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Biological image segmentation using Region-Scalable Fitting Energy with B-spline level set
implementation and Watershed
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• New segmentation deals with intensity inhomogeneity within biological images.

• Use of continuous formulation of B-spline level set with RSF active contour model.

• Use of Watershed algorithm with a relevant choice of object markers.

• The efficiency is proved in terms of qualitative and quantitative evaluation.
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A B S T R A C T

Objectives Image segmentation plays an important role in the analysis and understanding of the
cellular process. However, this task becomes difficult when there is intensity inhomogeneity between
regions, and it is more challenging in the presence of the noise and clustered cells. The goal of the
paper is propose an image segmentation framework that tackles the above cited problems.
Material and methods A new method composed of two steps is proposed: First, segment the image
using B-spline level set with Region-Scalable Fitting (RSF) active contour model, second apply the
Watershed algorithm based on new object markers to refine the segmentation and separate clustered
cells. The major contributions of the paper are: 1) Use of a continuous formulation of the level set in
the B-spline basis, 2) Develop the energy function and its derivative by introducing the RSF model
to deal with intensity inhomogeneity, 3) For the Watershed, propose a relevant choice of markers that
considers the cell properties.
Results Experimental results are performed on widely used synthetic images, in addition to simulated
and real biological images, without and with additive noise. They attest the high quality of
segmentation of the proposed method in terms of quantitative and qualitative evaluation.
Conclusion The proposed method is able to tackle many difficulties at the same time: overlapped
intensities, noise, different cell sizes and clustered cells. It provides an efficient tool for image
segmentation especially biological ones.

1. Introduction
Image segmentation is a key issue in computer vision

and image analysis. For biological/medical images, it is
notoriously difficult due to the characteristics of images:
Different scale levels, presence of clustered components,
speckle and intensity inhomogeneity between pixels. For
example, for medical images such as X-ray and magnetic
resonance (MR) images, the inhomogeneity arises from a
non-uniform magnetic field produced by radio-frequency
coils as well as from object sensitivity [1]. The same is
true for the UltraSound (US) B-mode images where the
inhomogeneity may be originated from non-uniform beam
attenuation within the body [2]. Biological images obtained
in image based high throughout genome-wide RNAi screens
can also be subject to intensity inhomogeneity [3]. They
are carried out to study the density and the repartition of
cytoplasmic RiboNucleoProtein (RNP) granules in high-
throughput screening [4]. When there is a high contrast
between cells and background, segmentation can be per-
formed by image thresholding [3, 5]. In [6], DNA nuclei are
segmented using DNA channel information. Fuzzy c-means
based segmentation and sharpening are employed to extract
cells while Voronoi diagrams are used to correct errors
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due to the overlapping cells. The authors in [3] proposed
an algorithm initiated by image preprocessing to reduce
noise and correct out of focus degradation. Three channels
are considered: DNA, F-actin and GFP-Rac. DNA channel
is used for nuclei segmentation, based on a thresholding
algorithm proposed by [7]. F-actin and GFP-Rac channels
are used for cytoplasm segmentation. However, the thresh-
olding technique is not able to segment clustered cell and
fails with inhomogeneous images. Indeed, a fixed threshold
in a given region cannot match in other region due to
the difference of intensity. A common alternative to image
thresholding is the Watershed algorithm, introduced in [4]
for Drosophila cell segmentation. The major drawback of
the Watershed is oversegmentation [8]. A more robust fam-
ily of approaches was proposed, based on an active contour
model that can be categorized into two classes: Edge-based
models [9, 10] and region-based models [11, 12]. Edge-
based models use local edge information to attract the active
contour toward the object boundaries. On the other hand,
region-based models aim to identify each region of interest
by a region descriptor to guide the motion of the active
contour. Region-based models are efficient for the segmen-
tation of images with weak object boundaries. Two main
models are used: On one hand, the Chan-Vese model [13],
a special case of the Mumford-Shah (MS) functional [14].
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The image is segmented by means of the piecewise constant.
On the other hand, the RSF model, proposed by authors in
[15, 16], allows the use of intensity information in regions at
a controllable scale, from small neighborhoods to the entire
domain. Recently, the authors in [17] proposed a new model
using Global Inhomogeneous Intensity Clustering. The idea
is to estimate the bias field produced by the intensity inho-
mogenity in the image. However, the above cited models
are based on discrete level set implementation that requires
a periodical re-initialization step to reshape the contour,
thus increasing the computational implementation cost. An
algorithm based on B-spline formulation was proposed in
[18] as an alternative to the discrete level set representation.
The authors proposed a continuous formulation of the level
set function. The B-spline is a linear filtering method for a
fast evolution of deformable models. The B-spline formu-
lation provides global control over the entire computational
domain of the level set. The minimization of the functional
energy is performed with regard to B-spline coefficient.
In [19], we proposed to apply the B-spline level set [18]
to Drosophila cells. While the algorithm provides better
performance than the discrete level set, it cannot deal with
the intensity inhomogeneity. The formulation is based on
the Chan-Vese model that separates the image into regions
with a piecewise-constant intensity. Real images especially
biological ones usually present overlaps between the ranges
of intensities in the regions to segment which is challenging.
Therefore, choosing an active contour model that takes into
account intensity variations is a real need. In this paper,
we propose to combine the advantages of both methods
in [15] and [18]. A new formulation of biological image
segmentation using the B-spline is proposed to take profit
from the continuous formulation. Moreover, to consider the
intensity inhomogeneity within the image, the RSF model
is introduced. Cell segmentation consists in minimizing the
energy functional with regard to the B-spline coefficients.
A full framework to calculate and minimize the energy
function is provided. All required equations are written
and reformulated as computationally efficient convolution
product. Furthermore, the method includes a Watershed step
to improve the segmentation quality and to deal with arti-
facts. The Watershed is widely used for medical/biological
images [20, 21]. In this paper, relevant object markers based
on image properties are constructed using the Obj.MPP
software [22]. While the primary goal of this paper is the
segmentation of biological images, a particular interest is
dedicated to images containing transfected 1 Drosophila
cells. Segmentation of such images can be a difficult task
due to: 1) Presence of nonhomogeneous regions 2) Shapes
are always not convex (spiky and ruffly cells), 3) Cells
can form clusters with weak borders which complicate
their separation. To the best of our knowledge, no previous
works have introduced the B-spline level set formulation
with the RSF model for biological image segmentation. The
contribution of this paper encompasses general biological
image segmentation issues, and the special case of images
containing transfected Drosophila cells. The RSF model is

applied with B-spline level set implementation, to deal with
intensity inhomogeneity, followed by a Watershed step to
refine the detected contours. The method is evaluated on
both simulated and real images, for noisy and noiseless im-
ages. Regarding the focus of the paper, results are reported
only for biological images, nevertheless the method can be
applied to other types of images. Moreover, as attested in
the simulation results, for Drosophila cells, the algorithm
manages all the above cited difficulties.

The paper is structured as follows: Section 2, presents
the problem formulation. The proposed algorithm is de-
scribed in Section 3 including the segmentation functional,
the minimization algorithm, and the Watershed RSF. Results
on real and simulated images are provided in section 4.
Finally, we conclude the paper in section 5.

2. Problem formulation
Let Ω ⊂ ℜ𝑑 be the image domain, 𝑓 : Ω → ℜ𝑑 a

given d-dimensional image. Using level set formulation, the
evolving interface 𝐶 ⊂ ℜ𝑑 is represented as the zero level
set of a Lipschitz-continuous function 𝜙 of dimension 𝑑 +1
that satisfies:

𝜙(𝑥) > 0 ∀𝑥 ∈ Ω𝑖𝑛 (1)
𝜙(𝑥) < 0 ∀𝑥 ∈ Ω𝑜𝑢𝑡 (2)
𝜙(𝑥) = 0 ∀𝑥 ∈ 𝐶 (3)

where Ω𝑖𝑛 and Ω𝑜𝑢𝑡 denote respectively the inside and the
outside region delimited by the contour zone 𝐶 . The goal
of image segmentation is to distinguish the object from
the image background. This problem is classically handled
using the level set evolution [23]. The general form of the
functional energy that drives the level set is formulated as :

𝐽 (𝜙) = 𝜈𝑖𝑛 ∫Ω 𝑔𝑖𝑛(𝑥, 𝜙(𝑥))𝐻(𝜙(𝑥))𝑑𝑥1...𝑑𝑥𝑑
+𝜈𝑜𝑢𝑡 ∫Ω 𝑔𝑜𝑢𝑡(𝑥, 𝜙(𝑥)) (1 −𝐻(𝜙(𝑥))) 𝑑𝑥1...𝑑𝑥𝑑
+𝜈𝑐 ∫Ω 𝑔𝑐(𝑥, 𝜙(𝑥))𝛿(𝜙(𝑥))‖∇𝜙(𝑥)‖𝑑𝑥1...𝑑𝑥𝑑

(4)

