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Parametrized modal logic I: an introduction

Philippe Balbiani 1 Saúl Fernández González 2
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CNRS-INPT-UT3, Toulouse University, Toulouse, France

Abstract

In this paper, within the context of a two-typed parametrized modal language, we
define a parametrized modal logic as a couple whose components are sets of formulas
containing, in their respective types, all propositional tautologies and the distribution
axiom and closed, in their respective types, under modus ponens, uniform substitution
and generalization. We axiomatically introduce different two-typed parametrized
modal logics and we prove their completeness with respect to appropriate classes of
two-typed frames by means of an adaptation of the canonical model construction.

Keywords: Parametrized modal logic. Complete axiomatization. Canonical model
construction. Bounded morphism Lemma. Epistemic reasoning.

1 Introduction

In an application domain such as reasoning about knowledge where states and
agents have been identified as the primitive entities of interest, one usually
considers relational structures of the form (S,≡) where S is a nonempty set of
states and ≡ is a function associating an equivalence relation ≡a on S to every
element a of a fixed set A of agents [8,9,17]. In that setting, for all a ∈ A, two
states s and t are equivalent modulo ≡a exactly when a cannot distinguish
between s and t. When one wants to reason about distributed knowledge, it
is of interest to assume that ≡ is also a function associating an equivalence
relation ≡B on S to every B ∈ ℘(A) in such a way that for all B ∈ ℘(A),
≡B=

⋂
{≡a: a ∈ B}.

The modal language interpreted over relational structures of the form
(S,≡) traditionally consists of one type of formulas: state-formulas — to be
interpreted by sets of states. State-formulas are constructed over the Boolean
connectives and the modal connectives [B] — B ranging over ℘(A). The
state-formula [B]ϕ is true in a state s of some model if the state-formula ϕ
is true in every state of that model that can be distinguished from s by no
B-agents.

1 Email address: philippe.balbiani@irit.fr.
2 Email address: saul.fgonzalez@irit.fr.
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Although agents are omnipresent in the standard syntax of modal lan-
guages used for talking about relational structures of the form (S,≡), states
are the only entities that these relational structures take as first-class citizens.
However, there is no need to force oneself to find examples where, in addition
to equivalence relations between states parametrized by sets of agents, one
would like to have at hand binary relations between agents parametrized by
sets of states.

Indeed, in many situations, one would like to use relational structures
of the form (S,A,≡, .) where on top of the above-considered elements S and
≡, one can find a nonempty set A of agents and a function . associating a
binary relation .s on A to every element s of S. Which situations? Situations
where relationships between agents such as the following ones have to be taken
into account: “agent a trusts agent b in state s”, “agent a is a friend of agent
b in state s”, etc 3 . In these situations, for all s ∈ S, two agents a and b are
related by .s exactly when a trusts b in state s, a is a friend of b in state s,
etc. Moreover, on top of the assumption that ≡ is also a function associating
an equivalence relation ≡B on S to every B ∈ ℘(A) in such a way that for
all B ∈ ℘(A), ≡B=

⋂
{≡a: a ∈ B}, one will naturally assume that . is also

a function associating a binary relation .T on A to every T ∈ ℘(S) in such a
way that for all T ∈ ℘(S), .T =

⋂
{.s : s ∈ T}.

The modal language interpreted over relational structures of the form
(S,A,≡, .) will naturally consist of two types of formulas: state-formulas — to
be interpreted by sets of states — and agent-formulas — to be interpreted
by sets of agents. State-formulas will be constructed over the Boolean
connectives and the modal connectives [α] — α ranging over the set of all
agent-formulas — whereas agent-formulas will be constructed over the Boolean
connectives and the modal connectives [ϕ] — ϕ ranging over the set of all
state-formulas. The state-formula [α]ϕ will be true in a state s of some
model if the state-formula ϕ is true in every state of that model that can be
distinguished from state s by no α-agents whereas the agent-formula [ϕ]α will
be true in an agent a of some model if the agent-formula α is true in every
agent of that model that is trusted by agent a at all ϕ-states.

In this paper, within the context of a two-typed parametrized modal
language, we define a parametrized modal logic as a couple whose components
are sets of formulas containing, in their respective types, all propositional
tautologies and the distribution axiom and closed, in their respective types,
under modus ponens, uniform substitution and generalization. We axiomati-
cally introduce different two-typed parametrized modal logics and we prove

3 See [4,14,25] and [15,24,28] for examples of situations in which one would like to use
relationships such as “trusts”, “is a friend of”, etc.
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their completeness with respect to appropriate classes of two-typed frames by
means of an adaptation of the canonical model construction 4 .

2 Syntax

From now on, when we write “1” we will mean “2” and when we write “2”
we will mean “1”. For all i ∈ {1, 2}, let Pi be a countably infinite set (with
typical members denoted pi, qi, etc). For all i ∈ {1, 2}, members of Pi will be
called atomic i-formulas. An atomic formula is either an atomic 1-formula, or
an atomic 2-formula. We will always assume that P1 and P2 are disjoint. A tip
is a couple (Σ1,Σ2) where for all i ∈ {1, 2}, Σi is a set of finite words over the
alphabet P1 ∪ P2 ∪ {⊥1,⊥2,¬1,¬2,∨1,∨2,�1,�2, (, )} (with typical members
denoted ϕ, ψ, etc). Let v be the partial order between tips defined by

• (Σ1,Σ2) v (∆1,∆2) if and only if for all i ∈ {1, 2}, Σi ⊆ ∆i.

Let (L1,L2) be the least tip such that for all i ∈ {1, 2}, Pi ⊆ Li and

• ⊥i ∈ Li,

• for all ϕ ∈ Li, ¬iϕ ∈ Li,

• for all ϕ,ψ ∈ Li, (ϕ ∨i ψ) ∈ Li,

• for all ϕ ∈ Li and for all ψ ∈ Li, (ϕ�iψ) ∈ Li.

Obviously, L1 and L2 are disjoint. For all i ∈ {1, 2}, members of Li will
be called i-formulas. A formula is either a 1-formula, or a 2-formula. Let
LPML —the language of parametrized modal logic — be the set of all formulas.
For all i ∈ {1, 2}, the Boolean connectives >i, ∧i, →i and ↔i are defined as
usual. For all i ∈ {1, 2}, the modal connective ♦i is defined by (ϕ♦iψ) ::=
¬i(ϕ�i¬iψ), where ϕ ranges over Li and ψ ranges over Li. For all i ∈ {1, 2},
for all ϕ ∈ Li and for all ψ ∈ Li, we will write “[ϕ]iψ” instead of “(ϕ�iψ)”. For
all i ∈ {1, 2}, for all ϕ ∈ Li and for all ψ ∈ Li, we will write “〈ϕ〉iψ” instead
of “(ϕ♦iψ)”. For all i ∈ {1, 2}, for all ϕ ∈ Li and for all sets Σi of i-formulas,
let [ϕ]Σi = {ψ : [ϕ]iψ ∈ Σi}. A tip (Σ1,Σ2) is readable if (Σ1,Σ2) v (L1,L2).
When writing formulas, most of the times, we will not make explicit the types
of the connectives constituting them: if we know the type of a formula then
we can inductively determine the types of its constituents. Therefore, for all
i ∈ {1, 2}, the result of uniformly replacing the atomic formulas of a given
Boolean formula by arbitrary i-formulas can be seen as a i-formula. As a
result, for all i ∈ {1, 2}, we will talk about “the i-formula (p ∨ ¬q)” instead
of talking about “the formula (pi ∨i ¬iqi)”, we will talk about “the i-formula
(p ∨ (¬q�⊥))” instead of talking about “the formula (pi ∨i (¬iqi�i⊥i))”, etc.
We adopt the standard rules for omission of the parentheses. A substitution is
a couple (σ1, σ2) of functions σ1 : L1 −→ L1 and σ2 : L2 −→ L2 such that for
all i ∈ {1, 2},

4 See Propositions 5.5, 5.6, 6.9, 6.10, 6.20, and 6.21 for the main completeness results of the
paper. A sketch of an alternative proof of Proposition 6.11 is included in the Appendix. The
proofs of immediate consequences of the definitions are not given.
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• σi(⊥) = ⊥,

• σi(¬ϕ) = ¬σi(ϕ),

• σi(ϕ ∨ ψ) = σi(ϕ) ∨ σi(ψ),

• σi([ϕ]ψ) = [σi(ϕ)]σi(ψ).

As a result, σi(〈ϕ〉ψ) = 〈σi(ϕ)〉σi(ψ).

3 Relational semantics

A frame is a 4-tuple (W1,W2, R1, R2) where for all i ∈ {1, 2}, Wi is a nonempty
set and Ri : ℘(Wi) −→ ℘(Wi ×Wi). A frame of indiscernibility is a frame
(W1,W2, R1, R2) such that for all i ∈ {1, 2} and for all A ∈ ℘(Wi), Ri(A) is an
equivalence relation on Wi. A frame (W1,W2, R1, R2) is conjunctive if for all
i ∈ {1, 2} and for all A ∈ ℘(Wi), Ri(A) =

⋂
{Ri({si}) : si ∈ A}.

