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Abstract

In these notes we describe models of globular weak (∞,m)-categories (m ∈ N) in the Grothendieck style, i.e for each m ∈ N

we define a globular coherator Θ∞

Mm whose set-models are globular weak (∞,m)-categories. Then we describe the combinatorics
of the small category Θ0 whose objects are cubical pasting diagrams and whose morphisms are morphisms of cubical sets. This
provides an accurate description of the monad, on the category of cubical sets (without degeneracies and connections), of cubical
strict ∞-categories with connections. We prove that it is a cartesian monad, solving a conjecture in [10]. This puts us in a position
to describe the cubical coherator Θ∞

W whose set-models are cubical weak ∞-categories with connections and the cubical coherator
Θ∞

W0 whose set-models are cubical weak ∞-groupoids with connections.
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Introduction

Coherators were initiated by Alexander Grothendieck [7] to properly define globular weak ∞-groupoids. A coherator Θ∞
M0 for globular

weak ∞-groupoids is a theory in the sense of [6] such that Mod(Θ∞
M0) is the category of globular weak ∞-groupoids. These theories

generalization those of Lawvere and are powerful yet simple enough to capture many higher structures. For example, a slight
modification of the definition of the globular coherator Θ∞

M0 (see [13]) leads to the definition of an other globular coherator Θ∞
M

whose set-models are globular weak ∞-categories; such models are thus called Grothendieck’s globular weak ∞-categories. In [1] it is
conjectured that these models are equivalent to Batanin’s globular weak ∞-categories [2], and this conjecture has been proved in [5].
In order to have a feel for the simplicity of this Grothendieck’s approach, we first use it to describe globular models of weak (∞,m)-
categories (m ∈ N). Thus for each m ∈ N we build a globular coherator Θ∞

Mm whose set-models are globular weak (∞,m)-categories.
The author believes these models (for all m ∈ N) are the simplest in the literature so far (see for example [4, 8]).

The non-trivial part of this article is to describe cubical pasting diagrams. For that we use coordinates of networks which is a
formalism close to that of tensors for differential geometry. In our language cubical pasting diagrams are called rectangular divisors
which are formal finite sums of cubes indexed with coordinates of rectangular shapes. For each rectangular divisor we associate a
specific inductive sketch. In fact we shall see that such rectangular divisors form a cubical strict monoidal ∞-category thus lead to
a cubical strict monoidal ∞-category for their underlying inductive sketches. These sketches are the objects of the cubical Θ0. This
combinatoric description of cubical pasting diagrams lead us to the monad, on the category of cubical sets (without degeneracies and
connections), of cubical strict ∞-categories with connections. Having then an accurate description, we prove that these monads are
cartesian, as conjectured in [10]. See also [11] where, based on this conjecture, we constructed a fundamental cubical weak ∞-groupoid
functor. Also we include here an accurate construction of the cubical coherator Θ∞

W whose set-models are cubical weak ∞-categories
with connections and the cubical coherator Θ∞

W 0 whose set-models are cubical weak ∞-groupoids with connections. Cubical coherators
have also been introduced recently and independently in [3], and it will be interesting to compare that approach with ours.

Here we summarize main achievements of this article :

• In 1.3.5 we build for each m ∈ N, a globular coherator Θ∞
Mm which set-models are models of Grothendieck’s globular weak

(∞,m)-categories.

• In 2.4 we prove that the monad R = (R, i,m) of cubical reflexive sets is cartesian.

• In 2.5 we prove that the set C-Past of cubical pasting diagrams (called rectangular divisors here) is equipped with a structure
of cubical strict ∞-category with connections.

• In 2.5 we prove that the set of sketches associated to cubical pasting diagrams (called rectangular divisors here) is equipped
with a structure of cubical strict ∞-category with connections.

• In 2.7 we prove that the monad S = (S, λ, µ) acting on CSets which algebras are cubical strict ∞-categories with connections
(described in [9, 10]) is cartesian. A simple consequence appears in 2.7 where we indicate that the other monad S = (S, λ, µ)
acting on CSets which algebras are cubical strict ∞-categories (without connections) is cartesian.

• In 3 we build the cubical coherator Θ∞
W which models are cubical weak ∞-categories with connections, and in 4 we build the

cubical coherator Θ∞
W 0 which models are cubical weak ∞-groupoids with connections.

Acknowledgement. I thank mathematicians of the team AGA (Arithmétique et Géométrie Algébrique) who kindly organized
my talk on homotopy types (27th November 2019), and creating the good ambience in the LMO, Paris-Saclay; especially I want to
mention Olivier Schiffmann, Benjamin Hennion, François Charles, Valentin Hernandez, and Patrick Massot. I also thank Ross Street,
Michael Batanin, Mark Weber, Ronald Brown, Richard Steiner, with whom I interacted during the preparation of this article. Finally
I thank Stéf Bonnot-Briey, Pascale Marchal, Ghislain Rèmy and Jean-Pierre Ledru, for their trust and help. This article has been
written in November 2019, and circulated to these mathematicians who provided feedback.

I dedicate this work to my sons, Mohamed-Réda and Ali-Réda.

1 Coherators for globular weak (∞, m)-categories (m ∈ N)

1.1 Globular magmatic structures

Consider the small category G with objects 1(n) for all n ∈ N, with morphisms those generated for all n ∈ N by the cosources

1(n− 1) 1(n)
snn−1

and the cotargets 1(n− 1) 1(n)
tnn−1

, which satisfy the following coglobular relations :

(i) snn−1 ◦ s
n+1
n = tnn−1 ◦ s

n+1
n ,

(ii) snn−1 ◦ t
n+1
n = tnn−1 ◦ t

n+1
n ,
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The small category G is called the globe category and we may represent it schematically with its generators :

1(0) 1(1) 1(2) 1(3) 1(4) · · · 1(n− 1) 1(n) · · ·

s10

t10

s21

t21

s32

t32

s43

t43

snn−1

tnn−1

Definition 1 Globular sets are presheaves on Gop. The category of globular sets is denoted Glob. ✷

A globular ∞-magma M is given by a globular set G
op

SetsM equipped with operations Mn ×Mp
Mn Mn

◦n
p

for all

n ≥ 1 and all 0 ≤ p ≤ n− 1 such that :

• for 0 ≤ p < q < m, smq (y ◦mp x) = smq (y) ◦qp s
m
q (x) and tmq (y ◦mp x) = tmq (y) ◦qp t

m
q (x)

• for 0 ≤ q < p < m, smq (y ◦mp x) = smq (y) = smq (x) and tmq (y ◦mp x) = tmq (y) = tmq (x)

• for 0 ≤ p = q < m, smq (y ◦mp x) = smq (x) and tmq (y ◦mp x) = tmq (x)

A globular reflexive ∞-magma is an ∞-magma equipped with map for reflexivity : Mn Mn+1

1nn+1
, n ≥ 0 such that :

• snk (1
k
n(x)) = x = tnk (1

k
n(x))

• 1qn(1
p
q(x)) = 1pn(x)

Morphisms between reflexive ∞-magmas are morphisms of reflexive globular sets between their underlying reflexive globular set

structure, i.e for M M ′f
we have commutative diagrams :

Mn+1 M ′
n+1

Mn M ′
n

fn+1

1nn+1

fn

1nn+1

which also preserve operations ◦np . The category of reflexive ∞-magmas is denoted ∞-Magr.

An (∞,m)-globular set is a globular set X equipped with jnn−1-reversors, i.e with maps Xn Xn

jnn−1
which satisfy the

following equalities :

Xn Xn

Xn−1

snn−1

jnn−1

tnn−1

Xn Xn

Xn−1

tnn−1

jnn−1

snn−1

A morphism of (∞,m)-globular sets is a morphism X X ′f
of globular sets which satisfy for all n ≥ m the following

equalities :

Xn X ′
n

Xn X ′
n

jnn−1

fn

jnn−1

fn

The category of (∞,m)-globular sets is denoted (∞,m)-Glob.
A globular reflexive (∞,m)-magma is a globular reflexive ∞-magma M equipped with a structure of globular (∞,m)-set; a

morphism M M ′f
of globular reflexive (∞,m)-magmas is a morphism of globular reflexive ∞-magmas which is also a

morphism of (∞,m)-sets; the category of globular reflexive (∞,m)-magmas is denoted (∞,m)-Magr.

Remark 1 A globular strict ∞-category C is given by a globular reflexive ∞-magma C such that we have the following equalities :

• x ◦nk 1kn(s
n
k (x)) = x and 1kn(t

n
k (x)) ◦

n
k x = x

• 1qn(y ◦qp x) = 1qp(y) ◦
n
p 1qp(x)

• x ◦nk (y ◦nk z) = (x ◦nk y) ◦nk z

• (y′ ◦nq x′) ◦np (y ◦nq x) = (y′ ◦np y) ◦nq (x′ ◦np x)

The category of globular strict ∞-categories is denoted ∞-CAT. A globular strict (∞,m)-category is given by an (∞,m)-globular
set C which is also a globular strict ∞-category such that if α ∈ Cn (n ≥ m) then α◦nn−1j

n
n−1(α) = 1n−1

n (tnn−1(α)) and jnn−1(α)◦
n
n−1α =

1n−1
n (snn−1(α)). This n-cell jnn−1(α) of Cn is called a ◦nn−1-inverse of α and it is straightforward to see that such ◦nn−1-inverse is uniquely

defined. The category of globular strict (∞,m)-categories is defined as the full subcategory of ∞-CAT which objects are globular
strict (∞,m)-categories and is denoted (∞,m)-CAT. ✷
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1.2 Globular Theories

1.2.1 Globular extensions

A globular tree t is given by a table of non-negative integers :



i1 i2 i3 · · · ik−1 ik

i′1 i′2 · · · · · i′k−1




where k ≥ 1, il > i′l < il+1 and 1 ≤ l ≤ k − 1.

Let C a category and let G CF a functor. We denote F (1(n)) = Dn and we shall keep the same notations for the

image of cosources : F (silil′ ) = silil′ , and for the image of cotargets : F (tilil′ ) = tilil′ , because no risk of confusion will occur. In this case

G CF is called a globular extension if for all trees t as just above, the colimit of the following diagram exist in C :

Di1 Di2 Di3 · · · Dik−1 Dik

Di′1 Di′2 Di′3 · · · Di′k−2 Di′k−1

t
i1
i′1

s
i2
i′1

t
i2
i′2

s
i3
i′2

t
ik−1

i′
k−1

s
ik

i′
k−1

Remark 2 In [7] Alexander Grothendieck calls these colimits globular sums. ✷

A morphism of globular extensions, also called globular functor, is given by a commutative triangle in CAT :

C

G

C′

H

F

F ′

such that the functor H preserves globular sums. The category of globular extensions is denoted G-Ext. In fact this category

has an initial object denoted G Θ0
i . And the small category Θ0 can be described as the full subcategory of Glob which

objects are globular trees, and its role is central for describing different sketches which set models are globular higher structures. In
particular this small category Θ0 is the basic inductive sketch we shall need to describe coherators which set models are globular weak
(∞,m)-categories (m ∈ N).

1.2.2 Globular theories

A globular theory is given by a globular extension G CF such that the unique induced functor F which makes commutative
the diagram :

Θ0

G

C

F

i

F

induces a bijection between objects of Θ0 and objects of C. The full subcategory of G-Ext which objects are globular theories is

denoted G-Th. Consider an object G CF , in particular it induces the globular functor Θ0 CF as just above,

which is a bijection on objects. A set model of (F, C) or for C for short, is given by a functor : C SetsX , such that the

functor X ◦ F :

Θ0 C SetsF X

sends globular sums to globular products1, thus for all objects t of Θ0 :



i1 i2 i3 · · · ik−1 ik

i′1 i′2 · · · · · i′k−1




1Globular products are just dual to globular sums.
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we have

X(F (t)) = X


colim




Di1 Di2 · · · Dik−1 Dik

Di′1 · · · Di′k−1

t
i1
i′1

s
i2
i′1

t
ik−1

i′
k−1

s
ik

i′
k−1







= X


(Di1 , ti1

i′1
)
∐

Di′1

(si2
i′1
, Di2 , ti3

i′2
)
∐

Di′2

· · ·
∐

D
i′
k−1

(sik
i′
k−1

, Dik)




≃ X(Di1) ×
X(Di′1)

· · · ×
X(D

i′
k−1 )

X(Dik)

X(F (t)) = X


colim




Di1 Di2 · · · Dik−1 Dik

Di′1 · · · Di′k−1

t
i1
i′1

s
i2
i′1

t
ik−1

i′
k−1

s
ik

i′
k−1







X

(
(Di1 , ti1

i′1
)
∐

D
i′
1

(si2
i′1
, Di2 , ti3

i′2
)
∐

D
i′
2

· · ·
∐

D
i′
k−1

(sik
i′
k−1

, Dik)

)
≃ X(Di1) ×

X(Di′
1)

· · · ×
X(D

i′
k−1 )

X(Dik)

The category of set models of C is the full subcategory of the category of presheaves [C,Sets] which objects are set models of C,
and it is denoted Mod(C).

1.2.3 Examples of globular theories

Example 1 The theory ΘM

The forgetful functor U :

∞-Magr

Glob

⊣ UF

from the category ∞-Magr of globular reflexive ∞-magmas to the category Glob of globular sets is right adjoint, which left adjoint is
denoted F , and this induce a monad M = (M, η, µ) on Glob such that we have the equivalence of categories ∞-Magr ≃ M-Alg because
U is monadic. The full subcategory ΘM ⊂ Kl(M) of the Kleisli category of M which objects are trees is called the theory of reflexive
globular ∞-magmas. In fact we have the following equivalences of categories :

∞-Magr ≃ M-Alg ≃ Mod(ΘM)

Example 2 The theories ΘMm (m ∈ N)
The forgetful functor Um (m ∈ N) :

(∞,m)-Magr

Glob

⊣ UmFm

from the category (∞,m)-Magr of globular reflexive (∞,m)-magmas to the category Glob of globular sets is right adjoint, which
left adjoint is denoted Fm, and this induce a monad Mm = (Mm, ηm, µm) on Glob such that we have the equivalence of categories
(∞,m)-Magr ≃ Mm-Alg because Um is monadic. The full subcategory ΘMm ⊂ Kl(Mm) of the Kleisli category of Mm which objects are
trees is called the theory of reflexive globular (∞,m)-magmas. In fact we have the following equivalences of categories :

(∞,m)-Magr ≃ M
m-Alg ≃ Mod(ΘMm)
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1.3 Globular coherators

1.3.1 Admissibility

Let G CF be a globular theory, i.e an object of G-Th; two arrows : Dn t
f

g
in C are parallels if fsnn−1 = gsnn−1

and ftnn−1 = gtnn−1 :

Dn t

Dn−1

f

g

snn−1 tnn−1

Consider a couple (f, g) of parallels arrows in C as just above. We say that it is admissible or algebraic if they don’t belong to the
image of the globular functor F :

Θ0

G

C

F

i

F

Consider a couple (f, g) of arrows of C which is admissible as just above; a lifting of (f, g) is given by an arrow h :

Dn+1

Dn t

hsn+1
n tn+1

n

f

g

such that hsn+1
n = f and htn+1

n = g

1.3.2 Batanin-Grothendieck Sequences

We now define the Batanin-Grothendieck sequence2 associated to a globular theory G CF . We build it by the following
induction :

• If n = 0 we start with the couple (C, E) where E denotes the set of admissible pairs of arrows of C; we shall write (C0, E0) = (C, E)
this first step.

• If n = 1 we consider then the couple (C1, E1) where C1 is obtained by formally adding in C0 = C the liftings of all elements
(f, g) ∈ E0 = E, and E1 is the set of admissible couples of arrows in C1 which are not elements of the set E0;

• If for n ≥ 2 the couple (Cn, En) is well defined then Cn+1 is obtained by formally adding in Cn the liftings of all elements of En,
and En+1 is the set of couples of arrows of Cn+1 which are not elements of En

we give a slightly different but equivalent induction to build the Batanin-Grothendieck sequence for such globular theory G CF

:

• If n = 0 we start with the couple (C, E) where E is the set of couple of arrow which are admissible of C; we denote E = E0 =
E′

0 = E′
0 \ ∅ (we shall see soon the reason of these notations), and C0 = C;

• If n = 1 we consider the couple (C1, E1) where C1 is obtained by formally adding in C0 all liftings of the elements (f, g) ∈ E0,
E′

1 is the set of all pairs of arrows which are admissible in C1, and E1 = E′
1 \ E0; remark that E0 = E′

0 ⊂ E′
1;

• If n = 2 we consider the couple (C2, E2) where C2 is obtained by formally adding in C1 all liftings of the elements (f, g) ∈ E1,
E′

2 is the set of all pairs of arrows which are admissible in C2, and E2 = E′
2 \ E

′
1;

• For n ≥ 3 we suppose that the couple (Cn, En) is well defined with En = E′
n \ E′

n−1, then Cn+1 is obtained by formally
adding in Cn all liftings of the elements (f, g) ∈ En, E′

n+1 is the set of all pairs of arrows which are admissible in Cn+1, and
En+1 = E′

n+1 \ E
′
n;

2Coherators associated to such sequence are called of Batanin-Leinster type by some authors.
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The Batanin-Grothendieck sequence of the globular theory G CF produces the following filtered diagram

(N,≤) G-Th
C• in the category G-Th :

C0 C1 · · · Cn · · ·
i1 i2 in

1.3.3 Coherators for globular theories

We start with datas of the previous subsection, i.e with the Batanin-Grothendieck sequence (N,≤) G-Th
C• for a globular

theory G CF .