The first and second terms refer to the energy criterion
attached to the inside and outside regions defined by the
contour. The last term denotes the energy criterion attached
to the contour 𝐶 . The function 𝑔𝑖𝑛(.) and 𝑔𝑜𝑢𝑡(.) describe the
object and background regions, 𝑔𝑐(.) refers to the contour.𝐻
and 𝛿 are respectively the Heavyside and the dirac functions.
𝜈𝑖𝑛,𝜈𝑜𝑢𝑡 and 𝜈𝑐 are constant positive hyperparameters, and
𝑥 denotes the pixel. Image segmentation approaches, based
on level set formulation, differ in how to define the energy
functional 𝐽 , the level set 𝜙 and the algorithm used to
minimise 𝐽 . Two main families of methods are disguised
depending on the energy functional: The Chan-Vese model
[12], and the RSF one [15, 24]. Those based on the Chan-
Vese model are formulated using discrete representation
of the level set [25, 26, 27]. As alternative, continuous

1Transfection: is the process of artificially introducing nucleic acids
(DNA or RNA) into cells. Such modification of foreign nucleic acid lead to
a change of the properties of the cell, allowing the study of gene function
and protein expression in the context of the cell.
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formulation of the level set function was proposed in [18]
where the level set is defined as a continuous parametric
function using the B-spline. The minimization of the en-
ergy functional is performed with regards to the B-spline
coefficients. As described in [18], each step is considered
as a filtering operation with a B-spline kernel. The gra-
dient descent method is used to perform energy function
minimization. The Chan-Vese model presents a limit: The
image intensity is approximated by a constant inside and
outside contour. Therefore, the method is not suitable for
images with intensity inhomogeneity. The latter occurs in
many real images of different modalities, as is often the
case for medical and biological images [3, 28]. To address
this problem, the authors in [15, 24] proposed the RSF
active contour model. This model uses intensity information
in local regions at a controllable scale [15]. Two fitting
functions 𝑓𝑖𝑛(𝑥) and 𝑓𝑜𝑢𝑡(𝑥) to locally approximate the
intensities inside and outside the contour were introduced.
The energy functional is given by:

𝐽 (𝐶, 𝑓𝑖𝑛, 𝑓𝑜𝑢𝑡) =

𝜈𝑖𝑛 ∫

[

∫
Ω𝑖𝑛

𝐾𝜎(𝑥 − 𝑦)||𝐼(𝑦) − 𝑓𝑖𝑛(𝑥)||
2𝑑𝑦

]

𝑑𝑥

+𝜈𝑜𝑢𝑡 ∫

[

∫
Ω𝑜𝑢𝑡

𝐾𝜎(𝑥 − 𝑦)||𝐼(𝑦) − 𝑓𝑜𝑢𝑡(𝑥)||
2𝑑𝑦

]

𝑑𝑥

+𝜈𝑐 ∫ |∇𝐻(𝜙(𝑥))|𝑑𝑥

(5)

𝐶 is a closed contour that separates the image domain
into two regions inside (𝐶) and outside (𝐶). The last term
in Eq.5 is the regularization term. To relate with previous
notation in Eq.4, note here that d=2 and (𝑥1, 𝑥2)=(x, y).
When comparing the model given in Eq.5 with the Chan-
Vese model [18], the two constants 𝜇𝑖𝑛 and 𝜇𝑜𝑢𝑡 are replaced
by two spatially varying fitting functions 𝑓𝑖𝑛(𝑥) and 𝑓𝑜𝑢𝑡(𝑥).
Besides, the energy in regions inside and outside the contour
are weighted by a kernel K. K is a non-negative and satisfies
three conditions: 1) K should be symmetric, 2) 𝐾(𝑢) ≥
𝐾(𝑣), if |𝑢| < |𝑣| and lim

|𝑢|→∞
𝐾(𝑢) = 0 (called localization

property), 3) The integral over the entire space is equal to 1.
K controls the size of the effective evolved energy in each
region. In [15], the Gaussian kernel is chosen :

𝐾𝜎(𝑥) =
1

√

(2𝜋)𝜎
𝑒−|𝑥|

2∕2𝜎2 (6)

where 𝜎 is a constant to control the local region size. 𝜎
should be chosen carefully since the larger the bandwidth is,
the more likely it is to result in a fuzzy boundary. However,
smaller bandwidth can not characterize the local image
information and results in redundant contours. Due to the
localization property of the Gaussian kernel, the contribu-
tion of the intensity 𝐼(𝑦) to the RSF energy decreases to
zero as the pixel 𝑦 moves away from the pixel center 𝑥.
This property plays a key role in segmenting images with
intensity inhomogeneity. The energy functional in Eq.5 is
minimized using the descent gradient algorithm, primarily
with respect to 𝑓𝑖𝑛 and 𝑓𝑜𝑢𝑡, for fixed 𝜙, then with regard to
𝜙 keeping 𝑓𝑖𝑛 and 𝑓𝑜𝑢𝑡 constants [18].

3. Proposed method: RSF model with B-spline
level set implementation and Watershed
A new method is proposed for image segmentation

based on B-spline level set implementation with the RSF
model followed by a Watershed step. Considering the RSF
model instead of the Chan-Vese makes it possible to deal
with the intensity inhomogeneity within the image. Besides,
the Watershed improves the segmentation results obtained
with the B-spline level set, and it is particularly efficient to
carry out on the clustered cells. In this section, a detailed
description of the segmentation functional, the minimiza-
tion algorithm, and the Watershed RSF are provided. The
section is ended with a graphical description of the proposed
method.

3.1. Segmentation functional
In [15], the authors used a narrow-band implementation

that limits the control over the conventional level set do-
main. As an alternative, in [18] the B-spline formulation
was suggested to provide global control over the entire com-
putational domain of the level set. However, the functional
energy was defined as in the Chan-Vese model [12], where
the image intensity is supposed to be constant inside and
outside the contour. The constants are respectively equal
to the average of the intensities in the region inside and
outside contour, which do not contain any local information.
Therefore, poor performance was obtained especially for
images with intensity inhomogeneity, such as biological
images [3].

To tackle this problem, we introduce a novel method
that profits from the advantages of both the RSF model and
the framework of [18]. A new formulation of the energy
functional based on the B-spline is established. Moreover, to
deal with the intensity inhomogeneity, the image intensities
inside and outside the contour are no longer considered as
constant. They are replaced by functions that depend on
local region information as in [15]. Using the same notation
as in the previous section, the energy functional J is given
by :

𝐽 (𝜙, 𝑓𝑖𝑛, 𝑓𝑜𝑢𝑡) =

𝜈𝑖𝑛 ∫
Ω

[

∫
Ω
𝐾𝜎(𝑥 − 𝑦)||𝐼(𝑦) − 𝑓𝑖𝑛(𝑥)||

2𝐻(𝜙(𝑦))𝑑𝑦
]

𝑑𝑥

+𝜈𝑜𝑢𝑡 ∫
Ω

[

∫
Ω
𝐾𝜎(𝑥 − 𝑦)||𝐼(𝑦) − 𝑓𝑜𝑢𝑡(𝑥)||

2(1 −𝐻(𝜙(𝑦)))𝑑𝑦
]

𝑑𝑥

+𝜈𝑐 ∫
Ω
𝛿(𝜙(𝑥)) |∇𝜙(𝑥)| 𝑑𝑥

(7)

In practice, the Heaviside function𝐻 and the Dirac function
𝛿 in the above energy functional can be replaced with the
following regularized expressions :

{

𝐻𝜀(𝑥) =
1
2 +

1
𝜋 arctan(

𝑥
𝜀 )

𝛿𝜀(𝑥) =
𝑑
𝑑𝑥𝐻𝜀(𝑥)

(8)
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where 𝜀 is a real positive constant. By replacing 𝐻 and 𝛿
with Eq.8, the energy functional in Eq.7 equals to :

𝐽 (𝜙, 𝑓𝑖𝑛, 𝑓𝑜𝑢𝑡) =

𝜈𝑖𝑛 ∫
Ω

[

∫
Ω
𝐾𝜎(𝑥 − 𝑦)||𝐼(𝑦) − 𝑓𝑖𝑛(𝑥)||

2𝐻𝜀(𝜙(𝑦))𝑑𝑦
]

𝑑𝑥

+𝜈𝑜𝑢𝑡 ∫
Ω

[

∫
Ω
𝐾𝜎(𝑥 − 𝑦)||𝐼(𝑦) − 𝑓𝑜𝑢𝑡(𝑥)||

2(1 −𝐻𝜀(𝜙(𝑦)))𝑑𝑦
]

𝑑𝑥

+𝜈𝑐 ∫
Ω
𝛿𝜀(𝜙(𝑥)) |∇𝜙(𝑥)| 𝑑𝑥

(9)

The first term corresponds to the energy of the region inside
the contour, denoted 𝐽𝑖𝑛(𝜙, 𝑓𝑖𝑛). The second term repre-
sents the energy of the region outside the contour named
𝐽𝑜𝑢𝑡(𝜙, 𝑓𝑜𝑢𝑡). The last term refers to the regularisation term.
The expression given in Eq.9 is developed in Appendix
A, we demonstrate that the energy function can be written
as convolution product that yields computationally efficient
implementation.

