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In this paper, within the context of a two-typed parametrized modal language, we define a parametrized modal logic as a couple whose components are sets of formulas containing, in their respective types, all propositional tautologies and the distribution axiom and closed, in their respective types, under modus ponens, uniform substitution and generalization. We axiomatically introduce different two-typed parametrized modal logics and we prove their completeness with respect to appropriate classes of two-typed frames by means of an adaptation of the canonical model construction.

Introduction

In an application domain such as reasoning about knowledge where states and agents have been identified as the primitive entities of interest, one usually considers relational structures of the form (S, ≡) where S is a nonempty set of states and ≡ is a function associating an equivalence relation ≡ a on S to every element a of a fixed set A of agents [8,9,17]. In that setting, for all a ∈ A, two states s and t are equivalent modulo ≡ a exactly when a cannot distinguish between s and t. When one wants to reason about distributed knowledge, it is of interest to assume that ≡ is also a function associating an equivalence relation ≡ B on S to every B ∈ ℘(A) in such a way that for all B ∈ ℘(A), ≡ B = {≡ a : a ∈ B}.

The modal language interpreted over relational structures of the form (S, ≡) traditionally consists of one type of formulas: state-formulas -to be interpreted by sets of states. State-formulas are constructed over the Boolean connectives and the modal connectives [B] -B ranging over ℘(A). The state-formula [B]ϕ is true in a state s of some model if the state-formula ϕ is true in every state of that model that can be distinguished from s by no B-agents.

Although agents are omnipresent in the standard syntax of modal languages used for talking about relational structures of the form (S, ≡), states are the only entities that these relational structures take as first-class citizens. However, there is no need to force oneself to find examples where, in addition to equivalence relations between states parametrized by sets of agents, one would like to have at hand binary relations between agents parametrized by sets of states. Indeed, in many situations, one would like to use relational structures of the form (S, A, ≡, ) where on top of the above-considered elements S and ≡, one can find a nonempty set A of agents and a function associating a binary relation s on A to every element s of S. Which situations? Situations where relationships between agents such as the following ones have to be taken into account: "agent a trusts agent b in state s", "agent a is a friend of agent b in state s", etc [START_REF] Balbiani | Indexed frames and hybrid logics[END_REF] . In these situations, for all s ∈ S, two agents a and b are related by s exactly when a trusts b in state s, a is a friend of b in state s, etc. Moreover, on top of the assumption that ≡ is also a function associating an equivalence relation ≡ B on S to every B ∈ ℘(A) in such a way that for all B ∈ ℘(A), ≡ B = {≡ a : a ∈ B}, one will naturally assume that is also a function associating a binary relation T on A to every T ∈ ℘(S) in such a way that for all T ∈ ℘(S), T = { s : s ∈ T }.

The modal language interpreted over relational structures of the form (S, A, ≡, ) will naturally consist of two types of formulas: state-formulas -to be interpreted by sets of states -and agent-formulas -to be interpreted by sets of agents. State-formulas will be constructed over the Boolean connectives and the modal connectives [α] -α ranging over the set of all agent-formulas -whereas agent-formulas will be constructed over the Boolean connectives and the modal connectives [ϕ] -ϕ ranging over the set of all state-formulas. The state-formula [α]ϕ will be true in a state s of some model if the state-formula ϕ is true in every state of that model that can be distinguished from state s by no α-agents whereas the agent-formula [ϕ]α will be true in an agent a of some model if the agent-formula α is true in every agent of that model that is trusted by agent a at all ϕ-states.

In this paper, within the context of a two-typed parametrized modal language, we define a parametrized modal logic as a couple whose components are sets of formulas containing, in their respective types, all propositional tautologies and the distribution axiom and closed, in their respective types, under modus ponens, uniform substitution and generalization. We axiomatically introduce different two-typed parametrized modal logics and we prove their completeness with respect to appropriate classes of two-typed frames by means of an adaptation of the canonical model construction [START_REF] Ben-Naim | Formalization of cognitive-agent systems, trust, and emotions[END_REF] .

Syntax

From now on, when we write "1" we will mean "2" and when we write "2" we will mean "1". For all i ∈ {1, 2}, let P i be a countably infinite set (with typical members denoted p i , q i , etc). For all i ∈ {1, 2}, members of P i will be called atomic i-formulas. An atomic formula is either an atomic 1-formula, or an atomic 2-formula. We will always assume that P 1 and P 2 are disjoint. A tip is a couple (Σ 1 , Σ 2 ) where for all i ∈ {1, 2}, Σ i is a set of finite words over the alphabet

P 1 ∪ P 2 ∪ {⊥ 1 , ⊥ 2 , ¬ 1 , ¬ 2 , ∨ 1 , ∨ 2 , 1 , 2 , ( 
, )} (with typical members denoted ϕ, ψ, etc). Let be the partial order between tips defined by

• (Σ 1 , Σ 2 ) (∆ 1 , ∆ 2 ) if and only if for all i ∈ {1, 2}, Σ i ⊆ ∆ i .
Let (L 1 , L 2 ) be the least tip such that for all i ∈ {1, 2}, P i ⊆ L i and

• ⊥ i ∈ L i , • for all ϕ ∈ L i , ¬ i ϕ ∈ L i , • for all ϕ, ψ ∈ L i , (ϕ ∨ i ψ) ∈ L i ,
• for all ϕ ∈ L i and for all ψ ∈ L i , (ϕ i ψ) ∈ L i .

Obviously, L 1 and L 2 are disjoint. For all i ∈ {1, 2}, members of L i will be called i-formulas. A formula is either a 1-formula, or a 2-formula. Let L PML -the language of parametrized modal logic -be the set of all formulas. For all i ∈ {1, 2}, the Boolean connectives i , ∧ i , → i and ↔ i are defined as usual. For all i ∈ {1, 2}, the modal connective ♦ i is defined by (ϕ♦ i ψ) ::= ¬ i (ϕ i ¬ i ψ), where ϕ ranges over L i and ψ ranges over L i . For all i ∈ {1, 2}, for all ϕ ∈ L i and for all ψ ∈ L i , we will write "[ϕ] i ψ" instead of "(ϕ i ψ)". For all i ∈ {1, 2}, for all ϕ ∈ L i and for all ψ ∈ L i , we will write " ϕ i ψ" instead of "(ϕ♦ i ψ)". For all i ∈ {1, 2}, for all ϕ ∈ L i and for all sets Σ i of i-formulas,

let [ϕ]Σ i = {ψ : [ϕ] i ψ ∈ Σ i }. A tip (Σ 1 , Σ 2 ) is readable if (Σ 1 , Σ 2 ) (L 1 , L 2 ).
When writing formulas, most of the times, we will not make explicit the types of the connectives constituting them: if we know the type of a formula then we can inductively determine the types of its constituents. Therefore, for all i ∈ {1, 2}, the result of uniformly replacing the atomic formulas of a given Boolean formula by arbitrary i-formulas can be seen as a i-formula. As a result, for all i ∈ {1, 2}, we will talk about "the i-formula (p ∨ ¬q)" instead of talking about "the formula (p i ∨ i ¬ i q i )", we will talk about "the i-formula (p ∨ (¬q ⊥))" instead of talking about "the formula (p i ∨ i (¬ i q i i ⊥ i ))", etc. We adopt the standard rules for omission of the parentheses. A substitution is a couple (σ 1 , σ 2 ) of functions σ 1 : L 1 -→ L 1 and σ 2 : L 2 -→ L 2 such that for all i ∈ {1, 2}, Obviously, the frame (W 1 , W 2 , R 1 , R 2 ) where

• σ i (⊥) = ⊥, • σ i (¬ϕ) = ¬σ i (ϕ), • σ i (ϕ ∨ ψ) = σ i (ϕ) ∨ σ i (ψ), • σ i ([ϕ]ψ) = [σ i (ϕ)]σ i (ψ). As a result, σ i ( ϕ ψ) = σ i (ϕ) σ i (ψ). 3 Relational semantics A frame is a 4-tuple (W 1 , W 2 , R 1 , R 2 ) where for all i ∈ {1, 2}, W i is a nonempty set and R i : ℘(W i ) -→ ℘(W i × W i ). A frame of indiscernibility is a frame (W 1 , W 2 , R 1 , R 2 ) such that for all i ∈ {1, 2} and for all A ∈ ℘(W i ), R i (A) is an equivalence relation on W i . A frame (W 1 , W 2 , R 1 , R 2 ) is conjunctive if for all i ∈ {1, 2} and for all A ∈ ℘(W i ), R i (A) = {R i ({s i }) : s i ∈ A}.
• W 1 = Ob, • W 2 = At,
• for all At ∈ ℘(At), R is conjunctive. In this frame, two objects are related by a set of attributes if and only if these objects are equivalent for all attributes in that set whereas two attributes are related by a set of objects if and only if these attributes are equivalent for all objects in that set [START_REF] Blackburn | Modal Logic[END_REF] .