Definition 2 The colimit G C∞
F∞ of the previous filtered diagram C• :

C0 C1 · · · Cn · · ·

C∞

i1 i2 in

is called the globular coherator of the type Batanin-Grothendieck associated to the globular theory G CF . ✷

For shorter terminology we shall say that G C∞
F∞ is the coherator associated to the globular theory G CF . It

is straightforward to see that the Batanin-Grothendieck construction of coherators associated to globular theory is functorial, and the
following functor Φ is called the Batanin-Grothendieck functor :

G-Th G-Th

C C∞

Φ

1.3.4 The coherator Θ∞
M

The coherator associated to the globular theory G ΘM

j
that we obtaine with the composition :

G Θ0 ΘM
i

is denoted Θ∞
M

and Mod(Θ∞
M
) is the category of globular weak ∞-categories of Grothendieck.

Remark 3 In 2019 John Bourke has proved [5] the Ara conjecture [1] which says that the category of globular weak ∞-categories of
Batanin is equivalent to the category of globular weak ∞-categories of Grothendieck :

Mod(ΘB0
C
) ≃ Mod(Θ∞

M )

where here B0
C denotes the globular operad of Batanin [2] which algebras are his models of globular weak ∞-categories and ΘB0

C
is its

associated theory. ✷

1.3.5 The coherator Θ∞
Mm (m ∈ N)

The coherator associated to the globular theory G ΘMm
jm

is denoted Θ∞
Mm and Mod(Θ∞

Mm) is the category of globular weak

(∞,m)-categories of Grothendieck (m ≥ 0). If m = 0, the coherator Θ∞
M0 is the one of globular weak ∞-groupoids of Grothendieck.

We trivially have the following filtration in the category G-Th :

· · · Θ∞
Mm+1 Θ∞

Mm · · · Θ∞
M0

Θ∞
M

· · · Θ∞
Mm+1 Θ∞

Mm · · · Θ∞
M0

7



which shows that we have the following inclusion of functors when passing to set models :

Mod(Θ∞
M0) Mod(Θ∞

M1) · · · Mod(Θ∞
Mm) · · ·

Mod(Θ∞
M
)

i1 i2 in

We finish this section by recalling the Grothendieck Conjecture for Homotopy Theory :

Conjecture (Grothendieck’s Conjecture for Homotopy Theory) The category Mod(Θ∞
Mm) is Quillen equivalent to categories

of simplicial models of weak (∞,m)-categories (for all m ∈ N).

See for example [4] for such existing simplicial models.

2 Cubical Pasting Diagrams

2.1 Tensorial notation

In this section we introduce tensorial notation and shall see that contraction and dilatation of tensors provide interesting cubical strict
∞-categories, though trivial. In particular it reveals that tensorial calculus has an intrinsic cubical nature.

• For each n ∈ N we shall use a coordinate system Zn of n-dimensional networks i ∈ {1, · · · , n} such that each i ∈ {1, · · · , n}
is the direction of a n-cube whose coordinates are indexed by this network. The coordinate of a n-cube C in Zn is written
dx1

k1
⊗ · · · ⊗ dxj

kj
⊗ · · · dxn

kn
which means that C is located for each direction j ∈ {1, · · · , n} at the depth kj ∈ Z. When no

confusion occur we shall denote dxi
ki

:= dx1
k1

⊗ · · · ⊗ dxj
kj

⊗ · · · dxn
kn

.

Remark 4 A coordinate dxi
ki

must be thought up to its translations in the network Zn. Indeed it is straightforward to see

that two coordinates dxi
ki
, dxi

k′
i
∈ Zn are related by translations. For example any coordinates dxi

ki
∈ Zn gives the coordinate

dxi
1 := dx1

1 ⊗ · · · ⊗ dxj
1 ⊗ · · · dxn

1 by translations along all directions j ∈ J1, nK. ✷

Two coordinates dxi
ki

= dx1
k1

⊗ · · · ⊗ dxn
kn

and dxi
k′
i
= dx1

k′
1
⊗ · · · ⊗ dxn

k′
n

are j-adjacent if kj = k′j + 1 or kj = k′j − 1.

The j-contraction of the coordinate dx1
k1

⊗ · · · ⊗ dxj
kj

⊗ · · · dxn
kn

is defined as the coordinate

dxi
ki

\ j = dx1
k1

⊗ · · · ⊗ d̂xj
kj

⊗ · · · dxn
kn

in Zn−1 defined by removing the direction j and re-indexing :

dxi
ki

\ j := dx1
k1

⊗ · · · ⊗ dxj−1
kj−1

⊗ dxj
kj+1

⊗ · · · dxn−1
kn

Sometimes we use also the notation aj(dx
i
ki
) for dxi

ki
\ j.

If we apply these contractions p-times then we obtain the following coordinate in Zn−p :

dxi
ki

\ (j1, · · · , jp)

where the order of occurences of the j′s in (j1, · · · , jp) is important just because if σ is an element of the permutation group Sp

then the action :

σ · dxi
ki

\ (j1, · · · , jp) := dxi
ki

\ (jσ(1), · · · , jσ(p))

does not imply the equality between dxi
ki

\ (j1, · · · , jp) and dxi
ki

\ (jσ(1), · · · , jσ(p)).

The j-dilatation of the coordinate dx1
k1

⊗ · · · ⊗ dxj
kj

⊗ · · · dxn
kn

is a coordinate in Zn+1 defined by adding in the direction j the

guy dxj
1 and re-indexing :

dxi
ki

+ j := dx1
k1

⊗ · · · ⊗ dxj−1
kj−1

⊗ dxj
k1

⊗ dxj+1
kj

· · · dxn+1
kn

and if we apply these dilatations p-times then we obtain the following coordinate in Zn+p :

dxi
ki

+ (j1, · · · , jp)

where the order of occurrences of the j′s in (j1, · · · , jp) is important.
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• A n-configuration is given by a family Cn = {dxi
ki
/k1 ∈ K1, · · · , kn ∈ Kn, ∀i ∈ J1, nK,Ki ⊂ Z is a finite set } of coordinates dxi

ki

in Zn. We can also use the notation Cn = dxi,1
ki

+ · · ·+ dxi,l
ki

+ · · ·+ dxi,r
ki

for this n-configuration, where each dxi,l
ki

(l ∈ J1, rK) is
a coordinate in Zn and r = ♯(K1 × · · · ×Kn). This last notation shall be useful especially when we shall deal with divisors in
the section 2.5.

Remark 5 A n-configuration Cn must be thought up to its translations in the network Zn. ✷

• The j-contraction aj(Cn) of the n-configuration Cn is given by the following (n− 1)-configuration : aj(Cn) = aj(dx
i,1
ki
) + · · ·+

aj(dx
i,l
ki
) + · · ·+ aj(dx

i,r
ki
).

• If Cn is an n-configuration then it is straightforward to see that others n-configurations C′
n can be equivalent to it by translations.

For example if we write Cn = dxi,1
ki

+ · · · + dxi,l
ki

+ · · · + dxi,r
ki

then we can translate it along the direction j ∈ J1, nK with any
integer k ∈ Z such that the resulting n-configurations C′

n has all its coordinates with depth ≥ 1 for the direction j.

• Two configurations Cn and C′
n are adjacent if

– Cn ∩ C′
n = ∅

– ∃j ∈ J1, nK and dxi
ki

∈ Cn, dxi
k′
i
∈ C′

n such that aj(dx
i
ki
) = aj(dx

i
k′
i
)

If two configurations Cn and C′
n are adjacent then they produce the new configuration Cn +j C

′
n :

Cn +j C
′
n := Cn ∪ C′

n

that we call their pasting along the direction j.

• If Cn = dxi,1
ki

+ · · ·+ dxi,l
ki

+ · · ·+ dxi,r
ki

is an n-configuration then we can associate to it its j-dilatation dilatj(Cn), which is the

(n+ 1)-configuration in Zn+1 given by dilatj(Cn) = Cn + j := (dxi,1
ki

+ j) + · · ·+ (dxi,l
ki

+ j) + · · ·+ (dxi,r
ki

+ j).

• A connected n-configuration is given by a family Cn = {dxi
ki
/k1 ∈ K1, · · · , kn ∈ Kn, ∀i ∈ J1, nK,Ki ⊂ N is a finite set } of

coordinates dxi
ki

in Zn such that we have the following connexity property :

∀dxi
ki
, dxi

k′
i

in Cn we have :

∃r ∈ N, ∃l ∈ J1, rK, ∃klj ∈ N where each coordinate dx1
kl
1
⊗ · · · ⊗ dxn

kl
n

belongs to Cn, such that we have the following zigzag of

contractions between dxi
ki

and dxi
k′
i

:

ai1(dx
1
k1
1
⊗ · · · ⊗ dxn

k1
n
) = ai1(dx

1
k2
1
⊗ · · · ⊗ dxn

k2
n
)

ai2(dx
1
k2
1
⊗ · · · ⊗ dxn

k2
n
) = ai2(dx

1
k3
1
⊗ · · · ⊗ dxn

k3
n
)

...........

ail(dx
1
kl
1
⊗ · · · ⊗ dxn

kl
n
) = ail(dx

1
k
l+1
1

⊗ · · · ⊗ dxn

k
l+1
n

)

..........

air (dx
1
kr
1
⊗ · · · ⊗ dxn

kr
n
) = air (dx

1
k
r+1
1

⊗ · · · ⊗ dxn

k
r+1
n

)

where k11 = k1, k
1
n = kn and kr+1

1 = k′1, k
r+1
n = k′n.

Then we say that the two coordinates dxi
ki

and dxi
k′
i

are connected by the zigzag (ai1 , ai2 , · · · , air ). Of course two coordinates

dxi
ki

and dxi
k′
i

may have several equivalents zigzag of contractions.

• It is straightforward to see that if two connected n-configurations Cn and C′
n are adjacent, for example along the direction j,

then their pasting Cn +j C
′
n is still a connected n-configuration.

• We can see that each n-configuration in Zn is built with subsets in it which are connected n-configurations. Thus any configu-
ration Cn is written as a formal sum

Cn = C1
n + · · ·+ Cl

n + · · ·+ Cr
n

such that r = ♯{Connected components of Cn}, and for each l ∈ J1, rK, Cl
n denote the connected configurations inside Cn.

• Let Cn = {dxi
ki
/k1 ∈ K1, · · · , kn ∈ Kn, ∀i ∈ J1, nK,Ki ⊂ Z is a finite set } a connected configuration.

Lemma 1 Its j-dilatation dilatj(Cn) = {dxi
ki

+ j/dxi
ki

∈ Cn} is a connected (n+ 1)-configuration. ✷

Proof We have to prove that if two coordinates dxi
ki
+ j and dxi

k′
i
+ j belong to dilatj(Cn) then there is a zigzag of contractions

in dilatj(Cn) between them. Consider a zigzag (ai1 , ai2 , · · · , air ) of contractions between the two coordinates dxi
ki

and dxi
k′
i

in

Cn. If l ∈ J1, rK write i′l = il if il < j and i′l = il + 1 if il ≥ j. Then it is easy to see that (ai′1 , ai′2 , · · · , ai′r ) is such zigzag. �
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The j-dilatation dilatj(Cn) of a connected configuration Cn is written also 1nn+1,j(Cn) = 1n,γ=±
n+1,j (Cn) = dilatj(Cn) in order to

have a smell of the structure of cubical strict ∞-category that we shall put on connected configurations.

• Let Cn = {dxi
ki
/k1 ∈ K1, · · · , kn ∈ Kn, ∀i ∈ J1, nK,Ki ⊂ Z is a finite set } a connected configuration.

Its j-presources are given by the sub-configuration Cj-so
n ⊂ Cn built as follow :

First for each coordinate dxi
ki

= dx1
k1

⊗ · · · ⊗ dxj
kj

⊗ · · · dxn
kn

in Cn we consider the set C
j,dxi

ki
n ⊂ Cn of all coordinates

dxi
k′
i
= dx1

k′
1
⊗ · · · ⊗ dxj

k′
j
⊗ · · · dxn

k′
n

in Cn such that for all l ∈ J1, nK \ j, k′l = kl. The set C
j,dxi

ki
n ⊂ Cn is called a j-partition of

Cn. These partitions of Cn form a finite set and they may not be connected. Of course if dxi
k′
i
∈ C

j,dxi
ki

n then C
j,dxi

k′
i

n = C
j,dxi

ki
n .

Thus when we consider the set C
j,dxi

ki
n it means that we have chosen one coordinate dxi

ki
representing this set and we use dxi

ki

to denote this set.

Let us fix a j-partition C
j,dxi

ki
n of Cn. The integer minj = min{k′j ∈ Z/dxi

k′
i
∈ C

j,dxi
ki

n } provides a specific coordinate dxi
minj

∈

C
j,dxi

ki
n . We isolate these coordinates for all j-partitions of Cn. They form the set Cj-so

n ⊂ Cn of j-presources of Cn.

The j-contraction contrj(C
j-so
n ) of Cj-so

n is given by the following set of coordinates in Zn−1 ::

contrj(C
j-so
n ) = {dxi

ki
\ j/dxi

ki
∈ Cj-so

n }

Lemma 2 The j-contraction contrj(C
j-so
n ) of Cj-so

n is a connected (n− 1)-configuration. ✷

Definition 3 If Cn is a connected configuration, its j-source is the connected (n − 1)-configuration contrj(C
j-so
n ). We denote

it by σn
n−1,j(Cn) ✷

Its j-pretargets are given by the sub-configuration Cj-tar
n ⊂ Cn built as follow :

As above we fix a j-partition C
j,dxi

ki
n of Cn. The integer maxj = max{k′j ∈ Z/dxi

k′
i
∈ C

j,dxi
ki

n } provides a specific coordinate

dxi
maxj

∈ C
j,dxi

ki
n . We isolate these coordinates for all j-partitions of Cn. They form the set Cj-tar

n ⊂ Cn of j-pretargets of Cn.

The j-contraction contrj(C
j-tar
n ) of Cj-tar

n is given by the following set of coordinates in Zn−1 ::

contrj(C
j-tar
n ) = {dxi

ki
\ j/dxi

ki
∈ Cj-tar

n }

Lemma 3 The j-contraction contrj(C
j-tar
n ) of Cj-tar

n is a connected (n− 1)-configuration. ✷

Definition 4 If Cn is a connected configuration, its j-target is the connected (n − 1)-configuration contrj(C
j-tar
n ). We denote

it by τnn−1,j(Cn) ✷

• Let Cn = {dxi
ki
/k1 ∈ K1, · · · , kn ∈ Kn, ∀i ∈ J1, nK,Ki ⊂ Z is a finite set } a connected configuration. A j-move of Cn is given

by a new n-configuration j-move(Cn) built as follow :

Consider a j-partition C
j,dxi

ki
n of Cn as above. If dxi

k′
i
= dx1

k1
⊗ · · · ⊗ dxj

k′
j
⊗ · · · dxn

kn
is in C

j,dxi
ki

n ⊂ Cn then define the new

coordinate j-transk(dx
i
k′
i
) = dx1

k1
⊗ · · · ⊗ dxj

k′
j+k

⊗ · · · dxn
kn

(k ∈ Z) as the translation of dxi
k′
i

by the integer k along the direction

j. Then put

j-transk(C
j,dxi

ki
n ) = {j-transk(dx

i
k′
i
) ∈ Zn/dx

i
k′
i
∈ C

j,dxi
ki

n }

Now suppose that Cn has m j-partitions C
j,dxi

ki

n,k (m ∈ N and k ∈ J1,mK). For each j-partitions chose an integer lk ∈ Z

(k ∈ J1,mK). Now for each of these partitions C
j,dxi

ki

n,k of Cn, consider their different translations by the integers lk along the
direction j :

j-translk(C
j,dxi

ki
n )

The new set of coordinates :

j-movel1,··· ,lm(Cn) :=
⋃

k∈J1,mK

j-translk(C
j,dxi

ki

n,k )

is called a j-move of Cn. Such j-move of Cn is denoted j-move(Cn) when no confusion occur for its underlying translations
lk ∈ Z. A j-move of Cn may not be connected. Such j-moves are central tools to build compositions ◦nn−1,j between connected
n-configurations.
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• Now we are going to define some specific j-moves of connected configurations which play a central role for the definition of the
partial compositions ◦nn−1,j for the cubical strict ∞-category of connected configurations.

Let Cn = {dxi
ki
/k1 ∈ K1, · · · , kn ∈ Kn, ∀i ∈ J1, nK,Ki ⊂ Z is a finite set } and C′

n = {dxi
k′
i
/k′1 ∈ K ′

1, · · · , k
′
n ∈ K ′

n, ∀i ∈

J1, nK,K ′
i ⊂ Z is a finite set } be two connected n-configurations such that τnn−1,j(Cn) = σn

n−1,j(C
′
n).

Our goal is to define a new connected configuration C′
n ◦

n
n−1,j Cn. Thanks to the definitions of the targets τnn−1,j and the sources

σn
n−1,j we know that such connected configurations Cn and C′

n must have respectively the same number m of j-targets and

j-sources, and thus Cn and C′
n must have the same number m of j-partitions. In fact any j-partition C

j,dxi
ki

n,k (k ∈ J1,mK) of

Cn correspond to another j-partition C
′j,dxi

k′
i

n,k of C′
n, in the sense that if dxi

ki
= dx1

k1
⊗ · · · ⊗ dxj

kj
⊗ · · · dxn

kn
is in C

j,dxi
ki

n,k and if

dxi
k′
i
= dx1

k′
1
⊗ · · · ⊗ dxj

k′
j
⊗ · · · dxn

k′
n

is in C
′j,dxi

k′
i

n,k then for all l ∈ J1, nK \ j we have kl = k′l.

We are going to define a j-move of C′
n, denoted by j-move(C′

n), in order to glue Cn with C′
n along the direction j.

