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Universitaires de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS),
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Introduction: Neuroendocrine cells release Catestatin (CST) from

Chromogranin A (CgA) to regulate stress responses. As regards COVID-19

patients (COVID+) requiring oxygen supply, to date nobody has studied CST as

a potential mediator in the regulation of immunity.

Patients & Methods: Admission plasma CST and CgA - its precursor -

concentrations were measured (ELISA test) in 73 COVID+ and 27 controls.

Relationships with demographics, comorbidities, disease severity and outcomes

were analysed (Mann-Whitney, Spearman correlation tests, ROC curves).

Results: Among COVID+, 49 required ICU-admission (COVID+ICU+) and 24

standard hospitalization (COVID+ICU-). Controls were either healthy staff (COVID-

ICU-, n=11) or COVID-ICU+ patients (n=16). Median plasma CST were higher in

COVID+ than in controls (1.6 [1.02; 3.79] vs 0.87 [0.59; 2.21] ng/mL, p<0.03), with

no difference between COVID+ and COVID-ICU+. There was no difference

between groups in either CgA or CST/CgA ratios, but these parameters were

lower in healthy controls (p<0.01). CST did not correlate with either hypoxia- or

usual inflammation-related parameters. In-hospital mortality was similar whether

COVID+ or not, but COVID+ had longer oxygen support and more complications
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(p<0.03). CST concentrations and the CST/CgA ratio were associated with in-

hospital mortality (p<0.01) in COVID+, whereas CgA was not. CgA correlated with

care-related infections (p<0.001).

Conclusion: Respiratory COVID patients release significant amounts of CST in

the plasma making this protein widely available for the neural regulation of

immunity. If confirmed prospectively, plasma CST will reliably help in predicting

in-hospital mortality, whereas CgA will facilitate the detection of patients prone

to care-related infections.
KEYWORDS

Innate immunity, COVID, Catestatin, Chromogranin A, hypoxia, critically ill,
nosocomial disease
Introduction

Catestatin (CST, human CgA352-372) is naturally produced

from chromogranin A (CgA) in nervous, endocrine and immune

cells by the action of several proteolytic enzymes, such as

cathepsin L (1), plasmin (2, 3) and furin in addition to PC1/

PC2 prohormone convertases and thrombin (4). The

prohormone thiol protease (PTP) is also essential for CST

production (5, 6). CST is an endogenous inhibitor of the

nicotinic cholinergic receptor (6–8) with several biological

activities: modulation of inflammation (9, 10) - including

activation of polymorphonuclear white blood cells (PMNs)

(11) and of mast cells (12)-, antimicrobial activities (13, 14),

and homeostatic and metabolic regulations (15). CST, which

penetrates in several immune cells lines (12, 16), may also be

involved in the occurrence, amplification and/or regulation of

severe inflammatory conditions resembling those occurring

during COVID. Literature suggests CST be targeted for

treatment of inflammatory diseases (17). To date, plasma CST

concentrations have not been assessed in SARS-CoV-2 infection

(COVID-19) or in non-COVID intensive care unit (ICU)

patients with systemic inflammation. Recently, a publication

has reported that increased plasma concentration of its

precursor CgA predicts mortality in some COVID patients (18).

Clinical aspects of acute COVID-19 range unpredictably from

those of a mild flu-like disease to fatal multiple organ failure (19).

For example, pulmonary parenchymal injuries can progress from

acute lung injury to fatal acute respiratory distress syndrome in a

context of intractable inflammation even in the absence of

documented risk factors for COVID (20, 21). Whether serious

inflammatory aggravation after contamination is reliably

foreseeable for any given patient is not known. Pre-existing

cardiovascular and respiratory disorders, diabetes, obesity,

cancer and immune dysregulation (22, 23) worsen sensitivity to
02
the virus, and a negative outcome is often associated with

increased levels of C-reactive protein as well as with intractable

white blood cells activation in COVID (22). This includes an

imbalanced innate host response to the SARS-CoV-2 with an

aberrant activation of PMNs (23), and with unusually high release

of pro-inflammatory cytokines (24). A recently reported

comparison of circulatory levels of neutrophils secretory

proteins showed that defensin DEFA1 level is higher in severe

than inmild COVID patients (25, 26). Similar data were published

for the antimicrobial peptide LL-37 (26).