A frame (W 1 , W 2 , R 1 , R 2 ) is unitary if for all i ∈ {1, 2}, R i (∅) = W i × W i , i.e. R i (∅) is the universal relation on W i . Obviously, every conjunctive frame is unitary. A unitary frame (W 1 , W 2 , R 1 , R 2 ) is preconjunctive if for all i ∈ {1, 2} and for all A, B ∈ ℘(W i ), R i (A ∪ B) = R i (A) ∩ R i (B). A unitary frame (W 1 , W 2 , R 1 , R 2 ) is paraconjunctive if for all i ∈ {1, 2} and for all A, B ∈ ℘(W i ), if A ⊆ B then R i (A) ⊇ R i (B).
Proposition 3.2 Every conjunctive frame is preconjunctive.

Proposition 3.3 Every preconjunctive frame is paraconjunctive.

Example 3.4 Let (W 1 , W 2 , R 1 , R 2 )
be the frame where

W 1 = N, W 2 = N, for all A ∈ ℘(N), if A is finite then R 1 (A) = N × N else R 1 (A) = ∅ and for all A ∈ ℘(N), if A is finite then R 2 (A) = N × N else R 2 (A) = ∅.
Obviously, this frame is preconjunctive. However, it is not conjunctive, seeing that for all i ∈ {1, 2}, R i (N) = ∅ and {R i ({s i }) :

s i ∈ N} = N × N. Example 3.5 Let (W 1 , W 2 , R 1 , R 2 )
be the frame where

W 1 = N, W 2 = N, for all A ∈ ℘(N), if Card(A) < 2 then R 1 (A) = N × N else R 1 (A) = ∅ and for all A ∈ ℘(N), if Card(A) < 2 then R 2 (A) = N × N else R 2 (A) = ∅.
Obviously, this frame is paraconjunctive. However, it is not preconjunctive, seeing that for all

i ∈ {1, 2}, R i ({0, 1}) = ∅ and R i ({0}) ∩ R i ({1}) = N × N.
A valuation on a frame

(W 1 , W 2 , R 1 , R 2 ) is a couple (V 1 , V 2 ) of functions V 1 : L 1 -→ ℘(W 1 ) and V 2 : L 2 -→ ℘(W 2 )
such that for all i ∈ {1, 2},

• V i (⊥) = ∅, • V i (¬ϕ) = W i \ V i (ϕ), • V i (ϕ ∨ ψ) = V i (ϕ) ∪ V i (ψ), • V i ([ϕ]ψ) = {s i ∈ W i : ∀t i ∈ W i (s i R i (V i (ϕ))t i ⇒ t i ∈ V i (ψ))}. As a result, V i ( ϕ ψ) = {s i ∈ W i : ∃t i ∈ W i (s i R i (V i (ϕ))t i & t i ∈ V i (ψ))}.
A model is a 6-tuple consisting of a frame and a valuation on that frame. A model is conjunctive (resp., unitary, preconjunctive, paraconjunctive) if it is based on a conjunctive (resp., unitary, preconjunctive, paraconjunctive) frame.

Lemma 3.6 For all unitary models

(W 1 , W 2 , R 1 , R 2 , V 1 , V 2 )
, for all i ∈ {1, 2} and for all i-formulas ϕ, the i-formula [⊥]ϕ is such that

• if V i (ϕ) = W i then V i ([⊥]ϕ) = W i , • otherwise, V i ([⊥]ϕ) = ∅. For all i ∈ {1, 2}, a i-formula ϕ is true in a model (W 1 , W 2 , R 1 , R 2 , V 1 , V 2 ) (in symbols (W 1 , W 2 , R 1 , R 2 , V 1 , V 2 ) |= ϕ) if V i (ϕ) = W i .
Lemma 3.7 For all i ∈ {1, 2} and for all i-formulas ϕ, the i-formulas [⊥]ϕ → ϕ and ⊥ ϕ → [⊥] ⊥ ϕ are true in any unitary model.

Lemma 3.8 For all i ∈ {1, 2}, for all i-formulas ϕ, ψ and for all i-formulas χ, the i-formula ϕ ∨ ψ χ → ϕ χ ∧ ψ χ is true in any paraconjunctive model.

A formula ϕ is valid on a frame (W 1 , W 2 , R 1 , R 2 ) (in symbols (W 1 , W 2 , R 1 , R 2 ) |= ϕ) if for all (W 1 , W 2 , R 1 , R 2 )-valuations (V 1 , V 2 ), (W 1 , W 2 , R 1 , R 2 , V 1 , V 2 ) |= ϕ.
Example 3.9 In a frame (W 1 , W 2 , R 1 , R 2 ), one may easily prove that for all i ∈ {1, 2},

• the i-formula [⊥]p → p is valid if and only if for all s i ∈ W i , s i R i (∅)s i , • the i-formula [⊥]p → [⊥][⊥]p is valid if and only if for all s i , t i , u i ∈ W i , if s i R i (∅)t i and t i R i (∅)u i then s i R i (∅)u i , • the i-formula ⊥ p → [⊥] ⊥ p is valid if and only if for all s i , t i , u i ∈ W i , if s i R i (∅)t i and s i R i (∅)u i then t i R i (∅)u i . Example 3.10 In a conjunctive frame (W 1 , W 2 , R 1 , R 2 )
, one may easily prove that for all i ∈ {1, 2},

• the i-formula p q → [p]q is valid if and only if Card(W i ) ≤ 1,

• the i-formula [p]q → q if and only if for all s i ∈ W i and for all t i ∈ W i ,

s i R i ({t i })s i , • the i-formula [p]q → [p][p]q if and only if for all s i , t i , u i ∈ W i and for all v i ∈ W i , if s i R i ({v i })t i and t i R i ({v i })u i then s i R i ({v i })u i ,
• the i-formula p q → [p] p q if and only if for all s i , t i , u i ∈ W i and for all

v i ∈ W i , if s i R i ({v i })t i and s i R i ({v i })u i then t i R i ({v i })u i . A formula ϕ is valid on a class C of frames (in symbols C |= ϕ) if for all frames (W 1 , W 2 , R 1 , R 2 ) in C, (W 1 , W 2 , R 1 , R 2 ) |= ϕ. Lemma 3.11 For all frames (W 1 , W 2 , R 1 , R 2 ), (W 1 , W 2 , R 1 , R 2 )
is a frame of indiscernibility if and only if for all i ∈ {1, 2}, for all i-formulas ϕ and for all i-formulas ψ,

(W 1 , W 2 , R 1 , R 2 ) |= [ϕ]ψ → ψ and (W 1 , W 2 , R 1 , R 2 ) |= ϕ ψ → [ϕ] ϕ ψ. A bounded morphism from a model (W 1 , W 2 , R 1 , R 2 , V 1 , V 2 ) to a model (W 1 , W 2 , R 1 , R 2 , V 1 , V 2 ) is a couple (f 1 , f 2 ) of functions f 1 : W 1 -→ W 1 and f 2 : W 2 -→ W 2 such that for all i ∈ {1, 2}, Atomic condition: for all p ∈ P i , f -1 i [V i (p)] = V i (p)
, Forward condition: for all s i , t i ∈ W i and for all i-formulas ϕ, if

s i R i (V i (ϕ))t i then f i (s i )R i (V i (ϕ))f i (t i ),
Backward condition: for all s i ∈ W i , for all t i ∈ W i and for all i-formulas ϕ,

if f i (s i )R i (V i (ϕ))t i then there exists t i ∈ W i such that f i (t i ) = t i and s i R i (V i (ϕ))t i . Proposition 3.12 For all models (W 1 , W 2 , R 1 , R 2 , V 1 , V 2 ) and (W 1 , W 2 , R 1 , R 2 , V 1 , V 2 ), for all bounded morphisms (f 1 , f 2 ) from (W 1 , W 2 , R 1 , R 2 , V 1 , V 2 ) to (W 1 , W 2 , R 1 , R 2 , V 1 , V 2 ), for all i ∈ {1, 2} and for all i-formulas ϕ, f -1 i [V i (ϕ)] = V i (ϕ).
Proof. Similar to the proof of Bounded Morphism Lemma [5, Proposition 2.14].

