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The game-theoretic analysis of Energy Efficiency (EE) game is known to be difficult due to the non-convexity of EE-utility, especially for tracing the Nash Equilibrium in MIMO system. In this paper, The existence and the uniqueness of the Nash Equilibrium (NE) is affirmed for a MIMO multiple access channel (MAC) communication system and a bisection search algorithm is designed to find this unique NE. Despite being sub-optimal for deploying approximate best response, the policy found by the proposed algorithm is shown to be more efficient than the classical allocation techniques. Simulation shows that even the policy found by proposed algorithm might not be the exact NE of the game, the deviation w.r.t. to the exact NE is small and the resulted policy actually Pareto-dominates the unique NE of the game.

Introduction

Energy Efficiency (EE) is one of key performance of the next generation network system (5G and beyond) due to the exponential increase of connected devices. However, a proportional increasing of the power resulted by the goal of increasing the transmission rate 1000 times than 4G will lead to an unimaginable energy demand. Therefore energy-efficient design of the wireless system draws both the attention of industrial and academic researchers. One of the pioneer works of studying the maximization of EE in MIMO system is [START_REF] Belmega | Energy-Efficient Precoding for Multiple-Antenna Terminals[END_REF]. In [START_REF] Belmega | Energy-Efficient Precoding for Multiple-Antenna Terminals[END_REF], the optimal precoding scheme is studied and divided into different cases with different assumptions on the systems. Till now the optimal precoding matrix for general condition is merely conjectured and unproved. Then It is later widely realized that the problem of EE maximization actually belongs to the category of fractional programming. Techniques such as Dinkelbach's algorithm (see [START_REF] Dinkelbach | On nonlinear fractional programming[END_REF]) is used to solve EE maximization in [START_REF] Raghavendra | An energy-efficient water-filling algorithm for OFDM systems[END_REF][START_REF] Li | Fixed-Point Algorithms for Energy-Efficient Power Allocation in Spectrum-Sharing Wireless Networks[END_REF]. The main difficulty of EE maximization OP is usually due to the non-convexity of the fractional structure of the EE function. The situation is even worse involving the decentralized EE problems or EE games. The main difficulty lies in the traceability of NE due to the high non-convexity of EE-type utility function. To the best knowledge of authors, NE is rarely considered and studied in EE games, especially for MIMO System. In [START_REF] Zappone | Energy-Aware Competitive Power Control in Relay-Assisted Interference Wireless Networks[END_REF], it is shown that there always exists an unique NE for scalar power allocation game in a relay-assisted MIMO systems due to the standard property of the best response dynamics. Similar results will be given in a MAC-MIMO system latter.

The contribution of this paper is twofold: 1) we first extend the state-of-theart work from a scalar power situation to a more general situation where each user is allowed to choose its covariance matrix to maximize its individual EE. The existence and uniqueness of the NE is proved under some assumptions. 2) An algorithm is proposed to to find the unique NE of this MIMO-MAC game. When the number of antennas of transmitter is equal the one of receiver, proposed algorithm leads to exact NE. Otherwise it only leads to approximated solution for replacing the exact best response dynamic by its linear approximation.

Notations: (•) H and (•) † denote matrix transpose and Moore-Penrose inverse respectively. I N stands for identity matrix of size N . det (•) and Tr (•) denote the determinant and the trace of a matrix respectively. Denote the natural number set inferior or equal than N as [N ] {1, . . . , N }.