The present study was conducted on the hypothesis that the

CgA- derived antimicrobial peptide CST is involved in the

pathophysiology of the severe SARS-COVID-2-driven

inflammation for two reasons. Firstly, CgA–related peptides are

detected in the blood of patients suffering severe systemic

inflammation (27). Secondly, ex vivo CST significantly stimulates

the release by human PMNs of many innate-immunity-associated

factors, including S100 calciumbinding proteins (11). In our study,

we checked whether admission measurement of CST and its

precursor CgA might help clinicians in understanding and

assessing the risk of severe evolution in COVID among patients

admitted to an emergency department with acute respiratory

failure requiring immediate oxygen supply.

Materials and methods

The Ethical Committee of our institution approved this

study. All participants gave informed consent.
Definitions

Participants were classified COVID+ in the presence of a

clear diagnosis of COVID (i.e.: positive rt-PCR with suggestive
frontiersin.org
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CT-scan) and, conversely, COVID- in all other cases. Controls

were always COVID-, but were either healthy staff (therefore

called COVID-ICU-) or multiple organ failure patients requiring

ICU admission (COVID-ICU+).
Patients

We recruited non-vaccinated participants in the emergency

department during the first two surges of the COVID pandemic.

Inclusion criteria were age over 18 years, clinical features of

acute-onset respiratory disease (SpO2<90% in the absence of

oxygen supply), with a low dose CT-scan of the chest typical of

COVID, and nasal (or lower respiratory tract) swab with a rt-

PCR positive for SARS-CoV-2. Whether a patient needed a

transfer to the ICU was decided if hypoxemia persisted despite

15 L/min-nasal oxygen supply during 1h without relief of

respiratory failure. Conversely, if relieved by low inspired

fraction of oxygen, patients were admitted to the department

for infectious diseases. Exclusion criteria were interfering causes

for increased circulating CgA. Alternatively, controls were either

healthy members of staff (COVID-ICU-) or ICU-patients with

neither criteria for COVID, but at least one life-threatening

organ failure (COVID-ICU+).

We recorded many variables on admission and thereafter:

age, gender, body mass index (BMI), time from first symptom to

hospital admission, comorbidities (tobacco smoking, chronic

renal failure, diabetes, hypertension, diseases with active

immune suppression – i .e . : organ transplantat ion,

chemotherapy-induced neutropenia-, chronic liver failure). We

also assessed standard admission biological parameters:

biochemistry with arterial PaO2, PaO2/FiO2, lactate, and

inflammation parameters, such as admission and maximum

(3rd day) C-reactive protein, ferritin and haematology tests

(leucocytes counts and coagulation factors). Severity of ICU+

patients was defined with the SAPS II score (28). All patients

were prescribed oxygen supply. Organ support characteristics

are reported for ICU-patients: respiratory support (FiO2,

ventilation support, duration of support, care-related

infections), complications (pulmonary embolism, stroke, acute

circulatory failure), specific treatments (requirement for

norepinephrine, extracorporeal membrane oxygenation,

haemodialysis….). Finally, we measured outcome parameters

with attention paid to the occurrence of care-related infections,

and to mortality within the ICU and in-hospital.
SARS-CoV-2 detection

Respiratory samples (i) underwent extraction using the

eMAG®/eSTREAM® system (bioMérieux, Marcy l’Etoile,

France) followed by amplification on the LightCycler® 480

Instrument II (Roche Diagnostics, France) for the first wave,
Frontiers in Immunology 03
and (ii) were extracted and amplified on the Hologic Panther

Fusion® system for the second wave. We performed real-time

RT-PCR targeting the RdRp gene to test positivity for the SARS-

CoV2 virus. We used the Pasteur Institute multiplexed primers

and probe sets Flo2 and Flo4: CoV_IP2-12669Fw

ATGAGCTTAGTCCTGTTG and CoV_IP2-12759Rv

CTCCCTTTGTTGTGTTGT with probe CoV_IP2-12696Probe

(+) AGATGTCTTGTGCTGCCGGTA[5’]Hex[3’]BHQ-1;

CoV_IP4-14059Fw GGTAACTGGTATGATTTCG, and

CoV_IP4-14146Rv CTGGTCAAGGTTAATATAGG with

p r o b e C oV _ I P 4 - 1 4 0 8 4 P r o b e ( + ) TCATACAAA

CCACGCCAGG[5’]Fam[3’]BHQ-1. We used RNA copies

dilutions of the CoV_ IP transcript to assess equivalence

between cycle threshold values and quantitation in copies/

reaction for the CoV_IP4 target.