Example 3.1 Let Ob be a nonempty set of objects, At be a nonempty set of
attributes, Val be a nonempty set of values and m : Ob×At −→ ℘(Val). Sys-
tems such as the 4-tuple (Ob,At,Val,m) have been introduced and developed
by Or lowska and Pawlak within the context of analysis of data and represen-
tation of nondeterministic information [18,20,21,23]. In (Ob,At,Val,m), the
objects o and o′ are equivalent for the attribute a if m(o, a) = m(o′, a) whereas
the attributes a and a′ are equivalent for the object o if m(o, a) = m(o, a′).
Obviously, the frame (W ′1,W

′
2, R

′
1, R

′
2) where

• W ′1 = Ob,

• W ′2 = At,

• for all At ∈ ℘(At), R′1(At) is the binary relation on Ob defined by
· oR′1(At)o′ if and only if for all a ∈ At, m(o, a) = m(o′, a),

• for all Ob ∈ ℘(Ob), R′2(Ob) is the binary relation on At defined by
· aR2(Ob)a′ if and only if for all o ∈ Ob, m(o, a) = m(o, a′).

is conjunctive. In this frame, two objects are related by a set of attributes if
and only if these objects are equivalent for all attributes in that set whereas
two attributes are related by a set of objects if and only if these attributes are
equivalent for all objects in that set 5 .

A frame (W1,W2, R1, R2) is unitary if for all i ∈ {1, 2}, Ri(∅) = Wi ×Wi, i.e.
Ri(∅) is the universal relation on Wi. Obviously, every conjunctive frame is
unitary. A unitary frame (W1,W2, R1, R2) is preconjunctive if for all i ∈ {1, 2}
and for all A,B ∈ ℘(Wi), Ri(A ∪ B) = Ri(A) ∩ Ri(B). A unitary frame
(W1,W2, R1, R2) is paraconjunctive if for all i ∈ {1, 2} and for all A,B ∈ ℘(Wi),
if A ⊆ B then Ri(A) ⊇ Ri(B).

Proposition 3.2 Every conjunctive frame is preconjunctive.

5 For all sets At of attributes, the above-defined binary relation R′1(At) between ob-
jects is exactly the strong indiscernibility relation considered by Demri, Or lowska and
Vakarelov [7,32,33]: two objects are in the relation R′1(At) if and only if they have the
same values for all attributes in At.
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Proposition 3.3 Every preconjunctive frame is paraconjunctive.

Example 3.4 Let (W1,W2, R1, R2) be the frame where W1 = N, W2 = N, for
all A ∈ ℘(N), if A is finite then R1(A) = N × N else R1(A) = ∅ and for all
A ∈ ℘(N), if A is finite then R2(A) = N × N else R2(A) = ∅. Obviously,
this frame is preconjunctive. However, it is not conjunctive, seeing that for all
i ∈ {1, 2}, Ri(N) = ∅ and

⋂
{Ri({si}) : si ∈ N} = N× N.

Example 3.5 Let (W1,W2, R1, R2) be the frame where W1 = N, W2 = N, for
all A ∈ ℘(N), if Card(A) < 2 then R1(A) = N× N else R1(A) = ∅ and for all
A ∈ ℘(N), if Card(A) < 2 then R2(A) = N×N else R2(A) = ∅. Obviously, this
frame is paraconjunctive. However, it is not preconjunctive, seeing that for all
i ∈ {1, 2}, Ri({0, 1}) = ∅ and Ri({0}) ∩Ri({1}) = N× N.

A valuation on a frame (W1,W2, R1, R2) is a couple (V1, V2) of functions V1 :
L1 −→ ℘(W1) and V2 : L2 −→ ℘(W2) such that for all i ∈ {1, 2},
• Vi(⊥) = ∅,
• Vi(¬ϕ) = Wi \ Vi(ϕ),

• Vi(ϕ ∨ ψ) = Vi(ϕ) ∪ Vi(ψ),

• Vi([ϕ]ψ) = {si ∈Wi : ∀ti ∈Wi (siRi(Vi(ϕ))ti ⇒ ti ∈ Vi(ψ))}.
As a result, Vi(〈ϕ〉ψ) = {si ∈ Wi : ∃ti ∈ Wi (siRi(Vi(ϕ))ti & ti ∈ Vi(ψ))}. A
model is a 6-tuple consisting of a frame and a valuation on that frame. A model
is conjunctive (resp., unitary, preconjunctive, paraconjunctive) if it is based on
a conjunctive (resp., unitary, preconjunctive, paraconjunctive) frame.

Lemma 3.6 For all unitary models (W1,W2, R1, R2, V1, V2), for all i ∈ {1, 2}
and for all i-formulas ϕ, the i-formula [⊥]ϕ is such that

• if Vi(ϕ) = Wi then Vi([⊥]ϕ) = Wi,

• otherwise, Vi([⊥]ϕ) = ∅.
For all i ∈ {1, 2}, a i-formula ϕ is true in a model (W1,W2, R1, R2, V1, V2) (in
symbols (W1,W2, R1, R2, V1, V2) |= ϕ) if Vi(ϕ) = Wi.

Lemma 3.7 For all i ∈ {1, 2} and for all i-formulas ϕ, the i-formulas [⊥]ϕ→
ϕ and 〈⊥〉ϕ→ [⊥]〈⊥〉ϕ are true in any unitary model.

Lemma 3.8 For all i ∈ {1, 2}, for all i-formulas ϕ,ψ and for all i-formulas
χ, the i-formula 〈ϕ∨ψ〉χ→ 〈ϕ〉χ∧ 〈ψ〉χ is true in any paraconjunctive model.

A formula ϕ is valid on a frame (W1,W2, R1, R2) (in symbols
(W1,W2, R1, R2) |= ϕ) if for all (W1,W2, R1, R2)-valuations (V1, V2),
(W1,W2, R1, R2, V1, V2) |= ϕ.

Example 3.9 In a frame (W1,W2, R1, R2), one may easily prove that for all
i ∈ {1, 2},
• the i-formula [⊥]p→ p is valid if and only if for all si ∈Wi, siRi(∅)si,
• the i-formula [⊥]p → [⊥][⊥]p is valid if and only if for all si, ti, ui ∈ Wi, if
siRi(∅)ti and tiRi(∅)ui then siRi(∅)ui,
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• the i-formula 〈⊥〉p→ [⊥]〈⊥〉p is valid if and only if for all si, ti, ui ∈Wi, if
siRi(∅)ti and siRi(∅)ui then tiRi(∅)ui.

Example 3.10 In a conjunctive frame (W1,W2, R1, R2), one may easily prove
that for all i ∈ {1, 2},
• the i-formula 〈p〉q → [p]q is valid if and only if Card(Wi) ≤ 1,

• the i-formula [p]q → q if and only if for all si ∈ Wi and for all ti ∈ Wi,
siRi({ti})si,

• the i-formula [p]q → [p][p]q if and only if for all si, ti, ui ∈ Wi and for all
vi ∈Wi, if siRi({vi})ti and tiRi({vi})ui then siRi({vi})ui,

• the i-formula 〈p〉q → [p]〈p〉q if and only if for all si, ti, ui ∈ Wi and for all
vi ∈Wi, if siRi({vi})ti and siRi({vi})ui then tiRi({vi})ui.

A formula ϕ is valid on a class C of frames (in symbols C |= ϕ) if for all frames
(W1,W2, R1, R2) in C, (W1,W2, R1, R2) |= ϕ.

Lemma 3.11 For all frames (W1,W2, R1, R2), (W1,W2, R1, R2) is a frame of
indiscernibility if and only if for all i ∈ {1, 2}, for all i-formulas ϕ and for all
i-formulas ψ, (W1,W2, R1, R2) |= [ϕ]ψ → ψ and (W1,W2, R1, R2) |= 〈ϕ〉ψ →
[ϕ]〈ϕ〉ψ.

A bounded morphism from a model (W1,W2, R1, R2, V1, V2) to a model
(W ′1,W

′
2, R

′
1, R

′
2, V

′
1 , V

′
2) is a couple (f1, f2) of functions f1 : W1 −→ W ′1 and

f2 : W2 −→W ′2 such that for all i ∈ {1, 2},
Atomic condition: for all p ∈ Pi, f

−1
i [V ′i (p)] = Vi(p),

Forward condition: for all si, ti ∈ Wi and for all i-formulas ϕ, if
siRi(Vi(ϕ))ti then fi(si)R

′
i(V
′
i (ϕ))fi(ti),

Backward condition: for all si ∈ Wi, for all t′i ∈ W ′i and for all i-formulas
ϕ, if fi(si)R

′
i(V
′
i (ϕ))t′i then there exists ti ∈ Wi such that fi(ti) = t′i and

siRi(Vi(ϕ))ti.

Proposition 3.12 For all models (W1,W2, R1, R2, V1, V2) and
(W ′1,W

′
2, R

′
1, R

′
2, V

′
1 , V

′
2), for all bounded morphisms (f1, f2) from

(W1,W2, R1, R2, V1, V2) to (W ′1,W
′
2, R

′
1, R

′
2, V

′
1 , V

′
2), for all i ∈ {1, 2} and

for all i-formulas ϕ, f−1i [V ′i (ϕ)] = Vi(ϕ).

Proof. Similar to the proof of Bounded Morphism Lemma [5, Proposi-
tion 2.14]. �

Proposition 3.13 is an immediate consequence of Proposition 3.12.