Proposition 3.13 is an immediate consequence of Proposition 3.12.

Proposition 3.13 Let (W 1 , W 2 , R 1 , R 2 ) and (W 1 , W 2 , R 1 , R 2 ) be frames and (f 1 , f 2 ) be a couple of surjective functions f 1 : W 1 -→ W 1 and f 2 : W 2 -→ W 2 . If for all (W 1 , W 2 , R 1 , R 2 )-valuations (V 1 , V 2 ), there exists a (W 1 , W 2 , R 1 , R 2 )-valuation (V 1 , V 2 ) such that (f 1 , f 2 ) is a bounded morphism from (W 1 , W 2 , R 1 , R 2 , V 1 , V 2 ) to (W 1 , W 2 , R 1 , R 2 , V 1 , V 2 ) then for all formulas ϕ, if (W 1 , W 2 , R 1 , R 2 ) |= ϕ then (W 1 , W 2 , R 1 , R 2 ) |= ϕ.

Parametrized modal logics

A parametrized modal logic (PML) is a readable tip (L 1 , L 2 ) such that for all i ∈ {1, 2}, L i satisfies the following conditions:

(Taut i ) L i contains all i-formulas obtained from propositional tautologies after having uniformly replaced their atomic formulas by arbitrary i-formulas,

(Dist i ) L i contains all i-formulas of the form [ϕ](ψ → χ) → ([ϕ]ψ → [ϕ]χ), (MP i ) if ϕ ∈ L i and ϕ → ψ ∈ L i then L i contains the i-formula ψ, (Gen i ) if ϕ ∈ L i then L i contains all i-formulas of the form [ψ]ϕ, (RE i ) if ϕ ↔ ψ ∈ L i then L i contains all i-formulas of the form [ϕ]χ ↔ [ψ]χ, (UOI i ) if ⊥ ∈ L i then L i contains the i-formula ⊥, (US i ) if ϕ ∈ L i and (σ 1 , σ 2 ) is a substitution then L i contains the i-formula σ i (ϕ).
There is a greatest PML, namely (L 1 , L 2 ). There is also a least PML (denoted

(K 1 , K 2 )), seeing that for all collections (L m 1 , L m 2 ) m∈I of PMLs, ( {L m 1 : m ∈ I}, {L m 2 : m ∈ I}) is a PML. Let (Equiv g 1 , Equiv g 2 ) be the least PML such that for all i ∈ {1, 2}, Equiv g i contains all i-formulas of the form [ϕ]ψ → ψ and ϕ ψ → [ϕ] ϕ ψ. A PML (L 1 , L 2 ) is paraconjunctive if for all i ∈ {1, 2}, L i satisfies the following conditions: (UNI i ) L i contains all i-formulas of the form [⊥]ϕ → ϕ and ⊥ ϕ → [⊥] ⊥ ϕ, (RI - i ) if k=1...m [⊥]( ψ k χ k → ϕ k χ k ) → l=1...n [⊥](ϕ l → ψ l ) ∈ L i then L i contains all i-formulas of the form k=...m [⊥](ϕ k → ψ k ) → l=1...n [⊥]( ψ l χ l → ϕ l χ l ).
Let (ParCon 1 , ParCon 2 ) be the least paraconjunctive PML. Let (Equiv p 1 , Equiv p 2 ) be the least paraconjunctive PML such that for all i ∈ {1, 2}, Equiv p i contains all i-formulas of the form [ϕ]ψ → ψ and ϕ ψ → [ϕ] ϕ ψ. For all PMLs (L 1 , L 2 ) and for all readable tips (Σ

1 , Σ 2 ), let (L 1 , L 2 ) + (Σ 1 , Σ 2 ) be the least PML containing (L 1 ∪ Σ 1 , L 2 ∪ Σ 2 ). Problem 4.1 We do not know if there exists a finite readable tip (Σ 1 , Σ 2 ) such that (ParCon 1 , ParCon 2 ) = (K 1 , K 2 ) + (Σ 1 , Σ 2 ). Problem 4.2 We do not know if there exists a finite readable tip (Σ 1 , Σ 2 ) such that (Equiv p 1 , Equiv p 2 ) = (K 1 , K 2 ) + (Σ 1 , Σ 2 ). A PML (L 1 , L 2 ) is consistent if for all i ∈ {1, 2}, L i = L i .
Obviously, thanks to the conditions (UOI 1 ) and (UOI 2 ), (L 1 , L 2 ) is the one and only inconsistent PML. For all PMLs (L 1 , L 2 ) and for all i ∈ {1, 2}, we will say that a set

s i of i-formulas is (L 1 , L 2 )-consistent, if for all n ∈ N and for all ϕ 1 , . . . , ϕ n ∈ s i , ¬(ϕ 1 ∧ . . . ∧ ϕ n ) ∈ L i .
Lemma 4.3 For all PMLs (L 1 , L 2 ), for all i ∈ {1, 2} and for all (L 1 , L 2 )consistent sets s i of i-formulas, there exists a maximal (L 1 , L 2 )-consistent set t i of i-formulas such that s i ⊆ t i .

Proof. Similar to the proof of Lindenbaum's Lemma [6, Lemma 5.1]. Lemma 4.4 For all PMLs (L 1 , L 2 ), for all i ∈ {1, 2}, for all maximal (L 1 , L 2 )consistent sets s i of i-formulas, for all i-formulas ϕ and for all i-formulas ψ,

if [ϕ]ψ ∈ s i then [ϕ]s i ∪ {¬ψ} is a (L 1 , L 2 )-consistent set of i-formulas.
Proof. Similar to the proof of Existence Lemma [13, Proposition 2.8.4].

Notice that for all consistent PMLs (L 1 , L 2 ) and for all i ∈ {1, 2}, As for the proofs of the corresponding completeness statements, they are not so obvious, especially when the considered PMLs are paraconjunctive [START_REF] Chagrov | Modal Logic[END_REF] . In Sections 5 and 6, we adapt the ordinary canonical model construction to the context of our parametrized relational semantics.

L i is a (L 1 , L 2 )-consistent set of i-formulas. A PML (L 1 , L 2 ) is sound with respect to a class C of frames if for all i ∈ {1, 2} and for all i-formulas ϕ, if ϕ ∈ L i then C |= ϕ. A PML (L 1 , L 2 ) is complete

Completeness: the general case

From now on in this section, we will assume that (

L 1 , L 2 ) is a consistent PML. Let (W g 1 , W g 2 , R g 1 , R g 
2 ) be the 4-tuple where for all i ∈ {1, 2},

• W g i is the set of all maximal (L 1 , L 2 )-consistent sets of i-formulas, • R g i : ℘(W g i ) -→ ℘(W g i × W g i ) is such that for all A ∈ ℘(W g i ) and for all s i , t i ∈ W g i , s i R g i (A)t i if and only if for all i-formulas ϕ, if ϕ = A then [ϕ]s i ⊆ t i ,
where for all i ∈ {1, 2} and for all i-formulas ϕ, ϕ

= {u i ∈ W g i : ϕ ∈ u i }. Since for all i ∈ {1, 2}, L i is a (L 1 , L 2 )-consistent set of i-formulas, by Lemma 4.3, for all i ∈ {1, 2}, W g i is nonempty. Lemma 5.1 The 4-tuple (W g 1 , W g 2 , R g 1 , R g 2 ) is a frame. The 4-tuple (W g 1 , W g 2 , R g 1 , R g 
2 ) will be called general canonical frame for (L 1 , L 2 ). Lemma 5.2 is an immediate consequence of the fact that for all i ∈ {1, 2}, Equiv g i contains all i-formulas of the form [ϕ]ψ → ψ and ϕ ψ →