3.2. Minimization algorithm
The splines are piecewise polynomials with pieces that

are smoothly connected together, the joining points of the
polynomials are called knots. The Basis splines (B-splines)
are symmetrical, bell-shaped functions constructed from the
(n+1)-fold convolution of a rectangular pulse [29]. A spline
function can be uniquely represented as linear combination
of the B-splines [30]. Here, we propose to use B-spline
representation of the level set function 𝜙(𝑥) [29] :

𝜙(𝑥) =
∑

𝑘∈ℤ𝑑
𝑐[𝑘]𝛽𝑛(𝑥

ℎ
− 𝑘) (10)

where 𝛽𝑛(.) is the uniform symmetric d dimensional basic
building blocks for splines of degree n. 𝛽𝑛(.) is a separable
function and can be written as:

𝛽𝑛(𝑥) =
𝑑
∏

𝑗=1
𝛽(𝑛)(𝑥𝑗) (11)

where 𝛽(𝑛)(𝑥𝑗) is a one dimensional B-splines. The sepa-
rability property is important, it is used to formulate the
gradient as a sequence of simple 1D convolution. n is
the degree of a spline, i.e. the degree of the polynomial
defining each segment. h represents the regular spacing
between the knots of splines located on a grid spanning Ω
and 𝑐[𝑘] are the coefficients of the B-spline representation.
The minimization of the energy functional is performed,
with respect to the B-spline coefficients 𝑐[𝑘]. This requires
the calculation of the derivative of Eq.(9), developed in
Appendix B and it leads to :

𝜕𝐽
𝜕𝑐[𝑘]

= ∫
Ω

[

𝑤̃(𝑦)𝛽𝑛(
𝑦
ℎ
− 𝑘)

]

𝑑𝑦

−𝜈𝑐 ∫
Ω

𝑤𝑐(𝑦)𝛽𝑛(
𝑦
ℎ
− 𝑘)𝑑𝑦 (12)

with,

𝑤̃(𝑦) = ∫
Ω
𝐾𝜎(𝑥 − 𝑦)𝜈𝑖𝑛||𝐼(𝑦) − 𝑓𝑖𝑛(𝑥)||

2𝛿𝜀(𝜙(𝑦))𝑑𝑥

− ∫Ω𝐾𝜎(𝑥 − 𝑦)𝜈𝑜𝑢𝑡||𝐼(𝑦) − 𝑓𝑜𝑢𝑡(𝑥)||
2𝛿𝜀(𝜙(𝑦))𝑑𝑥

(13)

and

𝑤𝑐(𝑦) = 𝑑𝑖𝑣
(

∇𝜙(𝑦)
‖∇𝜙(𝑦)‖

)

𝛿𝜀 (𝜙(𝑦)) (14)

Note here that the major difference with the algorithm
proposed in [18] is the presence of the integral over 𝑥 in
the term 𝑤̃(𝑦). Besides, 𝑓𝑖𝑛 and 𝑓𝑜𝑢𝑡 are not constant and
depend on pixel 𝑥. Such formulation allows the inclusion
of local information of the inside and the outside region
of the contour, which is crucial for an image with intensity
inhomogeneity.

The second term in Eq.12 is the regularization term, it
plays the role of smoothing the zero level set to maintain the
regularity of the contour. Without the regularization term, 𝜙
grows to very large values on both sides of the zero level
set. Then, 𝛿𝜀(𝜙) in Eq.14 takes an arbitrarily small value,
making the motion of the contour slower and can even be
stopped before it reaches the desired object boundaries. The
analytical resolution of the energy minimization criterion
with respect to the B-spline coefficients is not tractable,
therefore a numerical algorithm is required. Here, the gra-
dient descent method is applied, the i𝑡ℎ iteration of the
algorithm is given by :

𝑐(𝑖+1) = 𝑐(𝑖) − 𝜆∇𝑐𝐽 (𝑐(𝑖)) (15)

where 𝜆 is the iteration step and ∇𝑐 corresponds to the
gradient of the energy relative to the B-spline coefficients,
obtained from Eqs.12, 13 and 14. Moreover, in order to get
tractable form of the energy gradient, Eq.12 is written as :

∇𝑐𝐽 = 𝜕𝐽
𝜕𝑐[𝑘]

= 𝜓 ⊛ 𝑏𝑛ℎ[𝑘] (16)

⊛ is the convolution product, 𝑤̃ given in Eq.13, equals to:

𝑤̃ = 𝑤̃1 + 𝑤̃2 + 𝑤̃3 (17)

where

𝑤̃1 = 𝐼2(𝑦)(𝜈𝑖𝑛 − 𝜈𝑜𝑢𝑡)𝛿𝜀(𝜙(𝑦)) (18)
𝑤̃2 = 2𝐼(𝑦)

[

𝐾𝜎 ⊛ (𝜈𝑜𝑢𝑡𝑓𝑜𝑢𝑡 − 𝜈𝑖𝑛𝑓𝑖𝑛)
]

𝛿𝜀(𝜙(𝑦))(19)

𝑤̃3 =
[

𝐾𝜎 ⊛ (𝜈𝑖𝑛𝑓 2
𝑖𝑛 − 𝜈𝑜𝑢𝑡𝑓

2
𝑜𝑢𝑡)

]

𝛿𝜀(𝜙(𝑦)) (20)

Demonstration of the above results is provided in appendix
B. It is noteworthy to mention that writing the gradient as
a convolution product allows an efficient implementation of
the algorithm.

3.3. Importance of B-spline formulation
As given in Eq.10 the level set function is modelled as

a continuous parametric function expressed on a B-spline
basis. This is different from the discrete representation
commonly used with the level set based approaches. In
fact, the B-splines provide better approximation of complex
shapes to be easy to manipulate (derivative calculation,
separable function,...). More details about the advantages
of such formulation and a list of primary applications are
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provided in [29]. Recently, the authors in [31] proposed
several methods to improve the efficiency and accuracy of
B-spline based methods for different applications.
Furthermore, as detailed in the previous section, image
segmentation is based on the minimization of the energy
functional performed using the gradient descent algorithm.
The gradient may be steep or flat leading to inaccuracies
in the numerical approximation [25]. Classically, this is
handled by reshaping the level set through periodical re-
initialization of the level-set function as the signed distance
function to the zero level [25]. However, this introduces
problems like when and how the re-initialization should
be performed in addition to the numerical accuracy per-
turbation. Besides, the level set becomes topologically less
flexible, since it prevents the level set to develop new
contours (i.e., new zero-level components) [25]. By using
the B-spline formulation, this step may be avoided by
normalizing the B-splines parameters to provide natural
bound to the level set function [18]. Moreover, since the
minimization of the energy functional is performed with
regards to B-spline coefficients, as shown in the previous
section, each step is performed as sequence of simple 1D
convolutions, which is computationally efficient. In our
previous work [19], two methods were compared with and
without the B-spline representation, for both, the Chan-Vese
model is used for image approximation. Results attest the
gain of performance obtained with the B-spline formulation.
Nevertheless, performance are limited in the presence of
intensity inhomogeneity, tackled in this paper. Finally, recall
to the major difference with [18], is the use of RSF model
to approximate the image instead of Chan-Vese to deal with
intensity inhomogeneity. Besides, in this work we propose
to include the Watershed step detailed in next section.

3.4. Watershed RSF
The Watershed algorithm is largely used for image seg-

mentation [20, 32]. From local minima [33], the Watershed
finds the crest lines in the image by the simulation of the
flooding process [34]. Considering all local minima leads to
an oversegmented image and makes the segmentation result
unusable. To tackle this issue, markers of relevant regions
in the image are employed to reduce the number of local
minima and refine the segmentation. The Watershed floods
from markers instead of flooding from all local minima. The
Watershed algorithm takes as input the segmentation result
of the RSF model with B-spline level set implementation.
Then three steps are performed: First, compute the distance
map of the input image, which consists of an Euclidean
distance measure between each pixel of the object and its
nearest zero pixel that touches the object border. Then,
a Gaussian filter is applied to the distance map. Second,
select the object markers using the Obj.MPP software 2.
The Obj.MPP [22] includes prior information about cells
of interest. Third, apply the Watershed to local minima
from the reverse filtered distance map, these local minima
belong to object markers. The Obj.MPP software is based
on the Marked Point Process (MPP) [35], it consists in the

detection of parametric objects in the image using two main
criteria: The shape and the radiometry. Shapes are defined
by marks that represent the parameters of the selected
objects. The radiometric constraint is calculated directly
through the object mean intensity measurement or indirectly
through the measurement of the relative intensity of the
object contour [22]. The framework fits sets of shapes on
the image plane and selects the ones matching best with
the predefined object characteristics. A space of marks is
defined, taking into account the variability of object size and
morphology. Besides, constraints on the spatial repartition
of objects are embedded in the framework to control the
average overlap between objects. Furthermore, a set of pa-
rameters related to the selection should be fixed consisting
of: 1) The minimum value of the quality function fostering
objects that fits the data, 2) The number of iterations, 3) The
number of birth cells per iteration. Given the preselected
set of objects, the best elements are chosen using the
graph cut algorithm [36]. Three outputs are given: The file
containing the raw image with objects contours highlighted
and two masks for the segmented labeled objects and the
sole objects contours. An example of labeled object makers
for Drosophila cells is illustrated in Fig.1. In this paper,
real and simulated biological datasets are used. For the real
Drosophila dataset, Obj.MPP parameters are set as follows:
the selected shape geometry is an ellipse, the minimum
value of the quality equals 0.5, the overlapping tolerance
equals 20%, the number of iterations equals 8000 and the
number of birth cells per iteration equals 100. For simulated
dataset, Obj.MPP parameters are set as follows: the selected
shape geometry is an ellipse, the minimum value of the
quality equals 0.2, the overlapping tolerance equals 0%, the
number of iterations equals 8000 and the number of birth
cells per iteration equals 3.