Proposition 3.13 Let (W1,W2, R1, R2) and (W ′1,W
′
2, R

′
1, R

′
2) be frames and

(f1, f2) be a couple of surjective functions f1 : W1 −→ W ′1 and f2 :
W2 −→ W ′2. If for all (W ′1,W

′
2, R

′
1, R

′
2)-valuations (V ′1 , V

′
2), there exists a

(W1,W2, R1, R2)-valuation (V1, V2) such that (f1, f2) is a bounded morphism
from (W1,W2, R1, R2, V1, V2) to (W ′1,W

′
2, R

′
1, R

′
2, V

′
1 , V

′
2) then for all formulas

ϕ, if (W1,W2, R1, R2) |= ϕ then (W ′1,W
′
2, R

′
1, R

′
2) |= ϕ.
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4 Parametrized modal logics

A parametrized modal logic (PML) is a readable tip (L1,L2) such that for all
i ∈ {1, 2}, Li satisfies the following conditions:

(Tauti) Li contains all i-formulas obtained from propositional tautologies after
having uniformly replaced their atomic formulas by arbitrary i-formulas,

(Disti) Li contains all i-formulas of the form [ϕ](ψ → χ)→ ([ϕ]ψ → [ϕ]χ),

(MPi) if ϕ ∈ Li and ϕ→ ψ ∈ Li then Li contains the i-formula ψ,

(Geni) if ϕ ∈ Li then Li contains all i-formulas of the form [ψ]ϕ,

(REi) if ϕ↔ ψ ∈ Li then Li contains all i-formulas of the form [ϕ]χ↔ [ψ]χ,

(UOIi) if ⊥ ∈ Li then Li contains the i-formula ⊥,

(USi) if ϕ ∈ Li and (σ1, σ2) is a substitution then Li contains the i-formula
σi(ϕ).

There is a greatest PML, namely (L1,L2). There is also a least PML (denoted
(K1,K2)), seeing that for all collections (Lm

1 ,L
m
2 )m∈I of PMLs, (

⋂
{Lm

1 : m ∈
I},

⋂
{Lm

2 : m ∈ I}) is a PML. Let (Equivg
1,Equivg

2) be the least PML such
that for all i ∈ {1, 2}, Equivg

i contains all i-formulas of the form [ϕ]ψ → ψ
and 〈ϕ〉ψ → [ϕ]〈ϕ〉ψ. A PML (L1,L2) is paraconjunctive if for all i ∈ {1, 2},
Li satisfies the following conditions:

(UNIi) Li contains all i-formulas of the form [⊥]ϕ→ ϕ and 〈⊥〉ϕ→ [⊥]〈⊥〉ϕ,

(RI−i ) if
∧

k=1...m[⊥](〈ψ′k〉χ′k → 〈ϕ′k〉χ′k) →
∨

l=1...n[⊥](ϕl → ψl) ∈ Li

then Li contains all i-formulas of the form
∧

k=...m[⊥](ϕ′k → ψ′k) →∨
l=1...n[⊥](〈ψl〉χl → 〈ϕl〉χl).

Let (ParCon1,ParCon2) be the least paraconjunctive PML. Let
(Equivp

1,Equivp
2) be the least paraconjunctive PML such that for all

i ∈ {1, 2}, Equivp
i contains all i-formulas of the form [ϕ]ψ → ψ and

〈ϕ〉ψ → [ϕ]〈ϕ〉ψ. For all PMLs (L1,L2) and for all readable tips (Σ1,Σ2), let
(L1,L2) + (Σ1,Σ2) be the least PML containing (L1 ∪ Σ1,L2 ∪ Σ2).

Problem 4.1 We do not know if there exists a finite readable tip (Σ1,Σ2) such
that (ParCon1,ParCon2) = (K1,K2) + (Σ1,Σ2).

Problem 4.2 We do not know if there exists a finite readable tip (Σ1,Σ2) such
that (Equivp

1,Equivp
2) = (K1,K2) + (Σ1,Σ2).

A PML (L1,L2) is consistent if for all i ∈ {1, 2}, Li 6= Li. Obviously, thanks to
the conditions (UOI1) and (UOI2), (L1,L2) is the one and only inconsistent
PML. For all PMLs (L1,L2) and for all i ∈ {1, 2}, we will say that a set si of
i-formulas is (L1,L2)-consistent, if for all n ∈ N and for all ϕ1, . . . , ϕn ∈ si,
¬(ϕ1 ∧ . . . ∧ ϕn) 6∈ Li.

Lemma 4.3 For all PMLs (L1,L2), for all i ∈ {1, 2} and for all (L1,L2)-
consistent sets si of i-formulas, there exists a maximal (L1,L2)-consistent set
ti of i-formulas such that si ⊆ ti.
Proof. Similar to the proof of Lindenbaum’s Lemma [6, Lemma 5.1]. �
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Lemma 4.4 For all PMLs (L1,L2), for all i ∈ {1, 2}, for all maximal (L1,L2)-
consistent sets si of i-formulas, for all i-formulas ϕ and for all i-formulas ψ,
if [ϕ]ψ 6∈ si then [ϕ]si ∪ {¬ψ} is a (L1,L2)-consistent set of i-formulas.

Proof. Similar to the proof of Existence Lemma [13, Proposition 2.8.4]. �

Notice that for all consistent PMLs (L1,L2) and for all i ∈ {1, 2}, Li is a
(L1,L2)-consistent set of i-formulas. A PML (L1,L2) is sound with respect to
a class C of frames if for all i ∈ {1, 2} and for all i-formulas ϕ, if ϕ ∈ Li then
C |= ϕ. A PML (L1,L2) is complete with respect to a class C of frames if for
all i ∈ {1, 2} and for all i-formulas ϕ, if C |= ϕ then ϕ ∈ Li. The proofs of the
soundness statements expressed in Proposition 4.5 are as expected.

Proposition 4.5 In Table 1, the PMLs listed in the left column are sound with
respect to the corresponding classes of frames listed in the right column.

PMLs Classes of frames
(K1,K2) All frames

(Equivg
1,Equivg

2) All frames of indiscernibility
(ParCon1,ParCon2) All paraconjunctive frames

All preconjunctive frames
All conjunctive frames

(Equivp
1,Equivp

2) All paraconjunctive frames of indiscernibility
All preconjunctive frames of indiscernibility

All conjunctive frames of indiscernibility

Table 1

As for the proofs of the corresponding completeness statements, they are not
so obvious, especially when the considered PMLs are paraconjunctive 6 . In
Sections 5 and 6, we adapt the ordinary canonical model construction to the
context of our parametrized relational semantics.

5 Completeness: the general case

From now on in this section, we will assume that (L1,L2) is a consistent PML.
Let (W g

1 ,W
g
2 , R

g
1, R

g
2) be the 4-tuple where for all i ∈ {1, 2},

• W g
i is the set of all maximal (L1,L2)-consistent sets of i-formulas,

• Rg
i : ℘(W g

i ) −→ ℘(W g
i ×W

g
i ) is such that for all A ∈ ℘(W g

i ) and for all

si, ti ∈ W g
i , siR

g
i (A)ti if and only if for all i-formulas ϕ, if ϕ̂ = A then

[ϕ]si ⊆ ti,

6 The problem with paraconjunctive PMLs is that the operation of intersection — which is
used in conjunctive frames for the interpretation of the modalities — is not modally definable.
See [1] and [22] for investigations about the intersection of modalities in epistemic logics and
dynamic logics.
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where for all i ∈ {1, 2} and for all i-formulas ϕ, ϕ̂ = {ui ∈W g
i : ϕ ∈ ui}. Since

for all i ∈ {1, 2}, Li is a (L1,L2)-consistent set of i-formulas, by Lemma 4.3,
for all i ∈ {1, 2}, W g

i is nonempty.

Lemma 5.1 The 4-tuple (W g
1 ,W

g
2 , R

g
1, R

g
2) is a frame.

The 4-tuple (W g
1 ,W

g
2 , R

g
1, R

g
2) will be called general canonical frame for

(L1,L2). Lemma 5.2 is an immediate consequence of the fact that for all
i ∈ {1, 2}, Equivg

i contains all i-formulas of the form [ϕ]ψ → ψ and 〈ϕ〉ψ →
[ϕ]〈ϕ〉ψ.

Lemma 5.2 If (L1,L2) contains (Equivg
1,Equivg

2) then the general canonical
frame for (L1,L2) is a frame of indiscernibility.

Lemma 5.3 is an immediate consequence of Lemma 4.3.

Lemma 5.3 For all i ∈ {1, 2} and for all i-formulas ϕ,ψ, ϕ̂ = ψ̂ if and only
if ϕ↔ ψ ∈ Li.

For all i ∈ {1, 2}, let V g
i : Li −→ ℘(W g

i ) be such that for all ϕ ∈ Li,
V g
i (ϕ) = ϕ̂. The 6-tuple (W g

1 ,W
g
2 , R

g
1, R

g
2, V

g
1 , V

g
2 ) will be called general canon-

ical model for (L1,L2).

Lemma 5.4 (Truth Lemma: the general case) The general canonical
model for (L1,L2) is a model.