System model

Consider a multiple access channel (MAC) with one base station (BS) and K users (players) to be served. BS is equipped with N r receive antennas and each user terminal is equipped with N t transmit antennas. We assume a block fading channel where the realization of channel remains a constant during the coherence time of transmission and randomly generated according to some statistic distribution from period to period. The received signal at BS is given by:

y = K k=1 H k x k + z, (1) 
where H k ∈ C Nr×Nt is the channel transmit matrix of k-th user. Each entry is assumed to be i.i.d. complex Gaussian distributed according to CN (0, 1).

x k = (x k,1 , . . . , x k,Nt )
T is the transmit symbol of k-th user and z is the noise observed by the receiver with complex Gaussian distribution CN 0, σ 2 I Nr . For the sake of simplicity, we assume that single user decoding is implemented for each user. Then the capacity achieved by the k-th user is

R k = log det σ 2 I Nr + K j=1 H j Q j H H j det σ 2 I Nr + K j =k H j Q j H H j , (2) 
where

Q k = E x k x H k ∈ C
Nt×Nt is the covariance matrix of symbol x k and P c > 0 is the power dissipated in transmitter's circuit to operate the devices. It is reasonable to assume that each user has perfect knowledge about its own channel, e.g., through downlink pilot training. Therefore user k is able to perform the singular value decomposition (SVD) of its own channel H k and its covariance matrix

Q k : H k = U k Λ k V H k and Q k = W k P k W H k respectively.
To simplify the problem, we assume that user k always adapts its covariance matrix to H k , i.e., choosing W k = V k . P k is a diagonal matrix with P k = diag (p k ) = diag (p k1 , . . . , p kNt ) where we use diag (•) to generate a diagonal matrix from a vector or vice versa. Thus user k's only legal action is represented by p k or P k and the action set of k-th user is

P k = p k Nt i=1 p ki ≤ P k , p ki ≥ 0 with P k is power budget of k-th user. Further more, we denote p = p k , p -k with p -k p 1 , . . . , p k-1 , p k+1 . . . , p K ∈ P -k and P -k P 1 ו • •×P k-1 ×P k+1 ו • •×P K .
In this paper energy efficiency defined as the ratio between a benefit function and the power consumed by producing it has the following expression for user k after some simplifications:

u k (P k , P -k ) = log det(σ 2 I Nr + K j=1 Uj Λj Pj Λ H j U H j ) det(σ 2 I Nr + K j =k Uj Λj Pj Λ H j U H j ) Tr (P k ) + P c (3) 
To this end, the MIMO MAC EE game is thus given by the following strategic form in triplet:

G = K, (P k ) k∈K , (u k ) k∈K (4) 

Main Results

Some important properties satisfied by individual utility function are resumed in the following proposition: Proof. The proof is omitted here for lack of space. For more details, see [START_REF] Zou | Energy-Efficient MIMO Multiuser Systems: Nash Equilibrium Analysis[END_REF][START_REF] Zappone | Energy efficiency in wireless networks via fractional programming theory[END_REF].

Proposition 1. R k is
Before stating the best response dynamics of the game, we define the following boundary of set P k indicated by an index subset E ⊂ [N t ] : P k [E] {p k ∈ P k , p ki = 0 for i ∈ E} and the non-positive index set for a given action P k :

I (P k ) {i ∈ [N t ] s.t. p ki ≤ 0}.
We having the following proposition confirming the existence of NE in this game: Proposition 2. For any given P -k and provided that the power budget P k is sufficiently large, denote the unique solution of the following equation as

P * k : diag Λ H k Λ k P k Λ H k + F k + σ 2 I r -1 Λ k = u k (P k , P -k ) I Nt (5) 
with F k = j =k S j,k P j S H j,k is the interference matrix of k-th user with S j,k = U H k U j Λ j . Then the BR of P k w.r.t. P -k is standard and converges to the unique NE admitted by game (4); The BR is the unique solution of (5) restricted to the boundary of P k indicated by I (P * k ). Proof. The proof is omitted here for lack of space. For more details, see [START_REF] Zou | Energy-Efficient MIMO Multiuser Systems: Nash Equilibrium Analysis[END_REF][START_REF] Zappone | Energy efficiency in wireless networks via fractional programming theory[END_REF].