3.5. Graphical description of the proposed method
The proposed method is described by a graph including

different blocs as shown in Fig.2. The input image is submit-
ted to a preprocessing step, consisting of local normalization
[37] and Gamma correction [38]. The latter is added to scale
the range of pixel intensity. The bloc of the segmentation in
Fig.2 corresponds to the RSF model with B-spline level set
implementation, applied to the preprocessed image. Then,
the Watershed is performed to the reverse filtered distance
map of the segmentation result. The Watershed is applied
to the segmentation result of the RSF bloc rather than
using the image gradient or the image resulting from the
threshold algorithm. For the Watershed, object markers are
constructed using the Obj.MPP.

Moreover, it is worth noting that biologists are interested
in segmenting ribonucleic-protein particles present in the
cytoplasm of healthy cells. Therefore after the segmenta-
tion, a postprocessing step is added to refine the segmen-
tation results based on prior information about cell status:
Dead or alive, the cell’s shape, and dimension. Images
presenting kernels Barycenters of the living cells are used in

2https://gitlab.inria.fr/edebreuv/Obj.MPP
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Figure 1: (a) Preprocessed Drosophila 1, (b) Superposition of the preprocessed image and markers (red), (c) Selected mask
of markers using Obj.MPP.

the postprocessing step as filters, removing all the detected
dead cells. Cells of interest are characterized by: CircuMin
equals 0.6, minimum size equals 1500, maximum size
equals 4000, intenMin equals 100 and intenMax equals
2000. The above-cited criteria are chosen to avoid extreme
cell shapes and to be able to segment the protein of interest
in the cytoplasm of healthy cells. Besides, only cells that
are not touching borders are detected because the biologists
need to isolate the cells in their entirety before performing
statistical studies. For the rest of the paper, the proposed
method is named B-spline-WatershedRSF.

4. Results
The main contribution of this paper is an algorithm

tackling the intensity inhomogeneity problem. Therefore,
we propose, to evaluate the performance on different syn-
thetic images widely used in the literature as typical ex-
amples of images with intensity inhomogeneity, Fig.3. For
such images, simple thresholding or an algorithm assuming
constant intensities in two different regions cannot segment
them correctly. In addition, results are compared with the
Vector Field Convolution (VFC) algorithm proposed in
[39]. The authors propose to include a new external force
for the active contour called VFC. The latter is obtained
by the convolution of a vector field kernel with the edge
map generated from the image. The code given in [40]
is used. Results are presented in Fig.4. It is clear that
the VFC fails to capture the boundaries of the object of
interest when the image presents intensity inhomogeneity.
This behaviour is expected, indeed the VFC is based on the
snake model, using the global region information, assuming
that the image intensity is homogeneous [12]. As illustrated
in Fig.3, the proposed algorithm efficiently segments the
image despite the clear presence of intensity variations
between regions. The content of each image is correctly
limited by the red curve indicating the final segmentation
result. The main purpose of this paper is the segmentation
of real biological images containing intensity inhomogene-
ity, in particular images containing transiently transfected

Figure 2: Diagram exposing the different steps of the
proposed method B-spline-WatershedRSF. ⊕ indicates the
segmentation mask resulting from the first bloc of RSF with
B-spline level set.

Drosophila S2R+ cells. Moreover, additional results on
simulated images and skin lesion images are provided. More
details on the datasets are given in the next section. First, the
RSF model with B-spline implementation is compared with
a basic thresholding algorithm. Second, performance are
attested with regard to the baseline of the International Skin
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Figure 3: Segmentation of different synthetic images using RSF model with B-spline level set implementation.

Figure 4: Segmentation of different synthetic images using the VFC algorithm.

Imaging Collaboration (ISIC) 2018 challenge [41]. Third,
three algorithms are compared:

1. The SegWatershed algorithm, developed by Pr. Xavier
Descombes 3. The algorithm is based on the Wa-
tershed [34] applied to the image gradient. The
segmentation is based on prior information about the
objects of interest. Inscribed circles of cell kernels

are used as markers of the objects of interest. For the
SegWatershed algorithm, no preprocessing is applied.

2. The B-spline Chan-Vese algorithm presented in [18],
based on the Chan-Vese model, i.e. without con-
sidering intensity inhomogeneity. The preprocessing
consists of local normalization applied to images
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containing transiently transfected Drosophila S2R+
cells.

3. The proposed algorithm B-spline-WatershedRSF based
on the RSF model with B-spline level set imple-
mentation and the MCW. The preprocessing includes
local normalization and Gamma correction, applied to
images containing transiently transfected Drosophila
S2R+ cells.

The three algorithms are followed by the same postprocess-
ing step given in Fig.2. For all experiments using the B-
spline level set implementation, the coefficients 𝜈𝑖𝑛, 𝜈𝑜𝑢𝑡 and
𝜈𝑐 in Eq.9 equal 1, 2 and 0.05 respectively. The spacing
interval h in Eq.10 equals 1 and the iteration step 𝜆 in Eq.15
is set to 0.5. For the RSF model, the Gaussian Kernel is
applied with standard deviation 𝜎 equals 30. Segmentation
performances of the different algorithms are evaluated based
on the 𝐹1score [42], the Jaccard index [43] and cell detec-
tion errors. The mean of the 𝐹1 score and the Jaccard index,
over the set of labels of the image, is calculated. Results are
represented as percentages rounded to the nearest integers.
The cell detection errors are measured by the number of true
positives (TP), false positives (FP), and false negatives (FN).
All of these metrics are provided by the daccuracy frame-
work 4, developed by Dr. Eric Debreuve 5. The framework
computes the essential metrics for image segmentation.

4.1. Dataset description
The proposed algorithm is evaluated using three datasets:

1. Real dataset: Provided by Dr. Fabienne De Graeve 6.
Images contain Drosophila S2R+ cells that are tran-
siently transfected generating a heterogeneous popu-
lation of cells. Not all the cells are transfected, and
the ones that are transfected can be subdivided into
three categories depending on the level of expression
of the GFP tagged protein: high, medium, and low
levels. The images are taken in the context of an RNAi
screen using a high throughput confocal microscope
Opera (Perkin Elmer) and a 63𝑋 water objective. The
genetic contexts induce the death of some cells. Only
live cells are relevant to keep in final segmentation
results. The image contains 686 × 518 pixels and it is
named as Drosophila 𝑖, with 𝑖 varying from 1 to 5. It
is worth pointing out that the presence of clusters with
variable sizes and morphologies in addition to locally
low contrast pixels render the image segmentation
particularly challenging.

2. Simulated dataset: Images are generated with Sim-
cep simulator 7 which is implemented using object-
oriented programming [44]. To generate an image,
different options are given to the simulator such as
cell population properties and the microscope ac-
quisition that includes spatially variable out-of-focus

3Pr. Xavier Descombes is a professor at the University Côte d’Azur,
CNRS, I3S Laboratory, INRIA, France

4https://gitlab.inria.fr/edebreuv/daccuracy
5Dr. Eric Debreuve is a permanent researcher at the University Côte

d’Azur, CNRS, INRIA, I3S Laboratory, France

blurring, irregular illumination variations, and sensor
noise. In this study, images are 500 × 500 pixels and
contain 30 cells. First, a limited number of dataset is
considered to demonstrate the algorithm performance
per image. The data include four images: Simcep 1 to
Simcep 4 without clustered nor overlapping cells. On
the other hand, Simcep 5 and Simcep 6 encompass
several clusters and overlapping cells. Furthermore,
50 simulated images are generated, named Simcep
i with i varying from 1 to 50. The mean of the 𝐹1
score and the Jaccard index are calculated to attest
the algorithm performance for larger dataset. Skin
lesion dataset: we apply our algorithm to 50 images of
skin lesion. They belong to the validation dataset used
in the ISIC challenge in 2018 [41]. The images are
publicly accessible to support the development of au-
tomated melanoma diagnosis algorithms across three
tasks of lesion analysis: The lesion segmentation, the
attribute detection, and the disease classification. In
this paper, the focus is on the first task, 50 images
with different sizes are used. The dataset presents
different positions and forms of the skin lesion within
the image.

For the real dataset, the ground truth is provided by Dr.
Fabienne De Graeve who performed the manual segmenta-
tion. For the simulated images, ground truth is given by the
simulator Simcep [44]. The ground truth for the skin lesion
dataset is publicly accessible in ISIC 2018 challenge [41].
Images presenting kernels Barycenters of the living cells
are given by Dr. Fabienne De Graeve for the postprocessing
step.

4.2. RSF model with B-spline level set
implementation compared to thresholding
algorithm

The threshold has been widely applied in image seg-
mentation. The basic idea of thresholding is to automati-
cally select an optimal or several optimal gray-level thresh-
olds to separate objects of interest in the image from
the background based on their gray-level distribution. To
demonstrate the relevance of using the RSF model, the
proposed algorithm is compared to the Otsu algorithm
[7, 45]. The goal is to evaluate the performance of the
RSF with B-spline level set, therefore the Watershed bloc
is not included as presented in Fig.2. The Otsu is a bi-level
thresholding algorithm: Pixels with gray levels less than the
threshold are assigned to the background, and the others
to the foreground. It selects the global optimal threshold
by maximizing the between-class variance. Segmentation
results are illustrated in Fig.5 for Drosophila 2. Due to the
limited space, results are only shown for one image, how-
ever no difference is noted for the other images in term of
segmentation performance. In Fig.5, the columns (starting
from the left) present respectively: The preprocessed image,

6Dr. Fabienne De Graeve is a lecturer at the University Côte d’Azur,
iBV, CNRS, INSERM, France

7https://www.cs.tut.fi/sgn/csb/simcep/tool.html
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Figure 5: (a) Preprocessed Drosophila 2, (b) Segmentation result using the Otsu algorithm, (c) Segmentation result using the
RSF algorithm and (d) Ground truth.