Let us fix a k ∈ J1,mK, i.e we work with the j-partition C
j,dxi

ki

n,k of Cn and its corresponding j-partition C
′j,dxi

k′
i

n,k of C′
n. In order

to build j-move(C′
n) we are going to define j-translk(C

′j,dxi

k′
i

n,k ) for such k ∈ J1,mK, and then define :

j-move(C′
n) :=

⋃

k∈J1,mK

j-translk(C
′j,dxi

k′
i

n,k )

We denote dxi
mink

j

∈ C
′j,dxi

k′
i

n the coordinate of the j-partition C
′j,dxi

k′
i

n,k of C′
n which is an element of the set C′j-so

n i.e it is a specific

j-presource of C′
n. Also we denote dxi

maxk
j

∈ C
j,dxi

ki
n the coordinate of the j-partition C

j,dxi
ki

n,k of Cn which is an element of the

set Cj-tar
n i.e it is a specific j-pretarget of Cn. Thus for this fixed k ∈ J1,mK we define the following j-translation :

– If mink
j = maxkj then we do the j-translation of C

′j,dxi

k′
i

n,k with the translation lk = 1 : j-trans1(C
′j,dxi

k′
i

n,k ).

– If either mink
j < maxkj or mink

j > maxk
j then we do the j-translation of C

′j,dxi

k′
i

n,k with the translation lk = maxkj − mink
j + 1

: j-translk(C
′j,dxi

k′
i

n,k ).

Now we add Cn with the n-configuration j-translk(C
′j,dxi

k′
i

n,k ) i.e we do the j-pasting of Cn with j-translk(C
′j,dxi

k′
i

n,k ) and we denote

this new connected n-configuration by : Cn + j-translk(C
′j,dxi

k′
i

n,k ).

When doing that for all k ∈ J1,mK we obtain a new connected n-configuration :

Cn + j-transl1(C
′j,dxi

k′
i

n,1 ) + · · ·+ j-translk(C
′j,dxi

k′
i

n,k ) + · · ·+ j-translm(C
′j,dxi

k′
i

n,m )

that we denote by C′
n ◦nn−1,j Cn.

Let us denote by Con-Confn the set of connected n-configurations of Zn. Also let us denote by Con-Conf the set of all n-
configurations for all n ∈ N. The operations C′

n ◦nn−1,j Cn plus the one 1nn+1,j(Cn) = 1n,γ=±
n+1,j (Cn) = dilatj(Cn) (defined above)

put on the following cubical set

· · ·Con-Confn Con-Confn−1 · · ·Con-Conf4 Con-Conf3 Con-Conf2 Con-Conf1 Con-Conf0

σn
n−1,1

τn
n−1,1

σn
n−1,i

τn
n−1,i

σn
n−1,n

τn
n−1,n

σ4
3,1

τ4
3,1

σ4
3,2

τ4
3,2

σ4
3,3

τ4
3,3

σ4
3,4

τ4
3,4

σ3
2,1

τ3
2,1

σ3
2,2

τ3
2,2

σ3
2,3

τ3
2,3

σ2
1,1

τ2
1,1

σ2
1,2

τ2
1,2

σ1
0

τ1
0

a structure of cubical strict ∞-category with connections. As we see degeneracies which are defined by dilatations of coordinates
collapse classical degeneracies and connections when n ≥ 1. Thus this structure is interesting to have a real first smell of the

11



formalism that we are going to build in order to reach cubical pasting diagrams. In fact we shall see that cubical pasting
diagrams are built by using a reacher version of this formalism of connected configurations. This richness allows to distinguished
well degeneracies which won’t be collapsed, but also shall give a more precise view of sources, targets and compositions.

• If Cn = {dxi
ki
/k1 ∈ K1, · · · , kn ∈ Kn, ∀i ∈ J1, nK,Ki ⊂ Z is a finite set } is a connected n-configuration then its j-gluing locus is

the set Cj-gluing
n of pairs (dxi

ki
, dxi

k′
i
) of coordinates in Cn such that k′j = kj + 1.

• Diagrams of the j-gluing locus Cj-gluing
n of a connected configuration Cn are given by formal diagrams

dxi
ki

dxi
k′
i

dxi
ki

\ j = dxi
k′
i
\ j

tnn−1,j

snn−1,j

• If Cn = C1
n + · · · + Cl

n + · · · + Cr
n is an n-configuration such that r = ♯{Connected components of Cn} and for each l ∈ J1, rK,

Cl
n denote the connected configurations inside Cn, then its j-gluing locus is the set

Cj-gluing
n =

⋃

l∈J1,rK

Cl,j-gluing
n

• Diagrams of the j-gluing locus Cj-gluing
n of a configuration Cn = C1

n + · · ·+Cl
n + · · ·+Cr

n are given by the union of diagrams of
each j-gluing locus Cl,j-gluing

n of its connected components Cl
n.

• Let Cn = {dxi
ki
/k1 ∈ K1, · · · , kn ∈ Kn, ∀i ∈ J1, nK,Ki ⊂ Z is a finite set } a connected configuration.

Its j-predomain is given by the sub-configuration Cj-dom
n ⊂ Cn such that if dxi

ki
= dx1

k1
⊗· · ·⊗dxj

kj
⊗· · · dxn

kn
belongs to Cj-dom

n

then the coordinate dx1
k1

⊗ · · · ⊗ dxj
kj−1 ⊗ · · · dxn

kn
doesn’t belong to Cn.

Lemma 4 The j-contraction contrj(C
j-dom
n ) of the j-predomain Cj-dom

n of Cn just above is a connected (n− 1)-configuration.✷

Proof We have to prove that if two coordinates dxi
ki

\ j and dxi
k′
i
\ j belong to contrj(C

j-dom
n ) then there is a zigzag of

contractions in contrj(C
j-dom
n ) between them. Consider a zigzag (ai1 , ai2 , · · · , air ) of contractions between the two coordinates

dxi
ki

and dxi
k′
i

of Cj-dom
n in Cn. If l ∈ J1, rK write i′l = il if il ≤ j and i′l = il − 1 if il > j. Then it is easy to see that

(ai′1 , ai′2 , · · · , ai′r ) is such zigzag. �

The j-contraction contrj(C
j-dom
n ) of the j-predomain Cj-dom

n of Cn is called the j-domain of Cn and is written Σn
n−1,j(Cn).

The j-precodomain of Cn is given by the sub-configuration Cj-codom
n ⊂ Cn such that if dxi

ki
= dx1

k1
⊗· · ·⊗dxj

kj
⊗· · · dxn

kn
belongs

to Cj-codom
n then the coordinate dx1

k1
⊗ · · · ⊗ dxj

kj+1 ⊗ · · · dxn
kn

doesn’t belong to Cn.

Lemma 5 The j-contraction contrj(C
j-codom
n ) of the j-precodomain Cj-codom

n of Cn just above is a connected (n−1)-configuration.✷

The proof is the same. The j-contraction contrj(C
j-codom
n ) of the j-precodomain Cj-codom

n of Cn is called the j-codomain of Cn

and is written Tn
n−1,j(Cn).

• Diagrams of the j-predomain Cj-dom
n of a connected configuration Cn are given by the formal arrows

dxi
ki

\ j dxi
ki

snn−1,j

where dxi
ki

belongs to Cj-dom
n , and diagrams of the j-precodomain Cj-codom

n of a connected configuration Cn are given by the
formal arrows

dxi
ki

\ j dxi
ki

tnn−1,j

where dxi
ki

belongs to Cj-codom
n .

• Diagrams of the j-predomain Cj-dom
n of a configuration Cn are given by the the union of all diagrams of the j-predomain of its

connected components, and diagrams of the j-precodomain Cj-codom
n of a configuration Cn are given by the union of all diagrams

of the j-precodomain of its connected components.

• A crucial and straightforward fact is that given a coordinate dxi
ki

in Zn, it has a trivial structure of n-cubical set where sources
and targets are defined by contractions :

– snn−1,j(dx
i
ki
) = tnn−1,j(dx

i
ki
) := dxi

ki
\ j,

12



– sn−p
n−p−1,k(dx

i
ki

\ (j1, · · · , jp)) = tn−p
n−p−1,k(dx

i
ki

\ (j1, · · · , jp)) := dxi
ki

\ (j1, · · · , jp, k)

thus different contractions of dxi
ki

are the faces of its underlying trivial n-cubical set.

However this structure of n-cube that dxi
ki

has is too trivial because it does not distinguished sources and targets with the same

direction j. And this distinction is crucial because our idea is too label any n-cubical sets A with a coordinate dxi
ki

of Zn, such

that faces of A must have new coordinates dxi
ki

\ (j1, · · · , jp) build by contractions and weighted by a notion of sources and
targets. In order to correct this default we are going to enriched the coordinates with a notion of weighted coordinate or link,
which are roughly speaking coordinates equipped with or weighted with the symbols {−,+}.

Thus for each coordinate dxi
ki

of the infinite network Zn we shall associate an other n-cubical set �
dxi

ki

1(n) called the box of dxi
ki

and which formalise better the notion of n-cubical set A labelled by dxi
ki

, in the sense that sources and targets of A are then
labelled with weighted coordinates, which give the right information of the location of faces of A. Without these weights any
p-face of A which is a source in the direction j has the same coordinate (because the trivial structure collapse this source-target

information) as the other p-face of A which is a target in the same direction j, and this is counterintuitive : the role of �
dxi

ki

1(n) is

to distinguished well coordinates of any faces of any n-cubical set labelled with the coordinate dxi
ki

. The next section is devoted

to the description of these boxes �
dxi

ki

1(n) .

2.2 The basic box �
dxi

ki

1(n) of a coordinate dxi

ki

Given a coordinate dxi
ki

and the elementary n-cube 1(n) (which is the unique n-cell of the cubical sketch C), we associate to it a

canonical free box (dxi
ki
) = �

dxi
ki

1(n) which is an n-cubical set which faces are congruences of links. This n-cubical set �
dxi

ki

1(n) is called the

basic box of the coordinate dxi
ki

. Its sources and its targets are compatible with contractions and obtained by contraction of dxi
ki

, and

its different degeneracies (classical and connections) are compatible with dilatations and obtained by dilatation of dxi
ki

. Its links are

seen as terms of a language equipped with the different contractions of dxi
ki

: dxi
ki

\ (j1, j2, · · · , jp) plus two symbols {−,+} which
label these contractions. These symbols {−,+} must be interpreted as sources and targets of the different contractions they equipped,

and provide a good notion of sources and targets for �
dxi

ki

1(n) . These terms are built inductively (see below) and congruences on it use

notions of zigzag build with the cubical identities of sources and targets (see below). An other possible description of faces of �
dxi

ki

1(n)

is given in the remark below, which looks more natural (it uses the Reverse Polish Notation), but less intuitive for us. Perhaps in the
future we would prefer these RPN notations.

In this section we will describe only the underlying cubical set of �
dxi

ki

1(n) and degeneracies of it shall be described only in the next

section, because they are more subtile and involve notions of dilated free boxes equipped congruences for degeneracies (see below). As

we wrote in the previous section the role of �
dxi

ki

1(n) can be summarized as follow : if a n-cubical set X is labelled by a coordinate dxi
ki

it means that it is contained in the box �
dxi

ki

1(n) which faces are congruences of weighted coordinates or links. The box �
dxi

ki

1(n) and all

faces of �
dxi

ki

1(n) have underlying free boxes (see below). But when we consider the free box associated to a face of �
dxi

ki

1(n) we forget that

it was "linked" to �
dxi

ki

1(n) .

In order to keep the linked information of the faces of �
dxi

ki

1(n) we write these links as finite sequences of the form :

X = (dxi
ki
, (dxi

ki
\ j1,±), (dxi

ki
\ (j1, j2),±), ..., (dxi

ki
\ (j1, j2, · · · , jr),±))

We can define them by finite decreasing induction :

Definition 5 • For any direction j ∈ J1, nK, the term snn−1,j(�
dxi

ki

1(n) ) = (dxi
ki
, (dxi

ki
\ j,−)) and the term tnn−1,j(�

dxi
ki

1(n) ) =

(dxi
ki
, (dxi

ki
\ j,+)) are 1-links which must be interpreted respectively as the j-source and the j-target of the box �

dxi
ki

1(n) .

• If X = (dxi
ki
, (dxi

ki
\ j1,±), (dxi

ki
\ (j1, j2),±), ..., (dxi

ki
\ (j1, j2, · · · , jn−r),±)) is an (n− r)-link of the box �

dxi
ki

1(n) , then for any

direction j ∈ J1, rK, the terms

srr−1,j(X) = (dxi
ki
, (dxi

ki
\ j1,±), (dxi

ki
\ (j1, j2),±), ..., (dxi

ki
\ (j1, j2, · · · , jn−r),±), (dxi

ki
\ (j1, j2, · · · , jn−r, j),−))

trr−1,j(X) = (dxi
ki
, (dxi

ki
\ j1,±), (dxi

ki
\ (j1, j2),±), ..., (dxi

ki
\ (j1, j2, · · · , jn−r),±), (dxi

ki
\ (j1, j2, · · · , jn−r, j),+))

are (n− r − 1)-links of �
dxi

ki

1(n) .
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• (n− r)-links of sources-targets of �
dxi

ki

1(n) , or (n− r)-links of �
dxi

ki

1(n) for short, are given by such sequences

(dxi
ki
, (dxi

ki
\ j1,±), (dxi

ki
\ (j1, j2),±), ..., (dxi

ki
\ (j1, j2, · · · , jn−r),±)).

Some notations shall be useful :

snn2,j1
:= sn2+1

n2,j
1
n2+1

◦ sn2+2
n2+1,j1n2+2

· · · ◦ sn−1
n−2,j1n−1

◦ snn−1,j1n

where j1 = (j1n, · · · , j
1
n2+1) and j1n ∈ J1, nK, j1n−1 ∈ J1, n− 1K, · · · , j1n2+1 ∈ J1, n2 + 1K

tnn2,j1
:= tn2+1

n2,j
1
n2+1

◦ tn2+2
n2+1,j1n2+2

· · · ◦ tn−1
n−2,j1n−1

◦ tnn−1,j1n

where j1 = (j1n, · · · , j
1
n2+1) and j1n ∈ J1, nK, j1n−1 ∈ J1, n− 1K, · · · , j1n2+1 ∈ J1, n2 + 1K.

Also for any partition np < np−1 < · · · < nk < · · · < n2 < n1 = n with (p− 1) intervals Jnk+1, nkK we have 6 different zigzags of
sources and targets :

• snn2,j
:= sn2+1

n2,jn2+1
◦ sn2+2

n2+1,jn2+2
· · · ◦ sn−1

n−2,jn−1
◦ snn−1,jn

where j = (jn, · · · , jn2+1) and jn ∈ J1, nK, jn−1 ∈ J1, n− 1K, · · · , jn2+1 ∈

J1, n2 + 1K called string of sources of type s.

• tnn2,j
:= tn2+1

n2,jn2+1
◦ tn2+2

n2+1,jn2+2
· · · ◦ tn−1

n−2,jn−1
◦ tnn−1,jn where j = (jn, · · · , jn2+1) and jn ∈ J1, nK, jn−1 ∈ J1, n − 1K, · · · , jn2+1 ∈

J1, n2 + 1K called string of targets of type t

• s
np−1

np,jp−1 ◦ t
np−2

np−1,jp
· · · tnk

nk+1,jk
◦ s

nk−1

nk,jk−1 · · · t
n2

n3,j2
◦ sn

n2,j1
called zigzag of sources-targets of type (s, s).

• s
np−1

np,jp−1 ◦ t
np−2

np−1,jp
· · · tnk

nk+1,jk
◦ s

nk−1

nk,jk−1 · · · s
n2

n3,j2
◦ tnn2,j1

called zigzag of sources-targets of type (s, t).

• t
np−1

np,jp−1 ◦ s
np−2

np−1,jp
· · · tnk

nk+1,jk
◦ s

nk−1

nk,jk−1 · · · s
n2

n3,j2
◦ tn

n2,j1
called zigzag of sources-targets of type (t, t).

• t
np−1

np,jp−1 ◦ s
np−2

np−1,jp
· · · tnk

nk+1,jk
◦ s

nk−1

nk,jk−1 · · · t
n2

n3,j2
◦ snn2,j1

called zigzag of sources-targets of type (t, s)

The number of occurences of the s and of the t in a string or zigzag is called the size of the string or zigzag. If X is an r-link of

�
dxi

ki

1(n) :

X = (dxi
ki
, (dxi

ki
\ j1,±), (dxi

ki
\ (j1, j2),±), ..., (dxi

ki
\ (j1, j2, · · · , jr),±))

then it can be written

X = zX(�
dxi

ki

1(n) )

where zX denotes its underlying string or zigzag of sources-targets.
All these zigzags or strings build the (n − np) faces of any n-cube. Thanks to the cubical identities two differents zigzags or

strings can be equal. And these equalities build congruences on the sequences defined below, such that equivalence relations of these

sequences are the faces of the free box �
dxi

ki

1(n) .

More precisely consider two (n − r)-links X = (dxi
ki
, (dxi

ki
\ j1,±), (dxi

ki
\ (j1, j2),±), ..., (dxi

ki
\ (j1, j2, · · · , jn−r),±)) and X ′ =

(dxi
ki
, (dxi

ki
\ j′1,±), (dxi

ki
\ (j′1, j

′
2),±), ..., (dxi

ki
\ (j′1, j

′
2, · · · , j

′
n−r),±)). Denote by zX the string or zigzag of sources-targets which

gives X , i.e X = zX(�
dxi

ki

1(n) ), and zX′ the string or zigzag of sources-targets which gives X ′, i.e X ′ = zX′(�
dxi

ki

1(n) ).

Definition 6 With the above notations, the (n− r)-link X is congruent to the (n − r)-link X ′ if and only if zX = zX′ ; in this case
it is trivial to see that zX and zX′ have the same size. Then we write X ≡ X ′. An equivalence classe of (n − r)-link of the free box

�
dxi

ki

1(n) are r-faces of �
dxi

ki

1(n) . ✷

In fact the terminal element of the (n− r)-link X :

(dxi
ki

\ (j1, j2, · · · , jn−r),±)

gives the precise information of an r-face of �
dxi

ki

1(n) that it can be a source or a target, depending on the sign in {−,+} : ”− ” means

sources and ” + ” means target.