Algorithm for finding NE

Prop. 2 actually provides an approach for us to find the NE of the game (4). One can easily deduce an iterative equation according to [START_REF] Zhang | Distributed Power Control with Partial Channel State Information: Performance Characterization and Design[END_REF]:

diag Λ H k Λ k P (t) k Λ H k + F (t-1) k + σ 2 I r -1 Λ k = u k P (t-1) k , P (t-1) -k I Nt (6)
However, due to Prop. 2, this stationary point might not be in the feasible action set. Nevertheless, one can design the following basic algorithm to find NE of the game (4) based on Prop. 2 summarized in alg. 1. However, alg. 1 is not a satisfatory way to find the NE of the game. More precisely, to find the BR for given P -k , one actually need to solve an optimization problem. However, if h = U (P -k ) = max P k ∈P k u k (P k , P -k ) is known as a priori information, (6) can be transformed into following equation :

Algorithm 1 Basic Algorithm for finding NE of MAC-MIMO EE game

Initialization: P (0) k = 1 N t IN t ,
diag Λ H k Λ k P (t) k Λ H k + F (t-1) k + σ 2 I r -1 Λ k = hI Nt (7) 
Introducing an auxiliary parameter h, one obtains an iterative equation of P k . Without loss of generality, we assume that the solution of ( 6) belongs to the feasible action set for given P -k . Otherwise, similar analysis can applied for P k but restricted on a boundary given by Prop. 2. For the sake of simplicity, we omit the discussion here and restrict ourselves to the situation where the BR is strictly included in the interior of the feasible action set. Therefore for all i ∈ [N t ], there exists p ki such that individual utility function u k (P k , P -k ) is an increasing function in (0, p ki ) and a decreasing function in (p ki , +∞) with respect to p ki , where p ki is the i-th component of user k's BR for given P -k . Then u k is also an increasing function in (0, U (P -k )) and a decreasing function in (U (P -k ) , +∞) w.r.t. parameter h. In other words, to find P k = BR (P -k ), it is sufficient to find U (P -k ) by a bisection search due to the special monotonicity of the utility function. However, it is worth mentioning that it is still difficult to directly find the solution of iterative equation [START_REF] Debreu | A social equilibrium existence theorem[END_REF]. Because this solution is actually implicitly given. We would like to further simplify [START_REF] Debreu | A social equilibrium existence theorem[END_REF] to facilitate the calculation of BR or NE. To start with, we assume that N t = N r . Firstly, we remove the diagonal operator of LHS of ( 7). Therefore we have:

P (t) k = 1 h I Nt -Λ -1 k F (t-1) k + σ 2 I Nr Λ -1 k (8) 
If N t > N r or N t < N r then Λ k is not directly invertible, then we should consider the pseudo-inverse matrix of Λ k . Without loss of generality, we assume that N t > N r , denoting the right pseudo-inverse of Λ k as Λ † k , one thus obtain:

Λ H k Λ k P (t) k Λ H k + F (t-1) k + σ 2 I r -1 Λ k = hI Nt Λ k P (t) k Λ H k + F (t-1) k + σ 2 I r -1 = h Λ † k H Λ † k (9) 
However, it is generally impossible to have Λ † k Λ k = I Nt . Thus the equality does not always holds when we multiply Λ † k on left and Λ † k H on the right on both sides of the equation. Nevertheless, this operation will yield a linear approximation of the BR dynamics:

P (t) k = Λ † k Λ † k H Λ † k -1 Λ † k H h -Λ † k F (t-1) k + σ 2 I Nr Λ † k H (10) 
Similarly, if N t < N r we can obtain exactly same iterative equation as [START_REF] Raghavendra | An energy-efficient water-filling algorithm for OFDM systems[END_REF]. This type of dynamics belongs to the so-called ε-approximate best response. To this end, we obtain a sub-optimal algorithm summarized in alg. 2 by using the iterative equation deduced in [START_REF] Raghavendra | An energy-efficient water-filling algorithm for OFDM systems[END_REF] instead of using [START_REF] Belmega | Energy-Efficient Precoding for Multiple-Antenna Terminals[END_REF].