[ϕ] ϕ ψ. Lemma 5.2 If (L 1 , L 2 ) contains (Equiv g 1 , Equiv g 2 )
then the general canonical frame for (L 1 , L 2 ) is a frame of indiscernibility. Proof. The proof that for all i ∈ {1, 2}, V g i satisfies the conditions for ⊥, ¬ and ∨ is as expected. We only show that for all i ∈ {1, 2}, V g i satisfies the condition for [•]. Let i ∈ {1, 2}. Let ϕ be a i-formula and ψ be a i-formula. Let s i ∈ W g i . We only demonstrate

if ϕ ↔ ψ ∈ L i . For all i ∈ {1, 2}, let V g i : L i -→ ℘(W g i ) be such that for all ϕ ∈ L i , V g i (ϕ) = ϕ. The 6-tuple (W g 1 , W g 2 , R g 1 , R g 2 , V g 1 , V g 2 ) will be called general canon- ical model for (L 1 , L 2 ).
s i ∈ V g i ([ϕ]ψ) if for all t i ∈ W g i , if s i R g i (V g i (ϕ))t i then t i ∈ V g i (ψ
), the "only if" direction being left as an exercise for the reader. Suppose s i ∈ V g i ([ϕ]ψ). We demonstrate there exists

t i ∈ W g i such that s i R g i (V g i (ϕ))t i and t i ∈ V g i (ψ). Since s i ∈ V g i ([ϕ]ψ), [ϕ]ψ ∈ s i . Let t 0 i = [ϕ]s i ∪ {¬ψ}. Notice that [ϕ]s i ⊆ t 0 i and ¬ψ ∈ t 0 i . By Lemma 4.4, t 0 i is a (L 1 , L 2 )-consistent set of i-formulas. Hence, by Lemma 4.3, let t i be a maximal (L 1 , L 2 )-consistent set of i-formulas such that t 0 i ⊆ t i . Since [ϕ]s i ⊆ t 0 i and ¬ψ ∈ t 0 i , [ϕ]s i ⊆ t i and ¬ψ ∈ t i . Claim s i R g i (V g i (ϕ))t i .
Proof. We demonstrate for all i-formulas ϕ

, if ϕ = V g i (ϕ) then [ϕ ]s i ⊆ t i . Let ϕ be a i-formula. Suppose ϕ = V g i (ϕ). We demonstrate [ϕ ]s i ⊆ t i . Let ψ be a i-formula. Suppose [ϕ ]ψ ∈ s i . We demonstrate ψ ∈ t i . Since ϕ = V g i (ϕ), by Lemma 5.3, ϕ ↔ ϕ ∈ L i . Since L i satisfies the closure condition (RE i ), [ϕ ]ψ ↔ [ϕ]ψ ∈ L i . Since [ϕ ]ψ ∈ s i , [ϕ]ψ ∈ s i . Thus, ψ ∈ [ϕ]s i . Since [ϕ]s i ⊆ t i , ψ ∈ t i .
Finally, the reader may easily verify that t i ∈ V g i (ψ). Here finishes the proof of Lemma 5.4. 

Completeness: the paraconjunctive case

From now on in this section, we will assume that (L 1 , L 2 ) is a consistent paraconjunctive PML. Therefore, for all i ∈ {1, 2}, L i contains all i-formulas of the form

[⊥]ϕ → ϕ and ⊥ ϕ → [⊥] ⊥ ϕ. As a result, for all i ∈ {1, 2}, L i contains all i-formulas of the form [⊥]ϕ → [⊥][⊥]ϕ.
6.1 Preliminaries Lemmas 6.1 and 6.2 are immediate consequences of the fact that for all i ∈ {1, 2}, L i contains all i-formulas of the form [⊥]ϕ → ϕ and ⊥ ϕ → [⊥] ⊥ ϕ. Lemma 6.1 For all i ∈ {1, 2} and for all maximal

(L 1 , L 2 )-consistent sets s i of i-formulas, [⊥]s i is (L 1 , L 2 )-consistent. Lemma 6.2 For all i ∈ {1, 2} and for all maximal (L 1 , L 2 )-consistent sets s i , t i , u i of i-formulas, if [⊥]s i ⊆ t i and [⊥]s i ⊆ u i then [⊥]t i ⊆ u i .
A readable tip (s 1 , s 2 ) is paraconjunctive if for all i ∈ {1, 2}, s i is a maximal (L 1 , L 2 )-consistent set of i-formulas such that for all i-formulas ϕ, ψ, if [⊥](ϕ → ψ) ∈ s i then for all i-formulas χ, [⊥]( ψ χ → ϕ χ) ∈ s i . Lemma 6.3 For all i ∈ {1, 2} and for all maximal (L 1 , L 2 )-consistent sets s i of i-formulas, there exists a maximal (L 1 , L 2 )-consistent set s i of i-formulas such that the readable tip (s 1 , s 2 ) is paraconjunctive.

Proof. Let i ∈ {1, 2} and s i be a maximal (L 1 , L 2 )-consistent set of i-formulas. We demonstrate there exists a maximal (L 1 , L 2 )-consistent set s i of i-formulas such that the readable tip (s 1 , s 2 ) is paraconjunctive. Let s 0 i be the set consisting of the following i-formulas:

• ¬[⊥](ϕ → ψ) for each ϕ, ψ ∈ L i and for each χ ∈ L i such that ¬[⊥]( ψ χ → ϕ χ) ∈ s i , • [⊥]( ψ χ → ϕ χ ) for each ϕ , ψ ∈ L i and for each χ ∈ L i such that [⊥](ϕ → ψ ) ∈ s i . Claim s 0 i is a (L 1 , L 2 )-consistent set of i-formulas.
Proof. For the sake of the contradiction, suppose s 0 i is not a (L 1 , L 2 )consistent set of i-formulas. Hence, let m, n in N, ϕ 1 , . . ., ϕ m , ψ 1 , . . ., ψ m , χ 1 , . . ., χ n in L i and ϕ 1 , . . ., ϕ n , ψ 1 , . . ., ψ n , χ 1 , . . ., χ m in L i be such that

• for all k ∈ {1, . . . , m}, ¬[⊥]( ψ k χ k → ϕ k χ k ) ∈ s i , • for all l ∈ {1, . . . , n}, [⊥](ϕ l → ψ l ) ∈ s i , • ¬( k=1...m ¬[⊥](ϕ k → ψ k ) ∧ l=1...n [⊥]( ψ l χ l → ϕ l χ l )) ∈ L i . Thus, l=1...n [⊥]( ψ l χ l → ϕ l χ l ) → k=1...m [⊥](ϕ k → ψ k ) ∈ L i . Since L i satisfies the closure condition (RI - i ), L i contains the i-formula l=1...n [⊥](ϕ l → ψ l ) → k=1...m [⊥]( ψ k χ k → ϕ k χ k ). Since for all l ∈ {1, . . . , n}, [⊥](ϕ l → ψ l ) ∈ s i , there exists k ∈ {1, . . . , m} such that [⊥]( ψ k χ k → ϕ k χ k ) ∈ s i . Consequently, there exists k ∈ {1, . . . , m} such that ¬[⊥]( ψ k χ k → ϕ k χ k ) ∈ s i : a contradiction.
Thus, by Lemma 4.3, let s i be a maximal (L 1 , L 2 )-consistent set of iformulas such that s 0 i ⊆ s i .

Claim The readable tip (s 1 , s 2 ) is paraconjunctive.

Proof. For the sake of the contradiction, suppose the readable tip (s 1 , s 2 ) is not paraconjunctive. Since for all j ∈ {1, 2}, s j is a maximal (L 1 , L 2 )consistent set of j-formulas, there exists j ∈ {1, 2} and there exists j-formulas ϕ, ψ such that [⊥](ϕ → ψ) ∈ s j and there exists a j-formula χ such that [⊥]( ψ χ → ϕ χ) ∈ s j . Consider the following two cases: j = i and j = i. In the former case, since

[⊥]( ψ χ → ϕ χ) ∈ s j , ¬[⊥]( ψ χ → ϕ χ) ∈ s i . Hence, ¬[⊥](ϕ → ψ) ∈ s 0 i . Since s 0 i ⊆ s i , ¬[⊥](ϕ → ψ) ∈ s i . Thus, [⊥](ϕ → ψ) ∈ s j : a contradiction. In the latter case, since [⊥](ϕ → ψ) ∈ s j , [⊥](ϕ → ψ) ∈ s i . Consequently, [⊥]( ψ χ → ϕ χ) ∈ s 0 i . Since s 0 i ⊆ s i , [⊥]( ψ χ → ϕ χ) ∈ s i . Hence, [⊥]( ψ χ → ϕ χ) ∈ s j : a contradiction.
Here finishes the proof of Lemma 6.3.

Paraconjunctive case: first set of completeness results

For a while, let us fix a paraconjunctive readable tip (s 1 , s 2 ).

