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Algebraic models of cubical weak
∞-categories with connections

Camell Kachour

Abstract. In this article we adapt some aspects of Penon’s article [23] to
cubical geometry. More precisely we define a monad on the category CSets
of cubical sets (without degeneracies) whose algebras are models of cubical
weak ∞-categories with connections.

1 Introduction and preliminaries

In this article we explain how to construct algebraic models of cubical weak
∞-categories with connections (see Subsection 4.1).

A very important feature of cubical higher category theory is, for them,
the flexible possibility of having models of higher structures built by mim-
icking simplicial methods for presheaves on the classical category ∆, to
presheaves on the reflexive cubical category Cr of cubical sets with connec-
tions (see Subsection 2.2). On the other hand, as we shall see in this article,
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to also have models of higher structures built by mimicking the stretch-
ing method initiated for the globular setting in [23]) and carrying further
in [12, 14].

For this last point it is important to notice that cubical strict∞-categories
(see Section 3) are very close in nature to their globular analogue: their first
data are given by a countable family of sets (Cn)n∈N, equipped both with
sources and targets of a kind, and partial operations, and two kinds of re-
flexors (that we call the classical reflexions and the connections) on each
set Cn, subject to axioms. See also [5].

Cubical sets have richer structure than globular sets, as do simplicial
sets, and this richness allows one to translate many definitions of simplicial
higher category to cubical higher category (see [1]). Yet we shall see that
cubical higher category theory has the algebraic flexibility of globular higher
category theory, which is a feature difficult to find for simplicial higher
category theory. These important aspects of cubical higher category theory
allow one to see it as a bridge between simplicial higher category theory and
globular higher category theory.

Finally it is important to notice that cubical strict higher structures
already have applications and impacts in homology [2] and in algebraic
topology [6]. The use of connections with the simplicial method can be
found in [1].

Cubical Stretchings are the main tools of this article: the first stretching
structure occurred in the work of Jacques Penon in 1999 [23] for globular
shapes. Globular stretchings are the main tool to build algebraic models
of weak ∞-categories in Penon’s sense. Let us briefly recall how these
structures weakened algebraic structures. Five ingredients build them:

• A category G of presheaves1 which formalizes a given geometry2, that
is, where a notion of dimension is involved and where the objects of
the category of elements of any of its presheaves are called cells.

• A magmatic higher structure based on G with chosen partial opera-
tions;

• A strict higher structure based on G, which in fact is a magmatic
higher structure with chosen equations build with its operations.

1Usually G is just equipped with the empty cone.
2Globular, cubical, multiple, etc.
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• A morphism of magmas between a magmatic higher structure and a
strict higher structure based on the geometry of G3. A magma means
a structure without equations.

• A family of partial operations, called bracketings, which builds coher-
ences (or homotopy) between two cells of its underlying magma, for
those couples of cells with the same dimension and with some other
extra conditions.

With its bracketing operations, a stretching fills its underlying magma with
coherence cells, and this filling is controlled4 by its strict structure. Thus it
equipped its underlying magma with a weakened version of its underlying
strict higher structure. The category Str of such stretchings is all the time
projectively sketchable and one of its sketch E contains the projective sketch

E ′ of G: E ′ Ei , thus the induced functor5 Mod(E) Mod(E ′)i?

is a right adjoint [9], and we get a monadW on G = Mod(E ′). W-algebras are
models of the weakened version of its corresponding strict higher structures.
The free algebraic structures are the free stretchings on objects of G, and
they are our basic weak higher structure which weakened the strict higher
structures involved. In [23] it is shown that free categorical stretchings
on globular sets can be described by using basic method of logic, i.e con-
structing terms with an adapted language to the globular geometry which
is defined with operations such as the ◦np and the bracketings [−;−]; it has
no variables and has only constants built out with globular sets. Such a
method can be apply to build thr free stretchings of this article, but it
is quite technical and goes beyond our scope here. The category of strict
higher structures of such stretchings is the category of algebras for a monad
S on G. The monad W is a kind of (or weakly equivalent to) cofibrant re-
placement of the monad S. A true advantage of weakness with stretchings
is it doesn’t need the cartesianality of the monad S of its underlying strict
higher structures. But it seems that the corresponding monad W could be
an operad as is shown in [3]. Another good feature of the monad W is that
it preserves α-filtered colimits where α is a cardinal bounding the size of

3Both in the same kind of higher structure as G.
4It is similar to cofibrantly generated weak factorization system where the small object

argument of Kan-Quillen shows that a given factorization is built by using a sequence
controlled by a small set of maps.

5This induced functor i? has no reason to be monadic.
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all cones of both sketches E and E ′. This shows that the category W-Alg of
W-algebras is locally presentable.

This article is mainly concerned with cubical stretchings and the cubical
higher structures they provide. It is devoted to several works for which the
main steps are as follow:

• Our own terminology is chosen to be as close as possible to the notation
of the globular environment, and in it we define the monad of cubical
strict ∞-categories with connections on the category of cubical sets6

• We define the category of cubical categorical stretchings which is the
cubical anologue of the category of globular categorical stretchings
of [23]. The key ingredient is a cubical analogue of the globular con-
tractions build in [23]. Then we give a monadW on the category of cu-
bical sets whose algebras are our models of cubical weak∞-categories
with connections. This monad is the cubical analogue of the monad
P0
C in [23], whose P0

C-algebras are the globular weak ∞-categories of
Penon.

In [12, 14, 23] some computations were described for globular higher
structures born with globular stretchings. For example in [23] it is proved
that, in dimension 2, the globular weak ∞-categories of Penon are bicate-
gories. In Subsection 4.3 we gave a precise definition of the dimension for
algebras of our models of cubical weak ∞-categories. Computations in di-
mension 2 lead to long computations and go beyond the scope of this article,
but the reader interested in the dimension 2 can verify that our models of
dimension 2 (without the structure of connections) are weak double cate-
gories in the sense of Verity [26]; however in Subsection 4.1 we exhibited an
example of cubical coherence cell7 in dimension 2.

Main proofs of this article use Sketch Theory initiated by Charles Ehres-
mann and his students, especially Christian Lair [8]. Two sketches are
Morita equivalent if their category of Sets-models are equivalent. Also when
we write “sketch of a category C”, we mean that this category C is pro-
jectively sketchable, and that a sketch of it has been fixed up to Morita
equivalence.