Numeric Results

The goal of this part is to show the performance of the proposed algorithms. Notice if N t = N r , (10) degenerates to [START_REF] Dinkelbach | On nonlinear fractional programming[END_REF] probable situation is considered where N t < N r meaning that the number of antennas in user terminal is less than the one in base station. The discussion in Sec. 4 shows that the proposed suboptimal algorithm is actually suboptimal due to the usage of ε-approximate best response. For numeric demonstration, we choose N t = 2 < N r = 4. The performance of alg. 2 is illustrated in Fig. 3. The sub-optimality is clearly demonstrated in this figure. However, the resulted policy actually Pareto-dominates the exact NE found by alg. 1 and the dispersion is relatively small in terms of average performance. This remark entails that even the policy found by alg. 2 is not the NE of the game in its sub-optimal region however its performance does slightly outperforms the exact NE. 

Conclusions

In this paper, a game where the individual utility function is the energy efficiency in a MIMO multiple access channel system is considered. The existence and the uniqueness of Nash Equilibrium is proved and an exact algorithm and a suboptimal algorithm is proposed to find the NE of this game. Simulation results show that performance under NE found by proposed algorithms is always better than uniform power allocation policy for both inside or outside the range covered by the main proposition of the paper. Besides, our sub-optimal algorithm by deploying an ε-approximate best response yields surprisingly a policy Paretodominates the exact NE of the game. Other techniques such as pricing might be useful to improve the efficiency of the overall system. The situation where each user is allowed to freely choose its covariance matrix merely constrained to the maximum power is the natural extension of this paper. Moreover, the discussion over the effect of successive interference cancellation and multiple carrier seems to be complicated and serve as the challenge of the future works.
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 2 Fig. 2. Performance under NE and UPA as function of the power budget of user with Nt = Nr = 2 for 2-user situation. There are two different regions: one corresponds to Prop. 2. In the region uncovered by Prop. 2, proposed algorithm still dominates UPA.

  which conserves the optimality of Energy Efficiency under NE and uniform power allocation with Nt = Nr = 2 for 2-user situation. Policy found by our algorithms outperforms than UPA policy.
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  Performance achieved by alg. 1 (NE) and alg. 2 (Approximate NE) and UPA with Nt = 2 and Nr = 4 for 2-user situation. Approximated solution found by alg. 2 is very near to the exact NE and Pareto-dominates it. Moreover, two policies found by proposed algorithms both outperform UPA.
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Algorithm 2 Bisection Search Algorithm for find the NE of MAC-MIMO EE game

Initialization:

N t IN t , ∀k. choose T , 1 and 2 For t = 1 to T , do For k = 1 to K, do

and hR = min hmax, hM + 1

2

Compute P k (hi) using [START_REF] Raghavendra | An energy-efficient water-filling algorithm for OFDM systems[END_REF]

k by [START_REF] Raghavendra | An energy-efficient water-filling algorithm for OFDM systems[END_REF] 

best response. For this situation, we choose N t = N = 2 with K = 2 users. A sufficient large power budget is chosen such that the BR is included in the feasible action set P k = 10mW for ∀k ∈ {1, 2} and the circuit power is P c = 1mW . The error tolerated for alg. 2 is 1 = 2 = 0.001. In Fig. 1, the achievable utility region, the average performance under NE found by alg. 2 and the averaged performance achieved by uniform power allocation (UPA) are depicted. All results are averaged over 1000 randomly generated channel samples. It is observed that the performance achieved by deploying uniform power allocation (UPA) is Pareto-dominated by NE which can be found by alg. 2. Furthermore, the NE found by alg. 2 is close to the Pareto frontier achieved by some centralized algorithms which suggest the efficiency using alg. 2 is higher than UPA.

Moreover, define the social welfare for a given action profile as w (p) = k∈K u k p k , p -k . Then the average social welfare as function of the power budget of user in Fig. 2 respectively. There are two different regions for social welfare. In the first region where the power budget is sufficiently large, the NE found by our proposed algorithm is independent of the power budget while the performance of UPA is decreasing w.r.t. the increase of the power budget. In the second region where Prop. 2 is no more valid in this region. Nevertheless, the performance achieved by our algorithm is still better than UPA. Then a more