3

6
(n′(q; t)− n′(q + u; t)) (S7.21)

where n′(q; t) = ∂qn(q, t). We can now split the integral into two finite terms and replace q → q − u in the second
integral. This leads to

∂tẽ
+(t) = v3

ˆ
dq

2π

du

2π
f̃(u)u

1

6

[
(q + u/2)3 − (q − u/2)3

]
n′(q; t) =

= v3

ˆ
du

2π
f̃(u)

u4

48π

ˆ
dq n′(q; t) +

v3

2

ˆ
dq

2π
q2n′(q; t)

ˆ
du

2π
f̃(u)u2 =

v3f (4)(0)

48π
− v2f ′′(0)ẽ+(τ) (S7.22)

where we used that ˆ
dq n′(q; t) = 1 ,

ˆ
dq

2π
q2n′(q; t) =

ˆ
dq

2π
q2[n′(q; t)− n′(q; 0)] =

2

v
ẽ+(t) (S7.23)

ˆ
du

2π
f̃(u)u2 = −f ′′(0) ,

ˆ
du

2π
f̃(u)u4 = f (4)(0) . (S7.24)

Note that in (S7.23) we used the initial condition (S7.16) which shows that n′(q, 0) = δ(q). We can thus solve (S7.22)
with the initial condition ẽ+(t = 0) = 0 and obtain

ẽ+(t) =
f (4)(0)v

(
1− e−v2f ′′(0)t

)
48πf ′′(0)

(S7.25)

Summing also the equivalent contribution from ẽ−(t) and using the definition of θ = −v2f ′′(0)/2, we recover (29)
setting the central charge c = 1, which is expected from universality. Note that the present calculation is from first
principles. In principle the full scaling function n(p; t) should be universal, i.e. independent of the microscopic details
of the discrete model, but depending on f(x), but we have not attempted to obtain it analytically.

To better characterize the time evolution of the scaling function n(p; t), it is also possible to look at the time
evolution of the moments defined by

Mn(t) ≡
ˆ ∞
−∞

dp

2π
pnn′(p, t) = −n

ˆ ∞
−∞

dp

2π
pn−1(n(p, t)− n(p, 0)) . (S7.26)

and clearly one has from (S7.23) M0(t) = 1 and M2(t) = 2ẽ+(t)/v. For higher n, one can show that these moments
satisfy a hierarchy of differential equations which connects each moment with the previous ones, having the same
parity, i.e.

∂tMn(t) =
∑
k

αkMn−2k(t) . (S7.27)
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Because of the conservation of the density, one has M1(t) = 0 and similarly all odd moments M2k+1(t) vanish.
One can thus interpret M2(t) as the width of the distribution n′(p; t) and this provides an estimation for the break-

down of the CFT description at the level of average quantities. Indeed, the Fermi points of k ∼ ±kF independently
broaden with time, up to a time τ∗(ξ), where their width ∼ ξ

√
M2 is comparable with their initial distance ∼ 2kF .

Using M2(t) = 2ẽ+(t)/v and (S7.25) This leads to

ẽ+(τ∗/ξ) = vk2
F ξ

2 ⇒ τ∗ ∼ ξ

v2|f ′′(0)|
ln

(
48π|f ′′(0)|k2

fξ
2

f (4)(0)

)
(S7.28)