Proof. The proof that for all i ∈ {1, 2}, V g
i satisfies the conditions for ⊥, ¬

and ∨ is as expected. We only show that for all i ∈ {1, 2}, V g
i satisfies the

condition for [·]. Let i ∈ {1, 2}. Let ϕ be a i-formula and ψ be a i-formula.
Let si ∈ W g

i . We only demonstrate si ∈ V g
i ([ϕ]ψ) if for all ti ∈ W g

i , if
siR

g
i (V g

i (ϕ))ti then ti ∈ V g
i (ψ), the “only if” direction being left as an exercise

for the reader. Suppose si 6∈ V g
i ([ϕ]ψ). We demonstrate there exists ti ∈ W g

i

such that siR
g
i (V g

i (ϕ))ti and ti 6∈ V g
i (ψ). Since si 6∈ V g

i ([ϕ]ψ), [ϕ]ψ 6∈ si.

Let t0i = [ϕ]si ∪ {¬ψ}. Notice that [ϕ]si ⊆ t0i and ¬ψ ∈ t0i . By Lemma 4.4,
t0i is a (L1,L2)-consistent set of i-formulas. Hence, by Lemma 4.3, let ti
be a maximal (L1,L2)-consistent set of i-formulas such that t0i ⊆ ti. Since
[ϕ]si ⊆ t0i and ¬ψ ∈ t0i , [ϕ]si ⊆ ti and ¬ψ ∈ ti.

Claim siR
g
i (V g

i (ϕ))ti.

Proof. We demonstrate for all i-formulas ϕ′, if ϕ̂′ = V g
i (ϕ) then [ϕ′]si ⊆ ti.

Let ϕ′ be a i-formula. Suppose ϕ̂′ = V g
i (ϕ). We demonstrate [ϕ′]si ⊆ ti.

Let ψ′ be a i-formula. Suppose [ϕ′]ψ′ ∈ si. We demonstrate ψ′ ∈ ti. Since

ϕ̂′ = V g
i (ϕ), by Lemma 5.3, ϕ′ ↔ ϕ ∈ Li. Since Li satisfies the closure

condition (REi), [ϕ′]ψ′ ↔ [ϕ]ψ′ ∈ Li. Since [ϕ′]ψ′ ∈ si, [ϕ]ψ′ ∈ si. Thus,
ψ′ ∈ [ϕ]si. Since [ϕ]si ⊆ ti, ψ′ ∈ ti. �

Finally, the reader may easily verify that ti 6∈ V g
i (ψ). Here finishes the

proof of Lemma 5.4.
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Proposition 5.5 is an immediate consequence of Lemmas 4.3, 5.1 and 5.4.

Proposition 5.5 (K1,K2) is complete with respect to the class of all frames.

Proposition 5.6 is an immediate consequence of Lemmas 4.3, 5.2 and 5.4.

Proposition 5.6 (Equivg
1,Equivg

2) is complete with respect to the class of all
frames of indiscernibility.

6 Completeness: the paraconjunctive case

From now on in this section, we will assume that (L1,L2) is a consistent para-
conjunctive PML. Therefore, for all i ∈ {1, 2}, Li contains all i-formulas of the
form [⊥]ϕ→ ϕ and 〈⊥〉ϕ→ [⊥]〈⊥〉ϕ. As a result, for all i ∈ {1, 2}, Li contains
all i-formulas of the form [⊥]ϕ→ [⊥][⊥]ϕ.

6.1 Preliminaries

Lemmas 6.1 and 6.2 are immediate consequences of the fact that for all i ∈
{1, 2}, Li contains all i-formulas of the form [⊥]ϕ→ ϕ and 〈⊥〉ϕ→ [⊥]〈⊥〉ϕ.

Lemma 6.1 For all i ∈ {1, 2} and for all maximal (L1,L2)-consistent sets si
of i-formulas, [⊥]si is (L1,L2)-consistent.

Lemma 6.2 For all i ∈ {1, 2} and for all maximal (L1,L2)-consistent sets
si, ti, ui of i-formulas, if [⊥]si ⊆ ti and [⊥]si ⊆ ui then [⊥]ti ⊆ ui.

A readable tip (s1, s2) is paraconjunctive if for all i ∈ {1, 2}, si is a maximal
(L1,L2)-consistent set of i-formulas such that for all i-formulas ϕ,ψ, if [⊥](ϕ→
ψ) ∈ si then for all i-formulas χ, [⊥](〈ψ〉χ→ 〈ϕ〉χ) ∈ si.

Lemma 6.3 For all i ∈ {1, 2} and for all maximal (L1,L2)-consistent sets si
of i-formulas, there exists a maximal (L1,L2)-consistent set si of i-formulas
such that the readable tip (s1, s2) is paraconjunctive.

Proof. Let i ∈ {1, 2} and si be a maximal (L1,L2)-consistent set of i-formulas.
We demonstrate there exists a maximal (L1,L2)-consistent set si of i-formulas
such that the readable tip (s1, s2) is paraconjunctive. Let s0i be the set con-
sisting of the following i-formulas:

• ¬[⊥](ϕ→ ψ) for each ϕ,ψ ∈ Li and for each χ ∈ Li such that ¬[⊥](〈ψ〉χ→
〈ϕ〉χ) ∈ si,

• [⊥](〈ψ′〉χ′ → 〈ϕ′〉χ′) for each ϕ′, ψ′ ∈ Li and for each χ′ ∈ Li such that
[⊥](ϕ′ → ψ′) ∈ si.

Claim s0i is a (L1,L2)-consistent set of i-formulas.

Proof. For the sake of the contradiction, suppose s0i is not a (L1,L2)-
consistent set of i-formulas. Hence, let m,n in N, ϕ1, . . ., ϕm, ψ1, . . ., ψm, χ′1,
. . ., χ′n in Li and ϕ′1, . . ., ϕ′n, ψ′1, . . ., ψ′n, χ1, . . ., χm in Li be such that

• for all k ∈ {1, . . . ,m}, ¬[⊥](〈ψk〉χk → 〈ϕk〉χk) ∈ si,
• for all l ∈ {1, . . . , n}, [⊥](ϕ′l → ψ′l) ∈ si,



Philippe Balbiani and Saúl Fernández González 11

• ¬(
∧

k=1...m ¬[⊥](ϕk → ψk) ∧
∧

l=1...n[⊥](〈ψ′l〉χ′l → 〈ϕ′l〉χ′l)) ∈ Li.

Thus,
∧

l=1...n[⊥](〈ψ′l〉χ′l → 〈ϕ′l〉χ′l) →
∨

k=1...m[⊥](ϕk → ψk) ∈ Li.
Since Li satisfies the closure condition (RI−i ), Li contains the i-formula∧

l=1...n[⊥](ϕ′l → ψ′l) →
∨

k=1...m[⊥](〈ψk〉χk → 〈ϕk〉χk). Since for all
l ∈ {1, . . . , n}, [⊥](ϕ′l → ψ′l) ∈ si, there exists k ∈ {1, . . . ,m} such that
[⊥](〈ψk〉χk → 〈ϕk〉χk) ∈ si. Consequently, there exists k ∈ {1, . . . ,m} such
that ¬[⊥](〈ψk〉χk → 〈ϕk〉χk) 6∈ si: a contradiction. �

Thus, by Lemma 4.3, let si be a maximal (L1,L2)-consistent set of i-
formulas such that s0i ⊆ si.

Claim The readable tip (s1, s2) is paraconjunctive.

Proof. For the sake of the contradiction, suppose the readable tip (s1, s2)
is not paraconjunctive. Since for all j ∈ {1, 2}, sj is a maximal (L1,L2)-
consistent set of j-formulas, there exists j ∈ {1, 2} and there exists j-formulas
ϕ,ψ such that [⊥](ϕ → ψ) ∈ sj and there exists a j-formula χ such that

[⊥](〈ψ〉χ → 〈ϕ〉χ) 6∈ sj . Consider the following two cases: j = i and j = i. In
the former case, since [⊥](〈ψ〉χ→ 〈ϕ〉χ) 6∈ sj , ¬[⊥](〈ψ〉χ→ 〈ϕ〉χ) ∈ si. Hence,
¬[⊥](ϕ → ψ) ∈ s0i . Since s0i ⊆ si, ¬[⊥](ϕ → ψ) ∈ si. Thus, [⊥](ϕ → ψ) 6∈ sj :
a contradiction. In the latter case, since [⊥](ϕ → ψ) ∈ sj , [⊥](ϕ → ψ) ∈ si.
Consequently, [⊥](〈ψ〉χ → 〈ϕ〉χ) ∈ s0i . Since s0i ⊆ si, [⊥](〈ψ〉χ → 〈ϕ〉χ) ∈ si.
Hence, [⊥](〈ψ〉χ→ 〈ϕ〉χ) ∈ sj : a contradiction. �

Here finishes the proof of Lemma 6.3.

