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This article describe globular weak (n, ∞)-transformations (n ∈ N) in the sense of Grothendieck, i.e for each n ∈ N we build a coherator Θ ∞ M n which sets models are globular weak (n, ∞)-transformations. A natural globular filtration emerges from these coherators.

Introduction

We start this article by defining, for each n ∈ N * a coherator Θ ∞ M n in the sense of Grothendieck (see [6,[START_REF] Maltsiniotis | Infini Groupoides d'après Grothendieck[END_REF][START_REF] Maltsiniotis | Infini catégories non strictes, une nouvelle définition[END_REF]14]), which is a specific sketch [START_REF] Lair | Leçons de théorie des esquisses[END_REF][START_REF] Makkai | Accessible Categories : The Foundations of Categorical Model Theory[END_REF] such that models of it are globular weak (n, ∞)-transformations.

Recently John Bourke [4] proved a conjecture of Dimitri Ara [START_REF] Ara | Sur les ∞-groupoïdes de Grothendieck et une variante ∞-catègorique[END_REF], which shows that globular weak ∞-categories in the sense of Batanin [2] and globular weak ∞-categories in the sense of Grothendieck [6,[START_REF] Maltsiniotis | Infini catégories non strictes, une nouvelle définition[END_REF] are equivalent: more 1 Globular theories Θ M n of (n, ∞)-magmas (n ∈ N).

1.1 The globular G n -extensions Θ n (n ∈ N) and their filtration.

The n-globe categories G n (n ∈ N) are small categories which objects are the basic arities (or atomic arities) of operations behind the structure of globular higher transformations. Their accurate descriptions (see below) is of first importance for theoretical reasons : their globular completions Θ n (n ∈ N) defined just below, have as objects the arities of operations behind the structure of globular higher transformations, and the important filtration Θ • described below is easily obtain from the filtration G • below, and the universal property of the completion Θ n of each G n .

The 0-globe category is a small category G 0 which objects are formal symbols 1(n) (n ∈ N) which arrows are generate by maps s n n-1 , t n n-1

1(0) 1(1) 1(2) 1(3) 1(4) • • • 1(n -1) 1(n) • • • s 1 0 t 1 0 s 2 1 t 2 1 s 3 2 t 3 2 s 4 3 t 4 3 s n n-1 t n n-1
which follows the globular equations s n n-1 s n-1 n-2 = t n n-1 s n-1 n-2 and t n n-1 t n-1 n-2 = s n n-1 t n-1 n-2 for all integers n ≥ 2. The maps s n n-1 are called cosourses and the maps t n n-1 are called cotargets. The composition

s n n-1 s n-1 n-2 • • • s p+1 p is denoted s n p and the composition t n n-1 t n-1 n-2 • • • t p+1 p is denoted t n p .
Definition 1 A G 0 -presheaf i.e an object of [G; Sets] is called a globular filtration, whereas a G op 0 -presheaf i.e an object of [G op ; Sets] is called a globular set.

✷

Let S 0 the monad on [G op 0 ; Sets] of globular strict ∞-categories. The category 1 ↓ S 0 (1) of elements of the presheaf S 0 (1) is commonly denoted Θ 0 , and plays an important role for describing models for theories for globular higher structure (for example the theory Θ S 0 which set-models are globular strict ∞-categories, or the theory Θ W 0 which set-models are globular weak ∞-categories, etc.), those based on monads on [G op 0 ; Sets]. Objects of Θ 0 are globular trees in the sense of [2] and they play the role of arities for operations inside such theories. Actually we can avoid the use of the monad S 0 to build Θ 0 by using specific colimits based on the globe category G 0 : first we consider tables t of non-negative integers:

   i 1 i 2 i 3 • • • i k-1 i k i ′ 1 i ′ 2 • • • • • i ′ k-1    where k ≥ 1, i l > i ′ l < i l+1 and 1 ≤ l ≤ k -1.
Let C a category and let G 0 C F a functor. We denote F (1(n)) = D n and we shall keep the same notations for the image of cosources : F (s i l i l ′ ) = s i l i l ′ , and for the image of cotargets :

F (t i l i l ′ ) = t i l i l ′
, because no risk of confusion will occur. In this case G 0 C F is called a globular G 0 -extension if for all tables t as just above, the colimit of the following diagram:

D i1 D i2 D i3 • • • D i k-1 D i k D i ′ 1 D i ′ 2 D i ′ 3 • • • D i ′ k-2 D i ′ k-1 t i 1 i ′ 1 s i 2 i ′ 1 t i 2 i ′ 2 s i 3 i ′ 2 t i k-1 i ′ k-1 s i k i ′ k-1
exists in C. In [6] Alexander Grothendieck calls these colimits globular sums. We prefer call these colimits globular G 0 -sums. A morphism of globular G 0 -extensions, also called globular G 0 -functor, is given by a commutative triangle in CAT:

C G 0 C ′ H F F ′ such that the functor H preserves globular G 0 -sums. The category of globular G 0 -extensions is denoted G 0 -Ext. An initial object of G 0 -Ext: G 0 Θ 0 i
, gives the small category Θ 0 . Tables as above are another formulation of trees in the sense of [2], thus such tables are preferably called globular G 0 -trees. This small category Θ 0 can also be described as the full subcategory of Glob which objects are globular G 0 -trees. Now we are going to extend this Θ 0 for globular strict ∞-functors: this analogue shall be denoted Θ 1 . But also globular strict ∞-natural transformations have their own "Θ" that we denote Θ 2 . Let us put some terminology: globular strict (0, ∞)-transformations are globular strict ∞-categories; globular strict (1, ∞)-transformations are globular strict ∞-functors; globular strict (2, ∞)-transformations are globular strict ∞-natural transformations; globular strict (3, ∞)-transformations are globular strict ∞-modifications, and so on. For all integers n ∈ N the definition of globular strict (n, ∞)-transformations is in [START_REF] Kachour | Steps toward the weak higher category of weak higher categories in the globular setting[END_REF].

Let us first describe the small categories G 1 , G 2 and G 3 which shall be used to get respectively Θ 1 , Θ 2 and Θ 3 :

The 1-globe category is a small category G 1 which objects are formal symbols 1(n), f n (1(n)), 2(n) (n ∈ N), which arrows are generate by maps s n n-1 , t n n-1 which follows the globular equations:

s n n-1 s n-1 n-2 = t n n-1 s n-1 n-2 and t n n-1 t n-1 n-2 = s n n-1 t n-1 n-2 for all integers n ≥ 2: 1(0) 1(1) 1(2) 1(3) 1(4) • • • 1(n -1) 1(n) • • • s 1 0 t 1 0 s 2 1 t 2 1 s 3 2 t 3 2 s 4 3 t 4 3 s n n-1 t n n-1 f 0 (1(0)) f 1 (1(1)) f 2 (1(2)) f 3 (1(3)) f 4 (1(4)) • • • f n-1 (1(n -1)) f n (1(n)) • • • s 1 0 t 1 0 s 2 1 t 2 1 s 3 2 t 3 2 s 4 3 t 4 3 s n n-1 t n n-1 2(0) 2(1) 2(2) 2(3) 2(4) • • • 2(n -1) 2(n) • • • s 1 0 t 1 0 s 2 1 t 2 1 s 3 2 t 3 2 s 4 3 t 4 3 s n n-1 t n n-1
which follow the globular equations as just above.

We can see that G 1 has three subcategories denoted respectively by G 1,0 , G 1,t and G 1,1 , and which are connected. Also we deliberately use the same notations for the cosources and cotargets maps of these three subcategories because no confusions will occur. The notations that we used for objects of G 1 shall be suggestive when we will give an accurate description of the monad S 1 of globular strict ∞-functors.

The 2-globe category is a small category G 2 which objects are formal symbols 1(n), f n (1(n)), ξ 1 , g n (1(n)), 2(n) (n ∈ N), which arrows are generate by maps s n n-1 , t n n-1 which follows the globular equations:

s n n-1 s n-1 n-2 = t n n-1 s n-1 n-2
and t n n-1 t n-1 n-2 = s n n-1 t n-1 n-2 for all integers n ≥ 2:

1(0) 1(1) 1(2) 1(3) 1(4) • • • 1(n -1) 1(n) • • • s 1 0 t 1 0 s 2 1 t 2 1 s 3 2 t 3 2 s 4 3 t 4 3 s n n-1 t n n-1 f 0 (1(0)) f (1(1)) f 2 (1(2)) f 3 (1(3)) f 4 (1(4)) • • • f n-1 (1(n -1)) f n (1(n)) • • • ξ 1 g 0 (1(0)) g (1(1)) g 2 (1(2)) g 3 (1(3)) g 4 (1(4)) • • • g n-1 (1(n -1)) g n (1(n)) • • • s 1 0 s 1 0 t 1 0 s 2 1 t 2 1 s 3 2 t 3 2 s 4 3 t 4 3 s n n-1 t n n-1 t 1 0 s 1 0 t 1 0 s 2 1 t 2 1 s 3 2 t 3 2 s 4 3 t 4 3 s n n-1 t n n-1 2(0) 2 (1) 2(2) 2(3) 2 
(4) • • • 2(n -1) 2(n) • • • s 1 0 t 1 0 s 2 1 t 2 1 s 3 2 t 3 2 s 4 3 t 4 3 s n n-1 t n n-1
The 3-globe category is a small category G 3 which objects are formal symbols

