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In this paper, we present an overview of concepts and data concerning inverse cascades of excitation
towards scales larger than the forcing scale in a variety of contexts, from two-dimensional fluids
and wave turbulence to geophysical flows in the presence of rotation and stratification. We briefly
discuss the role of anisotropy in the occurrence and properties of such cascades. We then show that
the cascade of some invariant, for example, the total energy, may be transferred through nonlinear
interactions to both the small scales and the large scales, with in each case a constant flux. This is in
contrast to the classical picture, and we illustrate such a dual cascade in the context of atmospheric
and oceanic observations, direct numerical simulations, and modeling. We also show that this dual
cascade of total energy can in fact be decomposed in some cases into separate cascades of the kinetic
and potential energies, provided the Froude and Rossby numbers are small enough. In all cases, the
potential energy flux remains small, of the order of 10% or less relative to the kinetic energy flux.
Finally, we demonstrate that, in the small-scale inertial range, approximate equipartition between
potential and kinetic modes is obtained, leading to an energy ratio close to one, with strong departure
at large scales due to the dominant kinetic energy inverse cascade and piling-up at the lowest spatial
frequency and at small scales due to unbalanced dissipation processes, even though the Prandtl number
is equal to one. Published by AIP Publishing.

I. INTRODUCTION
A. The inverse cascade of kinetic energy
in two-dimensional turbulence

In 1967, Kraichnan demonstrated, using concepts stem-
ming from both statistical mechanics and a turbulence clo-
sure,1 a remarkable property of turbulent flows in two spatial
dimensions (2D), namely, that because of the presence of two
quadratic invariants—those preserved by truncation, namely
the energy and the integrated squared vorticity or enstrophy
ZV = 〈|ω |

2〉, ω = ∇× u (with u the velocity field)—the modal
kinetic energy would migrate to the large scales of the flow in
a mechanism called an inverse, or up-scale, cascade2 (see also
Refs. 3–5 for reviews). This is in contrast with the generic
three-dimensional (3D) case for which the energy cascades
to the small scales, or down-scale. Such a vision of turbulent
flows as a truncated ensemble of modes, using a decomposi-
tion of the velocity field among modes in Fourier space was
proposed by Lee6 in 3D, both for fluids and magnetohydro-
dynamics (MHD), in the latter case predicting equipartition
between kinetic and magnetic energy, in the simplest non-
helical case. Such a modal energy distribution stems from the
fact that, in the phase space constituted by all the modes, within
the sole constraint of conservation of total energy, the solution
to the Liouville equation is one of equipartition among these

modes, resulting in an energy spectrum proportional to the
number of modes in a given shell of radius k, or to ∼kD−1, with
D, the dimension of space.

On the other hand, in 2D, the small-scale equipartition
is that of enstrophy, the energy being transferred to the large
scales in order to preserve the constancy of ZV , as already
foreseen in a simple case in Ref. 7. Two-dimensional flows
can often be approximations to three-dimensional ones, for
example, in the presence of strong rotation in the atmosphere
and the ocean,8 in the presence of a strong imposed magnetic
field, in the laboratory9 or in magnetic stars or planetary mag-
netospheres, and perhaps more surprisingly in active dense
bacterial systems.10 Such inverse cascades, as diagnosed by
their negative energy fluxes in the range of wavenumbers
where they occur, may have been observed in the ocean11

and in the atmosphere12–14 (see also Ref. 15 for data from
numerical models).

The solutions stemming from statistical mechanics are
flux-less: at equipartition, there is no more transfer between
the individual modes. They have nevertheless proven to offer
guidance as to what direction the energy flux takes in the
forced-dissipative case in what is called the inertial range, even
though the resulting energy spectrum (i.e., the Fourier trans-
form of the velocity auto-correlation function) takes a very
different form, as predicted by Kolmogorov for 3D fluids.16



This was shown explicitly recently in direct numerical sim-
ulations (DNS) of truncated Euler flows, with a large-scale
Kolmogorov spectrum and a small-scale equipartition spec-
trum.17 Because this property of energy conservation is for a
system made up of a finite number of modes, np, this remains
true for np = 3, i.e., for each individual triadic interaction,
a property called detailed balance, restricting the discussion,
here, to quadratically nonlinear dynamical equations, such as
is the case for incompressible fluids and MHD. The energy is
transferred from scale 2π/k to scales both larger and smaller,
through the convolution term resulting from the nonlinear-
ity of the primitive equations; it is only on average that the
energy is making it predominantly to the small scales in the
general 3D case. It would be of interest to examine in more
detail what happens in the so-called 2D3C case, with two-
dimensional geometry but three components of the vector field,
since in that case more invariants have been identified for
both neutral fluids and magnetohydrodynamic.18 For exam-
ple, for fluids, besides total energy and total enstrophy, the
extra quadratic invariant is the kinetic energy of the verti-
cal component of the velocity that acts as a passive scalar
in that case. Other fluid invariants have been discussed in
the literature, such as linear or angular momentum, see, e.g.,
Refs. 19–22.