Lemma 6 If two (n− r)-links of �
dxi

ki

1(n) are congruents then they have the same terminal element. ✷

Proof The proof is easy and is made by finite decreasing induction :
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• We start the induction by proving it with sources and targets of (dxi
ki
) = �

dxi
ki

1(n) (by using the whole cubical identities ss = ss,

st = ts, etc.) and verify that indeed they give the same terminal coordinates : this step shows the magical role of the trivial
cubical structure of the coordinates. See the section above.

• We suppose that this is true for two congruent (n− r)-links. When we apply sources and targets of these (n− r)-links then it
is straightforward to see that they have the same terminal coordinates. �

A face of �
dxi

ki

1(n) is thus an equivalent classe of links of �
dxi

ki

1(n) with the same terminal element.

We can have in mind also that (dxi
ki

\ (j1, j2, · · · , jn−r),±) is an r-face of �
dxi

ki

1(n) equipped with (or linked by) the link

(dxi
ki
, (dxi

ki
\ j1,±), (dxi

ki
\ (j1, j2),±), ..., (dxi

ki
\ (j1, j2, · · · , jn−r),±))

Thus when there is no confusion about the prescribed link of a face (dxi
ki

\ (j1, j2, · · · , jn−r),±) of �
dxi

ki

1(n) we denote this r-face of

�
dxi

ki

1(n) just by (dxi
ki

\ (j1, j2, · · · , jn−r),±) without referring its link in �
dxi

ki

1(n) .

The previous lemma allows to build the free boxes associate to any faces of �
dxi

ki

1(n) :

Definition 7 The free box (dxi
ki
\(j1, j2, · · · , jn−r)) = �

dxi
ki

\(j1,j2,··· ,jn−r)

1(r) of the link (dxi
ki
, (dxi

ki
\j1,±), (dxi

ki
\(j1, j2),±), ..., (dxi

ki
\

(j1, j2, · · · , jn−r),±)) which represent an r-face of �
dxi

ki

1(n) , is the basic box of the coordinate dxi
ki

\ (j1, j2, · · · , jn−r) in Zr. ✷

When working with this free box �
dxi

ki
\(j1,j2,··· ,jn−r)

1(r) , we forget the previous information that it was linked to �
dxi

ki

1(n) . Thus the link

(dxi
ki
, (dxi

ki
\ j1,±), (dxi

ki
\ (j1, j2),±), ..., (dxi

ki
\ (j1, j2, · · · , jn−r−1),±)) which represents a face of �

dxi
ki

1(n) , represents also a face of the

underlying free box �
dxi

ki
\(j1,j2,··· ,jn−r)

1(r) , but with the simpler link (dxi
ki

\ (j1, j2, · · · , jn−r), (dx
i
ki

\ (j1, j2, · · · , jn−r−1),±)) when we

see it as a face of the free box �
dxi

ki
\(j1,j2,··· ,jn−r)

1(r) .

Remark 6 We have others natural notations for links X of �
dxi

ki

1(n) (Reverse Polish Notation, RPN) :

X = (dxi
ki
, dxi

ki
\ j1, dx

i
ki

\ (j1, j2), ..., dx
i
ki

\ (j1, j2, · · · , jn−r),±, · · · ,±)

This presentation allow the following definition of sources and targets of links of �
dxi

ki

1(n) by using underlying free boxes of it :

• snn−1,j(�
dxi

ki

1(n) ) = (dxi
ki
, (dxi

ki
\ j,−))

• srr−1,l(X) = (dxi
ki
, dxi

ki
\ j1, dxi

ki
\ (j1, j2), ..., dxi

ki
\ (j1, j2, · · · , jn−r−1), s

r
r−1,l(�

dxi
ki

\(j1,j2,··· ,jn−r)

1(r) ),±, · · · ,±)

Thus

srr−1,l(X) = (dxi
ki
, dxi

ki
\ j1, dx

i
ki

\ (j1, j2), ..., (dx
i
ki

\ (j1, j2, · · · , jn−r), dx
i
ki

\ (j1, j2, · · · , jn−r, jn−(r−1) = l),−),±, · · · ,±)

that we write when removing redondant occurrences of brackets :

srr−1,j(X) = (dxi
ki
, dxi

ki
\ j1, dx

i
ki

\ (j1, j2), ..., dx
i
ki

\ (j1, j2, · · · , jn−r), dx
i
ki

\ (j1, j2, · · · , jn−r, jn−(r−1) = l),−,±, · · · ,±)

and for targets :

• tnn−1,j(�
dxi

ki

1(n) ) = (dxi
ki
, (dxi

ki
\ j,+))

• trr−1,l(X) = (dxi
ki
, dxi

ki
\ j1, dx

i
ki

\ (j1, j2), ..., dx
i
ki

\ (j1, j2, · · · , jn−r−1), t
r
r−1,l(�

dxi
ki

\(j1,j2,··· ,jn−r)

1(r) ),±, · · · ,±) ✷

Thus

trr−1,l(X) = (dxi
ki
, dxi

ki
\ j1, dx

i
ki

\ (j1, j2), ..., (dx
i
ki

\ (j1, j2, · · · , jn−r), dx
i
ki

\ (j1, j2, · · · , jn−r, jn−(r−1) = l),+),±, · · · ,±)

that we write when removing redondant occurrences of brackets :

trr−1,j(X) = (dxi
ki
, dxi

ki
\ j1, dx

i
ki

\ (j1, j2), ..., dx
i
ki

\ (j1, j2, · · · , jn−r), dx
i
ki

\ (j1, j2, · · · , jn−r, jn−(r−1) = l),+,±, · · · ,±)
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2.3 Degenerate boxes (�
dxi

ki

1(n) ,≡A)

We know that the following forgetful functor :

[Cop
r ,Sets] [Cop,Sets] = CSetsU

which sends cubical sets equipped with degeneracies and connections [9] to cubical sets is right adjoint. Its induced monad R

applied to the terminal object 1 of the category [Cop,Sets] of cubical sets, gives all kind of degenerates n-cells A ∈ R(1)(n) (for all
integers n ∈ N) we need for cubical pasting diagrams. In the next section we shall describe this monad accurately in order to see that
it is a cartesian monad.

Now we are going to define the notion of zigzag of degeneracies in order to capture the depth of a degenerate n-cell A in R(1)(n)
which is the greatest integer r such that r-faces of A are of the form 1(r). We begin with the notations :

1n2

n,i1
:= 1n−1

n,i11
◦ 1n−2

n−1,i12
◦ · · · ◦ 1n−k

n−k+1,i1
k

◦ · · · 1n2

n2+1,i1n−n2

where i1 = (i11, · · · , i
1
k, · · · , i

1
n−n2

), k ∈ J1, n− n2K and

i11 ∈ J1, nK, · · · i1k ∈ J1, n− k + 1K · · · i1n−n2
∈ J1, n2 + 1K.

1n2,γ

n,j1
:= 1n−1,γ

n,j11
◦ 1n−2,γ

n−1,j12
◦ · · · ◦ 1n−k,γ

n−k+1,j1
k

◦ · · · 1n2,γ

n2+1,j1n−n2

where j1 = (j11 , · · · , j
1
k, · · · , j

1
n−n2

), k ∈ J1, n− n2K and

j11 ∈ J1, n− 1K, · · · j1k ∈ J1, n− kK · · · j1n−n2
∈ J1, n2K.

Also for any partition np < np−1 < · · · < nk < · · · < n2 < n1 = n with (p− 1) intervals Jnk+1, nkK we have 6 different zigzags of
reflexivities and connections :

• 1n2

n,i := 1n−1
n,i1

◦1n−2
n−1,i2

◦· · ·◦1n−k
n−k+1,ik

◦· · · 1n2

n2+1,in−n2
where i = (i1, · · · , ik, · · · , in−n2), k ∈ J1, n−n2K called strings of degeneracies

of type 1.

• 1n2,γ
n,j := 1n−1,γ

n,j1
◦ 1n−2,γ

n−1,j2
◦ · · · ◦ 1n−k,γ

n−k+1,jk
◦ · · · 1n2,γ

n2+1,jn−n2
where j = (j1, · · · , jk, · · · , jn−n2), k ∈ J1, n − n2K called strings of

degeneracies of type γ.

• 1n2

n,i1
◦ 1n3,γ

n2,i2
◦ · · · ◦ 1nk,γ

nk−1,ik
◦ 1

nk+1

nk,ik+1 ◦ · · · ◦ 1
np−1,γ

np−2,ip−2 ◦ 1
np

np−1,ip−1 called zigzags of degeneracies of type (1, 1).

• 1n2,γ

n,i1
◦ 1n3

n2,i2
◦ · · · ◦ 1nk,γ

nk−1,ik
◦ 1

nk+1

nk,ik+1 ◦ · · · ◦ 1
np−1,γ

np−2,ip−2 ◦ 1
np

np−1,ip−1 called zigzags of degeneracies of type (γ, 1).

• 1n2,γ

n,i1
◦ 1n3

n2,i2
◦ · · · ◦ 1nk,γ

nk−1,ik
◦ 1

nk+1

nk,ik+1 ◦ · · · ◦ 1
np−1

np−2,ip−2 ◦ 1
np,γ

np−1,ip−1 called zigzags of degeneracies of type (γ, γ).

• 1n2

n,i1
◦ 1n3,γ

n2,i2
◦ · · · ◦ 1nk,γ

nk−1,ik
◦ 1

nk+1

nk,ik+1 ◦ · · · ◦ 1
np−1

np−2,ip−2 ◦ 1
np,γ

np−1,ip−1 called zigzags of degeneracies of type (1, γ).

The number of occurrences of the operations 1rr+1,i, 1
r,γ
r+1,i in such zigzags or such strings are respectively called the size of a zigzag

or the size of a string.

Definition 8 Consider an n-cell A ∈ R(1)(n) which is not equal to 1(n). Thus it is a degenerate n-cell and is build with zigzag or
string of degeneracies as described just above. The depth of A is the integer p ∈ N such that A is equal to a zigzag of size n − p or
a string of size n − p of degeneracies of the p-cell 1(p) of the cubical site, i.e A is written aA(1(p)) where aA denotes its underlying
string or zigzag of degeneracies and aA has size n− p. ✷

Remark 7 Thanks to the axioms of degeneracies the degenerate n-cell A has zigzags or strings of degeneracies with different shapes
and which are equals. ✷

Suppose A is a degenerate n-cell in R(1)(n) with depth p < n. Zigzags or strings of sources-targets of A with sizes which are less

or equal to (n − p) are the one which build a congruence ≡A on faces of the basic n-box �
dxi

ki

1(n) , and this congruence is defined as

follow : if p < q ≤ n, two q-faces x and y of �
dxi

ki

1(n) are A-congruent : x ≡A y if and only if any strings or zigzags of sources-targets

zx of x (i.e zx is the underlying string or the underlying zigzag of sources-targets of any link of �
dxi

ki

1(n) which gives the q-face x (any

two such links are equivalent)) and any strings or zigzags of sources-targets zy (i.e zy is the underlying string or the underlying zigzag

of sources-targets of any link of �
dxi

ki

1(n) which gives the q-face y (any two such links are equivalent)) of y, equalize A i.e are such that

zx(A) = zy(A).

The quotient �
dxi

ki

1(n)/ ≡A is a boxe with coordinate dxi
ki

such that it sources and targets agree with those of A. We denote it with

the bracket notation (�
dxi

ki

1(n) ,≡A).
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Definition 9 • Sources and targets of degenerate boxes :

snn−1,j((�
dxi

ki

1(n) ,≡A)) := (�
dxi

ki
\j

1(n−1),≡snn−1,j(A))

and

tnn−1,j((�
dxi

ki

1(n) ,≡A)) := (�
dxi

ki
\j

1(n−1),≡tnn−1,j(A))

• Degeneracies of degenerate boxes :

1nn+1,j((�
dxi

ki

1(n) ,≡A)) := (�
dxi

ki
+j

1(n+1) ,≡1nn+1,j(A))

and

1n,γn+1,j((�
dxi

ki

1(n) ,≡A)) := (�
dxi

ki
+j

1(n+1) ,≡1n,γ
n+1,j(A))

Definition 10 A basic divisor is the expression Adxi
ki

which mean that the n-cell A ∈ R(1)(n) has coordinate dxi
ki

and when we

write Adxi
ki

; we furthermore mean that A is located in its degenerate box (�
dxi

ki

1(n) ,≡A). ✷

We use the following notations for sources and targets of basic divisors :

• snn−1,j(Adx
i
ki
) := snn−1,j(A)dx

i
ki

\ j

• tnn−1,j(Adx
i
ki
) := tnn−1,j(A)dx

i
ki

\ j

With it we get two formal inclusions :

snn−1,j(Adx
i
ki
) Adxi

ki

snn−1,j
tnn−1,j(Adx

i
ki
) Adxi

ki

tnn−1,j
,

We use the following notations for degeneracies of basic divisors :

• 1nn+1,j(Adx
i
ki
) := 1nn+1,j(A)(dx

i
ki

+ j)

• 1n,γn+1,j(Adx
i
ki
) := 1n,γn+1,j(A)(dx

i
ki

+ j)

Two basic divisors Adxi
ki

, A′dxi
k′
i
in X located respectively in the coordinates dxi

ki
= dx1

k1
⊗· · ·⊗dxn

kn
and dxi

k′
i
= dx1

k′
1
⊗· · ·⊗dxn

k′
n

are j-adjacent for a direction j ∈ J1, nK if their coordinates are j-adjacent and if snn−1,j(Adx
i
ki
) = tnn−1,j(A

′dxi
k′
i
) if kj = k′j + 1 or

tnn−1,j(Adx
i
ki
) = snn−1,j(A

′dxi
k′
i
) if kj = k′j − 1. An isolated basic divisor in X is a basic divisor Adxi

ki
which is not j-adjacent to any

other basic divisor of X for all direction j ∈ J1, nK.
Also we have the following simple fact :

Proposition 1 Any basic divisor has an underlying structure of cubical set with connections. ✷

The set of basic divisors is denoted BDiv and by the previous proposition it is straightforward that it has an underlying structure
of cubical set with connections where its n-cells are the basic n-divisors. Consider the full subcategory ΘBDiv ⊂ CSets which objects
are basic divisors. The Yoneda embedding

ΘBDiv CSets

X homCSets(X,−)

Y

shall be useful in the next section. However a little comment is necessary here.

2.4 The monad of reflexive cubical sets

As we wrote in the previous section the forgetful functor :

[Cop
r ,Sets] [Cop,Sets]U

which sends cubical sets equipped with degeneracies and connections [9] to cubical sets is right adjoint and its induced monad is

written R = (R, i,m) where 1CSets Ri is its unit and R2 Rm is its multiplication.

If C ∈ CSets is a cubical set, then we put :

R(C) :=
⋃

X∈BDiv

homCSets(Y(X), C)

17



The multiplication m of the monad R is very simple : it is obtained with the concatenation of two strings of degeneracies, or one
string of degeneracies with one zigzag of degeneracies, or with two zigzags of degeneracies. The unit i of the monad R sends n-cells c
to the decorated box cdxi

ki
.

Let us be more precise : the multiplication R2(C) R(C)m is defined as follow : the cubical set R2(C) is defined by

the formula :

R2(C) =
⋃

X∈BDiv

homCSets

(
Y (X), R(C) =

⋃

X′∈BDiv

homCSets(Y (X ′), C)
)

thus an n-cell x of R2(C) is an expression of the form : z(z′(c)) where c is a p-cell of C, p ≤ n (for the case p = n it means that
x is non-degenerate and equal to c), z′ is a string or a zigzag of degeneracies which when apply to c gives a degenerate q-cell z′(c)
of R(C) (p < q ≤ n), and where z is a string or a zigzag of degeneracies which degenerates again z′(c). The multiplication m sends
z(z′(c)) ∈ R2(C) to (z + z′)(c) ∈ R(C) where here z + z′ is just the concatenation of z and z′.

Proposition 2 The monad R = (R, i,m) of cubical reflexive sets with connections is cartesian ✷

Proof The definition of the endofunctor R shows that it preserves fiber products.
We are going to prove that the multiplication m is cartesian, i.e we are going to prove that if C ∈ CSets is a cubical set then the

commutative diagram :

R2(C) R2(1)

R(C) R(1)

m(C)

R2(!)

m(1)

R(!)

is a cartesian square. Consider the commutative diagram in CSets :

C′ R2(1)

R(C) R(1)

f

g

m(1)

R(!)

Thus if x is an n-cell of C′ then f(x) = z(c) where c ∈ C(q) (q ≤ n) and R(!)(f(x)) = R(!)(z(c)) = z(1(q)), and g(x) = z”(z′(1(p))),
thus m(1)(g(x)) = m(1)(z”(z′(1(p)))) = (z” + z′)(1(p)), thus the commutativity of the square gives z = z” + z′ and p = q

C′

R2(C) R2(1)

R(C) R(1)

l

f

g

m(C)

R2(!)

m(1)

R(!)

Thus the unique arrow l is defined as follow : l(x) = z”(z′(c)), and we can see that m(C)(z”(z′(c))) = (z” + z′)(c) = z(c) = f(x)
and that R2(!)(z”(z′(c))) = z”(z′(1(p))) = g(x).

The cartesianity of the unit

C R(C)i

is easier and goes as follow : we start with a commutative diagram in CSets

C′ 1

R(C) R(1)

f

!

i(1)

R(!)

18



Let x be an n-cell of C′, thus we have f(x) = z(c), thus R(!)(z(c)) = z(1(p)) and the commutativity gives: z(1(p)) = i(1)(1(n)) = 1(n);
which shows that z = ∅ and p = n, thus f(x) = c.