We performed diagnostic low-dose CT scans of the chest in

accordance with recommendations (29).
Dosages of chromogranins

At admission, we performed dosages of both CgA and CST

in the plasma using commercially available ELISA kits with the

manufacturer’s instructions (Biomatik, Kitchener, Ontario,

Canada). For CST, the minimum detection limit of the kit was

0.078 ng/mL and the detection range ranged from 0.312 ng/mL

to 20 ng/mL (kit EKC33038-96T). For CgA, the minimum

detection limit was 13.7 pg/mL and the detection ranged from

31.2 pg/mL to 2,000 pg/mL (EKU03179-96T). Samples were

prepared after a dilution of serum in PBS of 1/100 for CgA and

1/50 for CST. We performed each analysis in triplicate. We

calculated the amounts of both CST and CgA on basis of the

dilution used and with standard curves.
Statistical analysis

The statistical analyses included a descriptive section and an

analytical section. For categorical variables, the descriptive

analysis was performed giving counts and percentages; for

continuous variables giving medians and 1st - 3rd quartiles. We

tested distribution normality using the Shapiro–Wilk test.

Comparisons between categorical variables were performed

using the Chi-squared test or Fisher’s exact were expected

values in any of the cells of the contingency table were below

5. Dot Plot (Figure 2) was obtained by using GraphPad Prism

6 Software.

Comparisons between continuous and categorical variables

were performed using the Student’s t-test (or ANOVA) or

Wilcoxon’s test (or the Kruskall-Wallis test) in case of

heteroscedasticity or if the variable did not follow a normal

distribution. We tested the associations between two continuous

variables with the Spearman’s rank correlation rho.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.985472
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Schneider et al. 10.3389/fimmu.2022.985472
Receiver operating characteristic (ROC) curves were plotted

and the areas under the receiver operating characteristic curve

(AUC) were estimated with sensitivity, specificity, positive and

negative predictive values for the best cut-off estimated with the

Youden index. The significance level was set at 5%. Analyses

were performed with R 4.0.2 software.

Results

Study population characteristics

100 participants (36 women and 64 men) were included over

2 months in 2020; respiratory samples were COVID+ in 73

patients and COVID- in 27 controls (Figure 1). COVID-ICU+

(n=16) were mainly septic shock patients. Tables 1 and 2 present

the clinical features and hospital stay characteristics. Briefly, 36

women and 64 men were involved. Healthy controls were

significantly younger than both COVID+ICU+ patients and

COVID-ICU+ controls. 26% of the participants – but not

healthy controls - were obese (BMI > 30); the BMI was higher

in COVID+ patients than in controls (p<0.001). COVID+ICU+

patients were less severe than COVID-ICU+ controls according to

the SAPS II score (p<0.03). Comorbidities were significantly more

frequent in COVID+ and ICU+ patients. ICU+ COVID+ patients

had significantly less acute renal failure than did COVID- ICU+

(p<0.03). As indicated (Table 1), COVID+ patients had severe

hypoxemia with hyper-inflammatory profiles as compared with

healthy controls. However, we failed to detect any significant

correlation between (i) PaO2, the PaO2/FiO2 ratio or
Frontiers in Immunology 04
inflammatory parameters (CRP, ferritin, fibrinogen) and (ii)

CST or CgA (this in any or all groups of participants). As

expected, ICU+ patients required significant respiratory,

circulatory and renal support as compared with controls. Only

COVID+ICU+ patients were treated with steroids, and this after

CST and CgA initial assessment; the duration of mechanical

ventilation support was nevertheless three-times longer in

COVID+ ICU+ than in their controls (p<0.001).

Outcome issues appear in Table 2. ICU lengths of stay did not

differ between ICU patients whether COVID+ or not, but in

COVID+ICU- hospital length of stay was shorter than in COVID+

ICU+ patients (6.5 [2; 10] days vs 27 [17; 47], p<0.001). Death rates

were similar in ICU+ patients whether COVID+ or COVID-, with

no differences in withholding and withdrawing decisions.

Thromboembolic events were as frequent in COVID+ICU+ as in

COVID-ICU+; the ratios of care-related infections were balanced in

these two ICU-populations treated in parallel, by the same staff.

CgA and CST plasma concentrations

As indicated (Table 1 and Figure 2), COVID+ patients had

significantly higher admission plasma concentrations of CST

than COVID- participants (1.6 [1.02; 3.79] ng/mL vs 0.87 [0.59;

2.21] ng/mL, p= 0.027). In the global COVID- control study

population, the levels of CgA were not significantly different

between these two groups: 18.5 [12.9; 23.5] ng/mL vs 12.1 [9.0;

24.7] ng/mL, p=0.086). In fact, only healthy controls (COVID-

ICU-) had significantly lower levels of both these peptides

(p<0.001), with the other subgroups displaying comparable
FIGURE 1

Flow chart of the study. Study participants (n=100) were screened for participation during the first surge of the disease (March to May 2020)
among 547 patients admitted for COVID either to the emergency department or to the ICU. Informed consent for participation was obtained in
49 COVID+ ICU+ patients, and in 24 COVID+ICU- patients, which were then admitted to the infectious disease department. In parallel, 11
participants were recruited in our staff (as healthy controls, COVID-ICU-), and so were 16 COVID-ICU+ patients that were admitted for non-
COVID multiple organ failure requiring mechanical ventilation support.
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TABLE 1 Characteristics of the study population at inclusion. Bold values correspond to significative p value.