1(n), f n (1(n)), α 1 (1(0)), ξ 2 (1(0)), β 1 (1(0)), g n (1(n)), 2(n) (n ∈ N),
which arrows are generate by maps s n n-1 , t n n-1 which follows the globular equations:

s n n-1 s n-1 n-2 = t n n-1 s n-1 n-2 and t n n-1 t n-1 n-2 = s n n-1 t n-1 n-2 for all integers n ≥ 2: 1(0) 1(1) 1(2) 1(3) 1(4) • • • 1(n -1) 1(n) • • • s 1 0 t 1 0 s 2 1 t 2 1 s 3 2 t 3 2 s 4 3 t 4 3 s n n-1 t n n-1 f 0 (1(0)) f (1(1)) f 2 (1(2)) f 3 (1(3)) f 4 (1(4)) • • • f n-1 (1(n -1)) f n (1(n)) • • • α (1(0)) ξ 2 (1(0)) β (1(0)) g 0 (1(0)) g (1(1)) g 2 (1(2)) g 3 (1(3)) g 4 (1(4)) • • • g n-1 (1(n -1)) g n (1(n)) • • • t 1 0 s 1 0 s 1 0 t 1 0 s 2 1 t 2 1 s 3 2 t 3 2 s 4 3 t 4 3 s n n-1 t n n-1 s 2 1 t 2 1 s 1 0 t 1 0 s 1 0 t 1 0 s 2 1 t 2 1 s 3 2 t 3 2 s 4 3 t 4 3 s n n-1 t n n-1 2(0) 2(1) 2(2) 2(3) 2(4) • • • 2(n -1) 2(n) • • • s 1 0 t 1 0 s 2 1 t 2 1 s 3 2 t 3 2 s 4 3 t 4 3 s n n-1 t n n-1
Let S n the monad on [G op 0 + G op 0 ; Sets] of globular strict (n, ∞)-transformations. The category 1 + 2 ↓ S n (1 + 2) of elements of the presheaf S n (1 + 2) is denoted Θ n , and plays an important role for describing models for theories for globular higher structures like the theory Θ S n which set-models are globular strict (n, ∞)-transformations, or the theory Θ W n which set-models are globular weak (n, ∞)-transformations defined in [START_REF] Kachour | Steps toward the weak higher category of weak higher categories in the globular setting[END_REF]. Now it is interesting to follow the steps of Grothendieck and to construct Θ n with adapted colimits, avoiding the use of the monad S n . For that we start with the following small category G n (for n ≥ 4; G 1 , G 2 , G 3 were described above), that we call the n-globe category: it is a small category which objects are formal symbols

1(n), f n (1(n)), α l (1(0)), ξ n (1(0)), β l (1(0)), g n (1(n)), 2(n) (n ∈ N, and 1 ≤ l ≤ n -1 if n > 1)
, which arrows are generate by maps s n n-1 , t n n-1 which follows the globular equations:

s n n-1 s n-1 n-2 = t n n-1 s n-1 n-2 and t n n-1 t n-1 n-2 = s n n-1 t n-1 n-2 for all integers n ≥ 2: 1(0) 1(1) 1(2) 1(3) 1(4) • • • 1(n -1) 1(n) • • • s 1 0 t 1 0 s 2 1 t 2 1 s 3 2 t 3 2 s 4 3 t 4 3 s n n-1 t n n-1 f 0 (1(0)) f 1 (1(1)) f 2 (1(2)) f 3 (1(3)) f 4 (1(4)) • • • f n-1 (1(n -1)) f n (1(n)) • • • α 1 (1(0)) α 2 (1(0)) α k-1 (1(0)) α k (1(0)) α n-1 (1(0)) ξ n (1(0) β 1 (1(0)) β 2 (1(0)) β k-1 (1(0)) β k (1(0)) β n-1 (1(0)) g 0 (1(0)) g 1 (1(1)) g 2 (1(2)) g 3 (1(3)) g 4 (1(4)) • • • g n-1 (1(n -1)) g n (1(n)) • • • t 1 0 s 1 0 s 1 0 t 1 0 s 2 1 t 2 1 s 3 2 t 3 2 s 4 3 t 4 3 s n n-1 t n n-1 s 2 1 t 2 1 s k k-1 t k k-1 s n n-1 t 2 1 s 2 1 t k k-1 s k k-1 t n n-1 s 1 0 t 1 0 s 1 0 t 1 0 s 2 1 t 2 1 s 3 2 t 3 2 s 4 3 t 4 3 s n n-1 t n n-1 2(0) 2(1) 2(2) 2(3) 2(4) • • • 2(n -1) 2(n) • • • s 1 0 t 1 0 s 2 1 t 2 1 s 3 2 t 3 2 s 4 3 t 4 3 s n n-1 t n n-1
With the small category G n (for all n ≥ 1) it is possible to associate kind of colimits that we call G n -sums (see below), which are exactly objects of the category (1 + 2 ↓ S n (1 + 2) (up to isomorphisms). These objects are also called G n -trees. Objects a ∈ G n (0) have dimensions where notations of the diagrams above indicate these dimensions:

dim(1(n)) = dim(2(n)) = n, but also dim(f n (1(n))) = dim(g n (1(n))) = n, dim(α k (1(0))) = dim(β k (1(0))) = k, and also dim(ξ n (1(0))) = n.
Thus objects a ∈ G n (0) shall be denoted with a subscript a l where l ∈ N is the dimension of a l . Objects of G n are equipped with the natural order < provided by arrows of G n : for a, b ∈ G n (0) we have a < b if and only if there is an arrow a b in G n . We can extend this order < with the order ≤ by saying: a ≤ b if and only if a < b or a = b. Now a G n -tree is given by a table:

   a i1 a i2 a i3 • • • a i k-1 a i k a i ′ 1 a i ′ 2 • • • • • a i ′ k-1   
such that k ≥ 1, and for all 1 ≤ l ≤ k, a i l are objects of G n such that dim(a i l ) = i l , and for all

1 ≤ l ≤ k -1 we have a i l ≥ a i ′ l ≤ a i l+1 .
It is straightforward to see that G n -trees are globular sets, and that for n = 0 we recover G 0 -trees.