Figure 6: (a) Preprocessed Drosophila 2 with additive Gaussian noise (SNR=15dB), (b) Segmentation result using Otsu
algorithm, (c) Segmentation result using RSF algorithm, (d) Ground truth.

segmentation result for the Otsu algorithm, segmentation
result for the RSF algorithm, and the ground truth. Here,
the Watershed and the postprocessing step are not applied.
From observation, the number of detected cells is increased
using the RSF algorithm. The Otsu algorithm confuses cells
with the background. Furthermore, it is sensitive to intensity
variations and the size of the target. The thresholding
algorithm is suitable for images with single peak variance,
not for images with intensity inhomogeneity that present
multiple peak variance.

To attest the performance of the two algorithms for
noisy images, segmentation results for Drosophila 2 with
additive Gaussian noise are given in Fig.6. Results are
obtained for Signal to Noise Ratio (SNR) equals 15dB. As
observed, it is clear that the performance is degraded with
the Otsu algorithm: The segmented image includes noise
in the background. Moreover, the RSF algorithm is more
robust to the noise: When comparing Fig.5-(c) and Fig.6-
(c), segmentation performances are almost the same.

4.3. RSF model with B-spline level set
implementation compared to ISIC 2018
baseline

As described in [41], the segmentation task in the
ISIC 2018 challenge is performed using the Deep learning

approach. Specifically, an encoder and a decoder in a U-
NET type structure is applied [46, 47]. In this section,
we compare the results, provided by both the ISIC 2018
baseline [41] and the proposed RSF model with the B-
spline level set implementation. For our algorithm, 50 skin
lesion images are segmented, where the preprocessing and
postprocessing steps are included. Same hyperparameters
and initialization are used for the 50 images. The hyperpa-
rameters are fixed as 𝜈𝑖𝑛=2, 𝜈𝑜𝑢𝑡=3, 𝜈𝑐=0.5, 𝜆=0.5, h=1, and
𝜎=35. Moreover, a circular initialization is considered with
a radius relative to the image size. For these experiments,
the preprocessing consists in converting the images to gray
level ones and downsizing them using a scale of 0.4. While,
the artefacts, obtained after the segmentation, are eliminated
by the postprocessing. Here, the Watershed is not required
since the images encompass one object of interest. Indeed,
the Watershed is relevant for multiple object segmentation
with eventual presence of clustered ones. Examples of skin
lesion segmentation are given in Fig.7. As observed, in
Fig.7, the proposed algorithm is able to properly segment
the skin lesion images. Although, these images do not
include intensity inhomogeneity or clustred cells, the diffi-
culty is related to the different size of the object of interest.
Numerical evaluation is given in Table.1, using the Jaccard
index. Note, that, to get fair comparison, the latter index
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Figure 7: Columns from left to right correspond to: Original skin lesion images, segmentation results after the postprocessing
using the RSF model with B-spline level set implementation, and the ground truth.

Table 1
Mean of the Jaccard index over 50 skin lesion images.

Algorithms Jaccard (%)

RSF model with B-spline level set 86
ISIC 2018 baseline [41] 81.5

is measured by the TP, FN, and FP exactly as in [48, 49].
Table.1, demonstrates the performance of the RSF model
with B-spline level set implementation, compared to the
Deep learning based approach. Despite, comparison is not
performed on the whole dataset ( 400 in [41] ), our algorithm
yields satisfactory segmentation result with a Jaccard index
equals 86%, clearly superior to the baseline one.

4.4. Real image segmentation
In this section, transiently transfected Drosophila S2R+

cells expressing a GFP tagged protein at different levels
are segmented. This section includes a figure representation
of the intermediate steps of the preprocessing and the
segmentation bloc, qualitative and quantitative comparison
between algorithms for noiseless and noisy images.

4.4.1. Representation of the preprocessing and the
segmentation blocs

In this section, results of different intermediate steps
(from preprocessing to segmentation bloc) for the proposed
algorithm are presented for Drosophila 1. The preprocess-
ing step is presented in Fig.8. It is added as mentioned
in section 3 by applying the local normalization and the
Gamma correction. The local normalization uniformizes the
mean and the variance of the image around local neighbors.
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Figure 8: Preprocessing step: (a) Original Drosophila 1, (b) Normalized Drosophila 1, (c) Normalized Drosophila 1 with
Gamma correction (Gamma= 0.4).

Figure 9: Successive steps of the segmentation bloc for Drosophila 1: (a) Preprocessed Drosophila 1, (b) Segmentation
result using the RSF model with B-spline level set implementation, (c) Reverse filtered distance map of (b), (d) Image of
object markers constructed using Obj.MPP, (e) Watershed result: The Watershed is applied to the reverse filtered distance
map in (c), (f) Postprocessed result of Watershed for Drosophila 1.

Therefore, the darkness is reduced. On the other hand, the
Gamma correction ameliorates the brightness of the image.
Fig.9 illustrates the successive steps of the segmentation
bloc of the B-spline-WatershedRSF algorithm applied to
Drosophila 1. As shown in Fig.9-(b), applying the RSF
model with B-spline level set implementation detects most
of the cells. However, the refinement of contours is neces-
sary. That proves the relevance of adding the Watershed to
correctly segment the image as shown in Fig.9-(e).

4.4.2. Real noiseless images
Qualitative evaluation

Fig.10 presents segmentation results obtained for Drosophila
2, 3 and 4 using the B-spline-WatershedRSF. The first col-
umn (from the left) represents the preprocessed Drosophila,
the presence of intensity inhomogeneity and clustered cells
are noticed. Final segmentation results after the postpro-
cessing, including only the living cells not touching image
borders, are given in the second column. The third column
corresponds to the ground truth of the image. The proposed
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Figure 10: The rows 1, 2 and 3 correspond respectively to images of Drosophila 2, Drosophila 3 and Drosophila 4. The
first column (from the left) corresponds preprocessed images, the second column includes final segmentation results for
Drosophila 2,3 and 4, finally the third column represents the ground truth.

algorithm provides high-quality of cell segmentation. Espe-
cially, it can deal with clustered cells as shown in Fig.10-
(b), (e), and (h). Different clustered cells are successfully
separated as marked with yellow ellipses. In addition, the
B-spline-WatershedRSF correctly detects the boundaries of
Drosophila cells with different forms and sizes (even small
ones). For qualitative comparison between algorithms, we
present in Fig.11 segmentation results for Drosophila 2 and
Drosophila 3. The difference in performance is explained
by the fact that the B-spline-WatershedRSF uses the RSF
model to consider intensity inhomogeneity within the im-
age. On the other hand, the Watershed is applied to the RSF
segmentation result rather than the image gradient, unlike
the SegWatershed algorithm. Besides, with the B-spline-
WatershedRSF, the advantage is gained by the relevant
choice of markers defined by the Obj.MPP.

Quantitative evaluation
For the quantitative evaluation, results are first presented
using the three algorithms without the postprocessing step
in Table.2. Then, final segmentation results including the
postprocessing are given in Table.3.

Table.2 includes: The first column refers to the image
name, the second column to the applied algorithm, the
number of cells in the Ground truth is given in the third
column followed by the number of detected cells, the fifth
column contains the 𝐹1 score, then TP, FN, and FP are
presented, and the last column corresponds to the Jaccard
index. Results confirm that our method performs better than
the SegWatershed and the B-spline Chan-Vese algorithms
even without a postprocessing step. As an example, the 𝐹1
score, over the five images, equals 73% for the B-spline-
WatershedRSF, 64% for the SegWatershed and 56% for the
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Figure 11: Rows 1, 2 correspond respectively to results for Drosophila 2 and Drosophila 3. The columns 1, 2 and 3 correspond
respectively to: ((a)-(d)) Final segmentation result using the B-spline Chan-Vese algorithm, ((b)-(e)) Final segmentation result
using the SegWatershed algorithm and ((c)-(f)) Final segmentation result using the B-spline-WatershedRSF algorithm. Use
of Colors in images was necessary to distinguish the segmentation of clustered cells.

Table 2
Segmentation performance without postprocessing step for real images of Drosophila. The 𝐹1 score, the number of the ground
truth, the number of detected cells and detection Errors measured by TP, FN, FP and the Jaccard index are compared for the
B-spline-WatershedRSF, the SegWatershed and the B-spline Chan-Vese algorithms.