Let (W c 1 , W c 2 , R c 1 , R c 
2 ) be the 4-tuple where for all i ∈ {1, 2},

• W c i is the set of all maximal (L 1 , L 2 )-consistent sets t i of i-formulas such that [⊥]s i ⊆ t i , • R c i : ℘(W c i ) -→ ℘(W c i × W c i ) is such that for all A ∈ ℘(W c i ) and for all t i , u i ∈ W c i , t i R c i (A)u i if and only if for all i-formulas ϕ, if ϕ ⊆ A then [ϕ]t i ⊆ u i ,
where for all i ∈ {1, 2} and for all i-formulas ϕ, ϕ = {v i ∈ W c i : ϕ ∈ v i }. Since for all i ∈ {1, 2}, s i is a maximal (L 1 , L 2 )-consistent set of i-formulas, by Lemmas 4.3 and 6.1, for all i ∈ {1, 2}, W c i is nonempty. Moreover, by Lemma 6.2, for all i ∈ {1, 2} and for all t i , u i ∈ W c i , [⊥]t i ⊆ u i . Lemma 6.4 For all i ∈ {1, 2} and for all i-formulas ϕ,

if ϕ = W c i then [⊥]ϕ ∈ s i .
Proof. Let i ∈ {1, 2} and ϕ be a i-formula. Suppose ϕ = W c i . We demonstrate [⊥]ϕ ∈ s i . For the sake of the contradiction, suppose

[⊥]ϕ ∈ s i . Let u 0 i = [⊥]s i ∪ {¬ϕ}. Notice that [⊥]s i ⊆ u 0 i and ¬ϕ ∈ u 0 i . By Lemma 4.4, u 0 i is a (L 1 , L 2 )-consistent set of i-formulas. Hence, by Lemma 4.3, let u i be a maximal (L 1 , L 2 )-consistent set of i-formulas such that u 0 i ⊆ u i . Since [⊥]s i ⊆ u 0 i and ¬ϕ ∈ u 0 i , [⊥]s i ⊆ u i and ¬ϕ ∈ u i . Thus, u i ∈ W c i and ϕ ∈ u i . Since ϕ = W c i , ϕ ∈ u i : a contradiction.
Lemma 6.5 For all i ∈ {1, 2} and for all i-formulas ϕ, if ϕ = ∅ then for all

t i , u i ∈ W c i , [ϕ]t i ⊆ u i . Proof. Let i ∈ {1, 2} and ϕ be a i-formula. Suppose ϕ = ∅. We demonstrate for all t i , u i ∈ W c i , [ϕ]t i ⊆ u i . Let t i , u i ∈ W c i . For the sake of the contra- diction, suppose [ϕ]t i ⊆ u i . Hence, let ψ be a i-formula such that [ϕ]ψ ∈ t i and ψ ∈ u i . Thus, ψ ∈ [⊥]t i . Consequently, [⊥]ψ ∈ t i . Since [ϕ]ψ ∈ t i , ⊥ ¬ψ → ϕ ¬ψ ∈ t i . Hence, [⊥]( ⊥ ¬ψ → ϕ ¬ψ) ∈ s i . Since (s 1 , s 2 ) is para- conjunctive, [⊥](ϕ → ⊥) ∈ s i Let w 0 i = [⊥]s i ∪{ϕ}. Notice that [⊥]s i ⊆ w 0 i and ϕ ∈ w 0 i . By Lemma 4.4, w 0 i is a (L 1 , L 2 )-consistent set of i-formulas. Hence, by Lemma 4.3, let w i be a maximal (L 1 , L 2 )-consistent set of i-formulas such that w 0 i ⊆ w i . Since [⊥]s i ⊆ w 0 i and ϕ ∈ w 0 i , [⊥]s i ⊆ w i and ϕ ∈ w i . Thus, w i ∈ W c i . Since ϕ = ∅, ϕ ∈ w i : a contradiction.
Here finishes the proof of Lemma 6.5.

Lemma 6.6 The 4-tuple (W c 1 , W c 2 , R c 1 , R c
2 ) is a paraconjunctive frame. Proof. By Lemma 6.5, for all i ∈ {1, 2}, for all t i , u i ∈ W c i and for all iformulas ϕ, if ϕ = ∅ then [ϕ]t i ⊆ u i . Hence, for all i ∈ {1, 2} and for all

t i , u i ∈ W c i , t i R c i (∅)u i . Thus, for all i ∈ {1, 2}, R c i (∅) = W c i × W c i .
Moreover, for all i ∈ {1, 2} and for all A, B ∈ ℘(W c i ), if A ⊆ B then for all i-formulas ϕ, if ϕ ⊆ A then ϕ ⊆ B. Consequently, for all i ∈ {1, 2} and for all A, B ∈ ℘(

W c i ), if A ⊆ B then for all t i , u i ∈ W c i , if t i R c i (B)u i then t i R c i (A)u i .
Hence, for all i ∈ {1, 2} and for all A, B ∈ ℘(

W c i ), if A ⊆ B then R c i (A) ⊇ R c i (B). The 4-tuple (W c 1 , W c 2 , R c 1 , R c 
2 ) will be called paraconjunctive canonical frame for (L 1 , L 2 ) determined by (s 1 , s 2 ). Lemma 6.7 is an immediate consequence of the fact that for all i ∈ {1, 2}, Equiv p i contains all i-formulas of the form [ϕ]ψ → ψ and ϕ ψ → [ϕ] ϕ ψ. Lemma 6.7 If (L 1 , L 2 ) contains (Equiv p 1 , Equiv p 2 ) then the paraconjunctive canonical frame for (L 1 , L 2 ) determined by (s 1 , s 2 ) is a paraconjunctive frame of indiscernibility. Proof. The proof that for all i ∈ {1, 2}, V c i satisfies the conditions for ⊥, ¬ and ∨ is as expected. We only show that for all i ∈ {1, 2}, V c i satisfies the condition for [•]. Let i ∈ {1, 2}. Let ϕ be a i-formula and ψ be a i-formula.

For all i ∈ {1, 2}, let V c i : L i -→ ℘(W c i ) be such that for all ϕ ∈ L i , V c i (ϕ) = ϕ. The 6-tuple (W c 1 , W c 2 , R c 1 , R c 2 , V c 1 , V c 2 ) will be called paraconjunctive canonical model for (L 1 , L 2 ) determined by (s 1 , s 2 ).
Let t i ∈ W c i . We only demonstrate t i ∈ V c i ([ϕ]ψ) if for all u i ∈ W c i , if t i R c i (V c i (ϕ))u i then u i ∈ V c i (ψ)
, the "only if" direction being left as an exercise for the reader. Suppose t i ∈ V c i ([ϕ]ψ). We demonstrate there exists

u i ∈ W c i such that t i R c i (V c i (ϕ))u i and u i ∈ V c i (ψ). Since t i ∈ V c i ([ϕ]ψ), [ϕ]ψ ∈ t i . Let u 0 i = [ϕ]t i ∪ {¬ψ}. Notice that [ϕ]t i ⊆ u 0 i and ¬ψ ∈ u 0 i . By Lemma 4.4, u 0 i is a (L 1 , L 2 )-consistent set of i-formulas. Hence, by Lemma 4.3, let u i be a maximal (L 1 , L 2 )-consistent set of i-formulas such that u 0 i ⊆ u i . Since [ϕ]t i ⊆ u 0 i and ¬ψ ∈ u 0 i , [ϕ]t i ⊆ u i and ¬ψ ∈ u i . Claim u i ∈ W c i .
Proof. For the sake of the contradiction, suppose

u i ∈ W c i . Hence, [⊥]s i ⊆ u i . Thus, let χ be a i-formula such that [⊥]χ ∈ s i and χ ∈ u i . Since L i contains all i-formulas of the form [⊥]χ → [⊥][⊥]χ , [⊥][⊥]χ ∈ s i . Consequently, [⊥]χ ∈ [⊥]s i . Since [⊥]s i ⊆ t i , [⊥]χ ∈ t i . Since L i contains the i-formula ⊥ → ϕ and L i satisfies the closure condition (Gen i ), L i contains the i-formula [⊥](⊥ → ϕ). Since L i satisfies the closure condition (RI - i ), L i contains the i-formula [⊥]([⊥]χ → [ϕ]χ) 7 . Since L i contains all i-formulas of the form [⊥]φ → φ, L i contains the i-formula [⊥]χ → [ϕ]χ. Since [⊥]χ ∈ t i , [ϕ]χ ∈ t i . Hence, χ ∈ [ϕ]t i . Since [ϕ]t i ⊆ u i , χ ∈ u i : a contradiction. Claim t i R c i (V c i (ϕ))u i .
Proof. For the sake of the contradiction, suppose not t i R c i (V c i (ϕ))u i . Thus, there exists a i-formula ϕ such that ϕ ⊆ V c i (ϕ) and [ϕ ]t i ⊆ u i . Consequently, let χ be a i-formula such that [ϕ ]χ ∈ t i and χ ∈ u i . Since