Let C a category and let G n C F a functor. We denote F (a i k ) = D ai k and we shall keep the same notations for the image of cosources : F (s i l i l ′ ) = s i l i l ′ , and for the image of cotargets :

F (t i l i l ′ ) = t i l i l ′
, because no risk of confusion will occur. In this case G n C F is called a globular G n -extension if for all G n -trees t as just above, the colimit of the following diagram exist in C:

D ai 1 D ai 2 • • • D ai k-1 D ai k D a i ′ 1 D a i ′ 2 • • • D a i ′ k-2 D a i ′ k-1 t i 1 i ′ 1 s i 2 i ′ 1 t i 2 i ′ 2 t i k-1 i ′ k-1 s i k i ′ k-1
Following the terminology of Grothendieck, such colimits are called G n -globular sums.

A morphism of globular G n -extensions, also called globular G n -functor, is given by a commutative triangle in CAT:

C G n C ′ H F F ′
such that the functor H preserves G n -globular sums. The category of globular G n -extensions is denoted G n -Ext. In fact this category has an initial object denoted G n Θ n i

. And the small category Θ n can be described as the full subcategory of [G op + G op ; Sets] which objects are globular G n -trees. In particular this small category Θ n is the basic inductive sketch we shall need to describe coherators which set models are globular weak (n, ∞)-transformations

(n ∈ N) (see 2.4).
A globular G n -theory is given by a globular G n -extension G n C F such that the unique induced functor F which makes commutative the diagram: for short, is given by a functor : C Sets X , such that the functor X • F :

Θ n G n C F i
Θ n C Sets F X
sends globular G n -sums to globular G n -products2 , thus for all objects t of Θ n :

   a i1 a i2 a i3 • • • a i k-1 a i k a i ′ 1 a i ′ 2 • • • • • a i ′ k-1   
we have:

X(F (t)) = X      colim      D ai 1 D ai 2 • • • D ai k-1 D ai k D a i ′ 1 • • • D a i ′ k-1 t i 1 i ′ 1 s i 2 i ′ 1 t i k-1 i ′ k-1 s i k i ′ k-1           = X   (D ai 1 , t i1 i ′ 1 ) D a i ′ 1 (s i2 i ′ 1 , D ai 2 , t i3 i ′ 2 ) D a i ′ 2 • • • D a i ′ k-1 (s i k i ′ k-1 , D ai k )   ≃ X(D ai 1 ) × X(D a i ′ 1 ) • • • × X(D a i ′ k-1 ) X(D ai k )
The category of Sets-models of C is the full subcategory of the category of presheaves [C, Sets] which objects are Sets-models of C, and it is denoted Mod(C). Now it is easy to see that we get the following globular filtration:

G 0 G 1 G 2 G 3 G 4 • • • G n-1 G n • • • Θ 0 Θ 1 Θ 2 Θ 3 Θ 4 • • • Θ n-1 Θ n • • • s 1 0 t 1 0 s 2 1 t 2 1 s 3 2 t 3 2 s 4 3 t 4 3 s n n-1 t n n-1 s 1 0 t 1 0 s 2 1 t 2 1 s 3 2 t 3 2 s 4 3 t 4 3 s n n-1 t n n-1 1.2
The theories Θ M n for (n, ∞)-magmas (n ∈ N) and their filtration.

A (0, ∞)-magma M is given by a globular set G op Sets M equipped with operations M n × Mp M n M n

• n p for all n ≥ 1 and all 0 ≤ p ≤ n -1 such that :

• for 0 ≤ p < q < m, s m q (y • m p x) = s m q (y) • q p s m q (x) and t m q (y • m p x) = t m q (y) • q p t m q (x)

• for 0 ≤ q < p < m, s m q (y • m p x) = s m q (y) = s m q (x) and t m q (y • m p x) = t m q (y) = t m q (x)

• for 0 ≤ p = q < m, s m q (y • m p x) = s m q (x) and t m q (y • m p x) = t m q (x)

A (1, ∞)-magma M M ′ F between two (0, ∞)-magma M and M ′ is a morphism of globular sets. If N N ′ G is another (1, ∞)-magma, then a strict morphism between them: F G (h,h ′ )
is given by two morphisms of (0, ∞)-magma:

M N h and M ′ N ′ h ′ such that the following diagram is commutative in Glob: M M ′ N N ′ h F h ′ G The category of (1, ∞)-magmas is denoted (1, ∞)-Mag. A (2, ∞)-magma M M ′ F G τ is given by two objects M M ′ F and M M ′ G of (1, ∞)-Mag and a morphism: M (0) M ′ (1) 
τ of Sets such that for all a ∈ M (0), s 1 0 (τ (a)) = F (a) and

t 1 0 (τ (a)) = G(a). If N N ′ H K ρ is another (2, ∞)-magma, then a strict morphism between them: τ ρ (h,h ′ )
is given by two morphisms of (0, ∞)-magmas:

M N h and M ′ N ′ h ′
such that for all a ∈ M (0) we have:

h ′ (τ (a)) = ρ(h(a)). The category of (2, ∞)-magmas is denoted (2, ∞)-Mag.
For n ≥ 3 we define (n, ∞)-magmas by induction: suppose the categories (k, ∞)-Mag of (k, ∞)-magmas are defined for all k ∈ 2, n -1 . An (n, ∞)-magma α β ξ between the (n -1, ∞)-magmas α and β is given by a morphism

M (0) M ′ (n) ξ in Sets such that for all a ∈ M (0), s n 0 (ξ(a)) = F (a) and t n 0 (ξ(a)) = G(a). A morphism between two (n, ∞)-magmas ξ ξ ′ (h,h ′ )
is given by two morphisms of (0, ∞)-magmas:

M N h and M ′ N ′ h ′
such that for all a ∈ M (0) we have: h ′ (ξ(a)) = ξ ′ (h(a)). The category of (n, ∞)-magmas is denoted (n, ∞)-Mag. Now for all n ≥ 1 we have a monadic forgetful functor U n :

(n, ∞)-Mag Glob 2 ⊣ U n F n
from the category (n, ∞)-Mag of globular (n, ∞)-magmas to the category Glob 2 of pairs of globular sets, which sends (n, ∞)-magmas ξ as above to the pair of globular sets (U (M ), U (M ′ )). The notation U (M ) means that we have forgotten the underlying structure of (0, ∞)-magma of M . We use the equivalence

Glob 2 ≃ [G op 0 + G op 0 ; Sets] to get a monad M n = (M n , η n , µ n ) on [G op 0 + G op 0 ; Sets].
We have the equivalence of categories (n, ∞)-Mag ≃ M n -Alg because U n is monadic. The full subcategory Θ M n ⊂ Kl(M n ) of the Kleisli category of M n which objects are G n -trees is called the theory of globular (n, ∞)-magmas. This is our basic example of globular G n -theory. In fact we have the following equivalences of categories:

(n, ∞)-Mag ≃ M n -Alg ≃ Mod(Θ M n )
Now it is easy to see that we get the following globular filtration:

G 0 G 1 G 2 G 3 G 4 • • • G n-1 G n • • • Θ 0 Θ 1 Θ 2 Θ 3 Θ 4 • • • Θ n-1 Θ n • • • Θ M 0 Θ M 1 Θ M 2 Θ M 3 Θ M 4 • • • Θ M n-1 Θ M n • • • s 1 0 t 1 0 s 2 1 t 2 1 s 3 2 t 3 2 s 4 3 t 4 3 s n n-1 t n n-1 s 1 0 t 1 0 s 2 1 t 2 1 s 3 2 t 3 2 s 4 3 t 4 3 s n n-1 t n n-1 s 1 0 t 1 0 s 2 1 t 2 1 s 3 2 t 3 2 s 4 3 t 4 3 s n n-1 t n n-1 2 Globular G n -coherators (n ∈ N) 2.

Admissibility

For a fixed integer n ≥ 1, let G n C F be a globular G n -theory, i.e an object of G n -Th; here we pay attention to the inclusion: G 0 + G 0 G n . An object c m of G 0 + G 0 can be the object 1(m) or the object 2(m) for all m ∈ N; two arrows:

D cm t f g in C are parallels if f s m m-1 = gs m m-1 and f t m m-1 = gt m m-1 : D cm t D cm-1 f g s m m-1 t m m-1
Consider a couple (f, g) of parallels arrows in C as just above. We say that it is admissible or algebraic if they don't belong to the image of the globular G n -functor F :

Θ n G n C F i F
Consider a couple (f, g) of arrows of C which is admissible as just above; a lifting of (f, g) is given by an arrow h : • If m = 1 we consider the couple (C 1 , E 1 ) where C 1 is obtained by formally adding in C 0 all liftings of the elements (f, g) ∈ E 0 , E ′ 1 is the set of all pairs of arrows which are admissible in C 1 , and

D cm+1 D cm
E 1 = E ′ 1 \ E 0 ; remark that E 0 = E ′ 0 ⊂ E ′ 1 ;
• If m = 2 we consider the couple (C 2 , E 2 ) where C 2 is obtained by formally adding in C 1 all liftings of the elements (f, g) ∈ E 1 , E ′ 2 is the set of all pairs of arrows which are admissible in C 2 , and