It shows that there is a unique map l :

C′

C 1

R(C) R(1)

l

f

!

i(C)

!

i(1)

R(!)

defined by l(x) = f(x). �

2.5 Rectangular divisors

Definition 11 A n-divisor is a configuration Cn equipped with chosen boxes for each coordinate in it, thus it is an expression :

X = A(k1
1,··· ,k

1
n)
dxi

k1
i
+ · · ·+A(kl

1,··· ,k
l
n)
dxi

kl
i
+ · · ·+A(kr

1 ,··· ,k
r
n)
dxi

kr
i

where Adxi
ki

are basic divisors. ✷

Remark 8 A n-divisor X must be thought up to its translations in the network Zn. Coordinates are used as guides to build their
associated sketches 2.6. ✷

Proposition 3 Any n-divisor has an underlying structure of cubical set. ✷

Proof If X = A(k1
1 ,··· ,k

1
n)
dxi

k1
i

+ · · ·+ A(kl
1,··· ,k

l
n)
dxi

kl
i

+ · · ·+A(kr
1 ,··· ,k

r
n)
dxi

kr
i

is a n-divisor, then put :

• j-sources (j ∈ J1, nK) are given by :

snn−1,j(X) = snn−1,j(A(k1
1 ,··· ,k

1
n)
dxi

k1
i
) + · · ·+ snn−1,j(A(kl

1,··· ,k
l
n)
dxi

kl
i
) + · · ·+ snn−1,j(A(kr

1 ,··· ,k
r
n)
dxi

kr
i
)

• j-targets (j ∈ J1, nK) are given by :

tnn−1,j(X) = snn−1,j(A(k1
1,··· ,k

1
n)
dxi

k1
i
) + · · ·+ tnn−1,j(A(kl

1,··· ,k
l
n)
dxi

kl
i
) + · · ·+ tnn−1,j(A(kr

1 ,··· ,k
r
n)
dxi

kr
i
)

• If x ∈ fp(X) is a p-face of X , then it is an (n− p)-divisor obtained by a zigzag of sources-targets of the n-divisor X .

Some notions attached to n-divisors shall be useful :

• Let X = A(k1
1,··· ,k

1
n)
dxi

k1
i

+ · · ·+A(kl
1,··· ,k

l
n)
dxi

kl
i

+ · · ·+A(kr
1 ,··· ,k

r
n)
dxi

kr
i

be a divisor. If two basic divisors Adxi
ki

, A′dxi
k′
i

in X are

j-adjacent we get two possible diagrams :

Adxi
ki

A′dxi
k′
i

tnn−1,j(Adx
i
ki
) = snn−1,j(A

′dxi
k′
i
)

tnn−1,j

snn−1,j

A′dxi
k′
i

Adxi
ki

tnn−1,j(A
′dxi

k′
i
) = snn−1,j(Adx

i
ki
)

tnn−1,j

snn−1,j

• A j-gluing data (j ∈ J1, nK) for X is given by a couple (A(kl
1,··· ,k

l
n)
dxi

kl
i

, A(kl′
1 ,··· ,kl′

n )dx
i

kl′
i

) of basic divisors of X which are

j-adjacent and are such that

tnn−1,j(A(kl
1,··· ,k

l
n)
dxi

kl
i
) = snn−1,j(A(kl′

1 ,··· ,kl′
n )dx

i

kl′
i

)

.

19



Such j-gluing data can be written A(kl
1,··· ,k

l
n)
dxi

kl
i

+j A(kl′
1 ,··· ,kl′

n )dx
i

kl′
i

and underlies the diagram of the type

A(kl
1,··· ,k

l
n)
dxi

kl
i

A(kl′
1 ,··· ,kl′

n )dx
i

kl′
i

tnn−1,j(A(kl
1,··· ,k

l
n)
dxi

kl
i

) = snn−1,j(A(kl′
1 ,··· ,kl′

n )dx
i

kl′
i

)

tnn−1,j

snn−1,j

called a basic j-gluing locus of X . The j-gluing locus of X is the set of such basic j-gluing locus. The gluing locus of X is the
set of all j-gluing locus for all the direction j ∈ J1, nK.

• A basic divisor A(kl′
1 ,··· ,kl′

n )dx
i

kl′
i

of a divisor X has free j-source if there is no basic divisor A(kl
1,··· ,k

l
n)
dxi

kl
i

of X such that the

couple (A(kl
1,··· ,k

l
n)
dxi

kl
i

, A(kl′
1 ,··· ,kl′

n )dx
i

kl′
i

) is a j-gluing data. The set of formal arrows :

snn−1,j(A(kl′
1 ,··· ,kl′

n )dx
i

kl′
i

) A(kl′
1 ,··· ,kl′

n )dx
i

kl′
i

snn−1,j

associated to basic divisors in X which have free j-sources is called the j-free sources locus of X . The free sources locus of X is
the set of all j-free sources locus for all the direction j ∈ J1, nK.

• A basic divisor A(kl
1,··· ,k

l
n)
dxi

kl
i

of a divisor X has free j-target if there is no basic divisor A(kl′
1 ,··· ,kl′

n )dx
i

kl′
i

of X such that the

couple (A(kl
1,··· ,k

l
n)
dxi

kl
i

, A(kl′
1 ,··· ,kl′

n )dx
i

kl′
i

) is a j-gluing data. The set of formal arrows :

tnn−1,j(A(kl
1,··· ,k

l
n)
dxi

kl
i

) A(kl
1,··· ,k

l
n)
dxi

kl
i

tnn−1,j

associated to basic divisors in X which have free j-targets is called the j-free targets locus of X . The free targets locus of X is
the set of all j-free targets locus for all the direction j ∈ J1, nK.

Consider a n-divisor X = A(k1
1 ,··· ,k

1
n)
dxi

k1
i

+ · · ·+ A(kl
1,··· ,k

l
n)
dxi

kl
i

+ · · ·+A(kr
1 ,··· ,k

r
n)
dxi

kr
i
. We are going to define degeneracies of

X : 1nn+1,i(X), 1n,γn+1,i(X) by using the axioms of degeneracies-compositions :

Definition 12 – 1nn+1,i(a ◦
n
j b) = 1nn+1,i(a) ◦

n+1
j+1 1nn+1,i(b) if 1 ≤ i ≤ j ≤ n

1nn+1,i(a ◦nj b) = 1nn+1,i(a) ◦
n+1
j 1nn+1,i(b) if 1 ≤ j < i ≤ n+ 1

– 1n,γn+1,i(a ◦nj b) = 1n,γn+1,i(a) ◦
n+1
j+1 1n,γn+1,i(b) if 1 ≤ i < j ≤ n

1n,γn+1,i(a ◦nj b) = 1n,γn+1,i(a) ◦
n+1
j 1n,γn+1,i(b) if 1 ≤ j < i ≤ n

– First transport laws : for 1 ≤ j ≤ n

1n,+n+1,j(a ◦nj b) =

[
1n,+n+1,j(a) 1nn+1,j(a)

1nn+1,j+1(a) 1n,+n+1,j(b)

]

– Second transport laws : for 1 ≤ j ≤ n

1n,−n+1,j(a ◦nj b) =

[
1n,−n+1,j(a) 1nn+1,j+1(b)

1nn+1,j(b) 1n,−n+1,j(b)

]

✷

Definition 13 Consider a divisor X = A(k1
1,··· ,k

1
n)
dxi

k1
i

+ · · · + A(kl
1,··· ,k

l
n)
dxi

kl
i

+ · · · + A(kr
1 ,··· ,k

r
n)
dxi

kr
i
. If Adxi

kl
i

is an isolated

basic divisor of X then we just define 1nn+1,i(Adx
i
kl
i

), 1n,−n+1,i(Adx
i
kl
i

) and 1n,+n+1,i(Adx
i
kl
i

) as in 2.3; for the direction j ∈ J1, nK

consider a j-gluing data A(kl
1,··· ,k

l
n)
dxi

kl
i

+j A(kl′
1 ,··· ,kl′

n )dx
i

kl′
i

of X (see just above).

– If 1 ≤ i ≤ j ≤ n or if 1 ≤ j < i ≤ n+ 1, then we put :

1nn+1,i(A(kl
1,··· ,k

l
n)
dxi

kl
i
+j A(kl′

1 ,··· ,kl′
n )dx

i

kl′
i

) := 1nn+1,i(A(kl
1,··· ,k

l
n)
dxi

kl
i
) + 1nn+1,i(A(kl′

1 ,··· ,kl′
n )dx

i

kl′
i

)

– if 1 ≤ i < j ≤ n or 1 ≤ j < i ≤ n the we put :

1n,γn+1,i(A(kl
1,··· ,k

l
n)
dxi

kl
i
+j A(kl′

1 ,··· ,kl′
n )dx

i

kl′
i

) := 1n,γn+1,i(A(kl
1,··· ,k

l
n)
dxi

kl
i
) + 1n,γn+1,i(A(kl′

1 ,··· ,kl′
n )dx

i

kl′
i

)
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– If 1 ≤ j ≤ n then we put :

1n,+n+1,j(A(kl
1,··· ,k

l
n)
dxi

kl
i
+jA(kl′

1 ,··· ,kl′
n )dx

i

kl′
i

) := 1n,+n+1,j(A(kl
1,··· ,k

l
n)
dxi

kl
i
)+1n,+n+1,j(A(kl′

1 ,··· ,kl′
n )dx

i

kl′
i

)+1nn+1,j(A(kl
1,··· ,k

l
n)
dxi

kl
i
)+1nn+1,j+1(A(kl

1,··· ,k
l
n)
dxi

kl
i
)

and

1n,−n+1,j(A(kl
1,··· ,k

l
n)
dxi

kl
i
+jA(kl′

1 ,··· ,kl′
n )dx

i

kl′
i

) := 1n,−n+1,j(A(kl
1,··· ,k

l
n)
dxi

kl
i
)+1n,−n+1,j(A(kl′

1 ,··· ,kl′
n )dx

i

kl′
i

)+1nn+1,j(A(kl′
1 ,··· ,kl′

n )dx
i

kl′
i

)+1nn+1,j+1(A(kl′
1 ,··· ,kl′

n )dx
i

kl′
i

)

These give the definition of 1nn+1,i(X) for i ∈ J1, n+ 1K and of 1n,−n+1,i(X), 1n,−n+1,i(X) for i ∈ J1, nK ✷

Proposition 4 Any n-divisor has an underlying structure of reflexive cubical set. ✷

Definition 14 A connected divisor is a divisor with underlying connected configuration such that all its pairs of basic divisors
which have adjacent coordinates are adjacents. ✷

Now we are going to define specific connected n-divisors, called rectangular n-divisors, which are our cubical pasting diagrams.
These rectangular n-divisors have another notions of sources and targets that we call the pasting-sources and the pasting-targets.
Their j-sources and j-targets that we have defined above shall be used to build their sketches, but their j-pasting-sources and
their j-pasting-targets shall be used to build a structure of cubical ∞-category on cubical pasting diagrams.

– A rectangular n-configuration is given by a n-configuration Cn = {dxi
ki
/k1 ∈ K1, · · · , kn ∈ Kn, ∀i ∈ J1, nK,Ki ⊂

N is a finite set } of coordinates dxi
ki

∈ Zn such that for all i ∈ J1, nK, the set Ki ⊂ N has the following form :

Ki = {ni
1, n

i
1 + 1, · · · , ni

1 + li} where li ∈ N. When the set of integers N is seen as a category which morphisms are
given by its order, then another way to describe rectangular n-configurations is to see them as n-configurations Cn such
that all finite subcategories Ki ⊂ N are connected. It is evident to see that rectangular n-configurations are specific
connected n-configurations.

Definition 15 For all integer n ∈ N, a rectangular n-divisor is a connected divisor X which underlying n-configuration is
rectangular. Rectangular divisors are also called cubical pasting n-diagrams. ✷

The set of rectangular divisors is denoted C-Past. The full subcategory Θ0 ⊂ CSets which objects are rectangular divisors
is called the cubical Θ0 and the Yoneda embedding

Θ0 CSets

X homCSets(X,−)

Y

shall be useful when we will describe the monad S of cubical strict ∞-categories with connections.

– Consider a rectangular divisors X = A(k1
1 ,··· ,k

1
n)
dxi

k1
i

+ · · · + A(kl
1,··· ,k

l
n)
dxi

kl
i

+ · · · + A(kr
1 ,··· ,k

r
n)
dxi

kr
i

with underlying n-

configuration Cn = {dxi
ki
/k1 ∈ K1, · · · , kn ∈ Kn, ∀i ∈ J1, nK,Ki ⊂ N is a finite set }. For each direction j ∈ J1, nK the

subset Kj = {nj
1, n

j
1 + 1, · · · , nj

1 + lj} ⊂ N has a minimum nj and a maximum nj
1 + lj . The finite set of basic divisors

A(kl
1,··· ,k

l
n)
dxi

kl
i

of X which dxi
kl
i

has its j-depth equal to nj , gives a new rectangular divisor denoted by pre-σn
n−1,j(X) that

we call the j-pre-source of X . Also the finite set of basic divisors A(kl
1,··· ,k

l
n)
dxi

kl
i

of X which dxi
kl
i

has its j-depth equal to

nj + lj , gives a new rectangular n-divisor denoted by pre-τnn−1,j(X) that we call the j-pre-target of X .

The important fact here is : if X ′ is another rectangular n-divisor such that its j-pre-source pre-σn
n−1,j(X

′) is built with

basic divisors A′
(kl′

1 ,··· ,kl′
n )
dxi

kl′
i

which are j-adjacent to basic divisors A(kl
1,··· ,k

l
n)
dxi

kl
i

in pre-τnn−1,j(X) and vice-versa : each

basic divisor A(kl
1,··· ,k

l
n)
dxi

kl
i

in pre-τnn−1,j(X) is j-adjacent to a basic divisor A′
(kl′

1 ,··· ,kl′
n )
dxi

kl′
i

in pre-σn
n−1,j(X

′) then the

sum X + X ′ is a rectangular n-divisor. Furthermore snn−1,j(pre-σn
n−1,j(X

′)) and tnn−1,j(pre-σn
n−1,j(X)) are rectangular

(n− 1)-divisors and are equal.

Thus we put :

Definition 16 If X is a rectangular divisor, then its j-pasting source is :

σn
n−1,j(X) := snn−1,j(pre-σn

n−1,j(X))

and its j-pasting target is :
τnn−1,j(X) := tnn−1,j(pre-τnn−1,j(X))
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Proposition 5 σn
n−1,j(X) and τnn−1,j(X) are rectangular (n− 1)-divisors called respectively the j-source and the j-target

of X. These faces are the one adapted to define a cubical ∞-categorical structure on cubical pasting diagrams. ✷

Proposition 6 If X is a rectangular n-divisor, then 1nn+1,j(X) and 1n,γn+1,j(X) are rectangular (n+ 1)-divisors. ✷

Proof Evident : just see that the dilatation of a rectangular n-configuration �

Proposition 7 The set C-Past of rectangular divisors is equipped with a structure of cubical strict ∞-category with connections.✷

Proof – For all integer n ∈ N, n-cells of C-Past are rectangular n-divisors.

– Consider two rectangular n-divisors X and X ′ such that τnn−1,j(X) = σn
n−1,j(X

′). Then we define :

X ◦nn−1,j X
′ := X +X ′

– If X is a rectangular n-divisor, then we defined degeneracies 1nn+1,j(X) for j ∈ J1, n+ 1K and of 1n,−n+1,j(X), 1n,−n+1,j(X) for
j ∈ J1, nK. �

2.6 Cubical inductive sketches

Let X = A(k1
1,··· ,k

1
n)
dxi

k1
i

+ · · · + A(kl
1,··· ,k

l
n)
dxi

kl
i

+ · · · + A(kr
1 ,··· ,k

r
n)
dxi

kr
i

be a divisor. In this section we associate to it a sketch

EX which has a cubical set structure such that n-cells of it are themselves sketches build with cocones called basic gluing locus
and free sources-targets locus. When X is a rectangular divisor, its rectangular sketch EX has like rectangular divisors, another
notions of sources-targets, called again pasting-sources and pasting-targets. These last notion of sources-targets allow to build a
cubical strict ∞-categorical structure with connections on rectangular sketches.

Definition 17 If X is a divisor, its j-sketch source denoted by En−1
snn−1,j(X) is the sketch obtained as the union of its j-gluing

locus and its j-free sources locus. Its j-sketch target denoted by En−1
tnn−1,j(X) is the sketch obtained as the union of its j-gluing

locus and its j-free targets locus. ✷

Thus these sketches En−1
snn−1,j(X) and En−1

tnn−1,j(X) are characterized as follow : we consider the (n − 1)-divisors snn−1,j(X) and

tnn−1,j(X), and with it we select as above j-gluing locus, j-free sources locus and j-free targets locus of X . This characterization
is crucial because just by using j-sources snn−1,j(X) and j-targets tnn−1,j(X) of the divisor X we can identify these sketches

En−1
snn−1,j(X) and En−1

tnn−1,j(X). We easily see that we can do the same construction for not necessary connected n-divisors.

• Let X be a fixed divisor. As we saw it has a canonical structure of n-cubical set, and we denote fp(X) the set of its p-faces
(which are not necessarily connected divisors). If x ∈ fp(X) is a p-face of X then we denote fq(x) the set of q-faces of x. We
associate to it the following cubical set EX of sketches :

– EX has only one n-cell still denoted by X , which is a punctual sketch, i.e which base is reduced to the point X see as the
unique formal point of this base. We denote this singleton by En

X .