All partici-
pants
n = 100

COVID+ (n = 73) Controls (n = 27) p
value

ICU+
n = 49

ICU-
n = 24

COVID - ICU+(ICU
Controls)
n = 16

COVID - ICU-Healthy
Controls
n = 11

Age (years), median [IQR1;
IQR3]

70 [56; 78] 70 [63; 79] 77 [70; 86] 66 [59; 76] 36 [33; 45] <0.001

Gender, Male/Female (%) 64/36 35/14 11/13 10/6 8/3 0.178

BMI (kg/m2) median [IQR1;
IQR3]

27.2 [24.1; 30] 28 [25; 31] 27.9 [24.5;
31.1]

24.5 [22.1; 27.9] 23 [22.0; 23.5] <0.001

SAPS II median [IQR1;
IQR3]

45 [40; 58] 44 [37; 54] NR 54.5 [44.75; 65.5] NR <0.03

Comorbidities Chronic renal failure n (%) 12 (12.0) 3 (6.1) 4 (16.7) 5 (31.3) 0 (0.0) 0.027

Type II diabetes n (%) 30 (30.0) 12 (24.5) 10 (41.7) 8 (50.0) 0 (0.0) 0.013

Hypertension n (%) 44 (44.0) 22 (44.9) 15 (62.5) 7 (43.8) 0 (0.0) 0.004

Active smoking n (%) 15 (15.0) 3 (6.1) 2 (8.3) 5 (31.3) 5 (45.5) 0.002

Chronic heart disease n (%) 30 (30.0) 12 (24.5) 11 (45.8) 7 (43.8) 0 (0.0) 0.014

Immune suppression n (%) 14 (14.1) 8 (16.3) 1 (34.4) 5 (31.3) 0 (0.0) 0.064

Cancer (< 5 years) n (%) 13 (13.1) 5 (10.2) 1 (4.4) 7 (43.8) 0 (0.0) 0.003

Liver cirrhosis (n, %) 6 (6.1) 1 (2.0) 1 (4.4) 4 (25.0) 0 (0.0) 0.021

Biological
parameters

rt-PCR (log copies/reaction) 5.33 [4.19;
6.30]

4.88 [4.03;
6.07]

5.67 [5.1;
6.62]

0 0 0.192

Glycaemia (g/L) 1.25 [1.00;
1.55]

1.44 [1.14;
2.14]

1.04 [0.9;
1.3] &

1.23 [1.14; 1.37] 0.84 [0.77; 0.94]# <0.001

C- reactive protein (mg/L) 110 [50.0;
180.9]

153.3 [88.0;
197.6]

48.0 [20.0;
75.0]

57.4 [31.0; 104.3] NR <0.001

Maximal C- reactive protein
(mg/L)

188.6 [102.7;
272.7]

222.9 [120.9;
282.8]

na 102.4 [57.8; 176.1] NR <0.001

High sensitivity Ic Troponin
(ng/L)

58.3 [28.7;
232.0]

52.7 [20.0;
238.8]

na 80.6 [42.5; 160.7] na 0.564

Ferritin (µg/L) 1233 [624.5;
2771]

1187 [563.8;
1632.5]

na 2864 [1331; 3992] na 0.057

Albumine (g/L) 25.8 [22.2;
29.0]

25.0 [22.2;
27.5]

na 28.0 [22.8; 29.0] na 0.619

CST (ng/mL) 1.4 [0.79; 3.24] 1.8 [0.9; 4.1] 1.36 [1.1;
1.86]

1.7 [0.97; 3.6] 0.62 [0.4; 0.75] <0.001

1.6 [1.02; 3.79] 0.87 [0.59; 2.21] 0.027

CgA (ng/mL) 17.45 [11.2;
23.95]

17 [10.6; 25.3] 18.6 [17.3;
22.3]