Images Methods N Ground N detection 𝐹1 TP FP FN Jaccard
Truth (%) (%)

B-spline-WatershedRSF 77 77 61 16 21 74
Drosophila 1 SegWatershed 82 54 68 46 8 36 52

B-spline Chan-Vese 97 61 55 42 27 46
B-spline-WatershedRSF 66 79 63 3 30 72

Drosophila 2 SegWatershed 93 48 64 45 3 48 50
B-spline Chan-Vese 129 66 73 56 20 46
B-spline-WatershedRSF 65 79 60 5 26 72

Drosophila 3 SegWatershed 86 60 73 53 7 33 52
B-spline Chan-Vese 74 67 54 20 32 49
B-spline-WatershedRSF 54 79 52 2 26 76

Drosophila 4 SegWatershed 78 42 63 38 4 40 44
B-spline Chan-Vese 98 58 51 47 27 41
B-spline-WatershedRSF 21 53 21 0 37 75

Drosophila 5 SegWatershed 58 23 54 22 1 36 52
B-spline Chan-Vese 241 27 41 200 17 41

B-spline Chan-Vese. Besides, the Jaccard index, over the
five images, exceeds 74% for the B-spline-WatershedRSF
while it is only 50% for the SegWatershed and 45% for
the B-spline Chan-Vese. Table.3 illustrates the quantitative
performances of the algorithms after the postprocessing
step, the same metrics are used as in Table.2. For the pro-
posed algorithm B-spline-WatershedRSF, when comparing
results in Table 2 and 3 it is noted that the performance

is improved for all the images: the F1 score and Jaccard
index increase when including the postprocessing step while
the False positive and False negative decrease. It worth
pointing here, that in the context of the study, only living
cells are important, therefore, the postprocessing consists in
deleting the dead cells from the final segmentation result.
As expected the amount of detection and the true positive
decreases with the postprocessing, this is a consequence of
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Table 3
Segmentation performance with postprocessing step for real images of Drosophila. The 𝐹1 score, the number of the ground
truth, the number of detected cells and detection Errors measured by TP, FN, FP and the Jaccard index are compared for the
B-spline-WatershedRSF, the SegWatershed and the B-spline Chan-Vese algorithms.

Images Methods N Ground N detection 𝐹1 TP FP FN Jaccard
Truth (%) (%)

B-spline-WatershedRSF 33 71 27 6 16 74
Drosophila 1 SegWatershed 43 22 65 21 1 22 69

B-spline Chan-Vese 7 24 6 1 37 75
B-spline-WatershedRSF 45 87 45 0 14 73

Drosophila 2 SegWatershed 59 32 70 32 0 27 75
B-spline Chan-Vese 9 24 8 1 51 85
B-spline-WatershedRSF 28 81 27 1 12 80

Drosophila 3 SegWatershed 39 22 72 22 0 17 85
B-spline Chan-Vese 12 39 10 2 29 83
B-spline-WatershedRSF 40 83 39 1 15 79

Drosophila 4 SegWatershed 54 30 67 28 2 26 77
B-spline Chan-Vese 1 4 1 0 53 86
B-spline-WatershedRSF 13 68 13 0 12 83

Drosophila 5 SegWatershed 25 11 61 11 0 14 76
B-spline Chan-Vese 4 28 4 0 21 90

eliminating the dead cells. To conclude, the postprocessing
step ameliorates the overall performance and respects the
constraint on the final segmentation result to maintain only
living cells. On the other hand, as shown by the number of
detections (column 3), the B-spline-WatershedRSF detects
a greater number of cells than the SegWatershed algorithm
and the B-spline Chan-Vese. Regarding false detections,
as illustrated in the FP column of Table.3, except for the
first image, the B-spline-WatershedRSF provides the lower
number of FP. The same conclusion is drawn for the 𝐹1
score: For all images, the proposed algorithm provides
the highest score. The 𝐹1 score, over the five images,
equals 78% for the B-spline-WatershedRSF algorithm, 67%
for the SegWatershed algorithm and only 24% for the B-
spline Chan-Vese. Regarding all the above-cited criteria,
the B-spline-WatershedRSF performs better than the B-
spline Chan-Vese and the SegWatershed in terms of cell
detection. The last column is dedicated to the Jaccard index.
The latter is a measure of the intersection with the ground
truth, therefore calculated only when there is an intersection
between the segmented image and the ground truth, i.e.
for the true postive. Besides, the difference in performance
between algorithms is explained by the sensitivity of the
Jaccard index to the geometry of the detected cell. In
fact, with the B-spline-WatershedRSF, the number of true
positives is high (column of the TP). However, weak shape
segmentation of few detected cells severely penalizes the
Jaccard index. The opposite is true for the B-spline Chan-
Vese where the number of true positives is low while the
geometry of the detected cells is good, which increases the
Jaccard index. The overall performance is appreciated using
the 𝐹1 score for the number of detections and the Jaccard
index for the quality of segmentation of the detected cells.

To compare the statistics of results for the three algo-
rithms, we include box plot representations of the 𝐹1 score
and the Jaccard index. Fig.12. Except for one case (the box
at the second line and the second column) that is explained
above, the rest of boxes representing the performance of
the proposed algorithm are the higher ones indicating the
superiority of the B-spline-WatershedRSF in terms of the
𝐹1 score and the Jaccard index and compared to the Seg-
Watershed and the B-spline Chan-Vese algorithms. Besides,
it is noted that the boxes are compacted, attesting similar
performance between the different images. Regarding the
proposed algorithm, the medium value, over the five images
of Drosophila, is high for the 𝐹1 score and the Jaccard index.

4.4.3. Real noisy images
Qualitative evaluation

To assess the robustness of the B-spline-WatershedRSF in
the presence of noise, we performed the segmentation of
real biological images with additive Gaussian noise. Fig.13
presents results of segmentation for Drosophila 4 using
the B-spline-WatershedRSF. Fig.13-(a) and (c) present re-
spectively the noiseless preprocessed Drosophila 4 and the
noisy one with SNR= 15dB, Fig.13-(b) and (d) correspond
respectively to the final segmentation result for the noiseless
preprocessed Drosophila 4 and for the noisy one. When ob-
serving Fig.13-(b) and (d), it is clear that the noise does not
significantly impact the segmentation performance: Most of
the cells are well detected as in the noiseless images.
Quantitative evaluation
To numerically illustrate the robustness of the proposed al-
gorithm to the noise, the Jaccard index, the 𝐹1 score and the
variance of the 𝐹1 score are calculated for high and medium
SNR: 15dB and 30dB. They are obtained by averaging 10
segmentation results through different noise realizations. As
shown in Table.4 for SNR=15dB, the 𝐹1 score, over the

Rim Rahali et al.: Preprint submitted to Elsevier Page 14 of 22



Biological image segmentation using Region-Scalable Fitting Energy with B-spline level set implementation and Watershed

B-spline-WatershedRSF SegWatershed B-spline Chan-Vese

F
1

-s
c
o

re
(%

)

0

20

40

60

80

B-spline-WatershedRSF SegWatershed B-spline Chan-Vese

J
a

c
c
a

rd
(%

)

40

50

60

70

80

90

B-spline-WatershedRSF SegWatershed B-spline Chan-Vese

F
1

-s
c
o

re
 (

%
)

0

20

40

60

80

B-spline-WatershedRSF SegWatershed B-spline Chan-Vese

J
a

c
c
a

rd
 (

%
)

40

50

60

70

80

90

Without Postprocessing With Postprocessing

Figure 12: Quantitative comparison of B-spline-WatershedRSF with SegWatershed and B-spline Chan-Vese applied to
noiseless Drosophila images. The first and second columns include respectively results without and with postprocessing.

Figure 13: (a) Preprocessed Drosophila 4 without additive Gaussian noise, (b) Final segmentation result for (a), (c)
Preprocessed Drosophila 4 with additive Gaussian noise SNR=15dB, (d) Final segmentation result for (c).

Table 4
𝐹1 score, variance of 𝐹1 score and Jaccard index for real images of Drosophila. Results with postprocessing step are obtained
by averaging 10 realizations on every noise level 𝑆𝑁𝑅 = 30𝑑𝐵 and 𝑆𝑁𝑅 = 15𝑑𝐵.

Images SNR 𝐹1(%) 𝐹1 variance Jaccard (%)

Drosophila 1 30dB 71 2.538710−05 74
15dB 68 1.318010−04 76

Drosophila 2 30dB 86 3.238410−05 75
15dB 86 1.656710−04 74

Drosophila 3 30dB 80 5.824210−05 81
15dB 79 2.391010−04 80

Drosophila 4 30dB 83 7.696610−05 79
15dB 83 3.692610−05 80

Drosophila 5 30dB 68 4.889810−04 85
15dB 68 3.920210−04 85
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Figure 14: Quantitative evaluation of B-spline-WatershedRSF applied to noisy Drosophila images.

five images, is greater than 76% with reduced variance,
the latter attests that the 𝐹1 score is centered around the
mean value for different realizations. On the other hand,
good performances are maintained compared to the results
obtained for noiseless images: The 𝐹1 score equals 79% for
Drosophila 3 (SNR=15dB), and it equals 81% for the same
noiseless image. Even more, for the Drosophila 4, the 𝐹1
score equals 83% for noiseless case and remains the same
with different noise levels (15dB and 30dB). Besides, the
quality of segmentation is not degrading with the presence
of noise. These conclusions are confirmed by the Jaccard
index. For the five considered images, the Jaccard index is
greater than or equal to 74%. Results confirm that the B-
spline-WatershedRSF is robust to different levels of noise.
A different representation of the quantitative evaluation is
given in Fig.14 by the boxes of the 𝐹1 score and the Jaccard
index. Mediums values are not changing significantly which
confirm the robustness of the B-spline-WatershedRSF to
different levels of noise.