– Consider the following cubical set :

En
X En−1

fn−1(X) · · · E
4
f4(X) E3

f3(X) E2
f2(X) E1

f1(X) E0
f0(X)

snn−1,1

tnn−1,1

snn−1,j

tnn−1,j

snn−1,n

tnn−1,n

s43,1

t43,1

s43,2

t43,2

s43,3

t43,3

s43,4

t43,4

s32,1

t32,1

s32,2

t32,2

s32,3

t32,3

s21,1

t21,1

s21,2

t21,2

s10

t10

where Ep

fp(X) denotes the sketch which is the set of all sketches Ep
x associated to p-faces x ∈ fp(X) of X . We define it by

using a simple finite decreasing induction :

– as we wrote, the set En
X has only the punctual sketch X as element. The maps snn−1,j send X to the sketches En−1

snn−1,j(X) ⊂

En−1
fn−1(X) (the j-sketch source of the n-divisor X), and the maps tnn−1,j send X to the sketches En−1

tnn−1,j(X) ⊂ En−1
fn−1(X) (the

j-sketch target of the n-divisor X), for all directions j ∈ J1, nK.
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– If x ∈ fp(X) is a p-face of X (it is obtained by zigzags of (n−p)-sequences of sources and targets of X) then the maps spp−1,k

send the sketch Ep
x to the sketches Ep−1

s
p

p−1,k(x)
⊂ Ep−1

fp−1(X) (Ep−1
s
p

p−1,k(x)
is the k-sketch source of the (n − p)-divisor x) and the

maps tpp−1,k send the sketch Ep
x to the sketches Ep−1

t
p

p−1,k(x)
⊂ Ep−1

fp−1(X), (Ep−1
t
p

p−1,k(x)
is the k-sketch target of the (n− p)-divisor

x), for all directions k ∈ J1, pK, where spp−1,k(x) ∈ fp−1(x) and tpp−1,k(x) ∈ fp−1(x) are (p− 1)-faces of x.

Remark 9 When we associate a sketch EX to a n-divisor X we forget coordinates. Here we can see the crucial use of coordinates :
it allows us to have an accurate description of such sketches and these coordinates are here used jus as "guides" for building them.✷

Now we are going to give another description of the sources and targets of EX .

• Consider the following (n− p)-divisor :

x = A(k1
1 ,··· ,k

1
p)
dxi

k1
i
+ · · ·+A(kl

1,··· ,k
l
p)
dxi

kl
i
+ · · ·+A(kr

1 ,··· ,k
r
p)
dxi

k
r(X)
i

which is a p-face of X . The j-gluing locus d of x are the following cocones d of the sketches Ep−1
s
p
p−1,j(x)

and Ep−1
t
p
p−1,j(x)

:

A(kl
1,··· ,k

l
j ,··· ,k

l
p)
dxi

kl
i

A(kl′
1 ,··· ,kl′

j ,··· ,kl′
p )dx

i

kl′
i

tpp−1,j(A(kl
1,··· ,k

l
j ,··· ,k

l
p)
dxi

kl
i

) = spp−1,j(A(kl′
1 ,··· ,kl′

j ,··· ,kl′
p )dx

i

kl′
i

)

t
p
p−1,j

s
p
p−1,j

where A(kl
1,··· ,k

l
j ,··· ,k

l
p)
dxi

kl
i

and A(kl′
1 ,··· ,kl′

j ,··· ,kl′
p )dx

i

kl′
i

are basic divisors of x which are j-adjacent and thus are such that :

(kl
′

1 , · · · , k
l′

j , · · · , k
l′

p ) = (kl1, · · · , k
l
j + 1, · · · , klp)

and where tpp−1,j(A(kl
1,··· ,k

l
j ,··· ,k

l
p)
dxi

kl
i

) is itself a basic divisor of the divisor tpp−1,j(x) and spp−1,j(A(kl′
1 ,··· ,kl′

j ,··· ,kl′
p )dx

i

kl′
i

) is a basic

divisor of the divisor spp−1,j(x). With this notation we can also describe morphisms of sketches :

Ep−1
s
p
p−1,j(x)

Ep−2
fp−2(s

p
p−1,j(x))

s
p−1
p−2,1

t
p−1
p−2,1

s
p−1
p−2,k

t
p−1
p−2,k

s
p−1
p−2,p−1

t
p−1
p−2,p−1

Ep−1
t
p
p−1,j(x)

Ep−2
fp−2(t

p
p−1,j(x))

s
p−1
p−2,1

t
p−1
p−2,1

s
p−1
p−2,k

t
p−1
p−2,k

s
p−1
p−2,p−1

t
p−1
p−2,p−1

on the j-gluing locus of x; the description of these morphisms of sketches on the j-free sources locus of x and on the j-free
targets locus of x is straightforward when we define their actions only on the j-gluing locus.

We describe these morphisms of sketches by defining cocones sp−1
p−2,k(d) and tp−1

p−2,k(d) as precomposition of the j-gluing data d
just above

A(kl
1,··· ,k

l
j ,··· ,k

l
p)
dxi

kl
i

A(kl′
1 ,··· ,kl′

j ,··· ,kl′
p )dx

i

kl′
i

A′dxi
kl
i

\ j

t
p
p−1,j

s
p
p−1,j

where we denoted A′ = tpp−1,j(A(kl
1,··· ,k

l
j ,··· ,k

l
p)
dxi

kl
i

) = spp−1,j(A(kl′
1 ,··· ,kl′

j ,··· ,kl′
p )dx

i

kl′
i

) and A”s = sp−1
p−2,k(A

′), A”t = tp−1
p−2,k(A

′),

which is precomposed with the maps

A”sdx
i
k”li

\ (j, k) A′dxi
kl
i

\ j
s
p−1
p−2,k

A”tdx
i
k”li

\ (j, k) A′dxi
kl
i

\ j
t
p−1
p−2,k
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More precisely the maps sp−1
p−2,k, t

p−1
p−2,k send each diagrams d of Ep−1

s
p
p−1,j(x)

and of Ep−1
t
p
p−1,j(x)

to diagrams sp−1
p−2,k(d), t

p−1
p−2,k(d) in the

sketches Ep−2
fp−2(s

p
p−1,j(x))

, Ep−2
fp−2(t

p
p−1,j(x))

, by the precompositions :

A(kl
1,··· ,k

l
j ,··· ,k

l
p)
dxi

kl
i

A(kl′
1 ,··· ,kl′

j ,··· ,kl′
p )dx

i

kl′
i

A′dxi
kl
i

\ j

A”sdx
i
k”li

\ (j, k)

t
p
p−1,j

s
p
p−1,j

s
p−1
p−2,k

A(kl
1,··· ,k

l
j ,··· ,k

l
p)
dxi

kl
i

A(kl′
1 ,··· ,kl′

j ,··· ,kl′
p )dx

i

kl′
i

A′dxi
kl
i

\ j

A”tdx
i
k”li

\ (j, k)

t
p
p−1,j

s
p
p−1,j

t
p−1
p−2,k

For this description of the maps sp−1
p−2,k, tp−1

p−2,k, we use the same arguments as in ?? (the one to get sources and targets for
cubical trees) :

• When j = k we obtain sp−1
p−2,k(d) by using the diagram :

A(kl
1,··· ,k

l
j ,··· ,k

l
p)
dxi

kl
i

A(kl′
1 ,··· ,kl′

j ,··· ,kl′
p )dx

i

kl′
i

A′dxi
kl
i

\ j A′dxi
kl
i

\ j A′dxi
kl
i

\ j

A”dxi
k”li

\ (j, k)

s
p
p−1,j+1

t
p
p−1,j

s
p
p−1,j

s
p
p−1,j+1

t
p−1
p−2,j s

p−1
p−2,k=j

s
p−1
p−2,j

where we denote A”dxi
k”li

\ (j, k) = sp−1
p−2,k(A

′dxi
kl
i

\ j).

Remark 10 Of course we have also : tp−1
p−2,j(A

′dxi
kl
i

\ j) = sp−1
p−2,k(A

′dxi
kl
i

\ j) = sp−1
p−2,j(A

′dxi
kl
i

\ j) but in tp−1
p−2,j(A

′dxi
kl
i

\ j) =

tp−1
p−2,j(A

′)dxi
kl
i

\ (j, j) and sp−1
p−2,j(A

′dxi
kl
i

\ j) = sp−1
p−2,j(A

′)dxi
kl
i

\ (j, j) the basic divisors A”, tp−1
p−2,j(A

′) and sp−1
p−2,j(A

′) are not

necessarily equals. ✷

and thus the morphism of sketches sp−1
p−2,k sends d to the following diagram sp−1

p−2,k(d) of the sketches Ep−2
fp−2(s

p
p−1,j(x))

, Ep−2
fp−2(t

p
p−1,j(x))

:

A′dxi
kl
i

\ j A′dxi
kl
i

\ j

A”dxi
k”li

\ (j, j)

t
p−1
p−2,j

s
p−1
p−2,j
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And we obtain tp−1
p−2,k(d) by using the diagram :

A(kl
1,··· ,k

l
j ,··· ,k

l
p)
dxi

kl
i

A(kl′
1 ,··· ,kl′

j ,··· ,kl′
p )dx

i

kl′
i

A′dxi
kl
i

\ j A′dxi
kl
i

\ j A′dxi
kl
i

\ j

A”dxi
k”li

\ (j, k)

t
p
p−1,j+1

t
p
p−1,j

s
p
p−1,j

t
p
p−1,j+1

t
p−1
p−2,j t

p−1
p−2,k=j

s
p−1
p−2,j

where we denote A”dxi
k”li

\ (j, k) = tp−1
p−2,k(A

′dxi
kl
i

\ j), and thus the morphism of sketches tp−1
p−2,k sends d to the following diagram

tp−1
p−2,k(d) of the sketches Ep−2

fp−2(s
p
p−1,j(x))

and Ep−2
fp−2(t

p
p−1,j(x))

:

A′dxi
kl
i

\ j A′dxi
kl
i

\ j

A”dxi
k”li

\ (j, j)

t
p−1
p−2,j

s
p−1
p−2,j

• When k < j then we obtain sp−1
p−2,k(d) by using the diagram :

A(kl
1,··· ,k

l
j ,··· ,k

l
p)
dxi

kl
i

A(kl′
1 ,··· ,kl′

j ,··· ,kl′
p )dx

i

kl′
i

A′dxi
kl
i

\ j A′dxi
kl
i

\ j A′dxi
kl
i

\ j

A”dxi
k”li

\ (j, k)

s
p

p−1,k
t
p
p−1,j

s
p
p−1,j

s
p

p−1,k

t
p−1
p−2,j−1 s

p−1
p−2,k

s
p−1
p−2,j−1

where we denote A”dxi
k”li

\ (j, k) = sp−1
p−2,k(A

′dxi
kl
i

\ j)

Remark 11 Of course we have also : tp−1
p−2,j−1(A

′dxi
kl
i

\j) = sp−1
p−2,k(A

′dxi
kl
i

\j) = sp−1
p−2,j−1(A

′dxi
kl
i

\j) but in tp−1
p−2,j−1(A

′dxi
kl
i

\j) =

tp−1
p−2,j−1(A

′)dxi
kl
i

\ (j, j − 1) and sp−1
p−2,j−1(A

′dxi
kl
i

\ j) = sp−1
p−2,j−1(A

′)dxi
kl
i

\ (j, j − 1) the basic divisors A”, tp−1
p−2,j−1(A

′) and

sp−1
p−2,j−1(A

′) are not necessarily equals. ✷

and thus the morphism of sketches sp−1
p−2,k sends d to the following diagram sp−1

p−2,k(d) of the sketches Ep−2
fp−2(s

p
p−1,j(x))

and

Ep−2
fp−2(t

p
p−1,j(x))

:

A′dxi
kl
i

\ j A′dxi
kl
i

\ j

A”dxi
k”li

\ (j, j − 1)

t
p−1
p−2,j−1

s
p−1
p−2,j−1

And we obtain tp−1
p−2,k(d) by using the diagram :
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A(kl
1,··· ,k

l
j ,··· ,k

l
p)
dxi

kl
i

A(kl′
1 ,··· ,kl′

j ,··· ,kl′
p )dx

i

kl′
i

A′dxi
kl
i

\ j A′dxi
kl
i

\ j A′dxi
kl
i

\ j

A”dxi
k”li

\ (j, k)

t
p

p−1,k
t
p
p−1,j

s
p
p−1,j

t
p

p−1,k

t
p−1
p−2,j−1 t

p−1
p−2,k

s
p−1
p−2,j−1

where we denote A”dxi
k”li

\ (j, k) = tp−1
p−2,k(A

′dxi
kl
i

\ j), and thus the morphism of sketches tp−1
p−2,k sends d to the following diagram

tp−1
p−2,k(d) of the sketches Ep−2

fp−2(s
p
p−1,j(x))

and Ep−2
fp−2(t

p
p−1,j(x))

:

A′dxi
kl
i

\ j A′dxi
kl
i

\ j

A”dxi
k”li

\ (j, j − 1)

t
p−1
p−2,j−1

s
p−1
p−2,j−1

• When k > j then we obtain sp−1
p−2,k(d) by using the diagram :

A(kl
1,··· ,k

l
j ,··· ,k

l
p)
dxi

kl
i

A(kl′
1 ,··· ,kl′

j ,··· ,kl′
p )dx

i

kl′
i

A′dxi
kl
i

\ j A′dxi
kl
i

\ j A′dxi
kl
i

\ j

A”dxi
k”li

\ (j, k)

s
p

p−1,k+1
t
p
p−1,j

s
p
p−1,j

s
p

p−1,k+1

t
p−1
p−2,j s

p−1
p−2,k

s
p−1
p−2,j

where we denote A”dxi
k”li

\ (j, k) = sp−1
p−2,k(A

′dxi
kl
i

\ j).

Remark 12 Of course we have also : tp−1
p−2,j(A

′dxi
kl
i

\ j) = sp−1
p−2,k(A

′dxi
kl
i

\ j) = sp−1
p−2,j(A

′dxi
kl
i

\ j) but in tp−1
p−2,j(A

′dxi
kl
i

\ j) =

tp−1
p−2,j(A

′)dxi
kl
i

\ (j, j) and sp−1
p−2,j(A

′dxi
kl
i

\ j) = sp−1
p−2,j(A

′)dxi
kl
i

\ (j, j) the basic divisors A”, tp−1
p−2,j(A

′) and sp−1
p−2,j(A

′) are not

necessarily equals. ✷

and thus the morphism of sketches sp−1
p−2,k sends d to the following diagram sp−1

p−2,k(d) of the sketches Ep−2
fp−2(s

p
p−1,j(x))

and

Ep−2
fp−2(t

p
p−1,j(x))

:

A′dxi
kl
i

\ j A′dxi
kl
i

\ j

A”dxi
k”li

\ (j, j)

t
p−1
p−2,j

s
p−1
p−2,j

And we obtain tp−1
p−2,k(d) by using the diagram :
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A(kl
1,··· ,k

l
j ,··· ,k

l
p)
dxi

kl
i

A(kl′
1 ,··· ,kl′

j ,··· ,kl′
p )dx

i

kl′
i

A′dxi
kl
i

\ j A′dxi
kl
i

\ j A′dxi
kl
i

\ j

A”dxi
k”li

\ (j, k)

t
p

p−1,k+1
t
p
p−1,j

s
p
p−1,j

t
p

p−1,k+1

t
p−1
p−2,j t

p−1
p−2,k

s
p−1
p−2,j

where we denote A”dxi
k”li

\ (j, k) = tp−1
p−2,k(A

′dxi
kl
i

\ j), and thus the morphism of sketches tp−1
p−2,k sends d to the following diagram

tp−1
p−2,k(d) of the sketches Ep−2

fp−2(s
p
p−1,j(x))

and Ep−2
fp−2(t

p
p−1,j(x))

:

A′dxi
kl
i

\ j A′dxi
kl
i

\ j

A”dxi
k”li

\ (j, j)

t
p−1
p−2,j

s
p−1
p−2,j

• The 1-faces x ∈ f1(X) of X are all of the form x = A1dx
1
k1

+A2dx
1
k1+1 + · · ·+Aldx

1
k1+l−1 +Al+1dx

1
k1+l · · ·+Ardx

1
k1+r−1 where

any basic divisor Aldx
1
k1+l−1 of x can be 1(1)dx1

k1+l−1 or 101(1(0))dx
1
k1+l−1 and the sketch E0

f0(X) is a set of diagrams of the form
:

Aldx
1
k1+l−1 Al+1dx

1
k1+l

A

t10

s10

where A denotes the unique 0-cell 1(0) of the cubical site C.

• It is interesting to notice that the sketch EX can be seen also as a n-cubical object in the category Sketch of sketches :

En
X En−1

X · · · E4
X E3

X E2
X E1

X E0
X

snn−1,1

tnn−1,1

snn−1,j

tnn−1,j

snn−1,n

tnn−1,n

s43,1

t43,1

s43,2

t43,2

s43,3

t43,3

s43,4

t43,4

s32,1

t32,1

s32,2

t32,2

s32,3

t32,3

s21,1

t21,1

s21,2

t21,2

s10

t10

where we put : Ep
X :=

⋃
x∈fp(X)

Ep
x .

• Definition 18 If EX is the sketch associated to a divisor X then it has a straightforward structure of cubical set given by
different faces of X , and also it has a straightforward structure of reflexive cubical set given by :

1nn+1,j(EX) := E1nn+1,j(X) for j ∈ J1, n+ 1K, and 1n,γn+1,j(EX) := E1n,γ
n+1,j(X) for j ∈ J1, nK
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• Definition 19 A rectangular n-sketch are the one of the form EX where X is a rectangular n-divisor. ✷

Because rectangular divisors have two notions of sources and targets :

– the j-sources and j-targets (j ∈ N is a direction) which are useful to build associated sketches,

– the j-pasting sources and j-pasting targets which are useful to put a cubical strict ∞-categorical structure with connections
on rectangular divisors

their associated rectangular sketches inherit also two notions of sources-targets :

Definition 20 If X is a rectangular n-divisor and EX is its associated sketch, then we define :

σn
n−1,j(EX) := Eσn

n−1,j(X) and τnn−1,j(EX) := Eτn
n−1,j(X)

Proposition 8 The set of sketches associated to rectangular divisors is equipped with a structure of cubical strict ∞-category
with connections that we denote by C-P′ast ✷

Proof – For all integer n ∈ N, n-cells of C-P′ast are sketches EX where X is a rectangular n-divisor.