19.7 [14.1; 35.7] 8.9 [7.7; 9.2] <0.001

18.5 [12.9; 23.5] 12.1 [9.0; 24.7] 0.086

CST/CgA (%) 8.6 [4.2; 18.7] 11.6 [5.1; 32] 7 [3.2; 13.4] 8.7 [5.5; 16.9] 7.2 [4; 12.8] 0.148

9.1 [4.3; 23.1] 8.2 [4.2; 12.7] 0.402

CST/CgA (nM) 2.29 [1.05;
4.87]

3.19 [1.4; 6.34] 1.91 [0.87;
3.68]

2.29 [0.93; 3.74] 1.71 [0.87; 2.40 0.074

White blood cells counts (G/
mL)

7.70 [5.13;
11.59]

8.40 [5.30;
10.70]

4.68 [3.32;
6.28]

11.80 [7.80; 15.99] na <0.001

Lymphocytes (%) 9.4 [4.9; 16.0] 8.6 [5.0; 15.2] 17.4 [14.5;
22.8]

5.9 [3.0; 13.4] na 0.007

Lactate (mmol/L) 1.15 [0.90;
1.80]

1.20 [0.90;
1.70]

1.00 [0.75;
1.35]

1.20 [0.95; 2.03] na 0.608

Creatinine (µmol/L) 71.0 [56.7;
113.9]

64.4 [55.1;
91.6]

95.3 [55.0;
105.1]

119.6 [72.0; 248.9] na <0.02

(Continued)
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levels (Figure 2). Although there was a trend towards higher

CST/CgA ratios in COVID+ICU+ patients as compared with

others subgroups, the difference was not significant. Noteworthy

is the fact that admission CST and CgA dosages were performed

at the emergency department earlier after first symptoms onset
Frontiers in Immunology 06
in COVID+ICU- patients than in COVID+ICU+ ones (4[2.8;

7.0] days vs 8 [5; 12] days, p<0.007).

Finally, time-dependent dosages of CST and CgA were

assessed daily over 72h in 2 subgroups of ICU+ patients, (i.e.:

COVID+ICU+ (n=16) and COVID-ICU+ controls (n=5))
TABLE 1 Continued

All partici-
pants
n = 100

COVID+ (n = 73) Controls (n = 27) p
value

ICU+
n = 49

ICU-
n = 24

COVID - ICU+(ICU
Controls)
n = 16

COVID - ICU-Healthy
Controls
n = 11

D-Dimers (µg/L) 2100 [1130;
5450]

1900 [920;
4230]

na 4700 [2768; 7383] na 0.051

PaO2/FiO2 113 [75; 191] 95 [67; 126] NR 285 [205; 334] NR <0.001

Worse PaO2/FiO2 91 [74; 123] 82 [70; 101] NR 207 [142; 280] NR <0.001

PaCO2 (mm Hg) NR 37.2 [33.2;
40.3]

NR 35.05 [30.8; 40.45] 0.02

Treatments Mechanical ventilation
support n (%)

55 (84.6) 42 (85.7) NR 13 (81.3) NR 0.936

Ventilation (days) median
[IQR1; IQR3]

10 [6; 17] 14 [8; 20] NR 4.5 [2; 6] NR <0.001

Norepinephrine infusion n
(%)

47 (72.3) 38 (77.6) NR 9 (56.3) NR 0.187

Renal replacement therapy n
(%)

17 (26.2) 10 (20.4) NR 7 (43.8) NR 0.100

Dexamethasone (6mg/d/10d)
n (%)

25 (28.1) 25 (51.0) 0 (0) 0 (0) NR <0.001
frontier
na, not available.
NR, not relevant.
BMI, body mass index.
CgA, chromogranin A.
CST, catestatin.
SAPS II, Simplified Acute Physiological Score two.
TABLE 2 Outcome issues. Bold values correspond to significative p value.

All participants
n = 100

COVID+
ICU+
n = 49

COVID+ICU-
n = 24

COVID - ICU+
(ICU Controls)

n = 16

p value

Outcome

ICU length of stay (days) 14.0 [10.0; 26.0] 15.0 [10.0; 26.0] NR 11.0 [6.8; 18.5] 0.115

Hospital length of stay (days) 20.0 [9.0; 37.0] 27.0 [17.0; 47.0] 6.5 [2.0; 10.0] 26.5 [15.0; 49.8] <0.001

ICU-mortality (%) 16 (24.6) 10 (20.4) NR 6 (37.5) 0.297

In-hospital mortality (%) 25 (28.1) 12 (24.5) 7 (29.2) 6 (37.5) 0.562

Thromboembolic event within hospital: n (%) 13 (14.6) 9 (18.4) 0 (0.0) 4 (25.0) 0.028

Care-related infection: number of patients (%) 32 (36.0) 24 (49) 0 (0) 8 (50) <0.001

Causes of death (n, %)