6Cubical sets in our terminology are the precubical sets of [6].
7In [16] we exhibited the same kind of 2-cell for the cubical operad of cubical weak

∞-categories. Globular stretchings and globular operads are quite close in nature (for
example they share the same notion of contractions) and for computations [3].
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2 Cubical sets

Cubical sets are set-valued functors on a specific small category C (see
Section 2.1). This small category contains the combinatorics underlying the
geometric idea of cubes and higher cubes. The following internal cocubical
complex in Top, where I = [0, 1] is the usual interval in R and where In

is the product of I with itself n-times [6], is an archetypal example of the
shape modelled by C:

I0 I1 I2 I3 · · · In−1 In · · ·
s01

t01

s21,1

t21,1

s21,2

t21,2

s32,1

t32,1

s32,2

t32,2

s32,3

t32,3

snn−1,n−1

tnn−1,n−1

snn−1,i

tnn−1,i

snn−1,1

tnn−1,1

Here sources In−1 In
snn−1,j

for each j ∈ {1, .., n} and targets

In−1 In
tnn−1,j

for each j ∈ {1, .., n} such that for 1 ≤ i < j ≤ n,
follow the cocubical relations

(i) snn−1,j ◦ sn−1
n−2,i = snn−1,i ◦ sn−1

n−2,j−1,

(ii) tnn−1,j ◦ sn−1
n−2,i = snn−1,i ◦ tn−1

n−2,j−1,

(iii) snn−1,j ◦ tn−1
n−2,i = tnn−1,i ◦ sn−1

n−2,j−1,

(iv) tnn−1,j ◦ tn−1
n−2,i = tnn−1,i ◦ tn−1

n−2,j−1,
which are the dual relations described below in 2.1. This cocubical complex
is used in [17] to build the functor of fundamental cubical weak∞-groupoids
for spaces8. More references on cubical sets can be found in [1, 10].

8It is a B0
C-coalgebra, where B0

C is the cubical operad of cubical weak∞-categories [16].
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2.1 The cubical category Consider the small category C with in-
tegers n ∈ N as objects. Generators for C are, for all n ∈ N given

by sources n n− 1
snn−1,j

for each j ∈ {1, .., n}, and by targets

n n− 1
tnn−1,j

for each j ∈ {1, .., n} such that for 1 ≤ i < j ≤ n

we have the following cubical relations

(i) sn−1
n−2,i ◦ snn−1,j = sn−1

n−2,j−1 ◦ snn−1,i,

(ii) sn−1
n−2,i ◦ tnn−1,j = tn−1

n−2,j−1 ◦ snn−1,i,

(iii) tn−1
n−2,i ◦ snn−1,j = sn−1

n−2,j−1 ◦ tnn−1,i,

(iv) tn−1
n−2,i ◦ tnn−1,j = tn−1

n−2,j−1 ◦ tnn−1,i

These generators plus these relations give the small category C called
the cubical category whose objects can be represented schematically by the
low dimensional diagram:

· · ·C4 C3 C2 C1 C0

s43,1

t43,1

s43,2

t43,2

s43,3

t43,3

s43,4

t43,4

s32,1

t32,1

s32,2

t32,2

s32,3

t32,3

s21,1

t21,1

s21,2

t21,2

s10

t10

and this category C gives also the sketch ES of cubical sets used especially
in 3.2, 4.1, to produce the monads S = (S, λ, µ), W = (W, η, ν) on CSets,
whose algebras are respectively cubical strict∞-categories and cubical weak
∞-categories.

Definition 2.1. The category of cubical sets CSets is the category [C; Sets]
of set-valued functors on C. The terminal cubical set is denoted 1.

Occasionally a cubical set shall be denoted with the notation

C = (Cn, s
n
n−1,j , t

n
n−1,j)1≤j≤n, n∈N
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in case we want to point out its underlying structures.

2.2 Reflexive cubical sets Reflexivity for cubical sets are of two
sorts: one is “classical” in the sense that they are very similar to their
globular analogue; thus we shall use the notation (1nn+1,j)n∈N,j∈{1,..,n} to

denote these maps C(n) C(n+ 1)
1nn+1,j

which formally behave like

globular reflexivity ( [14]); the others are called connections and are given

by maps C(n) C(n+ 1)Γ where the notation using the Greek

letter “Gamma” seems to be the usual notation. However we do prefer to

use instead the notation C(n) C(n+ 1)
1n,γn+1,j

(γ ∈ {+,−}) in order

to point out the reflexive nature of connections.

Consider the cubical category C. For all n ∈ N we add generators

n− 1 n
1n−1
n,j

to it for each j ∈ {1, .., n} subject to the relations:

(i) 1nn+1,i ◦ 1n−1
n,j = 1nn+1,j+1 ◦ 1n−1

n,i if 1 ≤ i ≤ j ≤ n;

(ii) snn−1,i ◦ 1n−1
n,j = 1n−2

n−1,j−1 ◦ sn−1
n−2,i if 1 ≤ i < j ≤ n;

(iii) snn−1,i ◦ 1n−1
n,j = 1n−2

n−1,j ◦ sn−1
n−2,i−1 if 1 ≤ j < i ≤ n;

(iv) snn−1,i ◦ 1n−1
n,j = id(n− 1) if i = j.

and

(i) 1nn+1,i ◦ 1n−1
n,j = 1nn+1,j+1 ◦ 1n−1

n,i if 1 ≤ i ≤ j ≤ n;

(ii) tnn−1,i ◦ 1n−1
n,j =1n−2

n−1,j−1 ◦ tn−1
n−2,i if 1 ≤ i < j ≤ n;

(iii) tnn−1,i ◦ 1n−1
n,j = 1n−2

n−1,j ◦ tn−1
n−2,i−1 if 1 ≤ j < i ≤ n;

(iv) tnn−1,i ◦ 1n−1
n,j = id(n− 1) if i = j.

These generators and relations give the small category Csr called the
semireflexive cubical category where a quick look at its underlying semire-
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flexive structure is given by the following diagram:

C0 C1 C2 C3 C4 · · ·
10

1

11
2,1

11
2,2

12
3,1

12
3,2

12
3,3

13
4,1

13
4,2

13
4,3

13
4,4

Definition 2.2. The category of semireflexive cubical sets CsrSets is the
functor category [Csr;Sets]. The terminal semireflexive cubical set is de-
noted 1sr.

Consider the semireflexive cubical category Csr. For all integers n ≥ 1

we add generators n− 1 n
1n−1,γ
n,j

for each j ∈ {1, .., n − 1} subject

to the relations:

(i) for 1 ≤ j < i ≤ n, 1n,γn+1,i ◦ 1n−1,γn,j = 1n,γn+1,j+1 ◦ 1n−1,γn,i ;

(ii) for 1 ≤ i ≤ n− 1, 1n,γn+1,i ◦ 1n−1,γn,i = 1n,γn+1,i+1 ◦ 1n−1,γn,i ;

(iii) for 1 ≤ i, j ≤ n,{
1n,γn+1,i ◦ 1n−1n,j = 1nn+1,j+1 ◦ 1n−1,γn,i if 1 ≤ i < j ≤ n

= 1nn+1,j ◦ 1n−1,γn,i−1 if 1 ≤ j < i ≤ n ;

(iv) for 1 ≤ j ≤ n, 1n,γn+1,j ◦ 1n−1n,j = 1nn+1,j ◦ 1n−1n,j ;

(v) for 1 ≤ i, j ≤ n,{
snn−1,i ◦ 1n−1,γn,j = 1n−2,γn−1,j−1 ◦ sn−1n−2,i if 1 ≤ i < j ≤ n− 1

= 1n−2,γn−1,j ◦ sn−1n−2,i−1 if 2 ≤ j + 1 < i ≤ n ;

and{
tnn−1,i ◦ 1n−1,γn,j = 1n−2,γn−1,j−1 ◦ tn−1n−2,i if 1 ≤ i < j ≤ n− 1

= 1n−2,γn−1,j ◦ tn−1n−2,i−1 if 2 ≤ j + 1 < i ≤ n ;

(vi) for 1 ≤ j ≤ n− 1, snn−1,j ◦ 1n−1,−n,j = snn−1,j+1 ◦ 1n−1,−n,j = 1n−1
and tnn−1,j ◦ 1n−1,+n,j = tnn−1,j+1 ◦ 1n−1,+n,j = 1n−1;

(vii) for 1 ≤ j ≤ n− 1, snn−1,j ◦ 1n−1,+n,j = snn−1,j+1 ◦ 1n−1,+n,j = 1n−2n−1,j ◦ sn−1n−2,j ;

(viii) for 1 ≤ j ≤ n− 1, tnn−1,j ◦ 1n−1,−n,j = tnn−1,j+1 ◦ 1n−1,−n,j = 1n−2n−1,j ◦ tn−1n−2,j .