– Consider two sketches EX and EX′ such that τnn−1,j(EX) = σn
n−1,j(EX′). Then we define :

EX ◦nn−1,j EX′ := EX◦n
n−1,jX

′

– If X is a rectangular n-divisor and EX is its associated sketch, then we defined above degeneracies 1nn+1,j(EX) for j ∈ J1, n+1K

and 1n,−n+1,j(EX), 1n,+n+1,j(EX) for j ∈ J1, nK. �

We thus have another description of the cubical Θ0 which is the full subcategory Θ0 ⊂ CSets which objects are rectangular
sketches.

2.7 The monad of cubical strict ∞-categories with connections

Consider a rectangular n-divisor X = A(k1
1,··· ,k

1
n)
dxi

k1
i

+ · · ·+A(kl
1,··· ,k

l
n)
dxi

kl
i

+ · · ·+A(kr
1 ,··· ,k

r
n)
dxi

k
r(X)
i

and a cubical set C ∈ CSets.

A decoration of X by cells of C is given by a C-decorated rectangular n-divisor :

〈X,C〉 = c(k1
1,··· ,k

1
n)
dxi

k1
i
+ · · ·+ c(kl

1,··· ,k
l
n)
dxi

kl
i
+ · · ·+ c(kr

1 ,··· ,k
r
n)
dxi

k
r(X)
i

i.e a filling of X with cells c(kl
1,··· ,k

l
n)

of R(C) (i.e we substitute the 1(q)’s in each basic divisors of X which are formally degenerate

or not with the q-cells of C) such that for all directions j ∈ J1, nK if (A(kl
1,··· ,k

l
n)
dxi

kl
i

, A(kl′
1 ,··· ,kl′

n )dx
i

kl′
i

) are j-gluing datas for X , i.e are

such that tnn−1,j(A(kl
1,··· ,k

l
n)
dxi

kl
i

) = snn−1,j(A(kl′
1 ,··· ,kl′

n )dx
i

kl′
i

) then :

tnn−1,j(c(kl
1,··· ,k

l
n)
dxi

kl
i
) = snn−1,j(c(kl′

1 ,··· ,kl′
n )dx

i

kl′
i

)

The set of decorations of X by cells of C is denoted Decor(X,C). The colimit colimE〈X,C〉 is taken in Sets and gives an n-cell of the
free cubical strict ∞-category S(C) with connections.

We have another description of these n-cells colimE〈X,C〉 by using gluing of representables. But first let us define what are cubical

sums : consider a functor C CF where we denote F (1(n)) = In and F (snn−1,j) = s
n
n−1,j, and F (tnn−1,j) = t

n
n−1,j. The

F -decorated rectangular n-divisor :

〈X,F 〉 = c(k1
1,··· ,k

1
n)
dxi

k1
i
+ · · ·+ c(kl

1,··· ,k
l
n)
dxi

kl
i
+ · · ·+ c(kr

1 ,··· ,k
r
n)
dxi

k
r(X)
i

is a filling of X by the n-cells In of C in the sense that in each occurrence of the 1(n)’s in the degenerate boxes of X , we substitute
1(n) by In. Here this is important to notice that the expressions c(kl

1,··· ,k
l
n)
dxi

kl
i

that we obtain are formal degenerate terms build with

the objects In of C. Also there is only a unique F -decoration 〈X,F 〉 of F for each rectangular n-divisor X .
We associate to 〈X,F 〉 the sketch E〈X,F 〉 as in 2.6, and in fact this is just the realization of the sketch EX by F , i.e all formal

cosources-cotargets spp−1,j , t
p
p−1,j of EX are sent to s

p
p−1,j, t

p
p−1,j by F , and all formal degenerate terms c(kl

1,··· ,k
l
n)
dxi

kl
i

in 〈X,F 〉 must

be well realized in C. At this point this is interesting to notice that such realizations are possible in any category C of presheaves,
because in any category of presheaves we can build degenerates terms (like the one of the left adjoint of the forgetful functor U in
2.3).

If the colimit colimE〈X,F 〉 exists in C then we say that it has the cubical sum associated to the F -decoration 〈X,F 〉, or it has
X-cubical sum for short. If the X-cubical sum exists in C for all such decorations 〈X,F 〉 and for all rectangular n-divisor X then we
say that F is a cubical extension or has all cubical sums. A morphism of cubical extensions is given by a commutative triangle
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C

C

C′

f

F

F ′

such that the functor f preserves cubical sums, i.e we have f(colimE〈X,F 〉) = colimE〈X,F ′〉 for each F -decoration 〈X,F 〉 of each
rectangular divisor X . We denote by C-Ext the category of cubical extensions. It is easy to see that the functor i :

C Θ0
i

which sends each objects 1(n) of C to the basic box 1(n)dxi
ki

is an initial object of C-Ext, such that the unique map is given by the
functor

Θ0

C

C

colimE〈−,F〉

i

F

where Θ0 is here seen as the category of rectangular n-divisors (for each n ∈ N) 2.5, and thus Θ0 inherits a universal property.
The Yoneda embedding :

C CSets

1(n) homCSets(1(n),−)

Y

is such cubical extension because CSets has all small colimits. The full image Y(C) of Y is a cubical set builds with representables of
the pre-cubical site C, and we put Y(1(n)) = homCSets(1(n),−) for all integer n ∈ N, and Y(snn−1,j) = s

n
n−1,j, and Y(tnn−1,j) = t

n
n−1,j.

A decoration 〈X,Y(C)〉 of X by cells of Y(C) has here the same meaning as a Y-decorated rectangular n-divisor 〈X,Y〉, i.e it is given
by the Y(C)-decorated rectangular n-divisor

〈X,Y(C)〉 = 〈X,Y〉 = c(k1
1,··· ,k

1
n)
dxi

k1
i
+ · · ·+ c(kl

1,··· ,k
l
n)
dxi

kl
i
+ · · ·+ c(kr

1 ,··· ,k
r
n)
dxi

k
r(X)
i

i.e we substitute each 1(p)’s of X with the representable homCSets(1(p),−) for p ≤ n.
The colimit colimE〈X,Y〉 (in CSets) is in fact a cubical set builds by gluing representables along their sources-targets : more

precisely we have for all directions j ∈ J1, nK, snn−1,j(colimE〈X,Y〉) = colimE〈snn−1,j(X),Y〉, t
n
n−1,j(colimE〈X,Y〉) = colimE〈tnn−1,j(X),Y〉, and

any zigzag of sources-targets of colimE〈X,Y〉 is equal to the colimit colimE〈x,Y〉 where x is the face of X obtained by this zigzag. Now
we are ready to describe the monad S = (S, λ, µ) of cubical strict ∞-categories with connections : as we wrote in [9] the forgetful
functor :

∞-CCAT [Cop,Sets]U

which sends cubical strict ∞-categories with connections to cubical sets is right adjoint and its induced monad is written S =

(S, λ, µ) where 1CSets Sλ is its unit and S2 S
µ

is its multiplication.

If C ∈ CSets is a cubical set, then we put :

S(C) :=
⋃

X∈Θ0

colimE〈X,C〉 =
⋃

X∈Θ0

homCSets(colimE〈X,Y〉, C)

This description shows immediately that S preserved fiber products and S(C) is a cubical strict ∞-categories with connections.
The unit λ of S is given by the map :

C S(C)

c c

λ

The multiplication µ of S :

S2(C) S(C)
µ
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is more subtle and need more work. Consider a decoration of X by cells of C-Past i.e we start with a C-Past-decorated rectangular
n-divisor :

〈X,C-Past〉 = X(k1
1,··· ,k

1
n)
dxi

k1
i
+ · · ·+X(kl

1,··· ,k
l
n)
dxi

kl
i
+ · · ·+X(kr

1 ,··· ,k
r
n)
dxi

k
r(X)
i

i.e a filling of X with cells X(kl
1,··· ,k

l
n)

of C-Past such that for all directions j ∈ J1, nK if (A(kl
1,··· ,k

l
n)
dxi

kl
i

, A(kl′
1 ,··· ,kl′

n )dx
i

kl′
i

) are j-gluing

datas for X , then :
τnn−1,j(X(kl

1,··· ,k
l
n)
dxi

kl
i
) = σn

n−1,j(X(kl′
1 ,··· ,kl′

n )dx
i

kl′
i

)

Here sources σn
n−1,j and targets τnn−1,j are the pasting-sources and the pasting-targets for rectangular divisors. We obtain then a

new rectangular n-divisor denoted X〈X,C-Past〉 that we obtain by reindexing all coordinates of basic divisors inside each rectangular
n-divisors X(kl

1,··· ,k
l
n)

. An important fact is the sketch EX〈X,C-Past〉
is obtained by using the realization of the snn−1,j to the σn

n−1,j and
the realization of the tnn−1,j to the τnn−1,j : this is here that we see the interplay between sources-targets of a rectangular sketch and
pasting-sources and pasting-targets between rectangular sketches. This provides on C-Past an operation that we call the substitution
of C-Past. The multiplication µ of S :

S2(C) S(C)
µ

is then given by :

⋃
X∈Θ0

homCSets(colimE〈X,Y〉, S(C))
⋃

X∈Θ0

homCSets(colimE〈X,Y〉, C)
µ(C)

where

⋃

X∈Θ0

homCSets(colimE〈X,Y〉, S(C))

is given by :

⋃

X∈Θ0

homCSets

(
colimE〈X,Y〉,

⋃

X∈Θ0

homCSets(colimE〈X,Y〉, C)
)

An element of S2(C) is described as follow : it underlies a decoration of X by C-decorated rectangular n-divisors 〈X(kl
1,··· ,k

l
n)
, C〉,

and we write such decoration :

〈X,C-Past, C〉 = 〈X(k1
1,··· ,k

1
n)
, C〉dxi

k1
i
+ · · ·+ 〈X(kl

1,··· ,k
l
n)
, C〉dxi

kl
i
+ · · ·+ 〈X(kr

1 ,··· ,k
r
n)
, C〉dxi

k
r(X)
i

which itself underlies the C-Past-decorated rectangular n-divisor :

〈X,C-Past〉 = X(k1
1,··· ,k

1
n)
dxi

k1
i
+ · · ·+X(kl

1,··· ,k
l
n)
dxi

kl
i
+ · · ·+X(kr

1 ,··· ,k
r
n)
dxi

k
r(X)
i

In the decoration 〈X,C-Past, C〉 we substitute each 〈X(kl
1,··· ,k

l
n)
, C〉 by the n-cells colimE〈X

(kl
1,··· ,kl

n)
,C〉 of S(C), which are also

described as maps between the gluing of representables colimE〈X
(kl

1 ,··· ,kl
n)

,Y〉 to C. Thus we obtain a decoration of a rectangular

n-divisor X by n-cells of S(C) that we write :

[X,C-Past, C] = colim(〈X(k1
1,··· ,k

1
n)
, C〉)dxi

k1
i
+ · · ·+ colim(〈X(kl

1,··· ,k
l
n)
, C〉dxi

kl
i
) + · · ·+ colim(〈X(kr

1 ,··· ,k
r
n)
, C〉dxi

k
r(X)
i

)

An element of S2(C) is then given by colimE[X,C-Past,C]. Thus elements of S2(C) are described by a colimit of colimits of n-cells in
S(C). But colimit of colimits of cocones is the colimit of a cocone obtained by gluing all cocones together, and we can already guess
that the multiplication µ(C) uses this simple fact : we use X〈X,C-Past〉, the substitution associated to the C-Past-decorated rectangular
n-divisor :

〈X,C-Past〉 = X(k1
1,··· ,k

1
n)
dxi

k1
i
+ · · ·+X(kl

1,··· ,k
l
n)
dxi

kl
i
+ · · ·+X(kr

1 ,··· ,k
r
n)
dxi

k
r(X)
i

in order to glue all cocones of the sketches EX and EX
(kl

1,··· ,kl
n)

(l ∈ J1, r(X)K) and to obtain cocones of EX〈X,C-Past〉
.

Thus we have the following definition of µ(C) :

S2(C) S(C)
µ(C)

µ(C) sends colimE[X,C-Past,C] to colimE〈X〈X,C-Past〉,C〉 which is the same thing as to say that it sends colimE[X,C-Past,C] to a map
between the gluing of representables colimE〈X〈X,C-Past〉,Y〉 to C.

Theorem 1 The monad S = (S, λ, µ) acting on CSets which algebras are cubical strict ∞-categories with connections (described in
[9, 10]) is cartesian. ✷

30



Proof The description of the monad S = (S, λ, µ) above shows that its underlying endofunctor S does preserve fibred products.
We are going to prove that the multiplication µ is cartesian, i.e we are going to prove that if C ∈ CSets is a cubical set then the
commutative diagram :

S2(C) S2(1)

S(C) S(1)

µ(C)

S2(!)

µ(1)

S(!)

is a cartesian square. Consider the commutative diagram in CSets :

C′ S2(1)

S(C) S(1)

f

g

µ(1)

S(!)

Thus if x is an n-cell of C′ then f(x) = colimE〈X′,C〉 where X ′ is a rectangular n-divisor, and S(!)(f(x)) = S(!)(colimE〈X′,C〉) =
colimE〈X′,1〉, and g(x) = colimE[X,C-Past,1] thus µ(1)(g(x)) = µ(1)(colimE[X,C-Past,1]) = colimE〈X〈X,C-Past〉,1〉. But the commutativity
gives S(!)(f(x)) = µ(1)(g(x)) thus this commutativity gives X ′ = X〈X,C-Past〉 and f(x) = colimE〈X〈X,C-Past〉,C〉. It is then easy to see
that we get a unique map l :

C′

S2(C) S2(1)

S(C) S(1)

l

f

g

µ(C)

S2(!)

µ(1)

S(!)

defined by l(x) = colimE[X,C-Past,C], and is such that µ(C)(l(x)) = colimE〈X〈X,C-Past〉,C〉 = f(x) and S2(!)(l(x)) = S2(!)(colimE[X,C-Past,C])
= colimE[X,C-Past,1] = g(x). The cartesianity of the unit

C S(C)λ

is easier and goes as follow : we start with a commutative diagram in CSets

C′ 1

S(C) S(1)

f

!

λ(1)

S(!)

Let x an n-cell of C′, thus we have f(x) = colimE〈X′,C〉 where X ′ is a rectangular n-divisor. Thus S(!)(f(x)) = colimE〈X′,1〉, and then
the commutativity gives colimE〈X′,1〉 = 1, and this shows that X ′ = 1(n)dxi

ki
is just the basic n-box without degeneracies. It shows

that there is a unique map l :

C′

C 1

S(C) S(1)

l

f

!

λ(C)

!

λ(1)

S(!)

defined by l(x) = colimE〈X′,C〉, and such that λ(C)(l(x)) = colimE〈X′,C〉 = f(x). �
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With this theorem we solved the conjecture in [10] for the monad of cubical strict ∞-categories with connections which provides
a complete description of the cubical operad B0

C of cubical weak ∞-categories with connections.

Proposition 9 The monad S = (S, λ, µ) acting on CSets which algebras are cubical strict ∞-categories (without connections) is
cartesian. ✷

Proof This is easy, here we just use the previous proof by using only rectangular divisors build with classical degeneracies 1nn+1,j

(n ∈ N and j ∈ J1, n+ 1K) and their associated rectangular sketches. �

With this proposition we can easily use the materials in [10] to build the cubical operad B0
C of cubical weak ∞-categories without

connections. In particular it is interesting to know that B0
C -algebras of dimensions 2 are exactly double categories of Verity [14]. The

proof of such fact is made just by mimic the proof of Michael Batanin in [2] where he proved that with globular operads, B0
C -algebras

of dimensions 2 are exactly bicategories.

3 The cubical coherator Θ∞
W of cubical weak ∞-categories with connections

• A cubical theory is given by a cubical extension (2.7) :

C CF

such that the induced unique functor F̄ :

Θ0 CF̄

is bijective on objects, and thus a cubical theory3 Θ is a small category which objects are identify with rectangular divisors. In
particular a chosen initial object in C-Ext :

C Θ0
i

is a specific cubical theory called the initial cubical theory. The full subcategory of C-Ext which objects are cubical theories is

denoted C-Th and the cubical theory C Θ0
i is initial in it. It is interesting to notice that morphisms G in C-Th :

Θ

C

Θ′

G

F

F ′

induce, thanks to the universality of Θ0, the following commutative triangles in the category Cat of small categories :

Θ

Θ0

Θ′

G

F̄

F̄ ′

and more precisely this is a commutative triangle in the subcategory C-Sketch ⊂ Sketch of the category of small sketches
equipped with the cocones which underly the rectangular sketches EX of the section 2.6 where X is a rectangular n-divisor,
because all the functors G, F̄ and F̄ ′ do preserve these cocones.

• A set-model for the theory Θ or a Θ-model for short is given by a functor :

Θop SetsG

which sends cubical sums to cubical products : more precisely by using the diagram :

Θop
0 Θop SetsF̄ op G

3A cubical extension is written by using the Greek letter Θ when it is a cubical theory.
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we require the equality (G ◦ F̄ op)(EX) = limEop

G(X), where G(X) denotes the rectangular divisor decorated by occurrences of

G(Ip) i.e we substitute in each basic divisor of X , 1(p) by G(Ip), and the projective sketch Eop

G(X) is defined as the opposite

sketch of EG(X).