- Refractory hypoxemia/lung fibrosis 8 (9.0) 1 (2) 7 (29.2) 0 <0.001

- Multiple Organ Failure 15 (16.9) 9 (18.4) 0 (0) 6 (37.5) 0.003

- Withdrawing & Withholding decisions 22 (24.7) 9 (18.4) 7 (29.2) 6 (37.5) 0.234
Data are either median [IQ1; IQ3]) or number (percentage, %).
NR, not relevant.
ICU, intensive care unit.
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(Figure S1). During the first 2 days, CST tended to be lower in

COVID+ as compared with COVID-, with an inverse trend over

the following 2 days (Figure S1). CgA concentrations were stable

in COVID+ patients (in the range of 20 ng/mL), and they were

always higher in COVID- patients (26 ng/mL-34 ng/mL) with

no significant time-dependent changes. Although the CST/CgA

ratios were statistically similar, there was a trend towards a sharp

increase in this ratio on the third day after ICU admission in

COVID+ICU+ patients (this corresponds to the time-window

with highest CRP concentrations at 3rd day), whereas the ratio

decreased in COVID-ICU+ controls (Figure S1).
Associations between either CST, CgA, or
the CST/CgA ratio and clinical data

CST and CgA concentrations never correlated with each

other (whether in the study population as a whole or in any of

the individual study subgroups). Both CST and the ratio CST/

CgA were significantly associated with BMI >30 in all COVID+

patients (p<0.05). The presence of underlying type II diabetes
Frontiers in Immunology 07
was significantly associated with increased concentrations of

CST (2.36 [1.19; 5.06] ng/mL vs 1.41 [0.80; 2.76], p=0.036);

admission glycaemia correlated with CgA only in ICU+COVID

+ patients (Spearman rho=0.284, n=49, p<0.05).

As far as outcome is concerned in COVID+ patients (n=73),

CST concentrations and the CST/CgA were significantly

associated with in-hospital mortality (p<0.01), whereas CgA

concentrations were not (Table 3). Thus, the higher the

concentration of CST on admission, the worse the outcome

(1.36 [0.79; 2.49] ng/mL in survivors vs 2.82 [1.62; 5.99] ng/mL

in non-survivor, (n=73, p= 0.0062)). However, among COVID

+ICU+ patients (n=49), CST concentrations were 1.8 [0.8; 3.99]

ng/mL in survivors vs 2.88 [1.59; 5.89] ng/mL in non-survivors

(p=0.22), whereas in the COVID+ICU- participants (n=24), CST

concentrations were 2.73 [1.62; 4.73] ng/mL in non-survivors vs

1.24 [0.80; 1.60] ng/mL in survivors (n=24, p= 0.009). These

unexpected discrepancies led to the analysis of the CST/CgA

ratios among subgroups. In COVID+ICU- (n=24), the lower the

admission ratio CST/CgA, the better the outcome: 5.4 [3.0; 7.5]%

in survivors vs 17.5 [12.6; 23.5]% in non-survivors (p= 0.019),

whereas in the COVID+ICU+ group (n=49), there was no

difference (17.7 [10.7; 80.8]% vs 9.4 [4.3; 21.7]%, (p= 0.12)).

To assess any potential prognostic value of both CST and CgA,

we plotted data in ROC curves. In the COVID+ patients, with a

cut-off value of 2.675 ng/mL, admission plasma CST predicts in-

hospital mortality with a sensitivity of 63.2% [38.4-83.7] and a

specificity of 75.9% [62.4-86.5] (AUC= 71.25 [58.44; 84.05],

p<0.01). In the same group, with a cut-off value of 7.97%, the

CST/CgA ratio provides an even better prediction of in-hospital

mortality with a sensitivity of de 84.2% [60.4-96.6] and a specificity

of 57.4% [43.2-70.8] (AUC =69.49 [55.76; 83.23], p = 0.007). In the

less severe COVID+ICU- group, with a cut-off value of 1.79 ng/

mL, CST predicts in-hospital mortality with a sensitivity of 71.4%

[29.0-96.3] and a specificity of 88.2% [63.6-98.5] (AUC = 84.03

[64.61; 100], p= 0.002). Finally, in the severest group of COVID

+ICU+ patients, with a cut-off value of 12.75 ng/mL, admission

CgA predicts the occurrence of care-related infection with a

sensitivity of 87.5% [67.6-97.3] and a specificity of 48,0% [27,8-

68,7] (AUC=69.42 [54.30; 84.54], p=0.015). Admission CgA

predicted mortality in neither of the study subgroups.
Discussion

This exploratory study was designed to determine whether:

(i) circulating CgA-derived CST is detectable in COVID patients

referred to an emergency department; (ii)) dosages of CST can

facilitate understanding unusual inflammatory aspects of the

COVID; (iii) CST can of help in treating COVID+ patients

requiring oxygen supply.