These generators and relations give the small category Cr called the
reflexive cubical category and in it, connections have the following shape:
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C1 C2 C3 C3 C4 · · ·
11,−

2,1

11,+
2,1

12,−
3,1

12,+
3,1

12,−
3,2

12,+
3,2

13,−
4,1

13,+
4,1

13,−
4,2

13,+
4,2

13,−
4,3

13,+
4,3

14,−
5,1

14,+
5,1

14,−
5,2

14,+
5,2

14,−
5,3

14,+
5,3

14,−
5,4

14,+
5,4

Definition 2.3. The category of reflexive cubical sets CrSets is the functor
category [Cr; Sets]. The terminal reflexive cubical set is denoted 1r

It is important to note that this small category Cr is a strict test category
[22]; that is, the category CrSets of reflexive cubical sets can be equipped
with a Quillen model structure which is Quillen equivalent to the category
of spaces equipped with its classical Quillen model structure [11].

3 The category of strict cubical ∞-categories

Cubical strict ∞-categories have been studied in [5, 6]. In [5] the authors
proved that the category of cubical strict ∞-categories with cubical strict
∞-functors as morphisms is equivalent to the category of globular strict
∞-categories with globular strict ∞-functors as morphisms.

These higher structures are very important for us because they are used
in 4.1 to control the cubical coherence cells that we need to add in reflexive
cubical ∞-magmas in order to be our basic cubical weak ∞-categories: in
fact they allow the construction of the free cubical weak ∞-categories on
each cubical sets. The primary structure behind cubical strict∞-categories
are cubical ∞-magmas that we are now going to define.

Consider a cubical reflexive set

(C, (1nn+1,j)n∈N,j∈J1,n+1K, (1
n,γ
n+1,j)n≥1,j∈J1,nK)

equipped with partial operations (◦nj )n≥1,j∈J1,nK where if a, b ∈ C(n) then
a ◦nj b is defined for j ∈ {1, ..., n} if snj (b) = tnj (a). We also require these
operations to follow the following axioms of position:
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(i) For 1 ≤ j ≤ n, we have:

snn−1,j(a ◦nj b) = snn−1,j(a) and tnn−1,j(a ◦nj b) = tnn−1,j(a),

(ii) snn−1,i(a ◦nj b) =

{
snn−1,i(a) ◦n−1

j−1 s
n
n−1,i(b) if 1 ≤ i < j ≤ n

snn−1,i(a) ◦n−1
j snn−1,i(b) if 1 ≤ j < i ≤ n

(iii) tnn−1,i(a ◦nj b) =

{
tnn−1,i(a) ◦n−1

j−1 t
n
n−1,i(b) if 1 ≤ i < j ≤ n

tnn−1,i(a) ◦n−1
j tnn−1,i(b) if 1 ≤ j < i ≤ n

Definition 3.1. Cubical ∞-magmas are cubical sets equipped with partial
operations as above. A morphism between two cubical∞-magmas is a mor-
phism of their underlying cubical sets which respects the partial operations
(◦nj )n≥1,j∈J1,nK.The category of cubical ∞-magmas is denoted ∞-CMag.

The following sketch EM of axioms of position as above shall be used
in 3.2 to justify the existence of the monad on CSets of cubical strict ∞-
categories. It is important to notice that the sketch just below has only
one generation which means that diagrams and cones involved in it are not
built with previous data of other diagrams and cones. The terminology used
in [21] is sketch with one floor9. See also [8].

• For 1 ≤ i < j ≤ n we consider the following two cones:

Mn ×
Mn−1,j

Mn Mn

Mn Mn−1

πn0,j

πn1,j

snn−1,j

tnn−1,j

Mn−1 ×
Mn−2,j−1

Mn−1 Mn−1

Mn−1 Mn−2

πn−1
0,j−1

πn−1
1,j−1

sn−1
n−2,j−1

tn−1
n−2,j−1

and the following commutative diagram (definition of snn−1,i ×
j,j−1

snn−1,i):

9In French we say ”esquisse à un étage”.
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Mn ×
Mn−1,j

Mn Mn

Mn−1 ×
Mn−2,j−1

Mn−1 Mn−1

Mn

Mn−1 Mn−2

πn1,j

πn0,j

snn−1,i ×
j,j−1

snn−1,i snn−1,i

πn−1
0,j−1

πn−1
1,j−1

sn−1
n−2,j−1

snn−1,i

tn−1
n−2,j−1

which gives the following commutative diagram:

Mn ×
Mn−1,j

Mn Mn−1 ×
Mn−2,j−1

Mn−1

Mn Mn−1

?nj

snn−1,i ×
j,j−1

snn−1,i

?n−1
j−1

snn−1,i

• For 1 ≤ j < i ≤ n we consider the following two cones:

Mn ×
Mn−1,j

Mn Mn

Mn Mn−1

πn0,j

πn1,j

snn−1,j

tnn−1,j

Mn−1 ×
Mn−2,j

Mn−1 Mn−1

Mn−1 Mn−2

πn−1
0,j

πn−1
1,j

sn−1
n−2,j

tn−1
n−2,j

and the following commutative diagram (definition of snn−1,i ×
j,j
snn−1,i)
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Mn ×
Mn−1,j

Mn Mn

Mn−1 ×
Mn−2,j

Mn−1 Mn−1

Mn

Mn−1 Mn−2

πn1,j

πn0,j

snn−1,i×
j,j
snn−1,i snn−1,i

πn−1
0,j

πn−1
1,j

sn−1
n−2,j

snn−1,i

tn−1
n−2,j

The previous data give the following commutative diagram of axioms:

Mn ×
Mn−1

Mn Mn−1 ×
Mn−2

Mn−1

Mn Mn−1

?nj

snn−1,i×
j,j
snn−1,i

?n−1
j

snn−1,i

and for 1 ≤ j ≤ n we have the following commutative diagram of axioms
which completes the description of EM :

Mn ×
Mn−1

Mn Mn

Mn Mn−1

?nj

π1

snn−1,j

snn−1,j

Definition 3.2. Cubical reflexive ∞-magmas are cubical reflexive sets
equipped with a structure of ∞-magmas. A morphism between two cubi-
cal reflexive ∞-magmas is a morphism of their underlying cubical reflexive
sets which respects the partial operations (◦nj )n≥1,j∈J1,nK. The category of
cubical reflexive ∞-magmas is denoted ∞-CMagr
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3.1 Strict cubical ∞-categories Strict cubical∞-categories are cu-
bical reflexive ∞-magmas such that the partial operations are associative
and also satisfy the following axioms:

(i) The interchange laws:

(a ◦ni b) ◦nj (c ◦ni d) = (a ◦nj c) ◦ni (b ◦nj d)

whenever both sides are defined

(ii) 1nn+1,i(a ◦nj b) = 1nn+1,i(a) ◦n+1
j+1 1nn+1,i(b) if 1 ≤ i ≤ j ≤ n

1nn+1,i(a ◦nj b) = 1nn+1,i(a) ◦n+1
j 1nn+1,i(b) if 1 ≤ j < i ≤ n+ 1

(iii) 1n,γn+1,i(a ◦nj b) = 1n,γn+1,i(a) ◦n+1
j+1 1n,γn+1,i(b) if 1 ≤ i < j ≤ n

1n,γn+1,i(a ◦nj b) = 1n,γn+1,i(a) ◦n+1
j 1n,γn+1,i(b) if 1 ≤ j < i ≤ n

(iv) First transport laws: for 1 ≤ j ≤ n

1n,+n+1,j(a ◦nj b) =

[
1n,+n+1,j(a) 1nn+1,j(a)

1nn+1,j+1(a) 1n,+n+1,j(b)

]

(v) Second transport laws: for 1 ≤ j ≤ n

1n,−n+1,j(a ◦nj b) =

[
1n,−n+1,j(a) 1nn+1,j+1(b)

1nn+1,j(b) 1n,−n+1,j(b)

]

(vi) for 1 ≤ j ≤ n, 1n,+n+1,i(x)◦n+1
i 1n,−n+1,i(x) = 1nn+1,i+1(x) and 1n,+n+1,i(x)◦n+1

i+1

1n,−n+1,i(x) = 1nn+1,i(x)
The category ∞-CCAT of strict cubical ∞-categories is the full subcate-
gory of ∞-CMagr spanned by strict cubical ∞-categories. A morphism in
∞-CCAT is called a strict cubical ∞-functor.

3.2 The monad of cubical strict ∞-categories In this section
we describe cubical strict ∞-categories as algebras for a monad S on CSets.
We intend it to be an ingredient in the comparison of globular strict ∞-
categories with cubical strict ∞-categories. Also we conjecture that S is
cartesian.
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Consider the forgetful functor:

∞-CCAT CSetsU

which associates to any strict cubical ∞-category its underlying cubical set
and which associates to any strict cubical ∞-functor its underlying mor-
phism of cubical sets.

Proposition 3.3. The functor U is right adjoint and monadic.

Its left adjoint is denoted F . The proof is based on exhibiting a good
morphism of projective sketches and it is also based on two results of Foltz [9]
and Lair [21]: the non-trivial part is to exhibit the projective sketch EC of
the category ∞-CCAT and we shall easily see that we get an inclusion of

projective sketches: ES EC
i where ES is the sketch of cubical

sets 2.1. Now we have the commutative diagram

Mod(EC) Mod(EC)

∞-CCAT CSets

iso

Mod(i)

iso

U

when passing to models in Sets. It shows that i induces the forgetful functor
U and that U is right adjoint thanks to the sheafification theorem of Foltz [9].

Remark 3.4. This result of Foltz is called the sheafification theorem, be-
cause it generalizes the construction of the associated sheaf on a presheaf
for a given site.

Following the terminology of [21] we say that the functor U is projectively
sketchable. Also we shall easily see that each distinguished cone of EC has a
base which factorizes i and each object of EC which is not in the image of i
is the vertex of at least one distinguished cone of EC. Thus by the theorem
of Lair in [21] about monadicity, it follows that U is monadic.

Proof. The proof is very similar to those in [23]: actually we are going to
see that the category ∞-CCAT is projectively sketchable. Let us denote
by EC the sketch of ∞-CCAT. The description of EC started with the
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description of EM in 3. We carry on with it by describing the sketch behind
the interchange laws, which shall complete the main parts of EC

10.

• We start with three limit cones:

Zn ×
Zn−1,i

Zn Zn

Zn Zn−1

ρn0,i

ρn1,i

snn−1,i

tnn−1,i

Zn ×
Zn−1,j

Zn Zn

Zn Zn−1

ρn0,j

ρn1,j

snn−1,j

tnn−1,j

Eijn

Zn Zn Zn Zn

Zn−1 Zn−1 Zn−1

πn00 πn10

πn01 πn11

tnn−1,i
snn−1,i

snn−1,j
tnn−1,j

tnn−1,i
snn−1,i

• Then we consider the following commutative diagrams:

Eijn

Zn ×
Zn−1,i

Zn Zn

Zn Zn

πn00

pn1000 πn10

ρn1,i

ρn0,i
snn−1,i

tnn−1,i

Eijn

Zn ×
Zn−1,i

Zn Zn

Zn Zn

πn01

pn1101 πn11

ρn1,i

ρn0,i
snn−1,i

tnn−1,i

10Other parts of EC are straightforward.
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Eijn

Zn ×
Zn−1,j

Zn Zn

Zn Zn

πn11

pn1011 πn10

ρn1,j

ρn0,j
snn−1,j

tnn−1,j

Eijn

Zn ×
Zn−1,j

Zn Zn

Zn Zn

πn01

pn0001 πn00

ρn1,j

ρn0,j
snn−1,j

tnn−1,j

• We consider then the following two commutative diagrams:

Eijn

Zn ×
Zn−1,i

Zn Zn ×
Zn−1,i

Zn

Zn ×
Zn−1,j

Zn

Zn Zn

Zn−1

pn1000

cn1

pn1101

?nn−1,i ?nn−1,i

ρn1,j ρn0,j

snn−1,j tnn−1,j
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Eijn

Zn ×
Zn−1,j

Zn Zn ×
Zn−1,j

Zn

Zn ×
Zn−1,i

Zn

Zn Zn

Zn−1

pn1011

cn2

pn0001

?nn−1,j ?nn−1,j

ρn1,i ρn0,i

snn−1,i tnn−1,i

• Finally we consider the following commutative diagram, which dia-
grammatically formalizes the interchange laws:

Eijn

Zn ×
Zn−1

Zn Zn ×
Zn−1

Zn

Zn

cn1 cn2

?nn−1,j
?nn−1,i

The monad of strict cubical ∞-categories with connections defined on
the category of cubical sets is denoted S = (S, λ, µ). Here λ is the unit map
of S:
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1CSets Sλ

and µ is the multiplication of S:

S2 S
µ

We have the following important result proved in [18]

Theorem 3.5. The monad S = (S, λ, µ) is cartesian.

4 The category of cubical weak ∞-categories

In this section we exhibit the first algebraic models of cubical weak ∞-
categories. Thus these models are algebras for a specific monad that we
describe below, acting on the category CSets of cubical sets 2.1. We shall
propose in [16] other algebraic models of cubical weak ∞-categories defined
as algebras for a specific cubical operad, and these operadical models are
possible up to the conjecture 3.5 just above. However the algebraic models
of this article do not need the conjecture 3.5, and this is one advantage
of the Weakened by Stretchings initiated by Jacques Penon in [23] which
does not require cartesianess of monads. However, because in [3] Michael

Batanin proved that there is a morphism of operads B0
C P0

C where

B0
C-algebras are weak∞-categories of Batanin and P0

C-algebras are weak∞-
categories of Penon, we suspect the same phenomenon between the operad
which underlies the monad described just below and the operad of cubical
weak ∞-categories described in [16].