4.5. Simulated image segmentation
In this section, the B-spline-WatershedRSF algorithm is

applied to a set of simulated images, generated using the
Simcep simulator [44]. Different levels of noise and lumi-
nance are considered to reproduce biological image defects
and mimic the real image appearance. Since the images
are simulated, neither preprocessing nor postprocessing are
needed and only the segmentation bloc of the B-spline-
WatershedRSF algorithm is applied (see Fig.2). Due to the
limited space for images without clustered cells, quantitative
evaluation is only presented, while for images with clustered
cells qualitative one is shown.

4.5.1. Images without clustered cells
As shown in Table.5, the number of detected cells for the

B-spline-WatershedRSF is high compared to SegWatershed
and B-spline Chan-Vese algorithms. Same observations are
given in Fig.15. High Medium values of the Jaccard index
and the 𝐹1 score are noted for the B-spline-WatershedRSF,
compared to the SegWatershed and the B-spline Chan-Vese
algorithms, which indicates that the proposed algorithm
match better with corresponding ground truth. Besides, the
boxes are compacted which indicates the good performance
of the proposed algorithm in segmenting all simcep images.
Using the 𝐹1 score (over the four images), the B-spline-

WatershedRSF (𝐹1=88%) outperforms the other algorithms
(76% for SegWatershed algorithm, 26% for the B-spline
Chan-Vese algorithm). Besides, as indicated in the FP col-
umn, the B-spline Chan-Vese generates a large number of
false positives since it is sensitive to noise distortion and
it fails to deal with the presence of high luminance and
intensity inhomogeneity. Again, this point out the rele-
vance of the B-spline-WatershedRSF in managing the noise
and the intensity inhomogeneity. Besides, the B-spline-
WatershedRSF provides a high Jaccard index. Over the
four images, it equals 90% which attests the quality of cell
segmentation. Furthermore, to point out the effectiveness
of our algorithm, statistics are calculated on larger dataset
including 50 Simcep images. In Table.6, the mean of the
𝐹1 score and the Jaccard index are calculated for the B-
spline-WatershedRSF, the SegWatershed, and the B-spline
Chan-Vese. As illustrated in Table.6, even for larger dataset,
the B-spline-WatershedRSF provides a high segmentation
performance with Jaccard index and 𝐹1 score exceed 80%.
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Table 5
Segmentation performance for simulated images. The 𝐹1 score, the number of the ground truth, the number of detected
cells and detection Errors measured by TP, FN, FP and the Jaccard index are compared for the B-spline-WatershedRSF, the
SegWatershed and the B-spline Chan-Vese algorithms.

Images Methods N Ground N detection 𝐹1 TP FP FN Jaccard
Truth (%) (%)

B-spline-WatershedRSF 26 93 26 0 4 88
Simcep 1 SegWatershed 30 18 75 18 0 12 97

B-spline Chan-Vese 217 23 28 189 2 86
B-spline-WatershedRSF 21 82 21 0 9 88

Simcep 2 SegWatershed 30 18 75 18 0 12 93
B-spline Chan-Vese 53 43 18 35 12 79
B-spline-WatershedRSF 23 87 23 0 7 93

Simcep 3 SegWatershed 30 18 75 18 0 12 95
B-spline Chan-Vese 255 19 27 228 3 83
B-spline-WatershedRSF 24 89 24 0 6 92

Simcep 4 SegWatershed 30 19 78 19 0 11 95
B-spline Chan-Vese 151 21 19 132 11 81
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Figure 15: Quantitative comparison of B-spline-WatershedRSF with SegWatershed and B-spline Chan-Vese applied to
Simcep images.

4.5.2. Images with clustered cells
In the following, the proposed algorithm is evaluated

using Simcep 5 and 6 containing clusters and overlapping
cells, Fig.16. This is a challenge in image segmentation due
to the difficulty in separating aggregated cells. In Fig.16-(a)-
(c), difficulties related to cell clustering and intensity varia-
tions are clearly noticeable (at least five blocks of clustered
cells). Segmentation results are presented in Fig.16-(b)-(d)
for Simcep 5 and Simcep 6 respectively. As observed, the
B-spline-WatershedRSF correctly segments the image and
accurately separates a number of grouped cells.

4.6. Convergence criterion and computation time
Convergence criterion

The algorithm is stopped when a threshold is reached for
the difference between two successive values of the energy
functional, or when a maximum number of iterations is
attended (fixed to 100). Recall that the process is based on
the minimization of the energy function to get the contour.
To proof the convergence, we present the energy curves as
a function of the number of iterations. The energy conver-
gence is evaluated on all above-mentioned images and six
representative images are shown in Fig.17. The images are
representative in the sense that they include real noiseless,
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Figure 16: (a) Simcep 5, (b) Segmentation result for Simcep 5, (c) Simcep 6, (d) Segmentation result for Simcep 6. Clustered
cells are marked with yellow ellipses. They are correctly separated by the B-spline-WatershedRSF.

Table 6
Segmentation performance over 50 Simcep images. The 𝐹1
score and the Jaccard index are compared for the B-spline-
WatershedRSF, the SegWatershed and the B-spline Chan-
Vese.

B-spline B-spline SegWatershed
WatershedRSF Chan-Vese

𝐹1 score (%) 94 80 73
Jaccard (%) 81 84 68

Table 7
Computation time in minute for different categories of images
segmented using the B-spline-WatershedRSF.

Real noiseless Real noisy Simulated Synthetic
images images images images

20.04 20.93 13.80 0.10

real noisy and simulated data images. It can be seen from
Fig.17 that the proposed algorithm converge. Satisfactory
results can be generally obtained in less than 40 iterations,
even in the presence of the noise.

Computation time
We present in Table.7 the computation time of the algo-
rithm. This includes the postprocessing step only for the
real images and the principal segmentation bloc for all.
However, it is worth noting that the Watershed step is
performed instantly and do not really increase the overall
time. The experiments are carried out on 1.5-GHz Intel Core
i5 with 16 GB of RAM. Note that the computation time
is calculated for all the experiments and the mean time in
minute is given in Table.7. For example, the first column
indicates the mean of the time cost over the five considered
noiseless images of Drosophila. As expected, the algorithm
is faster for simulated images than for real ones. However,
for the latter only a bit increase is noted when including
noise. Finally, it is important to note the difficulties inherent
the considered biological images that explain the required
time for calculation. The synthetic images, Fig.3 include

fewer contents. Therefore, only few second are sufficient to
perform the segmentation.

5. Conclusion
In this paper, we propose a new method for biological

image segmentation based on the B-spline formulation.
After applying the RSF model with B-spline level set imple-
mentation, the contours of detected cells are refined using
the Watershed algorithm. The use of the RSF model allows
consideration of the intensity inhomogeneity within the im-
age, while the relevant choice of markers in the Watershed
improves the quality of segmentation with the separation of
clustered cells. Results encompass a special focus on real
images containing transiently transfected Drosophila S2R+
cells. In addition, skin lesion images and simulated images
are considered. Qualitative and quantitative evaluations are
attested through many experiments and comparisons with
existing methods. They both demonstrate the high quality of
cell segmentation using the B-spline-WatershedRSF. Most
importantly, the proposed method successfully manages the
intensity inhomogeneity and clustered cells within biologi-
cal images. Besides, it is resistant to different levels of noise.
From a methodological standpoint, several perspectives can
be considered: 1) To develop an efficient way to tune the
hyperparameters of the algorithm, for example by learning
the best values of these hyperparameters using the deep
Learning approach, 2) To introduce an interpolation method
for partially segmented cells, to detect the missing part of a
cell’s contour. From the applicative perspective, we plan to
take further advantage of the performance of the B-spline-
WatershedRSF in other clinical datasets or biomedical fields
(e.g., proteomics, transcriptomics...).

Ethical approval
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Figure 17: Energy curves as a function of the number of iterations for different selected images.
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Appendix A. Energy functional calculation
The energy functional J includes three terms :

𝐽 = 𝐽𝑖𝑛 + 𝐽𝑜𝑢𝑡 + 𝐽𝑐 (21)

with,

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝐽𝑖𝑛 = 𝜈𝑖𝑛 ∫
Ω

⎡

⎢

⎢

⎣

∫
Ω

𝐾𝜎(𝑥 − 𝑦)||𝐼(𝑦) − 𝑓𝑖𝑛(𝑥)||
2𝐻𝜀(𝜙(𝑦))𝑑𝑥

⎤

⎥

⎥

⎦

𝑑𝑦

𝐽𝑜𝑢𝑡 = 𝜈𝑜𝑢𝑡 ∫
Ω

⎡

⎢

⎢

⎣

∫
Ω

𝐾𝜎(𝑥 − 𝑦)||𝐼(𝑦) − 𝑓𝑜𝑢𝑡(𝑥)||
2(1 −𝐻𝜀(𝜙(𝑦)))𝑑𝑥

⎤

⎥

⎥

⎦

𝑑𝑦

𝐽𝑐 = 𝜈𝑐 ∫
Ω

𝛿𝜀(𝜙(𝑦)) |∇𝜙(𝑦)| 𝑑𝑦
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Considering 𝐽𝑖𝑛, the term inside the integral is equal to :