E 2 = E ′ 2 \ E ′ 1 ;
• For m ≥ 3 we suppose that the couple

(C m , E m ) is well defined with E m = E ′ m \ E ′ m-1
, then C m+1 is obtained by formally adding in C m all liftings of the elements (f, g) ∈ E m , E ′ m+1 is the set of all pairs of arrows which are admissible in C m+1 , and

E m+1 = E ′ m+1 \ E ′ m ;
The Batanin-Grothendieck sequence of the globular theory G n C F produces the following filtered diagram:

(N, ≤) G n -Th C•
in the category G n -Th:

C 0 C 1 • • • C m • • • i1 i2 im 2.3 G n -coherators for globular G n -theories (n ∈ N)
Let us fixed an integer n ≥ 1. We start with datas of the previous subsection, i.e with the Batanin-Grothendieck

sequence (N, ≤) G n -Th C•
for a globular G n -theory G n C 

C 0 C 1 • • • C m • • • C ∞ i1 i2
G n -Th G n -Th C C ∞ Φn 2.4 The G n -coherators Θ ∞ M n (n ∈ N)
Let us fixed an integer n ≥ 1. The G n -coherator associated to the globular theory G n Θ M n j that we obtain with the composition: Definition 4 If τ ∈ Mod(Θ ∞ M n ) and p ≥ 1 is an integer, then dim(τ ) = p if for all q > p, any q-operations K in Θ ∞ M n has its source and target which are equalize by τ . Thus if we have:

G n Θ n Θ M n i is denoted Θ ∞ M n .
1(q) 1(q -1) t K t q q-1 s q q-1 K•s q q-1 K•t q q-1 or: 2(q) 2(q -1) t K t q q-1 s q q-1 K•s q q-1 K•t q q-1
, then τ (K • s q q-1 ) = τ (K • t q q-1 ).

✷ Remark 1 In 2019 John Bourke has proved [4] the Ara conjecture [START_REF] Ara | Sur les ∞-groupoïdes de Grothendieck et une variante ∞-catègorique[END_REF] which says that the category of globular weak ∞-categories of Batanin is equivalent to the category of globular weak ∞-categories of Grothendieck:

Mod(Θ B 0 C ) ≃ Mod(Θ ∞ M )
where here B 0 C denotes the globular operad of Batanin [2] which algebras are his models of globular weak ∞categories and Θ B C is its associated theory. In the same veine, for all integers n ≥ 1, the category of globular weak (n, ∞)-transformations defined in [START_REF] Kachour | Steps toward the weak higher category of weak higher categories in the globular setting[END_REF] should be equivalent to the category of globular weak (n, ∞)-transformations with this G n -coherator Θ ∞ M m :

Mod(Θ B n C ) ≃ Mod(Θ ∞ M n )
where B n C denotes the globular operad [START_REF] Kachour | Steps toward the weak higher category of weak higher categories in the globular setting[END_REF] which algebras are models of globular weak (n, ∞)-transformations and Θ B n C is its associated theory.

✷

Now it is easy to see that we get the following globular filtration:

G 0 G 1 G 2 G 3 G 4 • • • G n-1 G n • • • Θ 0 Θ 1 Θ 2 Θ 3 Θ 4 • • • Θ n-1 Θ n • • • Θ M 0 Θ M 1 Θ M 2 Θ M 3 Θ M 4 • • • Θ M n-1 Θ M n • • • Θ ∞ M 0 Θ ∞ M 1 Θ ∞ M 2 Θ ∞ M 3 Θ ∞ M 4 • • • Θ ∞ M n-1 Θ ∞ M n • • • s t s 2 1 t 2 1 s 3 2 t 3 2 s 4 3 t 4 3 s n n-1 t n n-1 s t s 2 1 t 2 1 s 3 2 t 3 2 s 4 3 t 4 3 s n n-1 t n n-1 s t s 2 1 t 2 1 s 3 2 t 3 2 s 4 3 t 4 3 s n n-1 t n n-1 s t s 2 1 t 2 1 s 3 2 t 3 2 s 4 3 t 4 3 s n n-1 t n n-1

Computations in dimensions 2

A natural transformation τ :

X Z F H τ
where X and Z are categories and F and H are functors, is given by a class of arrows:

F (x) H(x) τ (x) x∈X(0)
in Z such that if x y a is an arrow of X, then we have the following commutative diagrams:

F (x) H(x) F (y) H(y) F (a) τ (x) H(a) τ (y)
If instead the datas:

X Z F H τ
are given by bicategories X and Z, pseudo-2-functors F and H, then a class of 1-cells:

F (x) H(x) τ (x) x∈X(0)
of the bicategory Z, and if x y a is a 1-cell of X, then we have the following coherence 2-cell ω(a):

F (x) H(x) F (y) H(y) τ (x) F (a) ω(a) H(a) τ (y) such that if x y z a b
are 1-cells of X then we have the following commutative diagram:

H 1 (b) • 1 0 (H 1 (a) • 1 0 τ 1 (x)) H 1 (b) • 1 0 (τ 1 (y) • 1 0 F 1 (a)) (H 1 (b) • 1 0 H 1 (a)) • 1 0 τ 1 (x) (H 1 (b) • 1 0 τ 1 (y)) • 1 0 F 1 (a) H 1 (b • 1 0 a) • 1 0 τ 1 (x) (τ 1 (z) • 1 0 F 1 (b)) • 1 0 F 1 (a) τ 1 (z) • 1 0 F 1 (b • 1 0 a) τ 1 (z) • 1 0 (F 1 (b) • 1 0 F 1 (a))
a(H1(b),H1(a),τ1(x)) The following diagram of theories:

1 H 1 (b) • 2 0 ω(a) a(H1(b),τ1(y),F1(a)) d1(a,b)• 2 0 1 τ 1 (x) ω(b)•201 F 1 (a) ω(b•10a) a(τ1(z),F1(b),F1 (a) 
Θ ∞ M 0 Θ ∞ M 1 Θ ∞ M 2 s 1 0 t 1 0 s 2 1 t 2 
1 leads, by passing to Sets-models, to the following diagram in CAT: of X, where are involved the coherence 2-cells:

Mod(Θ ∞ M 2 ) Mod(Θ ∞ M 1 ) Mod(Θ ∞ M 0 ) σ 2 1 τ 2 1 σ 1 0 τ 1 0 Thus if τ is a Θ ∞ M 2 -
H 1 (b) • 1 0 (H 1 (a) • 1 0 τ 1 (x)) H 1 (b) • 1 0 (τ 1 (y) • 1 0 F 1 (a)) (H 1 (b) • 1 0 H 1 (a)) • 1 0 τ 1 (x) (H 1 (b) • 1 0 τ 1 (y)) • 1 0 F 1 (a) H 1 (b • 1 0 a) • 1 0 τ 1 (x) (τ 1 (z) • 1 0 F 1 (b)) • 1 0 F 1 (a) τ 1 (z) • 1 0 F 1 (b • 1 0 a) τ 1 (z) • 1 0 (F 1 (b) • 1 0 F 1 (a))
a • 1 0 (b • 1 0 c) (a • 1 0 b) • 1 0 c a(a,b,c) H 1 (a) • 1 0 τ (x) τ (y) • 1 0 F 1 (a)
ω(a)

and:

F 1 (b) • 1 0 F 1 (a) F 1 (b • 1 0 a) d0(b,a) H 1 (b) • 1 0 H 1 (a) H 1 (b • 1 0 a) d1(b,a)
In fact this diagram is the realization in Sets, through the presheaf τ , of some conglomerate of operations living in Θ ∞ M 2 . We are going to describe each operations which underlies expressions in this diagram, and this shall lead to the conglomerate of operations leading, by passing to Sets-models, to this diagram.

In order to organize our computations we write: • Operation for (AB):

The operations: 

F

  induces a bijection between objects of Θ n and objects of C. The full subcategory of G n -Ext which objects are globular G n -theories is denoted G n -Th. Consider an object G n C F of G n -Th, in particular it induces the globular G n -functor Θ n C F as just above, which is a bijection on objects. A Sets-model of (F, C) or for C

:•

  We now define the Batanin-Grothendieck sequence3 associated to a globular G n -theory G n C F . We build it by the following induction: • If m = 0 we start with the couple (C, E) where E denotes the set of admissible pairs of arrows of C; we shall write (C 0 , E 0 ) = (C, E) this first step. • If m = 1 we consider then the couple (C 1 , E 1 ) where C 1 is obtained by formally adding in C 0 = C the liftings of all elements (f, g) ∈ E 0 = E, and E 1 is the set of admissible couples of arrows in C 1 which are not elements of the set E 0 ; • If for m ≥ 2 the couple (C m , E m ) is well defined then C m+1 is obtained by formally adding in C m the liftings of all elements of E m , and E m+1 is the set of couples of arrows of C m+1 which are not elements of E m We give a slightly different but equivalent induction to build the Batanin-Grothendieck sequence for such globular theory G n C F If m = 0 we start with the couple (C, E) where E is the set of couple of arrow which are admissible of C; we denote E = E 0 = E ′ 0 = E ′ 0 \ ∅ (we shall see soon the reason of these notations), and C 0 = C;

F : 3 Definition 2

 32 Coherators associated to such sequence are called of Batanin-Leinster type by some authors. The colimit G n C ∞ F∞ of the previous filtered diagram C • :

F.

  im is called the globular G n -coherator of the type Batanin-Grothendieck associated to the globular G n -theory G n C F ✷ For shorter terminology we shall say that G n C ∞ F∞ is the G n -coherator associated to the globular G ntheory G n C It is straightforward to see that the Batanin-Grothendieck construction of G n -coherators associated to globular G n -theory is functorial, and the following functor Φ n is called the Batanin-Grothendieck functor:

) 1 τ 1 Definition 5

 15 Such τ described above are called pseudo-2-natural transformations. ✷ We are going to show that Θ ∞ M 2 -models in Sets of dimension 2, i.e globular weak (2, ∞)-natural transformations of dimension 2, are pseudo-2-natural transformations.