6.2 Paraconjunctive case: first set of completeness results

For a while, let us fix a paraconjunctive readable tip (s1, s2). Let
(W c

1 ,W
c
2 , R

c
1, R

c
2) be the 4-tuple where for all i ∈ {1, 2},

• W c
i is the set of all maximal (L1,L2)-consistent sets ti of i-formulas such

that [⊥]si ⊆ ti,
• Rc

i : ℘(W c
i ) −→ ℘(W c

i ×W c
i ) is such that for all A ∈ ℘(W c

i ) and for all
ti, ui ∈ W c

i , tiR
c
i (A)ui if and only if for all i-formulas ϕ, if ϕ̂ ⊆ A then

[ϕ]ti ⊆ ui,
where for all i ∈ {1, 2} and for all i-formulas ϕ, ϕ̂ = {vi ∈ W c

i : ϕ ∈ vi}.
Since for all i ∈ {1, 2}, si is a maximal (L1,L2)-consistent set of i-formulas,
by Lemmas 4.3 and 6.1, for all i ∈ {1, 2}, W c

i is nonempty. Moreover, by
Lemma 6.2, for all i ∈ {1, 2} and for all ti, ui ∈W c

i , [⊥]ti ⊆ ui.

Lemma 6.4 For all i ∈ {1, 2} and for all i-formulas ϕ, if ϕ̂ = W c
i then

[⊥]ϕ ∈ si.

Proof. Let i ∈ {1, 2} and ϕ be a i-formula. Suppose ϕ̂ = W c
i . We demonstrate

[⊥]ϕ ∈ si. For the sake of the contradiction, suppose [⊥]ϕ 6∈ si. Let u0i =
[⊥]si ∪ {¬ϕ}. Notice that [⊥]si ⊆ u0i and ¬ϕ ∈ u0i . By Lemma 4.4, u0i is a
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(L1,L2)-consistent set of i-formulas. Hence, by Lemma 4.3, let ui be a maximal
(L1,L2)-consistent set of i-formulas such that u0i ⊆ ui. Since [⊥]si ⊆ u0i and
¬ϕ ∈ u0i , [⊥]si ⊆ ui and ¬ϕ ∈ ui. Thus, ui ∈ W c

i and ϕ 6∈ ui. Since ϕ̂ = W c
i ,

ϕ ∈ ui: a contradiction. �

Lemma 6.5 For all i ∈ {1, 2} and for all i-formulas ϕ, if ϕ̂ = ∅ then for all
ti, ui ∈W c

i , [ϕ]ti ⊆ ui.
Proof. Let i ∈ {1, 2} and ϕ be a i-formula. Suppose ϕ̂ = ∅. We demonstrate
for all ti, ui ∈ W c

i , [ϕ]ti ⊆ ui. Let ti, ui ∈ W c
i . For the sake of the contra-

diction, suppose [ϕ]ti 6⊆ ui. Hence, let ψ be a i-formula such that [ϕ]ψ ∈ ti
and ψ 6∈ ui. Thus, ψ 6∈ [⊥]ti. Consequently, [⊥]ψ 6∈ ti. Since [ϕ]ψ ∈ ti,
〈⊥〉¬ψ → 〈ϕ〉¬ψ 6∈ ti. Hence, [⊥](〈⊥〉¬ψ → 〈ϕ〉¬ψ) 6∈ si. Since (s1, s2) is para-
conjunctive, [⊥](ϕ→ ⊥) 6∈ si Let w0

i = [⊥]si∪{ϕ}. Notice that [⊥]si ⊆ w0
i and

ϕ ∈ w0
i . By Lemma 4.4, w0

i is a (L1,L2)-consistent set of i-formulas. Hence,
by Lemma 4.3, let wi be a maximal (L1,L2)-consistent set of i-formulas such
that w0

i ⊆ wi. Since [⊥]si ⊆ w0
i and ϕ ∈ w0

i , [⊥]si ⊆ wi and ϕ ∈ wi. Thus,
wi ∈ W c

i . Since ϕ̂ = ∅, ϕ 6∈ wi: a contradiction. Here finishes the proof of
Lemma 6.5. �

Lemma 6.6 The 4-tuple (W c
1 ,W

c
2 , R

c
1, R

c
2) is a paraconjunctive frame.

Proof. By Lemma 6.5, for all i ∈ {1, 2}, for all ti, ui ∈ W c
i and for all i-

formulas ϕ, if ϕ̂ = ∅ then [ϕ]ti ⊆ ui. Hence, for all i ∈ {1, 2} and for all
ti, ui ∈ W c

i , tiR
c
i (∅)ui. Thus, for all i ∈ {1, 2}, Rc

i (∅) = W c
i ×W c

i . Moreover,
for all i ∈ {1, 2} and for all A,B ∈ ℘(W c

i ), if A ⊆ B then for all i-formulas ϕ, if
ϕ̂ ⊆ A then ϕ̂ ⊆ B. Consequently, for all i ∈ {1, 2} and for all A,B ∈ ℘(W c

i ),
if A ⊆ B then for all ti, ui ∈ W c

i , if tiR
c
i (B)ui then tiR

c
i (A)ui. Hence, for all

i ∈ {1, 2} and for all A,B ∈ ℘(W c
i ), if A ⊆ B then Rc

i (A) ⊇ Rc
i (B). �

The 4-tuple (W c
1 ,W

c
2 , R

c
1, R

c
2) will be called paraconjunctive canonical frame

for (L1,L2) determined by (s1, s2). Lemma 6.7 is an immediate consequence
of the fact that for all i ∈ {1, 2}, Equivp

i contains all i-formulas of the form
[ϕ]ψ → ψ and 〈ϕ〉ψ → [ϕ]〈ϕ〉ψ.

Lemma 6.7 If (L1,L2) contains (Equivp
1,Equivp

2) then the paraconjunctive
canonical frame for (L1,L2) determined by (s1, s2) is a paraconjunctive frame
of indiscernibility.

For all i ∈ {1, 2}, let V c
i : Li −→ ℘(W c

i ) be such that for all ϕ ∈ Li,
V c
i (ϕ) = ϕ̂. The 6-tuple (W c

1 ,W
c
2 , R

c
1, R

c
2, V

c
1 , V

c
2 ) will be called paraconjunctive

canonical model for (L1,L2) determined by (s1, s2).

Lemma 6.8 (Truth Lemma: the paraconjunctive case) The paracon-
junctive canonical model for (L1,L2) determined by (s1, s2) is a model.

Proof. The proof that for all i ∈ {1, 2}, V c
i satisfies the conditions for ⊥, ¬

and ∨ is as expected. We only show that for all i ∈ {1, 2}, V c
i satisfies the

condition for [·]. Let i ∈ {1, 2}. Let ϕ be a i-formula and ψ be a i-formula.
Let ti ∈ W c

i . We only demonstrate ti ∈ V c
i ([ϕ]ψ) if for all ui ∈ W c

i , if
tiR

c
i (V

c
i (ϕ))ui then ui ∈ V c

i (ψ), the “only if” direction being left as an exercise
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for the reader. Suppose ti 6∈ V c
i ([ϕ]ψ). We demonstrate there exists ui ∈ W c

i

such that tiR
c
i (V

c
i (ϕ))ui and ui 6∈ V c

i (ψ). Since ti 6∈ V c
i ([ϕ]ψ), [ϕ]ψ 6∈ ti. Let

u0i = [ϕ]ti ∪ {¬ψ}. Notice that [ϕ]ti ⊆ u0i and ¬ψ ∈ u0i . By Lemma 4.4,
u0i is a (L1,L2)-consistent set of i-formulas. Hence, by Lemma 4.3, let ui
be a maximal (L1,L2)-consistent set of i-formulas such that u0i ⊆ ui. Since
[ϕ]ti ⊆ u0i and ¬ψ ∈ u0i , [ϕ]ti ⊆ ui and ¬ψ ∈ ui.

Claim ui ∈W c
i .

Proof. For the sake of the contradiction, suppose ui 6∈ W c
i . Hence,

[⊥]si 6⊆ ui. Thus, let χ be a i-formula such that [⊥]χ ∈ si and χ 6∈ ui.
Since Li contains all i-formulas of the form [⊥]χ′ → [⊥][⊥]χ′, [⊥][⊥]χ ∈ si.
Consequently, [⊥]χ ∈ [⊥]si. Since [⊥]si ⊆ ti, [⊥]χ ∈ ti. Since Li contains the
i-formula ⊥ → ϕ and Li satisfies the closure condition (Geni), Li contains
the i-formula [⊥](⊥ → ϕ). Since Li satisfies the closure condition (RI−i ), Li

contains the i-formula [⊥]([⊥]χ → [ϕ]χ) 7 . Since Li contains all i-formulas of
the form [⊥]φ → φ, Li contains the i-formula [⊥]χ → [ϕ]χ. Since [⊥]χ ∈ ti,
[ϕ]χ ∈ ti. Hence, χ ∈ [ϕ]ti. Since [ϕ]ti ⊆ ui, χ ∈ ui: a contradiction. �

Claim tiR
c
i (V

c
i (ϕ))ui.

Proof. For the sake of the contradiction, suppose not tiR
c
i (V

c
i (ϕ))ui.

Thus, there exists a i-formula ϕ′ such that ϕ̂′ ⊆ V c
i (ϕ) and [ϕ′]ti 6⊆ ui.