4.1 The category of cubical categorical stretchings We have
defined the category ∞-CMagr of cubical reflexive ∞-magmas in 3. Ob-
jects of this category plus cubical strict ∞-categories, allow us to define
cubical categorical stretchings (see below), which are objects of the category
∞-CEtC. This category is the key ingredient for weakened cubical strict
∞-categories as done in [23] for the globular paradigm. Our cubical weak
∞-categories are algebraic in the sense that they are algebras (4.2) for a
monad on CSets which is built by using the category of cubical categorical
stretchings. Our way to build the category∞-CMagr allows us to weakened
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the whole structure of cubical strict ∞-categories. As we shall see, the cen-
tral notion of cubical contractions (see below) are more subtle than globular
contractions of [23]: in particular they involve an inductive definition on the
dimension n of the n-cells (n ∈ N).

The category ∞-CEtC of cubical categorical stretchings has as objects
quintuples:

E = (M,C, π, ([−;−]nn+1,j)n∈N;j∈{1,...,n+1}, ([−;−]n,γn+1,j)n≥1;j∈{1,...,n};γ∈{−,+})

where M is a reflexive cubical ∞-magma, C is a cubical strict ∞-category,
π is a morphism in ∞-CMagr:

M Cπ

and

([−;−]nn+1,j)n∈N;j∈{1,...,n+1}, ([−;−]n,γn+1,j)n≥1;j∈{1,...,n};γ∈{−,+}

are extra structures called cubical bracketings, and which are the cubical
analogue of the key structure of the Penon approach to weaken the axioms
of strict∞-categories; it is for us the key structure to weaken the axioms of
cubical strict ∞-categories. More precisely: for all integer n ≥ 1, consider
the following subsets of Mn ×Mn:

• Mn = {(α, β) ∈Mn ×Mn : πn(α) = πn(β)}
• Mn,j = {(α, β) ∈ Mn × Mn : snn−1,j(α) = snn−1,j(β), tnn−1,j(α) =
tnn−1,j(β) and πn(α) = πn(β)}; if n = 1 then such set is denoted M1,0.

and for n = 0 we put: M0 = {(α, β) ∈M0 ×M0 : α = β}
These extra structures are given by the operations:

([−;−]nn+1,j : Mn Mn+1 )n∈N;j∈{1,...,n+1}

which are defined inductively, and are such that:
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• If 1 ≤ i < j ≤ n+ 1, then:

sn+1
n,i ([α, β]nn+1,j) = [snn−1,i(α), snn−1,i(β)]n−1

n,j−1,

and
tn+1
n,i ([α, β]nn+1,j) = [tnn−1,i(α), tnn−1,i(β)]n−1

n,j−1

• If 1 ≤ j < i ≤ n+ 1 then:

sn+1
n,i ([α, β]nn+1,j) = [snn−1,i−1(α), snn−1,i−1(β)]n−1

n,j ,

and
tn+1
n,i ([α, β]nn+1,j) = [tnn−1,i−1(α), tnn−1,i−1(β)]n−1

n,j

• If 1 ≤ i = j ≤ n+ 1 then:

sn+1
n,j ([α, β]nn+1,j) = α and tn+1

n,j ([α, β]nn+1,j) = β

and also:

• πn+1([α, β]nn+1,j) = 1nn+1,j(πn(α)) = 1nn+1,j(πn(β))

• ∀α ∈Mn, [α, α]nn+1,j = 1nn+1,j(α).

We use these operations ([−;−]nn+1,j)n∈N;j∈{1,...,n+1} to define the other
operations:

([−;−]n,−n+1,j : Mn,j Mn+1 )n≥1;j∈{1,...,n}

and
([−;−]n,+n+1,j : Mn,j Mn+1 )n≥1;j∈{1,...,n}

which are defined inductively, and are such that:

• if 1 ≤ i < j ≤ n then sn+1
n,i ([α;β]n,−n+1,j) = [snn−1,i(α); snn−1,i(β)]n−1,−

n,j−1

and tn+1
n,i ([α;β]n,−n+1,j) = [tnn−1,i(α); tnn−1,i(β)]n−1,−

n,j−1

• if 2 ≤ j + 1 < i ≤ n+ 1 then

sn+1
n,i ([α;β]n,−n+1,j) = [snn−1,i−1(α); snn−1,i−1(β)]n−1,−

n,j

and tn+1
n,i ([α;β]n,−n+1,j) = [tnn−1,i−1(α); tnn−1,i−1(β)]n−1,−

n,j
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• if 1 ≤ i = j ≤ n then sn+1
n,j ([α;β]n,−n+1,j) = α and sn+1

n,j+1([α;β]n,−n+1,j) = β,

and tn+1
n,j ([α;β]n,−n+1,j) = tn+1

n,j+1([α;β]n,−n+1,j) = [tnn−1,j(α); tnn−1,j(β)]n−1
n,j

and

• if 1 ≤ i < j ≤ n then sn+1
n,i ([α;β]n,+n+1,j) = [snn−1,i(α); snn−1,i(β)]n−1,+

n,j−1

and tn+1
n,i ([α;β]n,+n+1,j) = [tnn−1,i(α); tnn−1,i(β)]n−1,+

n,j−1

• if 2 ≤ j + 1 < i ≤ n+ 1 then

sn+1
n,i ([α;β]n,+n+1,j) = [snn−1,i−1(α); snn−1,i−1(β)]n−1,+

n,j

and tn+1
n,i ([α;β]n,+n+1,j) = [tnn−1,i−1(α); tnn−1,i−1(β)]n−1,+

n,j

• if 1 ≤ i = j ≤ n then sn+1
n,j ([α;β]n,+n+1,j) = sn+1

n,j+1([α;β]n,+n+1,j) =

[snn−1,j(α); snn−1,j(β)]n−1
n,j and tn+1

n,j ([α;β]n,+n+1,j) = α and tn+1
n,j+1([α;β]n,+n+1,j) =

β

also we require the following equalities:

• πn+1([α;β]n,−n+1,j) = 1n,−n+1,j(πn(α)) = 1n,−n+1,j(πn(β)) and πn+1([α;β]n,+n+1,j) =

1n,+n+1,j(πn(α)) = 1n,−+
n+1,j(πn(β))

• ∀α ∈Mn, [α, α]n,−n+1,j = 1n,−n+1,j(α) and [α, α]n,+n+1,j = 1n,+n+1,j(α).

A morphism of cubical categorical stretchings

E E′(m,c)

is given by commutative squares in ∞-CMagr:

M M ′

C C ′

π

m

π′

c

such that for all n ∈ N, and for all (α, β) ∈Mn:
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mn+1([α, β]nn+1,j) = [mn(α),mn(β)]nn+1,j (j ∈ {1, ..., n+ 1})

and for all n ∈ N, and for all (α, β) ∈Mn,j :

mn+1([α, β]n,γn+1,j) = [mn(α),mn(β)]n,γn+1,j (j ∈ {1, ..., n}, γ ∈ {−,+})

The category of cubical categorical stretchings is denoted ∞-CEtC. Con-
sider the forgetful functor:

∞-CEtC CSetsU

defined on objects by:

(M,C, π, ([−;−]nn+1,j)n∈N;j∈{1,...,n}, ([−;−]n,γn+1,j)n∈N;j∈{1,...,n};γ∈{−,+}) 7→M

Proposition 4.1. The functor U just above is right adjoint, thus produces
a monad W = (W, η, ν) on the category of cubical sets.