𝐾𝜎(𝑥 − 𝑦)||𝐼(𝑦) − 𝑓𝑖𝑛(𝑥)||
2𝐻𝜀(𝜙(𝑦))

= 𝐾𝜎(𝑥 − 𝑦)
[

𝐼2(𝑦) − 2𝐼(𝑦)𝑓𝑖𝑛(𝑥) + 𝑓 2
𝑖𝑛(𝑥)

]

𝐻𝜀(𝜙(𝑦))

(22)

then, with the integration of Eq.22 with respect to x, and the
introduction of the convolution product we obtain :

𝐽𝑖𝑛 = 𝜈𝑖𝑛 ∫Ω

[

𝐼(𝑦)2 − 2𝐼(𝑦)
(

𝐾𝜎 ⊛ 𝑓𝑖𝑛
)

+
(

𝐾𝜎 ⊛ 𝑓 2
𝑖𝑛
)]

×𝐻𝜀(𝜙(𝑦))𝑑𝑦
(23)

In the same manner, the following form of 𝐽𝑜𝑢𝑡 is obtained
as :

𝐽𝑜𝑢𝑡 = 𝜈𝑜𝑢𝑡 ∫Ω
[

𝐼(𝑦)2 − 2𝐼(𝑦)
(

𝐾𝜎 ⊛ 𝑓𝑜𝑢𝑡
)

+
(

𝐾𝜎 ⊛ 𝑓 2
𝑜𝑢𝑡
)]

×
(

1 −𝐻𝜀(𝜙(𝑦))
)

𝑑𝑦

(24)

Appendix B. Energy functional derivation
Deriving Eq.21 with regard to B-spline coefficients 𝑐[𝑘],

we obtain :

𝜕𝐽
𝜕𝑐[𝑘]

=
𝜕𝐽𝑖𝑛
𝜕𝑐[𝑘]

+
𝜕𝐽𝑜𝑢𝑡
𝜕𝑐[𝑘]

+
𝜕𝐽𝑐
𝜕𝑐[𝑘]

(25)

with,

𝜕𝐽𝑜𝑢𝑡
𝜕𝑐[𝑘] =

𝜕𝐽𝑜𝑢𝑡
𝜕𝜙(𝑦) ×

𝜕𝜙(𝑦)
𝜕𝑐[𝑘] =

𝜕𝐽𝑜𝑢𝑡
𝜕𝜙(𝑦) × 𝛽

𝑛( 𝑦ℎ − 𝑘)
𝜕𝐽𝑖𝑛
𝜕𝑐[𝑘] =

𝜕𝐽𝑖𝑛
𝜕𝜙(𝑦) ×

𝜕𝜙(𝑦)
𝜕𝑐[𝑘] =

𝜕𝐽𝑖𝑛
𝜕𝜙(𝑦) × 𝛽

𝑛( 𝑦ℎ − 𝑘)
𝜕𝐽𝑐
𝜕𝑐[𝑘] =

𝜕𝐽𝑐
𝜕𝜙(𝑦) ×

𝜕𝜙(𝑦)
𝜕𝑐[𝑘] =

𝜕𝐽𝑐
𝜕𝜙(𝑦) × 𝛽

𝑛( 𝑦ℎ − 𝑘)
(26)

since,

𝜕𝜙(𝑦)
𝜕𝑐[𝑘]

= 𝛽𝑛(
𝑦
ℎ
− 𝑘) (27)

and,

𝜕𝐽𝑖𝑛
𝜕𝑐[𝑘] = 𝜈𝑖𝑛 ∫

Ω
∫
Ω

[

𝜕𝐹𝑖𝑛(𝑥,𝑦)
𝜕𝜙(𝑦) 𝐻𝜀(𝜙(𝑦)) +

𝜕𝐻𝜀(𝜙(𝑦))
𝜕𝜙(𝑦) 𝐹𝑖𝑛(𝑥, 𝑦)

]

×𝛽𝑛( 𝑦ℎ − 𝑘)𝑑𝑥𝑑𝑦
(28)

with,

𝐹𝑖𝑛(𝑥, 𝑦) = 𝐾𝜎(𝑥 − 𝑦)|𝐼(𝑦) − 𝑓𝑖𝑛|2

given that 𝐹𝑖𝑛(𝑥, 𝑦) is independent of𝜙(𝑦) then,
𝜕𝐹𝑖𝑛(𝑥, 𝑦)
𝜕𝜙(𝑦)

=

0, and
𝜕𝐻𝜀(𝜙(𝑦))
𝜕𝜙(𝑦)

= 𝛿𝜀(𝜙(𝑦)), Eq.28 leads to :

𝜕𝐽𝑖𝑛
𝜕𝑐[𝑘]

= 𝜈𝑖𝑛 ∫
Ω

∫
Ω

𝐹𝑖𝑛(𝑥, 𝑦)𝛿𝜀(𝜙(𝑦))𝛽𝑛(
𝑦
ℎ
− 𝑘)𝑑𝑥𝑑𝑦 (29)

Same thing for 𝐽𝑜𝑢𝑡 to obtain :

𝜕𝐽𝑜𝑢𝑡
𝜕𝑐[𝑘]

= −𝜈𝑜𝑢𝑡 ∫
Ω

∫
Ω

𝐹𝑜𝑢𝑡(𝑥, 𝑦)𝛿𝜀(𝜙(𝑦))𝛽𝑛(
𝑦
ℎ
− 𝑘)𝑑𝑥𝑑𝑦 (30)

with,

𝐹𝑜𝑢𝑡 = 𝐾𝜎(𝑥 − 𝑦)|𝐼(𝑦) − 𝑓𝑜𝑢𝑡|2

Using Eqs.25, 29 and 30, besides separating the term on x
and y in the gradient of the energy function, we obtain :

𝜕𝐽
𝜕𝑐[𝑘]

= ∫
Ω

[

𝑤̃(𝑦)𝛽𝑛(
𝑦
ℎ
− 𝑘)

]

𝑑𝑦

−∫
Ω

𝑤𝑐(𝑦)𝛽𝑛(
𝑦
ℎ
− 𝑘)𝑑𝑦 (31)

with,

𝑤̃(𝑦) = 𝜈𝑖𝑛 ∫
Ω

𝐹𝑖𝑛(𝑥, 𝑦)𝛿𝜀(𝜙(𝑦))𝑑𝑥

−𝜈𝑜𝑢𝑡 ∫
Ω

𝐹𝑜𝑢𝑡(𝑥, 𝑦)𝛿𝜀(𝜙(𝑦))𝑑𝑥
(32)

which is also equivalent to:

𝑤̃(𝑦) = ∫
Ω

𝐾𝜎(𝑥 − 𝑦)𝜈𝑖𝑛||𝐼(𝑦) − 𝑓𝑖𝑛(𝑥)||
2𝛿𝜀(𝜙(𝑦))𝑑𝑥

−∫Ω
𝐾𝜎(𝑥 − 𝑦)𝜈𝑜𝑢𝑡||𝐼(𝑦) − 𝑓𝑜𝑢𝑡(𝑥)||

2𝛿𝜀(𝜙(𝑦))𝑑𝑥

(33)

and

𝑤𝑐(𝑦) = 𝜈𝑐𝑑𝑖𝑣
(

∇𝜙(𝑦)
‖∇𝜙(𝑦)‖

)

𝛿𝜀 (𝜙(𝑦)) (34)

by developing the remarkable identity in Eq.33, we obtain:

𝑤̃ = 𝑤̃1 + 𝑤̃2 + 𝑤̃3 (35)

with,

𝑤̃1 = 𝐼2(𝑦)(𝜈𝑖𝑛 − 𝜈𝑜𝑢)
(

∫
Ω
𝐾𝜎(𝑥 − 𝑦)𝑑𝑥

)

𝛿𝜀(𝜙(𝑦))

= 𝐼2(𝑦)(𝜈𝑖𝑛 − 𝜈𝑜𝑢𝑡)𝛿𝜀(𝜙(𝑦))
(36)

𝑤̃2 = 2𝐼(𝑦)
⎛

⎜

⎜

⎝

∫
Ω

(

𝜈𝑜𝑢𝑡𝑓𝑜𝑢𝑡(𝑥) − 𝜈𝑖𝑛𝑓𝑖𝑛(𝑥)
)

𝐾𝜎(𝑥 − 𝑦)𝑑𝑥
⎞

⎟

⎟

⎠

𝛿𝜀(𝜙(𝑦))

= 2𝐼(𝑦)[𝐾𝜎 ⊛
(

𝜈𝑜𝑢𝑡𝑓𝑜𝑢𝑡(𝑥) − 𝜈𝑖𝑛𝑓𝑖𝑛(𝑥)
)

]𝛿𝜀(𝜙(𝑦))

(37)

𝑤̃3 =
(

∫
Ω

(

𝜈𝑖𝑛𝑓 2
𝑖𝑛(𝑥) − 𝜈𝑜𝑢𝑡𝑓

2
𝑜𝑢𝑡(𝑥)

)

𝐾𝜎(𝑥 − 𝑦)𝑑𝑥
)

𝛿𝜀(𝜙(𝑦))

=
[

𝐾𝜎 ⊛ (𝜈𝑖𝑛𝑓 2
𝑖𝑛 − 𝜈𝑜𝑢𝑡𝑓

2
𝑜𝑢𝑡)

]

𝛿𝜀(𝜙(𝑦))

(38)
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