• A crucial example of cubical theory is the one ΘM of cubical reflexive ∞-magmas. We recall their definition ([9]) : consider a
cubical reflexive set

(C, (1nn+1,j)n∈N,j∈J1,n+1K, (1
n,γ
n+1,j)n≥1,j∈J1,nK)

equipped with partial operations (◦nj )n≥1,j∈J1,nK where if a, b ∈ C(n) then a ◦nj b is defined for j ∈ {1, ..., n} if snj (b) = tnj (a). We
also require these operations to follow the following axioms of positions :

(i) For 1 ≤ j ≤ n we have : snn−1,j(a ◦
n
j b) = snn−1,j(a) and tnn−1,j(a ◦

n
j b) = tnn−1,j(a),

(ii) snn−1,i(a ◦nj b) =

{
snn−1,i(a) ◦

n−1
j−1 snn−1,i(b) if 1 ≤ i < j ≤ n

snn−1,i(a) ◦
n−1
j snn−1,i(b) if 1 ≤ j < i ≤ n

(iii) tnn−1,i(a ◦nj b) =

{
tnn−1,i(a) ◦

n−1
j−1 tnn−1,i(b) if 1 ≤ i < j ≤ n

tnn−1,i(a) ◦
n−1
j tnn−1,i(b) if 1 ≤ j < i ≤ n

Definition 21 Cubical ∞-magmas are cubical sets equipped with partial operations like above. A morphism between two cubical
∞-magmas is a morphism of their underlying cubical sets which respects partial operations (◦nj )n≥1,j∈J1,nK.The category of cubical
∞-magmas is noted ∞-CMag ✷

Definition 22 Cubical reflexive ∞-magmas are cubical reflexive set equipped a structure of ∞-magmas. A morphism between two
cubical reflexive ∞-magmas is a morphism of their underlying cubical reflexive sets which respects partial operations (◦nj )n≥1,j∈J1,nK.
The category of cubical reflexive ∞-magmas is noted ∞-CMagr ✷

Now the forgetful functor

∞-CMagr CSetsV

is right adjoint and it induces the monad M = (M, η, µ) of cubical reflexive ∞-magmas with its Kleisli category Kl(M). Denote by ΘM

the full subcategory of Kl(M) which objects are objects of Θ0. This small category ΘM equipped with the canonical inclusion functor

Θ0 ΘM

j
is an important cubical theory because it is the basic data we need to build the coherator ΘW which models are

cubical weak ∞-categories with connections.

Consider an object C Θi of the category C-Th of cubical theories and the unique functor Θ0 Θī . A

In-arrow in Θ is one arrow of it with domain the object In (which is by definition equal to i(1(n))). A pair (f, g) of In-arrows in Θ :

In X
f

g

is called

• admissible if it doesn’t belong to the image of ī

• j-admissible (for a direction j ∈ J1, nK) if it is admissible and it is j-parallel, i.e f ◦ snn−1,j = g ◦ snn−1,j and f ◦ tnn−1,j = g ◦ tnn−1,j

In X

In−1

f

g

tnn−1,jsnn−1,j

If a pair (f, g) of In-arrows : In X
f

g
is admissible, then we define its liftings which are all j-lifting arrows [f, g]nn+1,j

for all j ∈ J1, n+ 1K :
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In+1

In X

In−1

[f,g]nn+1,j
t
n+1
n,is

n+1
n,i

f

g

tnn−1,isnn−1,i

by using an induction. Thus we suppose that such operations [−,−]pp+1,k (p ≤ n − 1 and k ∈ J1, p + 1K) exists for all faces of f
and g. The definition of [f, g]nn+1,j goes as follow :

• if 1 ≤ i < j ≤ n+ 1 then [f, g]nn+1,j ◦ s
n+1
n,i = [f ◦ snn−1,i, g ◦ s

n
n−1,i]

n−1
n,j−1 and [f, g]nn+1,j ◦ t

n+1
n,i = [f ◦ tnn−1,i, g ◦ t

n
n−1,i]

n−1
n,j−1

• if 1 ≤ j ≤ n+ 1 then [f, g]nn+1,j ◦ s
n+1
n,j = f and [f, g]nn+1,j ◦ t

n+1
n,j = g

• if 1 ≤ j < i ≤ n+ 1 then [f, g]nn+1,j ◦ s
n+1
n,i = [f ◦ snn−1,i−1, g ◦ s

n
n−1,i−1]

n−1
n,j and [f, g]nn+1,j ◦ t

n+1
n,i = [f ◦ tnn−1,i−1, g ◦ t

n
n−1,i−1]

n−1
n,j

If a pair (f, g) of In-arrows : In X
f

g
is j-admissible (for a fixed direction j ∈ J1, nK), then we define its (j,−)-lifting

arrow [f, g]n,−n+1,j or its (j,−)-lifting for short, the following In+1-arrow :

In+1

In X

In−1

[f,g]n,−
n+1,j

t
n+1
n,is

n+1
n,i

f

g

tnn−1,isnn−1,i

by using an induction. Thus we suppose that such operations [−,−]p,−p+1,k (p ≤ n− 1 and k ∈ J1, pK) exists for all faces of f and g,

but also (see the induction used just below) we have to suppose that the operations [−,−]pp+1,k (p ≤ n− 1 and k ∈ J1, p+1K) defined

above exists for such faces. The definition of [f, g]n,−n+1,j goes as follow :

• if 1 ≤ i < j ≤ n then [f ; g]n,−n+1,j ◦ s
n+1
n,i = [f ◦ snn−1,i; g ◦ s

n
n−1,i]

n−1,−
n,j−1 and [f ; g]n,−n+1,j ◦ t

n+1
n,i = [f ◦ tnn−1,i; g ◦ t

n
n−1,i]

n−1,−
n,j−1

• if 1 ≤ j ≤ n then [f ; g]n,−n+1,j ◦ s
n+1
n,j = f and [f ; g]n,−n+1,j ◦ s

n+1
n,j+1 = g, and [f ; g]n,−n+1,j ◦ t

n+1
n,j = [f ; g]n,−n+1,j ◦ t

n+1
n,j+1 = [f ◦ tnn−1,j , g ◦

tnn−1,j ]
n−1
n,j

• if 2 ≤ j+1 < i ≤ n+1 then [f ; g]n,−n+1,j◦s
n+1
n,i = [f◦snn−1,i−1; g◦s

n
n−1,i−1]

n−1,−
n,j and [f ; g]n,−n+1,j◦s

n+1
n,i = [f◦snn−1,i−1; g◦s

n
n−1,i−1]

n−1,−
n,j

If a pair (f, g) of In-arrows : In X
f

g
is j-admissible (for a fixed direction j ∈ J1, nK), then we define its (j,+)-lifting

arrow [f, g]n,+n+1,j or its (j,+)-lifting for short, the following In+1-arrow :

In+1

In X

In−1

[f,g]n,+
n+1,j

t
n+1
n,is

n+1
n,i

f

g

tnn−1,isnn−1,i
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by using an induction. Thus we suppose that such operations [−,−]p,+p+1,k (p ≤ n− 1 and k ∈ J1, pK) exists for all faces of f and g,

but also (see the induction used just below) we have to suppose that the operations [−,−]pp+1,k (p ≤ n− 1 and k ∈ J1, p+1K) defined

above exists for such faces. The definition of [f, g]n,+n+1,j goes as follow :

• if 1 ≤ i < j ≤ n then [f ; g]n,+n+1,j ◦ s
n+1
n,i = [f ◦ snn−1,i; g ◦ s

n
n−1,i]

n−1,+
n,j−1 and [f ; g]n,+n+1,j ◦ t

n+1
n,i = [f ◦ tnn−1,i; g ◦ t

n
n−1,i]

n−1,+
n,j−1

• if 1 ≤ j ≤ n [f ; g]n,−n+1,j ◦s
n+1
n,j = [f ; g]n,−n+1,j ◦s

n+1
n,j+1 = [f ◦snn−1,j, g◦s

n
n−1,j]

n−1
n,j and [f ; g]n,+n+1,j ◦t

n+1
n,j = f and [f ; g]n,+n+1,j ◦t

n+1
n,j+1 = g,

• if 2 ≤ j+1 < i ≤ n+1 then [f ; g]n,+n+1,j◦s
n+1
n,i = [f◦snn−1,i−1; g◦s

n
n−1,i−1]

n−1,+
n,j and [f ; g]n,+n+1,j◦t

n+1
n,i = [f◦tnn−1,i−1; g◦t

n
n−1,i−1]

n−1,+
n,j

Definition 23 A cubical theory Θ is contractible if for all integer n ≥ 1, for all pairs (f, g) of In-arrows in it which are admissible,
have liftings, and for all pairs (f, g) of In-arrows in it which are j-admissible (j ∈ J1, nK), have a (j,−)-lifting and have a (j,+)-lifting✷

Now we are going to build a cubical contractible theory Θ∞
W which set-models are cubical weak ∞-categories with connections.

This theory Θ∞
W is a coherator in the sense of Grothendieck ([13]), i.e it is obtained as a colimit of a diagram DΘW

in Cat of cubical
theories :

Θ0 ΘM,0 ΘM,1 ΘM,2 · · · ΘM,m ΘM,m+1 · · ·

Θ∞
W

and this diagram DΘW
is a sequence in the category C-Th of cubical theories :

C

Θ0 ΘM,0 ΘM,1 ΘM,2 · · · ΘM,m ΘM,m+1 · · ·

that we may define inductively :

• We start the induction with ΘM,0 = ΘM i.e with the cubical theory of cubical reflexive ∞-magmas.

• We denote by EM,0 the set which is the union of all admissible pairs of In-arrows in ΘM (for all n ≥ 1), all j-admissible pairs
of In-arrows in ΘM (for all directions j ∈ J1, nK for all n ≥ 1);

• ΘM,1 is obtained by formally (see just below a precise meaning of "formally") adding in ΘM,0 all kind of liftings of elements of
EM,0.

• Denote by EM,1 the set which is the union of : all admissible pairs of In-arrows in ΘM,1 which are not in EM,0, and all
j-admissible pairs of In-arrows in ΘM,1 which are not in EM,0.

• ΘM,2 is obtained by formally adding in ΘM,1 all kind of liftings of elements of EM,1.

• we suppose that until the integer m− 1 the sequence :

(ΘM,0, EM,0) (ΘM,1, EM,1) · · · (ΘM,m−2, EM,m−2) (ΘM,m−1, EM,m−1)

is well defined. Thus ΘM,m is obtained by formally adding in ΘM,m−1 all kind of liftings of elements of EM,m−1.

• we associate to ΘM,m the set EM,m which is the union of : all admissible pairs of In-arrows in ΘM,m which are not in EM,m−1,
all j-admissible pairs of In-arrows in ΘM,m which are not in EM,m−1.

An important fact is the cubical theory ΘM,m obtained by formally adding in ΘM,m−1 all liftings of elements of EM,m−1 is universal
for this adding. To give a precise meaning of "formally adding" is just an application of the following theorem of Christian Lair4 :

Theorem 2 (Lair) The category Sketch of Sketches is projectively sketchable, that is there a projective sketch ESketch such that the
category Mod(ESketch) of set-models of ESketch is equivalent to the category Sketch. ✷

4This result was found by Christian Lair, but we were not able to find an exact reference of it.
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Also the category Cat of small categories is also projectively sketchable by a projective sketch ECat and we have an easy morphism

of projective sketches : ECat ESketch
i which induces a left adjunction F with the functor Mod(i) : Sketch CatF This

construction is called the free prototype functor5. With these results in hands it is useful to see the cubical theory ΘM,m obtained by
formally adding in ΘM,m−1 all liftings of elements of EM,m−1 as the free category (with the free prototype functor) generated by this
adding. Thus we start with the object ΘM,m−1 +EM,m−1 of Sketch, where we formally6 add all liftings of elements of EM,m−1 in the
sketch ΘM,m−1, then ΘM,m is just the free category F (ΘM,m−1 + EM,m−1) generated by the free prototype functor.

The colimits Θ∞
W in Cat :

Θ0 ΘM,0 ΘM,1 ΘM,2 · · · ΘM,m ΘM,m+1 · · ·

Θ∞
W

is called the cubical coherator of cubical weak ∞-categories with connections. Denote by Mod(Θ∞
W ) the category of Θ∞

W -models in
Sets. The category Mod(Θ∞

W ) is a category of models of cubical weak ∞-categories with connections.

Remark 13 Of course we suspect this category to be equivalent to the category of algebras for the cubical operad built in [10],
especially because this is true for the globular geometry [5]. But we prefer to avoid such question here. ✷

4 The cubical coherator Θ∞
W 0 of cubical weak ∞-groupoids with connections

Cubical (∞, 0)-sets underly a new sketch (see diagrams below) which we use to define a coherator which models are cubical weak
∞-groupoids. Here we define cubical version of the formalism developed in [8] for globular (∞, 0)-sets. This formalism of this cubical
world is very similar to its globular analogue. Consider a cubical set C = (Cn, s

n
n−1,j, t

n
n−1,j)1≤j≤n. If n ≥ 1 and 1 ≤ j ≤ n, then a

(n, j)-reversor on it is given by a map Cn

jnj
// Cn such that the following two diagrams commute :

Cn

jnj
//

snn−1,j ""❊
❊❊

❊❊
❊❊

❊
Cn

tnn−1,j||②②
②②
②②
②②

Cn−1

Cn

jnj
//

tnn−1,j ""❊
❊❊

❊❊
❊❊

❊
Cm

snn−1,j||①①
①①
①①
①①

Cn−1

If for each n > 0 and for each 1 ≤ j ≤ n, there are such (n, j)-reversor jnj on C, then we say that C is a cubical (∞, 0)-set. The
family of maps (jnj )n>0,1≤j≤n for all (n ∈ N∗) is called an (∞, 0)-structure and in that case we shall say that C is equipped with the
(∞, 0)-structure (jnj )n>0,1≤j≤n. When we speak about such (∞, 0)-structure (jnj )n>0,1≤j≤n on C, it means that it is for all integers
n ∈ N∗ such that Cn is non-empty. Seen as cubical (∞, 0)-set we denote it by C = ((Cn, s

n
n−1,j , t

n
n−1,j)1≤j≤n, (j

n
j )n>0,1≤j≤n). If

C′ = ((C′
n, s

′n
n−1,j, t

′n
n−1,j)1≤j≤n, (j

′n
j )n>0,1≤j≤n) is another (∞, 0)-set, then a morphism of (∞, 0)-sets

C
f

// C′

is given by a morphism of cubical sets such that for each n > 0 and for each 1 ≤ j ≤ n we have the following commutative diagrams

Cn

fn

��

jnj
// Cn

fn

��

C′
n

j′nj

// C′
n

The category of cubical (∞, 0)-sets is denoted (∞, 0)-CSets. A cubical reflexive (∞, 0)-magma is an object of ∞-CMagr such that
its underlying cubical set is equipped with an (∞, 0)-structure. Morphisms between cubical reflexive (∞, 0)-magmas are those of
∞-CMagr which are also morphisms of (∞, 0)-CSets, i.e they preserve the underlying (∞, 0)-structures. The category of cubical
reflexive (∞, 0)-magmas is denoted (∞, 0)-CMagr.

Now the forgetful functor

(∞, 0)-CMagr CSetsV

5Private communication with Christian Lair.
6Here "formally" has an accurate logical sense.
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is right adjoint and it induces the monad M0 = (M0, η0, µ0) of cubical reflexive (∞, 0)-magmas with its Kleisli category Kl(M0). Denote
by ΘM0 the full subcategory of Kl(M0) which objects are objects of Θ0. This small category ΘM0 equipped with the canonical inclusion

functor Θ0 ΘM0
j0

is an important cubical theory because it is the basic data we need to build the coherator Θ∞
W 0 which

models are cubical weak ∞-groupoids with connections.
This theory Θ∞

W 0 is a coherator in the sense of Grothendieck ([13]), i.e it is obtained as a colimit of a diagram DΘW0 in Cat of
cubical theories :

Θ0 ΘM0,0 ΘM0,1 ΘM0,2 · · · ΘM0,m ΘM0,m+1 · · ·

Θ∞
W 0

and this diagram DΘ∞
W0

is a sequence in the category C-Th of cubical theories :

C

Θ0 ΘM0,0 ΘM0,1 ΘM0,2 · · · ΘM0,m ΘM0,m+1 · · ·

that we may define inductively :

• We start the induction with ΘM0,0 = ΘM0 i.e with the cubical theory of cubical reflexive (∞, 0)-magmas.

• We denote by EM0,0 the set which is the union of all admissible pairs of In-arrows in ΘM0 (for all n ≥ 1), all j-admissible pairs
of In-arrows in ΘM0 (for all directions j ∈ J1, nK for all n ≥ 1);

• ΘM0,1 is obtained by formally adding in ΘM0,0 all kind of liftings of elements of EM0,0.

• Denote by EM0,1 the set which is the union of : all admissible pairs of In-arrows in ΘM0,1 which are not in EM0,0, all j-admissible
pairs of In-arrows in ΘM0,1 which are not in EM0,0.

• ΘM0,2 is obtained by formally adding in ΘM0,1 all kind of liftings of elements of EM0,1.

• we suppose that until the integer m− 1 the sequence :

(ΘM0,0, EM0,0) (ΘM0,1, EM0,1) · · · (ΘM0,m−2, EM0,m−2) (ΘM0,m−1, EM0,m−1)

is well defined. Thus ΘM0,m is obtained by formally adding in ΘM0,m−1 all kind of liftings of elements of EM0,m−1.

• we associate to ΘM0,m the set EM0,m which is the union of : all admissible pairs of In-arrows in ΘM0,m which are not in
EM0,m−1, all j-admissible pairs of In-arrows in ΘM0,m which are not in EM0,m−1.

The colimits Θ∞
W 0 in Cat :

Θ0 ΘM0,0 ΘM0,1 ΘM0,2 · · · ΘM0,m ΘM0,m+1 · · ·

Θ∞
W 0

is called the cubical coherator of cubical weak ∞-groupoids with connections. Denote by Mod(Θ∞
W 0) the category of Θ∞

W 0-models
in Sets. The category Mod(Θ∞

W 0) is a category of models of cubical weak ∞-groupoids with connections.
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