Consequently, let χ be a i-formula such that [ϕ′]χ ∈ ti and χ 6∈ ui. Since

ϕ̂′ ⊆ V c
i (ϕ), for all vi ∈ W c

i , if ϕ′ ∈ vi then ϕ ∈ vi. Hence, for all vi ∈ W c
i ,

ϕ′ → ϕ ∈ vi. Thus, by Lemma 6.4, [⊥](ϕ′ → ϕ) ∈ si. Since (s1, s2) is
paraconjunctive, [⊥]([ϕ′]χ → [ϕ]χ) ∈ si. Since Li contains all i-formulas
of the form [⊥]φ → [⊥][⊥]φ, [⊥][⊥]([ϕ′]χ → [ϕ]χ) ∈ si. Consequently,
[⊥]([ϕ′]χ → [ϕ]χ) ∈ ti. Since Li contains all i-formulas of the form [⊥]φ → φ,
[ϕ′]χ → [ϕ]χ ∈ ti. Since [ϕ′]χ ∈ ti, [ϕ]χ ∈ ti. Hence, χ ∈ [ϕ]ti. Since
[ϕ]ti ⊆ ui, χ ∈ ui: a contradiction. �

Finally, the reader may easily verify that ui 6∈ V c
i (ψ). Here finishes the

proof of Lemma 6.8.

Proposition 6.9 is an immediate consequence of Lemmas 4.3, 6.3, 6.6 and 6.8.

Proposition 6.9 (ParCon1,ParCon2) is complete with respect to the class
of all paraconjunctive frames.

Proposition 6.10 is an immediate consequence of Lemmas 4.3, 6.3, 6.7 and 6.8.

Proposition 6.10 (Equivp
1,Equivp

2) is complete with respect to the class of
all paraconjunctive frames of indiscernibility.

7 Here, we are using the closure condition (RI−i ) with m = 0 and n = 1.
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6.3 Paraconjunctive case: second set of completeness results

As for the completeness of (ParCon1,ParCon2) with respect to the class of
all conjunctive frames and the completeness of (Equivp

1,Equivp
2) with respect

to the class of all conjunctive frames of indiscernibility, we will show in Propo-
sitions 6.11 and 6.19 that every paraconjunctive frame is the bounded morphic
image of a conjunctive frame and every paraconjunctive frame of indiscernibil-
ity is the bounded morphic image of a conjunctive frame of indiscernibility 8 .

Proposition 6.11 Let (W1,W2, R1, R2) be a paraconjunctive frame. There
exists a conjunctive frame (W ′1,W

′
2, R

′
1, R

′
2) and a couple (f1, f2) of surjec-

tive functions f1 : W ′1 −→ W1 and f2 : W ′2 −→ W2 such that for all
(W1,W2, R1, R2)-valuations (V1, V2), there exists a (W ′1,W

′
2, R

′
1, R

′
2)-valuation

(V ′1 , V
′
2) such that (f1, f2) is a bounded morphism from (W ′1,W

′
2, R

′
1, R

′
2, V

′
1 , V

′
2)

to (W1,W2, R1, R2, V1, V2).

Proof. For all i ∈ {1, 2}, let

• deti : ℘(Wi) ×Wi ×Wi −→ ℘(Wi) be such that for all A ∈ ℘(Wi) and for
all ti, ui ∈Wi, if tiRi(A)ui then det(A, ti, ui) = ∅ else det(A, ti, ui) = Wi

9 .

For all i ∈ {1, 2}, let Λi be the set of all τi : ℘(Wi)×Wi −→ ℘(Wi) such that
for all A ∈ ℘(Wi), {ti ∈ Wi : τi(A, ti) 6= ∅} is finite 10 . Let (W ′1,W

′
2, R

′
1, R

′
2)

be the 4-tuple where for all i ∈ {1, 2},
• W ′i = Wi × Λi,

• R′i : ℘(W ′i ) −→ ℘(W ′i × W ′i ) is such that for all A′ ∈ ℘(W ′i ) and for all

(ti, τi), (ui, µi) ∈W ′i , (ti, τi)R
′
i(A
′)(ui, µi) if and only if for all A ∈ ℘(Wi)

11 ,
· if A′∩(A×Λi) 6= ∅ then

⊕
i{τi(A, vi)⊕iµi(A, vi) : vi ∈ A} = deti(A, ti, ui),

· for all (vi, νi) ∈ A′ ∩ (A× Λi), τi(A, vi)⊕i µi(A, vi) = ∅.
Claim 6.12 For all i ∈ {1, 2} and for all A′ ∈ ℘(W ′i ), R′i(A

′) =⋂
{R′i({(vi, νi)}) : (vi, νi) ∈ A′}.

Proof. Let i ∈ {1, 2} and A′ ∈ ℘(W ′i ). The proof that R′i(A
′) ⊆⋂

{R′i({(vi, νi)}) : (vi, νi) ∈ A′} being a simple application of the defini-
tions, it is left as an exercise for the reader. We demonstrate R′i(A

′) ⊇⋂
{R′i({(vi, νi)}) : (vi, νi) ∈ A′}. For the sake of the contradiction, sup-

pose R′i(A
′) 6⊇

⋂
{R′i({(vi, νi)}) : (vi, νi) ∈ A′}. Hence, there exists

(ti, τi), (ui, µi) ∈W ′i such that not (ti, τi)R
′
i(A
′)(ui, µi) and for all (vi, νi) ∈ A′,

(ti, τi)R
′
i({(vi, νi)})(ui, µi). Thus, for all (vi, νi) ∈ A′ and for all A ∈ ℘(Wi),

8 The sketch of an alternative proof of Proposition 6.11 is presented in the Appendix.
9 Notice that for all A ∈ ℘(Wi) and for all ti, ui ∈ Wi, det(A, ti, ui) = ∅ if and only if
tiRi(A)ui.
10Notice that for all τi, µi ∈ Λi and for all A ∈ ℘(Wi), {vi ∈ A : τi(A, vi) 6= µi(A, vi)} is
finite.
11Here, ⊕i is the operation of symmetric difference in ℘(Wi). Moreover, (v1i , . . . , v

N
i ) being

the list of all vi ∈ A such that τi(A, vi) 6= µi(A, vi),
⊕

i{τi(A, vi) ⊕i µi(A, vi) : vi ∈ A}
denotes τi(A, v

1
i )⊕i µi(A, v

1
i )⊕i . . .⊕i τi(A, v

N
i )⊕i µi(A, v

N
i ).
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• if {(vi, νi)} ∩ (A × Λi) 6= ∅ then
⊕

i{τi(A,wi) ⊕i µi(A,wi) : wi ∈ A} =
deti(A, ti, ui),

• for all (wi, ωi) ∈ {(vi, νi)} ∩ (A× Λi), τi(A,wi)⊕i µi(A,wi) = ∅.
Consequently, for all A ∈ ℘(Wi),

• if A′∩(A×Λi) 6= ∅ then
⊕

i{τi(A,wi)⊕iµi(A,wi) : wi ∈ A} = deti(A, ti, ui),

• for all (wi, ωi) ∈ A′ ∩ (A× Λi), τi(A,wi)⊕i µi(A,wi) = ∅.
Hence, (ti, τi)R

′
i(A
′)(ui, µi): a contradiction. �

Claim 6.13 is an immediate consequence of Claim 6.12.

Claim 6.13 The 4-tuple (W ′1,W
′
2, R

′
1, R

′
2) is a conjunctive frame.

Let f1 : W ′1 −→ W1 be such that for all (v1, ν1) ∈ W ′1, f1(v1, ν1) = v1 and
f2 : W ′2 −→W2 be such that for all (v2, ν2) ∈W ′2, f2(v2, ν2) = v2.

Claim 6.14 f1 and f2 are surjective.

Let (V1, V2) be a (W1,W2, R1, R2)-valuation. For all i ∈ {1, 2}, let V ′i : Li −→
℘(W ′i ) be such that for all ϕ ∈ Li, V

′
i (ϕ) = f−1i [Vi(ϕ)]. Notice that for all

i ∈ {1, 2} and for all ϕ ∈ Li, V
′
i (ϕ) = Vi(ϕ)× Λi.

Claim 6.15 For all (ti, τi), (ui, µi) ∈ W ′i and for all i-formulas ϕ, if
(ti, τi)R

′
i(V
′
i (ϕ))(ui, µi) then tiRi(Vi(ϕ))ui.

Proof. Let (ti, τi), (ui, µi) ∈ W ′i and ϕ be a i-formula. Suppose
(ti, τi)R

′
i(V
′
i (ϕ))(ui, µi). For the sake of the contradiction, suppose not

tiRi(Vi(ϕ))ui. Hence, Vi(ϕ) 6= ∅. Thus, V ′i (ϕ) ∩ (Vi(ϕ) × Λi) 6=
∅. Since (ti, τi)R

′
i(V
′
i (ϕ))(ui, µi),

⊕
i{τi(Vi(ϕ), vi) ⊕i µi(Vi(ϕ), vi) : vi ∈

Vi(ϕ)} = deti(Vi(ϕ), ti, ui). Moreover, for all (vi, νi) ∈ V ′i (ϕ) ∩ (Vi(ϕ) ×
Λi), τi(Vi(ϕ), vi) ⊕i µi(Vi(ϕ), vi) = ∅. Consequently, for all vi ∈ Vi(ϕ),
τi(Vi(ϕ), vi) ⊕i µi(Vi(ϕ), vi) = ∅. Hence,

⊕
i{τi(Vi(ϕ), vi) ⊕i µi(Vi(ϕ), vi) :

vi ∈ Vi(ϕ)} = ∅. Since
⊕

i{τi(Vi(ϕ), vi) ⊕i µi(Vi(ϕ), vi) : vi ∈ Vi(ϕ)} =
deti(Vi(ϕ), ti, ui), deti(Vi(ϕ), ti, ui) = ∅. Thus, tiRi(Vi(ϕ))ui: a contradiction.
�

Claim 6.16 For all (ti, τi) ∈ W ′i , for all ui ∈ Wi and for all i-formulas ϕ, if
tiRi(Vi(ϕ))ui then there exists µi ∈ Λi such that (ti, τi)R

′
i(V
′
i (ϕ))(ui, µi).