The proof is very similar to those in [12, 23]: Actually it is not difficult to
see that the category∞-CEtC and the category CSets are both projectively
sketchable. The sketch of the cubical sets is denoted by ES (see 2.1) and
the sketch of the cubical categorical stretchings is denoted by EE. The main
parts of this sketch are described just below, and we see that EE contains

ES: ES EE
j

, and is such that it induces a forgetful functor

∞-CEtC CSetsU such that we have a commutative diagram

Mod(EE) Mod(ES)

∞-CEtC CSets

iso

Mod(j)

iso

U

which shows that U is right adjoint by the theorem of Foltz [9].
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Actually in Section 3 we described the sketch EM of cubical ∞-magmas,
which was used to describe in 3.2 the main part of the sketch EC of cubical
strict ∞-categories. Thus we have already some part of the sketch EE that
we complete by sketching operations [−;−]nn+1,j and [−;−]n,γn+1,j plus their
axioms. With previous descriptions of sketches, and the one below, we shall
see that we obtain the following inclusions of sketches:

ES EM EC EE

• Definition of the sort Mn,j :

We start with the following four limit cones:

Mn Mn

Mn Zn

πn0

πn1

πn

πn

M s
n,j Mn

Mn Mn−1

πn1,s

πn0,s snn−1,j

snn−1,j

M t
n,j Mn

Mn Mn−1

πn1,t

πn0,t tnn−1,j

tnn−1,j

Mn ×Mn

Mn Mn

pn0 pn1

We consider the following commutative diagrams:

Mn

Mn ×Mn

Mn Mn

πn0
πn1

jn

pn0 pn1

Ms
n,j

Mn ×Mn

Mn Mn

πn0,s
πn1,s

jn,s

pn0 pn1
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M t
n,j

Mn ×Mn

Mn Mn

πn0,t
πn1,t

jn,t

pn0 pn1

which gives the following limit cone (definition of Mn,j):

Mn,j

M s
n,j M t

n,j Mn

Mn ×Mn

jn,s
jn,t

jn

which also gives the arrows:

Mn,j Mn ×Mn
j

We also have the following diagrams:
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Mn

Mn,j Mn ×Mn

Mn

j

qn0

qn1

pn0

pn1

and the operations:

Mn,j Mn+1

[−;−]n,γn+1,j

• Now we have the following commutative diagrams which define the
“s× s” for the sorts Mn:

– If 1 ≤ i < j ≤ n+ 1

for sources:

Mn Mn

Mn−1 Mn−1

Mn

Mn−1 Zn−1

πn1

πn0

snn−1,i×
π
snn−1,i snn−1,i

πn−1
0

πn−1
1

πn−1

snn−1,i

πn−1

for targets:
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Mn Mn

Mn−1 Mn−1

Mn

Mn−1 Zn−1

πn1

πn0

tnn−1,i×
π
tnn−1,i tnn−1,i

πn−1
0

πn−1
1

πn−1

tnn−1,i

πn−1

– If 1 ≤ j < i ≤ n+ 1

for sources:

Mn Mn

Mn−1 Mn−1

Mn

Mn−1 Zn−1

πn1

πn0

snn−1,i−1×
π
snn−1,i−1 snn−1,i−1

πn−1
0

πn−1
1

πn−1

snn−1,i−1

πn−1

for targets:
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Mn Mn

Mn−1 Mn−1

Mn

Mn−1 Zn−1

πn1

πn0

tnn−1,i−1×
π
tnn−1,i−1 tnn−1,i−1

πn−1
0

πn−1
1

πn−1

tnn−1,i−1

πn−1

– If 1 ≤ i = j ≤ n+ 1 we similarly obtain the following arrows:

Mn Mn−1
sj×sj

, Mn Mn−1
tj×tj

• Now we are going to define the s× s and the t× t for Mn,j .

– We treat only the case 1 ≤ i < j ≤ n+1, because the other cases
involves similar diagrams:

M s
n,j Mn

Mn Mn−1

M s
n−1,j Mn−1

Mn−1 Mn−2

πn1,s

πn0,s
si×si snn−1,j

si

snn−1,j

si
si

πn−1
1,s

πn−1
0,s

sn−1
n−2,j

sn−1
n−2,j
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M s
n,j

Mn ×Mn

Mn Mn

M s
n−1,j

Mn−1 ×Mn−1

Mn−1 Mn−1

πn0,s
πn1,s

jn,s

s×s

pn0 pn1

s×s

si

si

πn−1
0,s

πn−1
1,s

jn−1,s

pn−1
0 pn−1

1

In this diagram we have:

pn−1
0 jn−1,ss× s = πn−1

0,s s× s
= siπ

n
0,s

= sip
n
0 j
n−1,s

= pn−1
0 s× sjn,s

and also: pn−1
1 jn−1,ss × s = pn−1

1 s × sjn,s, thus jn−1,ss × s =
s× sjn,s.
Thus we obtain the following commutative diagram (for 1 ≤ i <
j ≤ n+ 1):
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M s
n,j M s

n−1,j

Mn ×Mn Mn−1 ×Mn−1

si×si

jn,s jn−1,s

si×si

and by using similar aguments we also obtain the following com-
mutative diagrams:

M s
n,j M s

n−1,j

Mn ×Mn Mn−1 ×Mn−1

ti×ti

jn,s jn−1,s

ti×ti

M t
n,j M t

n−1,j

Mn ×Mn Mn−1 ×Mn−1

si×si

jn,t jn−1,t

si×si

M t
n,j M t

n−1,j

Mn ×Mn Mn−1 ×Mn−1

ti×ti

jn,t jn−1,t

ti×ti

Mn Mn−1

Mn ×Mn Mn−1 ×Mn−1

si×si

jn jn−1

si×si

Mn Mn−1

Mn ×Mn Mn−1 ×Mn−1

ti×ti

jn jn−1

ti×ti

– By using a similar argument for 1 ≤ j < i ≤ n+ 1, we obtain the
following diagrams:
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M s
n,j M s

n−1,j

Mn ×Mn Mn−1 ×Mn−1

si−1×si−1

jn,s jn−1,s

si−1×si−1

M s
n,j M s

n−1,j

Mn ×Mn Mn−1 ×Mn−1

ti−1×ti−1

jn,s jn−1,s

ti−1×ti−1

M t
n,j M t

n−1,j

Mn ×Mn Mn−1 ×Mn−1

si−1×si−1

jn,t jn−1,t

si−1×si−1

M t
n,j M t

n−1,j

Mn ×Mn Mn−1 ×Mn−1

ti−1×ti−1

jn,t jn−1,t

ti−1×ti−1

Mn Mn−1

Mn ×Mn Mn−1 ×Mn−1

si−1×si−1

jn jn−1

si−1×si−1

Mn Mn−1

Mn ×Mn Mn−1 ×Mn−1

ti−1×ti−1

jn jn−1

ti−1×ti−1

– And also for 1 ≤ i = j ≤ n+ 1 we have:

M s
n,j M s

n−1,j

Mn ×Mn Mn−1 ×Mn−1

sj×sj

jn,s jn−1,s

sj×sj

M s
n,j M s

n−1,j

Mn ×Mn Mn−1 ×Mn−1

tj×tj

jn,s jn−1,s

tj×tj
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M t
n,j M t

n−1,j

Mn ×Mn Mn−1 ×Mn−1

sj×sj

jn,t jn−1,t

sj×sj

M t
n,j M t

n−1,j

Mn ×Mn Mn−1 ×Mn−1

tj×tj

jn,t jn−1,t

tj×tj

Mn Mn−1

Mn ×Mn Mn−1 ×Mn−1

sj×sj

jn jn−1

sj×sj

Mn Mn−1

Mn ×Mn Mn−1 ×Mn−1

tj×tj

jn jn−1

tj×tj

Thus with the diagram:
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Mn,j

M s
n,j M t

n,j Mn

Mn ×Mn

Mn−1,j

M s
n−1,j M t

n−1,j Mn−1

Mn−1 ×Mn−1

s×s

jn,s

s×s

jn,t

s×s

jn

s×s

jn−1,s
jn−1,t

jn−1

it follows that we obtain:

– for 1 ≤ i < j ≤ n+ 1

Mn,j Mn−1,j
si×si , Mn,j Mn−1,j

ti×ti

– for 1 ≤ j < i ≤ n+ 1

Mn,j Mn−1,j

si−1×si−1
, Mn,j Mn−1,j

ti−1×ti−1
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– and for 1 ≤ i = j ≤ n+ 1

Mn,j Mn−1,j

sj×sj
, Mn,j Mn−1,j

tj×tj

• Now we can state some axioms with the following diagrams:

– If 1 ≤ i < j ≤ n+ 1,

Mn Mn+1

Mn−1 Mn

snn−1,i×
π
snn−1,i

[−;−]nn+1,j

snn−1,i

[−;−]n−1
n,j−1

Mn Mn+1

Mn−1 Mn

tnn−1,i×
π
tnn−1,i

[−;−]nn+1,j

tnn−1,i

[−;−]n−1
n,j−1

– If 1 ≤ i < j ≤ n,

Mn,j Mn+1

Mn−1 Mn

snn−1,i×snn−1,i

[−;−]n,γn+1,j

snn−1,i

[−;−]n−1,γ
n,j−1

Mn,j Mn+1

Mn−1 Mn

tnn−1,i×tnn−1,i

[−;−]n,γn+1,j

tnn−1,i

[−;−]n−1,γ
n,j−1

– If 1 ≤ j < i ≤ n+ 1,

Mn Mn+1

Mn−1 Mn

snn−1,i−1×
π
snn−1,i−1

[−;−]nn+1,j

snn−1,i

[−;−]n−1
n,j
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Mn Mn+1

Mn−1 Mn

tnn−1,i−1×
π
tnn−1,i−1

[−;−]nn+1,j

tnn−1,i

[−;−]n−1
n,j

– If 2 ≤ j + 1 < i ≤ n+ 1,

Mn,j Mn+1

Mn−1,j Mn

snn−1,i−1×snn−1,i−1

[−;−]n,γn+1,j

snn−1,i

[−;−]n−1,γ
n,j

Mn,j Mn+1

Mn−1,j Mn

tnn−1,i−1×tnn−1,i−1

[−;−]n,γn+1,j

tnn−1,i

[−;−]n−1,γ
n,j

– If 1 ≤ i = j ≤ n+ 1,

for the operations [−;−]nn+1,j :

Mn Mn+1

Mn

πn0

[−;−]nn+1,j

sn+1
n,j

Mn Mn+1

Mn

πn1

[−;−]nn+1,j

tn+1
n,j

for the operations [−;−]n,γn+1,j ( if 1 ≤ i = j ≤ n):
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Mn,j Mn+1

Mn

qn0

[−;−]n,−n+1,j

sn+1
n,j

Mn,j Mn+1

Mn

qn1

[−;−]n,−n+1,j

sn+1
n,j+1

Mn,j Mn+1

Mn−1,j Mn

tnn−1,j×tnn−1,j

[−;−]n,−n+1,j

tnn−1,j , t
n
n−1,j+1

[−;−]n−1,−
n,j

Mn,j Mn+1

Mn

qn0

[−;−]n,+n+1,j

tn+1
n,j

Mn,j Mn+1

Mn

qn1

[−;−]n,+n+1,j

tn+1
n,j+1

Mn,j Mn+1

Mn−1,j Mn

snn−1,j×snn−1,j

[−;−]n,+n+1,j

snn−1,j , s
n
n−1,j+1

[−;−]n−1,+
n,j

Other diagrams for axioms:
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– For operations [−;−]nn+1,j :

Mn Mn+1

Mn

Zn Zn+1

πn0

[−;−]nn+1,j

πn+1

πn

1nn+1,j

Mn Mn+1

Mn

Zn Zn+1

πn1

[−;−]nn+1,j

πn+1

πn

1nn+1,j

– For operations [−;−]n,γn+1,j :

Mn,j Mn+1

Mn

Zn Zn+1

qn0

[−;−]n,γn+1,j

πn+1

πn

1n,γn+1,j

Mn,j Mn+1

Mn

Zn Zn+1

qn1

[−;−]n,γn+1,j

πn+1

πn

1n,γn+1,j

• The goal of the diagrams below is to exhibit the diagonal map:

Mn Mn,j

δnγ

This diagonal is built with the following diagonals:
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Mn

Mn Mn

Mn Zn

id

δn id

πn1

πn0 πn

πn

Mn

M s
n,j Mn

Mn Mn−1

id

δns id

πn,s1

πn,s0
snn−1,j

snn−1,j

Mn

M t
n,j Mn

Mn Mn−1

id

δnt id

πn,t1

πn,t0
tnn−1,j

tnn−1,j

Thus we get the following diagram:

Mn,j Mn

Ms
n,j M t

n,j Mn

Mn ×Mn

Mn

δnγ

δns

δnt δn

jn,s
jn,t

jn

pn1pn0
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The existence of the arrow δnγ comes from the following fact:

pn0 j
n,sδns = πn0,sδ

n
s

= id

and also

pn0 j
n,tδnt = πn0,tδ

n
t

= id

and we have pn1 j
n,sδns = pn1 j

n,sδns , which shows the equality:

jn,sδns = jn,tδnt

We similarly show the equality jn,tδnt = jnδn. Thus the existence of
δnγ .

• Then we obtain the following commutative diagrams which express
the axioms of reflexivity of the operations [−;−]nn+1,j :

Mn Mn+1

Mn

[−;−]nn+1,j

δn
1nn+1

and the following commutative diagrams which express the axioms of
reflexivity of the operations [−;−]n,γn+1,j :

Mn,j Mn+1

Mn

[−;−]n,γn+1,j

δnγ
1n,γn+1
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Definition 4.2. Cubical weak ∞-categories with connections are algebras
for the monad W above.