ϕ ⊆ V c i (ϕ), for all v i ∈ W c i , if ϕ ∈ v i then ϕ ∈ v i . Hence, for all v i ∈ W c i , ϕ → ϕ ∈ v i . Thus, by Lemma 6.4, [⊥](ϕ → ϕ) ∈ s i . Since (s 1 , s 2 ) is paraconjunctive, [⊥]([ϕ ]χ → [ϕ]χ) ∈ s i . Since L i contains all i-formulas of the form [⊥]φ → [⊥][⊥]φ, [⊥][⊥]([ϕ ]χ → [ϕ]χ) ∈ s i . Consequently, [⊥]([ϕ ]χ → [ϕ]χ) ∈ t i . Since L i contains all i-formulas of the form [⊥]φ → φ, [ϕ ]χ → [ϕ]χ ∈ t i . Since [ϕ ]χ ∈ t i , [ϕ]χ ∈ t i . Hence, χ ∈ [ϕ]t i . Since [ϕ]t i ⊆ u i , χ ∈ u i : a contradiction.
Finally, the reader may easily verify that u i ∈ V c i (ψ). Here finishes the proof of Lemma 6.8. Proposition 6.9 is an immediate consequence of Lemmas 4.3, 6.3, 6.6 and 6.8. Proposition 6.9 (ParCon 1 , ParCon 2 ) is complete with respect to the class of all paraconjunctive frames. Proposition 6.10 is an immediate consequence of Lemmas 4.3, 6.3, 6.7 and 6.8. Proposition 6.10 (Equiv p 1 , Equiv p 2 ) is complete with respect to the class of all paraconjunctive frames of indiscernibility.

Paraconjunctive case: second set of completeness results

As for the completeness of (ParCon 1 , ParCon 2 ) with respect to the class of all conjunctive frames and the completeness of (Equiv p 1 , Equiv p 2 ) with respect to the class of all conjunctive frames of indiscernibility, we will show in Propositions 6.11 and 6.19 that every paraconjunctive frame is the bounded morphic image of a conjunctive frame and every paraconjunctive frame of indiscernibility is the bounded morphic image of a conjunctive frame of indiscernibility 8 .

Proposition 6.11 Let (W 1 , W 2 , R 1 , R 2 ) be a paraconjunctive frame. There exists a conjunctive frame (W 1 , W 2 , R 1 , R 2 ) and a couple (f 1 , f 2 ) of surjec- tive functions f 1 : W 1 -→ W 1 and f 2 : W 2 -→ W 2 such that for all (W 1 , W 2 , R 1 , R 2 )-valuations (V 1 , V 2 ), there exists a (W 1 , W 2 , R 1 , R 2 )-valuation (V 1 , V 2 ) such that (f 1 , f 2 ) is a bounded morphism from (W 1 , W 2 , R 1 , R 2 , V 1 , V 2 ) to (W 1 , W 2 , R 1 , R 2 , V 1 , V 2 ).
Proof. For all i ∈ {1, 2}, let

• det i : ℘(W i ) × W i × W i -→ ℘(W i ) be such that for all A ∈ ℘(W i ) and for all t i , u i ∈ W i , if t i R i (A)u i then det(A, t i , u i ) = ∅ else det(A, t i , u i ) = W i 9 .
For all i ∈ {1, 2}, let Λ i be the set of all

τ i : ℘(W i ) × W i -→ ℘(W i ) such that for all A ∈ ℘(W i ), {t i ∈ W i : τ i (A, t i ) = ∅} is finite 10 . Let (W 1 , W 2 , R 1 , R 2 )
be the 4-tuple where for all i ∈ {1, 2},

• W i = W i × Λ i , • R i : ℘(W i ) -→ ℘(W i × W i ) is such that for all A ∈ ℘(W i ) and for all (t i , τ i ), (u i , µ i ) ∈ W i , (t i , τ i )R i (A )(u i , µ i ) if and only if for all A ∈ ℘(W i ) 11 , • if A ∩(A×Λ i ) = ∅ then i {τ i (A, v i )⊕ i µ i (A, v i ) : v i ∈ A} = det i (A, t i , u i ), • for all (v i , ν i ) ∈ A ∩ (A × Λ i ), τ i (A, v i ) ⊕ i µ i (A, v i ) = ∅.
Claim 6.12 For all i ∈ {1, 2} and for all

A ∈ ℘(W i ), R i (A ) = {R i ({(v i , ν i )}) : (v i , ν i ) ∈ A }. Proof. Let i ∈ {1, 2} and A ∈ ℘(W i ). The proof that R i (A ) ⊆ {R i ({(v i , ν i )}) : (v i , ν i ) ∈ A }
being a simple application of the definitions, it is left as an exercise for the reader. We demonstrate R

i (A ) ⊇ {R i ({(v i , ν i )}) : (v i , ν i ) ∈ A }. For the sake of the contradiction, sup- pose R i (A ) ⊇ {R i ({(v i , ν i )}) : (v i , ν i ) ∈ A }. Hence, there exists (t i , τ i ), (u i , µ i ) ∈ W i such that not (t i , τ i )R i (A )(u i , µ i ) and for all (v i , ν i ) ∈ A , (t i , τ i )R i ({(v i , ν i )})(u i , µ i ).
Thus, for all (v i , ν i ) ∈ A and for all A ∈ ℘(W i ), [START_REF] Van Ditmarsch | Dynamic Epistemic Logic[END_REF] The sketch of an alternative proof of Proposition 6.11 is presented in the Appendix. [START_REF] Fagin | Reasoning about Knowledge[END_REF] Notice that for all A ∈ ℘(W i ) and for all t i , u i ∈ W i , det(A, t i , u i ) = ∅ if and only if t i R i (A)u i . [START_REF] Fernández González | Logics for Social Networks[END_REF] Notice that for all τ i , µ i ∈ Λ i and for all A ∈ ℘(W i ),

{v i ∈ A : τ i (A, v i ) = µ i (A, v i )} is finite. 11 Here, ⊕ i is the operation of symmetric difference in ℘(W i ). Moreover, (v 1 i , . . . , v N i ) being the list of all v i ∈ A such that τ i (A, v i ) = µ i (A, v i ), i {τ i (A, v i ) ⊕ i µ i (A, v i ) : v i ∈ A} denotes τ i (A, v 1 i ) ⊕ i µ i (A, v 1 i ) ⊕ i . . . ⊕ i τ i (A, v N i ) ⊕ i µ i (A, v N i ).
Case "A ⊆ V i (ϕ)": let w A i ∈ W i be such that w A i ∈ A and w A i ∈ V i (ϕ) and for all w i ∈ W i ,

• if w i = w A i then let µ A i (w i ) = τ i (A, w i ), • otherwise, let µ A i (w i ) = τ i (A, w i ) ⊕ i det i (A, t i , u i ). Let µ i : ℘(W i ) × W i -→ ℘(W i ) be such that for all A ∈ ℘(W i ) and for all w i ∈ W i , µ i (A, w i ) = µ A i (w i
). Now, we just have to verify that for all A ∈ ℘(W i ), (C 1 ), (C 2 ) and (C 3 ) hold. Let A ∈ ℘(W i ). Concerning (C 1 ), it holds, seeing that µ A i (w i ) = τ i (A, w i ) for every w i ∈ W i except when A ⊆ V i (ϕ) and w i = w A i . About (C 2 ), suppose V i (ϕ) ∩ (A × Λ i ) = ∅ and consider the following two cases: A ⊆ V i (ϕ) and A ⊆ V i (ϕ). In the former case, since

t i R i (V i (ϕ))u i , t i R i (A)u i . Hence, det i (A, t i , u i ) = ∅. Since A ⊆ V i (ϕ), for all w i ∈ W i , µ A i (w i ) = τ i (A, w i ). Thus, for all w i ∈ W i , τ i (A, w i ) ⊕ i µ i (A, w i ) = ∅. Consequently, i {τ i (A, w i ) ⊕ i µ i (A, w i ) : w i ∈ A} = ∅. Since det i (A, t i , u i ) = ∅, (C 2 ) holds. In the latter case, µ A i (w i ) = τ i (A, w i ) for every w i ∈ W i except when w i = w A i . Hence, i {τ i (A, w i ) ⊕ i µ i (A, w i ) : w i ∈ A} = τ i (A, w A i )⊕ i µ i (A, w A i ). Since µ A i (w A i ) = τ i (A, w A i )⊕ i det i (A, t i , u i ), (C 2 ) holds. As for (C 3 ), it holds, seeing that for all w i ∈ W i , if w i ∈ A and w i ∈ V i (ϕ) then µ A i (w i ) = τ i (A, w i ). Claim 6.17 (V 1 , V 2 ) is a (W 1 , W 2 , R 1 , R 2 )-valuation.
Proof. The proof that for all i ∈ {1, 2}, V i satisfies the conditions for ⊥, ¬ and ∨ is as expected. The proof that for all i ∈ {1, 2}, V i satisfies the condition for [•] being a simple application of Claims 6.15 and 6.16, it is left as an exercise for the reader. Claim 6.18 is an immediate consequence of Claims 6.15 and 6.16.