Proof. Let (ti, τi) ∈W ′i , ui ∈Wi and ϕ be a i-formula. Suppose tiRi(Vi(ϕ))ui.
We demonstrate there exists µi ∈ Λi such that (ti, τi)R

′
i(V
′
i (ϕ))(ui, µi). Indeed,

we are looking for µi : ℘(Wi)×Wi −→ ℘(Wi) such that for all A ∈ ℘(Wi),

(C1) {wi ∈Wi : µi(A,wi) 6= ∅} is finite,

(C2) if V ′i (ϕ) ∩ (A × Λi) 6= ∅ then
⊕

i{τi(A,wi) ⊕i µi(A,wi) : wi ∈ A} =
deti(A, ti, ui),

(C3) for all (wi, ωi) ∈ V ′i (ϕ) ∩ (A× Λi), τi(A,wi)⊕i µi(A,wi) = ∅.

For all A ∈ ℘(Wi), let µA
i : Wi −→ ℘(Wi) be defined as follows:

Case “A ⊆ Vi(ϕ)”: for all wi ∈Wi, let µA
i (wi) = τi(A,wi),
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Case “A 6⊆ Vi(ϕ)”: let wA
i ∈ Wi be such that wA

i ∈ A and wA
i 6∈ Vi(ϕ) and

for all wi ∈Wi,

• if wi 6= wA
i then let µA

i (wi) = τi(A,wi),

• otherwise, let µA
i (wi) = τi(A,wi)⊕i deti(A, ti, ui).

Let µi : ℘(Wi) × Wi −→ ℘(Wi) be such that for all A ∈ ℘(Wi) and for
all wi ∈ Wi, µi(A,wi) = µA

i (wi). Now, we just have to verify that for all
A ∈ ℘(Wi), (C1), (C2) and (C3) hold. Let A ∈ ℘(Wi). Concerning (C1), it
holds, seeing that µA

i (wi) = τi(A,wi) for every wi ∈Wi except when A 6⊆ Vi(ϕ)
and wi = wA

i . About (C2), suppose V ′i (ϕ) ∩ (A × Λi) 6= ∅ and consider the
following two cases: A ⊆ Vi(ϕ) and A 6⊆ Vi(ϕ). In the former case, since
tiRi(Vi(ϕ))ui, tiRi(A)ui. Hence, deti(A, ti, ui) = ∅. Since A ⊆ Vi(ϕ), for all
wi ∈Wi, µ

A
i (wi) = τi(A,wi). Thus, for all wi ∈Wi, τi(A,wi)⊕i µi(A,wi) = ∅.

Consequently,
⊕

i{τi(A,wi)⊕i µi(A,wi) : wi ∈ A} = ∅. Since deti(A, ti, ui) =
∅, (C2) holds. In the latter case, µA

i (wi) = τi(A,wi) for every wi ∈ Wi

except when wi = wA
i . Hence,

⊕
i{τi(A,wi) ⊕i µi(A,wi) : wi ∈ A} =

τi(A,w
A
i )⊕iµi(A,w

A
i ). Since µA

i (wA
i ) = τi(A,w

A
i )⊕ideti(A, ti, ui), (C2) holds.

As for (C3), it holds, seeing that for all wi ∈ Wi, if wi ∈ A and wi ∈ Vi(ϕ)
then µA

i (wi) = τi(A,wi). �

Claim 6.17 (V ′1 , V
′
2) is a (W ′1,W

′
2, R

′
1, R

′
2)-valuation.

Proof. The proof that for all i ∈ {1, 2}, V ′i satisfies the conditions for ⊥, ¬
and ∨ is as expected. The proof that for all i ∈ {1, 2}, V ′i satisfies the condition
for [·] being a simple application of Claims 6.15 and 6.16, it is left as an exercise
for the reader. �

Claim 6.18 is an immediate consequence of Claims 6.15 and 6.16.

Claim 6.18 (f1, f2) is a bounded morphism from (W ′1,W
′
2, R

′
1, R

′
2, V

′
1 , V

′
2) to

(W1,W2, R1, R2, V1, V2).

Here finishes the proof of Proposition 6.11. �

Proposition 6.19 Let (W1,W2, R1, R2) be a paraconjunctive frame of indis-
cernibility. There exists a conjunctive frame of indiscernibility (W ′1,W

′
2, R

′
1, R

′
2)

and a couple (f1, f2) of surjective functions f1 : W ′1 −→ W1 and f2 :
W ′2 −→ W2 such that for all (W1,W2, R1, R2)-valuations (V1, V2), there exists
a (W ′1,W

′
2, R

′
1, R

′
2)-valuation (V ′1 , V

′
2) such that (f1, f2) is a bounded morphism

from (W ′1,W
′
2, R

′
1, R

′
2, V

′
1 , V

′
2) to (W1,W2, R1, R2, V1, V2).

Proof. For all i ∈ {1, 2}, let

• deti : ℘(Wi)×Wi×Wi −→ ℘(Wi) be such that for all A ∈ ℘(Wi) and for all
ti, ui ∈Wi, det(A, ti, ui) = [ti]Ri(A) ⊕i [ui]Ri(A) where [ti]Ri(A) and [ui]Ri(A)

are the equivalence classes of ti and ui modulo Ri(A) 12 .

12Notice that for all A ∈ ℘(Wi) and for all ti, ui ∈ Wi, det(A, ti, ui) = ∅ if and only if
tiRi(A)ui.
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Now, the rest of the proof is similar to the corresponding rest of the proof of
Proposition 6.11, the main difference being that one has to verify here that the
considered frames are frames of indiscernibility, an exercise that we leave for
the reader. �

Proposition 6.20 is an immediate consequence of Propositions 3.2, 3.13, 6.9 and
6.11.

Proposition 6.20 (ParCon1,ParCon2) is complete with respect to the class
of all preconjunctive frames and the class of all conjunctive frames.

Proposition 6.21 is an immediate consequence of Propositions 3.2, 3.13, 6.10
and 6.19.

Proposition 6.21 (Equivp
1,Equivp

2) is complete with respect to the class of
all preconjunctive frames of indiscernibility and the class of all conjunctive
frames of indiscernibility.

7 A short case study: social epistemic logic

Formalizing epistemic reasoning in social networks, Seligman et al. [28] intro-
duce relational structures of the form (S,A,≡, .) such as the ones considered in
our introduction. They also introduce a modal language LSEL — the language
of social epistemic logic — consisting of one type of formulas: state-agent
formulas — to be interpreted by sets of state-agent couples. Such formulas
(typically denoted ϕ, ψ, etc) are constructed over the Boolean connectives and
the modal connectives K and F as follows:

• ϕ ::= p | ⊥ | ¬ϕ | (ϕ ∨ ψ) | Kϕ | Fϕ,

p ranging over a countably infinite set of atomic formulas 13 . The formula
Kϕ (read “I know that ϕ holds”) is true in a state-agent couple (s, a) of
some model if the formula ϕ is true in every state-agent couple (t, a) such
that s ≡a t whereas the formula Fϕ (“for all my friends, ϕ holds”) is
true in a state-agent couple (s, a) of some model if the formula ϕ is true
in every state-agent couple (s, b) such that a.s b. See [3,27] and [10, Chapter 5].

In the relational structures of the form (S,A,≡, .) considered in our in-
troduction, assuming that ≡ is also a function associating an equivalence
relation ≡B on S to every B ∈ ℘(A) in such a way that for all B ∈ ℘(A),
≡B=

⋂
{≡a: a ∈ B} and . is also a function associating a binary relation .T on

A to every T ∈ ℘(S) in such a way that for all T ∈ ℘(S), .T =
⋂
{.s : s ∈ T},

the language defined in Section 2 can be interpreted as explained in Section 3.
A LSEL-formula ϕ is said to be LPML-definable in a class C of frames if there
exists ϕ′ ∈ LPML such that for all C-frames (S,A,≡, .), (S,A,≡, .) |= ϕ (in
the sense of [28]) if and only if (S,A,≡, .) |= ϕ′ (in the sense of Section 3). A
LPML-formula ϕ is said to be LSEL-definable in a class C of frames if there

13 Indeed, the modal language introduced by Seligman et al. contains as well nominals used
to give names to agents. In this section, however, we only consider its nominal-free fragment.
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exists ϕ′ ∈ LSEL such that for all C-frames (S,A,≡, .), (S,A,≡, .) |= ϕ (in
the sense of Section 3) if and only if (S,A,≡, .) |= ϕ′ (in the sense of [28]).