Proposition 1

 1 models in Sets then F := σ 2 1 (τ ) ∈ Mod(Θ ∞ M 1 ) is the domain of τ andH := τ 2 1 (τ ) ∈ Mod(Θ ∞ M 1 ) is the codomain of τ . BothF and H are globular weak ∞-functors. Also X := σ 2 0 (τ ) ∈ Mod(Θ ∞ M 0 ) and Z := τ 2 0 (τ ) ∈ Mod(Θ ∞ M 0 ) are the underlying globular weak ∞-categories of τ . Thus for shorter notation we write: weak (2, ∞)-natural transformation. With the notation above, if τ is a Θ ∞ M 2 -models in Sets of dimension 2, then it has a structure of pseudo-2-natural transformation. ✷ Proof We need to exhibit a commutative diagram:

h 1 ( 1 are such that h 1 ( 1 ( 1 ) 1 0

 111111 ) ⋆ 1 0 τ (1(0)) = τ (1(0)) ⋆ 1 0 f 1 (1(1)), also they are parallels, thus lead to the operation ω: also we have the operation [H 1 ; H 1 ]:

  Definition 3 Globular weak (n, ∞)-transformations are objects of the category Mod(Θ ∞ M n ).

							✷
	Morphisms in Θ ∞ M n which doesn't belong to the image of Θ n		Θ ∞ M n are called algebraic morphisms of
	Θ ∞ M n . Morphisms in Θ ∞ M n of the form: 1(p)	K	t	or 2(p)	K	t	, where t are any G n -trees, are the p-operations
	of Θ ∞ M n .						

By theory here we mean a small category equipped with a chosen set of projective cones[START_REF] Lair | Leçons de théorie des esquisses[END_REF][START_REF] Makkai | Accessible Categories : The Foundations of Categorical Model Theory[END_REF].

Globular Gn-products are just dual to globular Gn-sums.

2(2)

2 [START_REF] Ara | Sur les ∞-groupoïdes de Grothendieck et une variante ∞-catègorique[END_REF] h 1 (1(1))

[H1;H1] t 2 1 s 2 1 H1 H1 thus this leads to the operation:

which gives the operation (AB):

• Operation for (BC):

The coherence for associativity is builds as follow:

thus by precomposing it with:

we get the operation (BC):

• Operation for (CD): this is similar to the operation (AB) and we obtain:

• Operation (DE): this is similar to the operation (BC) and we obtain:

• Operation (EF ):

the operations:

are parallels, thus lead to the operation d 0 :

Also we have the lifting [τ ; τ ]:

thus this leads to:

thus to the operation (EF ):

• Operation (AG): this is similar to the operations (BC) and (DE) and we obtain:

• Operation (GH): this is similar to the operation (EF ) and we obtain:

we use the operations:

), and these operations are parallels, thus we get the lifting ω(µ 1 0 ):

• We have the equalities:

which shows that operations (AB), (BC), (CD), (DE), (EF ), (AG), (GH) and (HF ) have the same arities, say:

• With the operations (AB), (BC), (CD), (DE) and (EF ) we have the following morphism in Θ ∞ M :

From it we get the following operation

• With the operations (AG), (GH) and (HF ) we have the following morphism in Θ ∞ M 2 :

and from it we get the following operation

The operations (ABCDEF ) and (AGHF ) are parallels, thus lead to the lifting:

But τ has dimension 2, thus the Sets-realization of the operations (ABCDEF ) and (AGHF ) agree, which gives the commutative diagram for pseudo-2-natural transformations.

3 The globular weak ∞-category of globular weak ∞-categories in the sense of Grothendieck Thanks to the result in [4] it is possible to use the formalism of globular operads in [2], at least for the globular free contractible operad B 0 C which algebras are globular weak ∞-categories of Batanin. The main result in [4] solves a conjecture in [START_REF] Ara | Sur les ∞-groupoïdes de Grothendieck et une variante ∞-catègorique[END_REF] which basically claimed the equivalence of categories:

that is, the approach of globular weak ∞-categories of Batanin and Grothendieck are equivalent.

In this article we built the following coglobular object in Cat:

-coalgebra which means that we have a coaction:

where Coend(Θ ∞ M • ) is the coendomorphism operad associated to Θ ∞ M • (this exists because Cat has all small colimits), then this shows that globular weak (n, ∞)-transformations, for all n ∈ N, by coherators, organize in a globular weak ∞-categories in the sense of Batanin, thus in the sense of Grothendieck. Thus the B 0 C -coalgebraicity of Θ ∞ M • means that globular weak ∞-categories of Grothendieck organize in a globular weak ∞-categories of Grothendieck. This fact is a necessary step for an accurate approach of globular weak ∞-stacks as wished by Alexandre Grothendieck in [6].

A way to prove this coalgebraicity is to show that the operad Coend(Θ ∞ M • ) is contractible and equipped with a composition system. We shall give a complete syntactical proof of this coalgebraicity in a future paper.