Claim 6.18 (f 1 , f 2 ) is a bounded morphism from (W 1 , W 2 , R 1 , R 2 , V 1 , V 2 ) to (W 1 , W 2 , R 1 , R 2 , V 1 , V 2 ).
Here finishes the proof of Proposition 6.11. Proposition 6.19 Let (W 1 , W 2 , R 1 , R 2 ) be a paraconjunctive frame of indiscernibility. There exists a conjunctive frame of indiscernibility

(W 1 , W 2 , R 1 , R 2 ) and a couple (f 1 , f 2 ) of surjective functions f 1 : W 1 -→ W 1 and f 2 : W 2 -→ W 2 such that for all (W 1 , W 2 , R 1 , R 2 )-valuations (V 1 , V 2 ), there exists a (W 1 , W 2 , R 1 , R 2 )-valuation (V 1 , V 2 ) such that (f 1 , f 2 ) is a bounded morphism from (W 1 , W 2 , R 1 , R 2 , V 1 , V 2 ) to (W 1 , W 2 , R 1 , R 2 , V 1 , V 2 ).
Proof. For all i ∈ {1, 2}, let

• det i : ℘(W i ) × W i × W i -→ ℘(W i ) be such that for all A ∈ ℘(W i ) and for all t i , u i ∈ W i , det(A, t i , u i ) = [t i ] Ri(A) ⊕ i [u i ] Ri(A) where [t i ] Ri(A) and [u i ] Ri(A)
are the equivalence classes of t i and u i modulo R i (A) [START_REF] Gargov | Modal environment for Boolean speculations[END_REF] . Now, the rest of the proof is similar to the corresponding rest of the proof of Proposition 6.11, the main difference being that one has to verify here that the considered frames are frames of indiscernibility, an exercise that we leave for the reader. 

A short case study: social epistemic logic

Formalizing epistemic reasoning in social networks, Seligman et al. [28] introduce relational structures of the form (S, A, ≡, ) such as the ones considered in our introduction. They also introduce a modal language L SEL -the language of social epistemic logic -consisting of one type of formulas: state-agent formulas -to be interpreted by sets of state-agent couples. Such formulas (typically denoted ϕ, ψ, etc) are constructed over the Boolean connectives and the modal connectives K and F as follows:

• ϕ ::= p | ⊥ | ¬ϕ | (ϕ ∨ ψ) | Kϕ | F ϕ,
p ranging over a countably infinite set of atomic formulas [START_REF] Kracht | Tools and Techniques in Modal Logic[END_REF] . The formula Kϕ (read "I know that ϕ holds") is true in a state-agent couple (s, a) of some model if the formula ϕ is true in every state-agent couple (t, a) such that s ≡ a t whereas the formula F ϕ ("for all my friends, ϕ holds") is true in a state-agent couple (s, a) of some model if the formula ϕ is true in every state-agent couple (s, b) such that a s b. See [3,27] and [10, Chapter 5].

In the relational structures of the form (S, A, ≡, ) considered in our introduction, assuming that ≡ is also a function associating an equivalence relation ≡ B on S to every B ∈ ℘(A) in such a way that for all B ∈ ℘(A), ≡ B = {≡ a : a ∈ B} and is also a function associating a binary relation T on A to every T ∈ ℘(S) in such a way that for all T ∈ ℘(S), T = { s : s ∈ T }, the language defined in Section 2 can be interpreted as explained in Section 3. A L SEL -formula ϕ is said to be L PML -definable in a class C of frames if there exists ϕ ∈ L PML such that for all C-frames (S, A, ≡, ), (S, A, ≡, ) |= ϕ (in the sense of [28]) if and only if (S, A, ≡, ) |= ϕ (in the sense of Section 3). A L PML -formula ϕ is said to be L SEL -definable in a class C of frames if there exists ϕ ∈ L SEL such that for all C-frames (S, A, ≡, ), (S, A, ≡, ) |= ϕ (in the sense of Section 3) if and only if (S, A, ≡, ) |= ϕ (in the sense of [28]).

Let C 0 be the class of all frames (S, A, ≡, ) such that for all a ∈ A, ≡ a is an equivalence relation and for all s ∈ S, s is irreflexive and symmetric [START_REF] Liu | Reasoning about belief, evidence and trust in a multi-agent setting[END_REF] . In a C 0 -frame (S, A, ≡, ), for all a, b ∈ A, we say that a and b are strong friends if for all s ∈ S, a s b. In a C 0 -frame (S, A, ≡, ), for all a ∈ A, we say that a is aware of her friends if for all s, t ∈ S and for all b ∈ A, if s ≡ a t then a s b if and only if a t b. One may easily verify that for all C 0 -frames (S, A, ≡, ),

• (S, A, ≡, ) |= [ 1 ] 2 ⊥ 2 if and only if no agent has strong friends,

• (S, A, ≡, ) |= 1 2 2 if and only if every agent has strong friends,

• (S, A, ≡, ) |= p 2 ∧ 2 p 1 2 q 2 → 2 p 2 1 p 1 2 q 2 if and only if every agent is aware of her friends.

Moreover, the elementary conditions "no agent has strong friends", "every agent has strong friends" and "every agent is aware of her friends" correspond to no L SEL -formula in C 0 [START_REF] Liu | Logical dynamics of belief change in the community[END_REF] . Hence,

Proposition 7.1 The L PML -formulas [ 1 ] 2 ⊥ 2 , 1 2 2 and p 2 ∧ 2 p 1 2 q 2 → 2 p 2 1 p 1 2 q 2 are not L SEL -definable in C 0 .
Problem 7.2 We do not know if there exists L SEL -formulas which are not L PML -definable in C 0 .

Conclusion

What has been done in this paper? Within the context of a two-typed parametrized modal language, we have defined a PML as a couple whose components are sets of formulas containing, in their respective types, all propositional tautologies and closed, in their respective types, under modus ponens and uniform substitution. Assuming the normality condition, these components also contain the distribution axiom and are closed under the generalization rule. We have axiomatically introduced different two-typed PMLs and we have given the proofs of their completeness with respect to appropriate classes of relational structures by means of an adaptation of the [START_REF] Liu | Reasoning about belief, evidence and trust in a multi-agent setting[END_REF] Although the choice of reflexive, symmetric and transitive relations between states for the epistemic modalities is standard, the choice of irreflexive and symmetric relations between agents for the friendship modalities is debatable. In this paper, we simply follow Seligman et al. [28] in their assumptions about the friendship modalities. [START_REF] Liu | Logical dynamics of belief change in the community[END_REF] For instance, in order to show that the elementary conditions "no agent has strong friends" and "every agent has strong friends" correspond to no L SEL -formula in C 0 , it suffices to consider the frames (S , A , ≡ , ordinary canonical model construction. The operation of intersection -which is used in conjunctive frames for the interpretation of the modalities -being not modally definable, these proofs of completeness are not so obvious when the considered PMLs are paraconjunctive.

What challenges remain? Much of this paper revolves around one goal: the definition of a modal language interpreted over relational structures including different types of entities as well as different kinds of relationships between them. As far as we are aware, the modal languages realizing that goal are scarce, even if the first ones were proposed about 25 years ago within the context of spatial logics and arrow logics [16,26,34]. Therefore, much remains to be done. For instance,

• to investigate the computability of the membership problem in PMLs (filtration method, tableaux-based approach, etc),

• to develop the model theory of PMLs (bisimulations, saturated models, etc),

• to construct the duality theory of PMLs (Boolean algebras with operators, general frames, etc),

• to elaborate the correspondence theory of PMLs (Chagrova's Theorem, Sahlqvist Correspondence Theorem, etc),

• to show how a multi-typed parametrized modal language can be used for solving the formalization problems facing those who have to take into account relationships such as the following ones: "trusts", "is a friend of", etc.