Let C0 be the class of all frames (S,A,≡, .) such that for all a ∈ A, ≡a

is an equivalence relation and for all s ∈ S, .s is irreflexive and symmetric 14 .
In a C0-frame (S,A,≡, .), for all a, b ∈ A, we say that a and b are strong
friends if for all s ∈ S, a .s b. In a C0-frame (S,A,≡, .), for all a ∈ A, we say
that a is aware of her friends if for all s, t ∈ S and for all b ∈ A, if s ≡a t
then a .s b if and only if a .t b. One may easily verify that for all C0-frames
(S,A,≡, .),
• (S,A,≡, .) |= [>1]2⊥2 if and only if no agent has strong friends,

• (S,A,≡, .) |= 〈>1〉2>2 if and only if every agent has strong friends,

• (S,A,≡, .) |= p2 ∧2 〈p′1〉2q2 →2 〈〈p2〉1p′1〉2q2 if and only if every agent is
aware of her friends.

Moreover, the elementary conditions “no agent has strong friends”, “every
agent has strong friends” and “every agent is aware of her friends” correspond
to no LSEL-formula in C0 15 . Hence,

Proposition 7.1 The LPML-formulas [>1]2⊥2, 〈>1〉2>2 and p2∧2〈p′1〉2q2 →2

〈〈p2〉1p′1〉2q2 are not LSEL-definable in C0.

Problem 7.2 We do not know if there exists LSEL-formulas which are not
LPML-definable in C0.

8 Conclusion

What has been done in this paper? Within the context of a two-typed
parametrized modal language, we have defined a PML as a couple whose
components are sets of formulas containing, in their respective types, all
propositional tautologies and closed, in their respective types, under modus
ponens and uniform substitution. Assuming the normality condition, these
components also contain the distribution axiom and are closed under the
generalization rule. We have axiomatically introduced different two-typed
PMLs and we have given the proofs of their completeness with respect to
appropriate classes of relational structures by means of an adaptation of the

14Although the choice of reflexive, symmetric and transitive relations between states for the
epistemic modalities is standard, the choice of irreflexive and symmetric relations between
agents for the friendship modalities is debatable. In this paper, we simply follow Seligman
et al. [28] in their assumptions about the friendship modalities.
15For instance, in order to show that the elementary conditions “no agent has strong friends”
and “every agent has strong friends” correspond to no LSEL-formula in C0, it suffices to con-
sider the frames (S′, A′,≡′, .′) and (S′′, A′′,≡′′, .′′) where S′ = {1}, A′ = {a, b, c, d}, .′1 =
{(a, b), (b, a), (c, d), (d, c)}, S′′ = {2}, A′′ = {a, b, c, d} and .′′2 = {(a, c), (b, d), (c, a), (d, b)}.
Let (S,A,≡, .) be their disjoint union. By induction on ϕ ∈ LSEL, one may easily verify that
(S,A,≡, .) |= ϕ if and only if (S′, A′,≡′, .′) |= ϕ and (S′′, A′′,≡′′, .′′) |= ϕ: a contradiction
with the obvious fact that no agent has strong friends in (S,A,≡, .) whereas every agent has
strong friends both in (S′, A′,≡′, .′) and in (S′′, A′′,≡′′, .′′).
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ordinary canonical model construction. The operation of intersection — which
is used in conjunctive frames for the interpretation of the modalities — being
not modally definable, these proofs of completeness are not so obvious when
the considered PMLs are paraconjunctive.

What challenges remain? Much of this paper revolves around one goal:
the definition of a modal language interpreted over relational structures
including different types of entities as well as different kinds of relationships
between them. As far as we are aware, the modal languages realizing that goal
are scarce, even if the first ones were proposed about 25 years ago within the
context of spatial logics and arrow logics [16,26,34]. Therefore, much remains
to be done. For instance,

• to investigate the computability of the membership problem in PMLs (filtra-
tion method, tableaux-based approach, etc),

• to develop the model theory of PMLs (bisimulations, saturated models, etc),

• to construct the duality theory of PMLs (Boolean algebras with operators,
general frames, etc),

• to elaborate the correspondence theory of PMLs (Chagrova’s Theorem,
Sahlqvist Correspondence Theorem, etc),

• to show how a multi-typed parametrized modal language can be used for
solving the formalization problems facing those who have to take into account
relationships such as the following ones: “trusts”, “is a friend of”, etc.

Other avenues of research might consist in considering that frames are 4-tuples
of the form (W1,W2, τ1, τ2) where for all i ∈ {1, 2}, Wi is a nonempty set and
τi : ℘(Wi) −→ ℘(℘(Wi)) is such that for all i ∈ {1, 2} and for all A ∈ ℘(Wi),
τi(A) is a topology on Wi. In that case, a valuation on a frame (W1,W2, τ1, τ2)
will be a couple (V1, V2) of functions V1 : L1 −→ ℘(W1) and V2 : L2 −→ ℘(W2)
such that for all i ∈ {1, 2},
• Vi([ϕ]ψ) = {si ∈Wi : ∃Oi ∈ τi(Vi(ϕ)) (si ∈ Oi & Oi ⊆ Vi(ψ))},
among other conditions. As a result, Vi(〈ϕ〉ψ) = {si ∈ Wi : ∀Oi ∈
τi(Vi(ϕ)) (si ∈ Oi ⇒ Oi ∩ Vi(ψ) 6= ∅)}. Further investigations are needed for
obtaining the PML that will completely axiomatize the validities thus defined.
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[3] Balbiani, P., Fernández González, S.: Indexed frames and hybrid logics. In Advances in
Modal Logic. College Publications (2020) 53–72.

[4] Ben-naim, J., Longin, D., Lorini, E.: Formalization of cognitive-agent systems, trust, and
emotions. In A Guided Tour of Artificial Intelligence Research. Springer (2020) 629–650.

[5] Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press (2001).
[6] Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford University Press (1997).
[7] Demri, S., Or lowska, E.: Logical analysis of indiscernibility. In Incomplete Information:

Rough Set Analysis. Springer (1998) 347–380.
[8] Van Ditmarsch, H., Kooi, B., van der Hoek, W.: Dynamic Epistemic Logic. Springer

(2008).
[9] Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT Press

(1995).
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Appendix

Alternative proof of Proposition 6.11. The proof of Proposition 6.11 in-
cluded in the body of the paper may seem unnecessarily complicated. Its good
point is that it can be easily converted into a proof of Proposition 6.19. Now,
we present the sketch of a simpler proof of Proposition 6.11 that, unfortu-
nately, does not seem to be easily convertible into a proof of Proposition 6.19.
For all i ∈ {1, 2}, let Λi be the set of all τi : ℘(Wi) × Wi −→ {0, 1}. Let
(W ′1,W

′
2, R

′
1, R

′
2) be the 4-tuple where for all i ∈ {1, 2},

• W ′i = Wi × Λi,

• R′i : ℘(W ′i ) −→ ℘(W ′i × W ′i ) is such that for all A′ ∈ ℘(W ′i ) and for all
(ti, τi), (ui, µi) ∈W ′i , (ti, τi)R

′
i(A
′)(ui, µi) if and only if for all A ∈ ℘(Wi),

· if A′ ∩ (A×Λi) 6= ∅ then tiRi(A)ui if and only if for all vi ∈ A, τi(A, vi) =
µi(A, vi),
· for all (vi, νi) ∈ A′ ∩ (A× Λi), τi(A, vi) = µi(A, vi).

The reader may easily verify that

• for all i ∈ {1, 2} and for all A′ ∈ ℘(W ′i ), R
′
i(A
′) =

⋂
{R′i({(vi, νi)}) :

(vi, νi) ∈ A′},
• the 4-tuple (W ′1,W

′
2, R

′
1, R

′
2) is a conjunctive frame.

Let f1 : W ′1 −→ W1 be such that for all (v1, ν1) ∈ W ′1, f1(v1, ν1) = v1
and f2 : W ′2 −→ W2 be such that for all (v2, ν2) ∈ W ′2, f2(v2, ν2) = v2.
The reader may easily verify that f1 and f2 are surjective. Let (V1, V2) be a
(W1,W2, R1, R2)-valuation. For all i ∈ {1, 2}, let V ′i : Li −→ ℘(W ′i ) be such
that for all ϕ ∈ Li, V

′
i (ϕ) = f−1i [Vi(ϕ)]. Notice that for all i ∈ {1, 2} and for

all ϕ ∈ Li, V
′
i (ϕ) = Vi(ϕ)× Λi. Finally, the reader may easily verify that

• for all (ti, τi), (ui, µi) ∈W ′i and for all i-formulas ϕ, if (ti, τi)R
′
i(V
′
i (ϕ))(ui, µi)

then tiRi(Vi(ϕ))ui,

• for all (ti, τi) ∈ W ′i , for all ui ∈ Wi and for all i-formulas ϕ, if tiRi(Vi(ϕ))ui
then there exists µi ∈ Λi such that (ti, τi)R

′
i(V
′
i (ϕ))(ui, µi),

• (V ′1 , V
′
2) is a (W ′1,W

′
2, R

′
1, R

′
2)-valuation,

• (f1, f2) is a bounded morphism from (W ′1,W
′
2, R

′
1, R

′
2, V

′
1 , V

′
2) to

(W1,W2, R1, R2, V1, V2).
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