The aim of the study was to assess CST concentrations in

COVID patients as a possible mediator of endogenous

inflammation-related pathways triggered by severe infective
FIGURE 2

Admission concentrations of CST (top) and CgA (bottom) in the
different study groups. On admission, whether COVID+ or not,
patients had significantly (p < 0.001) higher plasma CST
concentrations than healthy controls (COVID-, ICU-) without
difference between COVID+ICU+ and COVID+ICU-. Admission
CgA concentrations were decreased only in healthy controls.
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stress. We programmed dosages to learn whether CST could

show the clinical severity of the disease. To enable proper

comparison, we defined two groups of controls: healthy ones for

with the less severe form of COVID (COVID+ICU-) and COVID-

ICU+ patients for the most seriously affected. It emerged that

COVID+ patients released approximatively twice as much

circulating CST as controls did despite similar circulating

amounts of CgA (Table 1). Noticeably, COVID+ not admitted to

the ICUdisplayed asmuchCST as did other patients.Whether this

reflects changes in the biological mechanisms of release of granins

in this disease is not established; a difference related to the viral load

at inclusion was not manifest from our data (Table 1). In contrast,

the assessment time-window appears important for two reasons.

First, on hospital admission CST concentrations had already

reached the same value as in ICU+ patients. Second, the accuracy

of the CST/CgA ratio in predicting outcome in a mild form of

COVID appeared better if the assessment ismade early rather than

later on ICU arrival.

Previous studies have reported increased CgA concentrations

in COVID- ICU+ patients and discussed their origin (27). The

absence of acute renal failure in the COVID+ patients in our study
Frontiers in Immunology 08
suggested the need for additional explanations for increased CgA-

release. Hypoxic conditions met in respiratory COVID necessarily

augment the release of CST since experimental hypoxia raises that

of CgA (30). However, we failed to detect any reliable correlation

with either hypoxia-related or even standard blood inflammation-

related parameters; moreover, we recorded similar concentrations

in non-hypoxemic COVID-ICU+ patients. We therefore

hypothesized that CST might be more largely involved in

inflammation regulation in the neural regulation of immunity (31).

Humans achieve internal homeostasis during infection by

properly balancing pro-inflammatory and anti-inflammatory

pathways, including a specific nerve reflex involving the vagus

(31). Afferent “sensory”nerve fibres are activated by local cytokines

production wherever invasion and injury by infection originate.

Signals gatheredat thevagalnuclei are transmitted tomultiple brain

regions for processing. In response, efferent signals arising from the

nucleus ambiguus and the dorsal motor nucleus prevent

inflammation from running out of control through acetylcholine

(Ach) release at the end of nerves. This rapid-onset connection

works in both the adrenal medulla and the diffuse neuroendocrine

cells within injured tissues. In vivo, the vagal reflex is aimed at
TABLE 3 Univariate analyses and correlations between chromogranins and clinical data (from all participants or subgroups, as indicated). Bold
values correspond to significative p value.

Chromogranins - related
parameter

Parameters of interest Study population
involved

Spearman (rho) or Mann
Whitney

p
value

CgA CST All participants (n = 100) 0.131 0.193

CST Covid+ (n = 73) -0.183 0.122

BMI > 30 Covid+ (n = 73) <0.05

Norepinephrine for MAP over 60 mmHg. Covid+ (n = 73) <0.02

Admission albumin concentration Covid+ (n = 73) -0.321 0.02

Lactate Covid+ ICU+ (n = 49) 0.345 0.01

Creatinine Covid+ ICU+ (n = 49) -0.032 0.8

glycaemia Covid+ ICU+ (n = 49) 0.284 <0.05

Care-related infections Covid+ ICU+ (n = 49) 0.347 <0.02

In-hospital mortality Covid+ (n = 73) 0.682

In-hospital mortality Covid+ ICU+ (n = 49) 0.754 0.754

CST Diabetes Covid+ (n = 73) <0.04

In-hospital mortality Covid+ (n = 73) <0.01

BMI> 30 Covid+ ICU+ (n = 49) 0.289 <0.05

CST/CgA ratio Gender (ratio male/female) Covid+ (n = 73) <0.02

BMI> 30 Covid+ (n = 73) -0.314 <0.03

Requirement for oxygen to maintain
SpO2>95%

Covid+ (n = 73) <0.05

Norepinephrine for MAP over 60 mmHg. Covid+ ICU+(n = 73) <0.04

In-hospital mortality Covid+ ICU- (n = 24) <0.01

Admission white blood cell count (WBC) Covid+ ICU- (n = 24) -0.398 <0.04

Admission lymphocytes (% of WBC) Covid+ ICU- (n = 24) 0.627 <0.05
frontie
CgA, chromogranin A.
CST, Catestatin.
BMI, body mass index.
MAP, mean arterial pressure.
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providing an efficient dampening for any life-threatening pro-