Other avenues of research might consist in considering that frames are 4-tuples of the form (W 1 , W 2 , τ 1 , τ 2 ) where for all i ∈ {1, 2}, W i is a nonempty set and τ i : ℘(W i ) -→ ℘(℘(W i )) is such that for all i ∈ {1, 2} and for all A ∈ ℘(W i ), τ i (A) is a topology on W i . In that case, a valuation on a frame (W 1 , W 2 , τ 1 , τ 2 ) will be a couple (V 1 , V 2 ) of functions V 1 : L 1 -→ ℘(W 1 ) and V 2 : L 2 -→ ℘(W 2 ) such that for all i ∈ {1, 2},

• V i ([ϕ]ψ) = {s i ∈ W i : ∃O i ∈ τ i (V i (ϕ)) (s i ∈ O i & O i ⊆ V i (ψ))},
among other conditions. As a result, V i ( ϕ ψ) = {s i ∈ W i :

∀O i ∈ τ i (V i (ϕ)) (s i ∈ O i ⇒ O i ∩ V i (ψ) = ∅)}.
Further investigations are needed for obtaining the PML that will completely axiomatize the validities thus defined.

Example 3 . 1

 31 Let Ob be a nonempty set of objects, At be a nonempty set of attributes, Val be a nonempty set of values and m : Ob×At -→ ℘(Val). Systems such as the 4-tuple (Ob, At, Val, m) have been introduced and developed by Or lowska and Pawlak within the context of analysis of data and representation of nondeterministic information [18,20,21,23]. In (Ob, At, Val, m), the objects o and o are equivalent for the attribute a if m(o, a) = m(o , a) whereas the attributes a and a are equivalent for the object o if m(o, a) = m(o, a ).

Lemma 5 .

 5 3 is an immediate consequence of Lemma 4.3. Lemma 5.3 For all i ∈ {1, 2} and for all i-formulas ϕ, ψ, ϕ = ψ if and only

Lemma 5 . 4 (

 54 Truth Lemma: the general case) The general canonical model for (L 1 , L 2 ) is a model.

Proposition 5 .

 5 5 is an immediate consequence of Lemmas 4.3, 5.1 and 5.4. Proposition 5.5 (K 1 , K 2 ) is complete with respect to the class of all frames. Proposition 5.6 is an immediate consequence of Lemmas 4.3, 5.2 and 5.4. Proposition 5.6 (Equiv g 1 , Equiv g 2 ) is complete with respect to the class of all frames of indiscernibility.

Lemma 6 . 8 (

 68 Truth Lemma: the paraconjunctive case) The paraconjunctive canonical model for (L 1 , L 2 ) determined by (s 1 , s 2 ) is a model.

  ) and (S , A , ≡ , ) where S = {1}, A = {a, b, c, d}, 1 = {(a, b), (b, a), (c, d), (d, c)}, S = {2}, A = {a, b, c, d} and 2 = {(a, c), (b, d), (c, a), (d, b)}.Let (S, A, ≡, ) be their disjoint union. By induction on ϕ ∈ L SEL , one may easily verify that (S, A, ≡, ) |= ϕ if and only if (S , A , ≡ , ) |= ϕ and (S , A , ≡ , ) |= ϕ: a contradiction with the obvious fact that no agent has strong friends in (S, A, ≡, ) whereas every agent has strong friends both in (S , A , ≡ , ) and in (S , A , ≡ , ).

Table 1

 1 with respect to a class C of frames if for all i ∈ {1, 2} and for all i-formulas ϕ, if C |= ϕ then ϕ ∈ L i . The proofs of the soundness statements expressed in Proposition 4.5 are as expected. In Table1, the PMLs listed in the left column are sound with respect to the corresponding classes of frames listed in the right column.

	Proposition 4.5 PMLs	Classes of frames
	(K 1 , K 2 ) (Equiv g 1 , Equiv g 2 )	All frames All frames of indiscernibility
	(ParCon 1 , ParCon 2 )	All paraconjunctive frames
		All preconjunctive frames
		All conjunctive frames
	(Equiv p 1 , Equiv p 2 )	All paraconjunctive frames of indiscernibility
		All preconjunctive frames of indiscernibility
		All conjunctive frames of indiscernibility

  Proposition 6.20 (ParCon 1 , ParCon 2 ) is complete with respect to the class of all preconjunctive frames and the class of all conjunctive frames. Equiv p 2 ) is complete with respect to the class of all preconjunctive frames of indiscernibility and the class of all conjunctive frames of indiscernibility.

	Proposition 6.20 is an immediate consequence of Propositions 3.2, 3.13, 6.9 and
	6.11.
	Proposition 6.21 is an immediate consequence of Propositions 3.2, 3.13, 6.10
	and 6.19.
	Proposition 6.21 (Equiv p 1 ,
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See[START_REF] Ben-Naim | Formalization of cognitive-agent systems, trust, and emotions[END_REF][START_REF] Liu | Reasoning about belief, evidence and trust in a multi-agent setting[END_REF][START_REF] Perrotin | Public group announcements and trust in doxastic logic[END_REF] and[START_REF] Liu | Logical dynamics of belief change in the community[END_REF][START_REF] Pedersen | Modal logics and group polarization[END_REF][START_REF] Seligman | Logic in the community[END_REF] for examples of situations in which one would like to use relationships such as "trusts", "is a friend of", etc.

See Propositions

5.5, 5.6, 6.9, 6.10, 6.20, and 6.21 for the main completeness results of the paper. A sketch of an alternative proof of Proposition 6.11 is included in the Appendix. The proofs of immediate consequences of the definitions are not given.

For all sets At of attributes, the above-defined binary relation R 1 (At) between objects is exactly the strong indiscernibility relation considered by Demri, Or lowska and Vakarelov[START_REF] Demri | Logical analysis of indiscernibility[END_REF][START_REF] Vakarelov | Information systems, similarity relations and modal logics[END_REF][START_REF] Vakarelov | A modal characterization of indiscernibility and similarity relations in Pawlak's information systems[END_REF]: two objects are in the relation R 1 (At) if and only if they have the same values for all attributes in At.

The problem with paraconjunctive PMLs is that the operation of intersection -which is used in conjunctive frames for the interpretation of the modalities -is not modally definable. See[START_REF] Ågotnes | Resolving distributed knowledge[END_REF] and[START_REF] Passy | An essay in combinatory dynamic logic[END_REF] for investigations about the intersection of modalities in epistemic logics and dynamic logics.

Here, we are using the closure condition (RI - i ) with m = 0 and n = 1.

Notice that for all A ∈ ℘(W i ) and for all t i , u i ∈ W i , det(A, t i , u i ) = ∅ if and only if t i R i (A)u i .

Indeed, the modal language introduced by Seligman et al. contains as well nominals used to give names to agents. In this section, however, we only consider its nominal-free fragment.
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• for all (w i , ω i ) ∈ {(v i , ν i )} ∩ (A × Λ i ), τ i (A, w i ) ⊕ i µ i (A, w i ) = ∅.

Consequently, for all A ∈ ℘(W i ),

Claim 6.13 is an immediate consequence of Claim 6.12.

Claim 6.14 f 1 and f 2 are surjective.

Notice that for all i ∈ {1, 2} and for all ϕ

Claim 6.15 For all (t i , τ i ), (u i , µ i ) ∈ W i and for all i-formulas ϕ, if

For the sake of the contradiction, suppose not 16 For all (t i , τ i ) ∈ W i , for all u i ∈ W i and for all i-formulas ϕ, if

For all A ∈ ℘(W i ), let µ A i : W i -→ ℘(W i ) be defined as follows:

Appendix

Alternative proof of Proposition 6.11. The proof of Proposition 6.11 included in the body of the paper may seem unnecessarily complicated. Its good point is that it can be easily converted into a proof of Proposition 6.19. Now, we present the sketch of a simpler proof of Proposition 6.11 that, unfortunately, does not seem to be easily convertible into a proof of Proposition 6.19. For all i ∈ {1, 2}, let Λ i be the set of all

2 ) be the 4-tuple where for all i ∈ {1, 2},

The reader may easily verify that

• for all i ∈ {1, 2} and for all

• the 4-tuple (W 1 , W 2 , R 1 , R 2 ) is a conjunctive frame.

Let

The reader may easily verify that f 1 and f

Notice that for all i ∈ {1, 2} and for all ϕ ∈ L i , V i (ϕ) = V i (ϕ) × Λ i . Finally, the reader may easily verify that • for all (t i , τ i ), (u i , µ i ) ∈ W i and for all i-formulas ϕ, if (t i , τ i )R i (V i (ϕ))(u i , µ i ) then t i R i (V i (ϕ))u i ,

• for all (t i , τ i ) ∈ W i , for all u i ∈ W i and for all i-formulas ϕ, if t i R i (V i (ϕ))u i then there exists µ i ∈ Λ i such that (t i , τ i )R i (V i (ϕ))(u i , µ i ),