Let us show with a simple example how cubical weak ∞-categories pro-
vide a richer weakened structure than globular weak ∞-categories: for sim-
plicity we show it inside an object E of ∞-CEtC:

E = (M,C, π, ([−;−]nn+1,j)n∈N;j∈{1,...,n+1}, ([−;−]n,γn+1,j)n∈N;j∈{1,...,n};γ∈{−,+})

Consider the following string in M(1):

a b c d
f g h

and take the 1-cells x = (h ◦ g) ◦ f and y = h ◦ (g ◦ f). Because (x, y) ∈
M1 ∩M1,0 we get the following 2-cells:

a d

a d

[x, y]12,11a

(h◦g)◦f

1d

h◦(g◦f)

a a

d d

[x, y]12,2(h◦g)◦f

1a

h◦(g◦f)

1d

a d

d d

[x, y]1,−2,1
h◦(g◦f)

(h◦g)◦f

1d

1d

a d

d d

[x, y]1,+2,1
1a

1a

h◦(g◦f)

(h◦g)◦f

Remark 4.3. We could have defined cubical categorical stretchings slightly
differently than those above by using just the operations:

([−;−]nn+1,j)n∈N;j∈{1,...,n}

to weakened the structure of cubical strict∞-categories. Denote by∞-CEtC′

the category of these slightly impoverished structures. We also have a for-
getful functor:
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∞-CEtC′ CSetsU ′

which is right adjoint and which produces another monad W′ = (W ′, η′, ν ′)
whose algebras could be also considered as interesting models of cubical
weak∞-categories without incorporating the structure of connections. Also
we have an evident forgetful functor:

∞-CEtC ∞-CEtC′U

which is right adjoint and which produces a functor:

W-Alg W-Alg′U

which shows that the models that we have chosen for our article are also
models for these impoverished structures. And our choice to add operations:

([−;−]n,γn+1,j)n∈N;j∈{1,...,n};γ∈{−,+}

to get our models of cubical weak ∞-categories is similar to the choice
of cubical strict ∞-categories with, rather than without, connections. We
believe that our choice gives not only more refined models than those of the
category W-Alg′ but also is necessary for a good approach to cubical weak
∞-categories, where formalism of connections is implicit and used in our
weakened structures.

Remark 4.4. In [5] the authors have proved that the category of cubi-
cal strict ∞-categories is equivalent to the category of globular strict ∞-
categories. We suspect that such a phenomenon is still true in the world
of weak models. Let us be more precise about what we are saying: denote
by P the Penon monad on the category of globular sets (see [23]) whose
algebras are particularly nice models of globular weak∞-categories (see for
example [3, 7]). It is suspected (see [25]) that its category of algebras P-Alg
can be equipped with a canonical Quillen model structure similar to the
one described in [20] for strict globular ∞-categories, and we also suspect
that W-Alg can be equipped with such a canonical Quillen model structure.
Thus a weak version of the article [5] should be that the category P-Alg is
Quillen equivalent to W-Alg when these categories are equipped with their
canonical Quillen model structures.
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4.2 Magmatic properties of cubical weak ∞-categories Con-

sider a cubical weak ∞-category W (C) Cv . In this monadic pre-

sentation, W (C) has to be thought as the free cubical weak ∞-category
representing the underlying syntax with which all algebras with underlying
cubical set C are interpretations of it via their structural morphisms. For
example here v is the structural morphism which plays the role of inter-
preting in C the “syntax” W (C), and thus puts a structure of W-algebra
on C. We shall well distinguish notations of operation inside W (C) and
inside C in order to separate the syntactic part from the model part of our
algebras. For example, the operations of composition shall be denoted ◦nj in
the models, whereas we shall use the notation ?nj instead when we work in
the free models. The reflexions are denoted ιnn+1,j in the models and 1nn+1,j

in the free models. The connections are denoted ιn,αn+1,j in the models and
1n,αn+1,j in the free models. Definitions of operations for models use those for

free models and the interpretative nature of W (C) Cv emerges then

with the axiomatic of algebras for monads: for example we consider first
the following definition of operations on C:

(i) If a, b ∈ C(n) are such that snj (b) = tnj (a) for j ∈ {1, ..., n} then we
put a ◦nj b = vn(η(a) ?nj η(b))

(ii) If a ∈ C(n) is an n-cell then we put ιnn+1,j(a) = vn+1(1nn+1,j(η(a))),
n ∈ N, j ∈ J1, n+ 1K

(iii) If a ∈ C(n) is an n-cell then we put ιn,γn+1,j(a) = vn+1(1n,γn+1,j(η(a))),
n ≥ 1, j ∈ J1, nK, γ ∈ {−,+}

Thus v puts on C a cubical∞-magma structure and its interpretative nature
is primarily expressed by the fact that it is a morphism of cubical∞-magmas
between the free cubical∞-magma W (C) and this cubical∞-magma on C.
It is the axioms of algebras which show us such an important fact: actually
we need to show that v(a ?nj b) = v(a) ◦nj v(b), v(1nn+1,j(a)) = ιnn+1,j(v(a)),
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v(1n,γn+1,j(a)) = ιn,γn+1,j(v(a)). Let us show the first equality:

v(a) ◦nj v(b) = v(η(v(a)) ?nj η(v(b)))

= v(W (v)ηW (C)(a) ?nj W (v)ηW (C)(b))

= v(W (v)(ηW (C)(a) ?nj ηW (C)(b)))

= v(ν(C)(ηW (C)(a) ?nj ηW (C)(b)))

= v(ν(C)(ηW (C)(a)) ?nj ν(C)(ηW (C)(b)))

= v(a ?nj b)

Other equalities are shown similarly. In [23] J.Penon called such proper-
ties of algebras magmatic. In particular these shall be useful for concrete
computations in any W-algebras.

4.3 Computations for low dimensions

Definition 4.5. Consider a reflexive cubical set C ∈ CrSets. It has dimen-
sion p ∈ N for reflexions if all its q-cells x ∈ C(q) for which q > p are of the
form x = 1q−1

q,j (y) and if there is at least one p-cell which is not of this form.
It has dimension p ∈ N for connections if all its q-cells x ∈ C(q) for which
q > p are of the form x = 1q−1,γ

q,j (y) and if there is at least one p-cell which
is not of this form. It has dimension p ∈ N, if it has dimension p ∈ N for
reflexions and connections.

Definition 4.6. Consider a W-algebra (C, v). It has dimension p ∈ N for
reflexion if its underlying reflexive set produced by its underlying∞-magma
structure (see 4.2) has dimension p ∈ N for reflexion. It has dimension p ∈ N
for connection if its underlying reflexive set produced by its underlying ∞-
magma structure has dimension p ∈ N for connections. It has dimension
p ∈ N, if it has dimension p ∈ N for reflexions and connections.

In [26] the author had defined weak double categories, also known as
cubical bicategories or cubical weak 2-category. We suspect that they are 2-
dimensional W-algebras. However it is possible to show that 2-dimensional
W-algebras are weak double categories in the sense of [26]. The proof uses
the magmatic properties of W-algebras explained in 4.2 but is rather long.
We leave it as an exercise for the reader.
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(1985).
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