inflammatory condition via nicotinic receptors (nAChR) (32). The

latter are extracellular ligand-gated cation channels activated by the

endogenous neurotransmitter Ach or its exogenous analogs (such

as nicotine). There is strong scientific evidence that CST acts as a

specific, non-competitive, nicotinic cholinergic antagonist of ACh

on the first step of the nicotinic cationic signal transduction (33–

35). It has been demonstrated that both CST and neuropeptide Y

(NPY) have an inhibitory activity on catecholamine secretion

induced by nicotine, and that NPY is 10-fold less potent than

CST is. CST acts by blocking the access of Na+ and Ca2+ from the

extracellular space to the cytosol, mainly by nicotinic-stimulation,

which induces a negative feedback with the blockade of

catecholamine secretion. Consequently, CST could affect the

vagus efferent signalling by rendering poorly functional the final

effector step (36), as suggested recently by the failure of exogenous

nicotine to improveoutcome inCOVID+patientsonce admitted to

the ICU (37). Furthermore, CST increases the desensitization effect

of nicotinic cholinergic agonist-evoked catecholamine release from

chromaffin cells (38) which may even re-enforce the impact of the

initial afferent pro-inflammatory pathway (34). This amplifies pro-

inflammatory consequences by a sustained CST-triggered pro-

inflammatory booster on PMNs in combination with its cell-

penetrating peptide properties (11). All these data are in line with

the negative-outcome prognostic value of circulating calprotectin,

which will increase lung injuries (39) in hypoxemic COVID

conditions (40, 41). Long-lasting CST-availability contributes to

perpetuating an inflammatory vicious circle as long as it hinders

neural regulation of inflammation. As shown by its sequences, CST

exists in three main genetic variants with loss of potency on the

nACh receptor (42). This may explain why populations expressing

less potent CST isoforms (43, 44) have a lower death rate from

COVID. Finally, in vivo deleterious complications may also occur

in COVID with other localizations of the nAChRs (45). Typically,

during prolonged obstruction or interference with nerve signal

propagation fromcentral nervous system stimulation, skeletalmuscles

will present: (i) fatigue, (ii) disease atrophy, and (iii) sarcopenia (46)

persisting until renewal of functionally active nAChRs (45).

Lastly, our data suggest that admission CST could become a

biomarker for morbi-mortality. Low CST indicated outcome

whether measured alone or when the CST/CgA ratio was taken

into account; and prediction was more accurate at emergency

department than at ICU admission. However, the reliability of

prediction needs validation in multicentre studies, specifically

because discrepancies exist on the importance of simultaneous

CgA assessment in COVID (18). Our study confirms the reliability

of CgA in predicting morbidity issues (ie: care-related infections)

but not mortality in line with data in trauma patients (47). This

point is of importance because others have reported in COVID a

release ofVasostatin-I (theN-terminal domain ofCgA) (18),which

also impacts inflammation pathways (46).

Ourdata suggest therefore thatwhenpatients’conditiondoesnot

deteriorate, and evenmore when it improves, there is no reason that
Frontiers in Immunology 09
CTS concentrations increases, since inflammation is meant to

decrease over time. As far as ICU admitted patients are concerned,

Figure S1 (Supplementary Data) shows that CTS concentration first

stabilizes and then in a second time tends to increase: these patients

are not on recovering as their counterparts in the infectious disease

departmentbutwillhaveamorecomplicated recovery.This indicates

that CTS and CgA are released over longer periods of time with

possible pharmacological effects in vivo. In this setting, theymayhave

new effects in vivo hitherto unknown and to be discovered.

In conclusion, human respiratory COVID is associated with

significant plasma release of CST, making this molecule largely

available for days during this infection. Because of its abilities to

both penetrate innate immunity-related cells and to activate the cell-

surface nAChR, CST is a mediator shedding new light on immunity

in severe human infection. Admission CST and CgA. The original

data reported in the present paper are included in the text and the

Supplementary Material ; Further inquiries can be directed to the

corresponding author assessment could therefore become a

biomarker of morbidity-mortality once prospectively validated.
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