It should be noted that, in the presence of extra linear
terms, the equipartition ensemble solutions are not affected
theoretically. However, when dissipation, for example, is
added to the governing equations, a totally different distribu-
tion of energy among modes arises but which is still consistent
with an unavoidable overall tendency of the energy to flow
to the small scales. Another example is that of the interac-
tions of turbulent eddies and waves, such as when rotation is
changing the flow through the Coriolis force: in the limit of
infinite rotation, the flow becomes quasi-bidimensional (see,
e.g., Ref. 23), and the equipartition solution is vastly different
from that in a pure three-dimensional case. It was shown in
Ref. 24 that the time to reach thermalization at a given scale
grows as Ω3/4, where Ω is the intensity of the imposed rota-
tion, thus resolving the apparent contradiction between the
statistical mechanics prediction and the smoothing of the flow
through the action of the inertial waves. This is due to long-
time memory effects in such flows and leads, in the limit of
infinite time, infinite Reynolds number, and infinite rotation
to a lack of singularity like in the purely two-dimensional
case.23

In the forced dissipative case, the inverse energy cascade
in 2D exists simultaneously with a direct enstrophy cascade
to the small scales: the flux of energy is negative and constant
toward scales larger than the forcing and close to zero oth-
erwise, whereas in the direct enstrophy cascade, the flux of
enstrophy is positive and constant at scales smaller than the
forcing scale and negligible otherwise in the limit of large
Reynolds numbers. This has been known for a long time,
using two-point closures of turbulence25 and direct numer-
ical simulations (Refs. 26 and 27 and references therein),
and this two-cascade system was also found recently in the
laboratory.28

The implied conceptual model for 2D flows was that,
through nonlinear coupling between Fourier modes, the energy

would reach larger and larger scales, with a constant and
negative flux, and with a Kolmogorov-like spectrum, EV (k)
∼ CKolε

2/3
V k−5/3, with CKol a constant of order unity (but whose

value is larger than in the 3D case), and with εV = DEV/DT
the total kinetic energy dissipation rate. On the other hand,
the enstrophy flows to small scales, again with a constant
flux and with a steeper spectrum, EV (k) ∼ k−3, both spec-
tral indices being obtainable by dimensional analysis through
a proper choice of the invariant and of its characteristic time
scale. There is likely a lack of intermittency in the inverse
cascade,29 i.e., there is no departure from dimensional scal-
ing at all orders of structure functions, whereas such is not
the case for the direct cascade in 3D. Intermittency can be
diagnosed through non-Gaussian wings in Probability Dis-
tribution Functions (PDFs) of velocity gradients (and more
rarely of velocities themselves30,31) and through a departure
from self-similar scaling indicative of multi-fractality; such fat
wings of PDFs correspond to localized intense structures, in
the form of vortex and current sheets and filaments, as well as
fronts, shocks, and flux tubes. Moreover, the two-dimensional
inverse cascade for fluids has been found to be conformal
invariant,32 making the bridge between turbulence and crit-
ical phenomena more evident. Conformal invariance has also
been detected in three dimensions in the presence of strong
rotation.33

The upscale transfer of energy to large scales in 2D is also
a sturdy result. For example, as shown in Ref. 26 (see also
Ref. 27), the inverse cascade does not necessitate a high
Reynolds number, provided it is above unity so that nonlinear-
ities, which are the source of the phenomenon, can counter-
balance the effect of dissipation. However, the flux of energy
to the large scales becomes constant only progressively, as
can be observed as larger resolutions are employed; for exam-
ple, in Ref. 26, computations were performed on grids of up
to 32 7682 points (see also Ref. 34). A large scale separa-
tion between the forcing scale (LF = 2π/kF in a 2π periodic
box) and the largest scale of the flow (Lmax = 2π/kmin) is not
really necessary, though, since a negative energy flux is already
observed for a forcing wavenumber as small as kF/kmin ≈ 4,
for example, in the rotating stratified case.35,36 Note that, as the
energy reaches the largest scale of the flow, an accumulation
takes place, in the form of a condensation, leading to steeper
spectra,37 a topic of intense interest presently.

Even though the inverse cascade phenomenon is best
observed in the presence of a forcing term, allowing for the
excitation to move measurably to the large scales, it can also
be detected in the decay case, as, for example, with a nega-
tive flux at large scale (L > LF), as already found in early
simulations of the decay of 2D turbulence.38 In fact, it can
be observed unambiguously when performing both temporal
and ensemble averages of decaying flows with random initial
conditions differing only by their phases, but with the same
initial rms velocities and scale. For a given realization, the
peak of the energy spectrum moves to the large scales, even
though its overall amplitude, of course, diminishes with time;
the envelope of that peak traces a classical k�5/3 power law,
with the energy flux being on average negative and constant.39

This observation can be simply related to the fact that the ten-
dency for energy to move to large scales is attributable to the



nonlinearities of the flow, irrespective of the presence of a
forcing term (or of a dissipative term as noted above).

The concept of an absence of upscale transfer of energy
in 3D is somewhat more fragile than what was thought some
time ago; a priori, an underlying assumption is that we are
dealing with an isotropic (cubic) truncation. However, in the
presence of anisotropy (and anisotropic forcing), or when
nonlinear interactions are limited to modes of a given heli-
cal polarity, or in the presence of inertial waves, the three-
dimensional case can again lead to an inverse energy cas-
cade as shown recently,40–46 within the helical case a direct
cascade of helicity, which is an invariant in the absence of
dissipation and forcing47 (see also Refs. 48–50). The pos-
sibility of an inverse cascade of energy in the presence of
helicity was already envisaged by Kraichnan,51 but it was
ruled out in the generic case on the basis that these one-
polarity interactions are swamped by all the other triadic
interactions (note that a link between helicity and enstrophy
is discussed in Ref. 52 for homogeneous isotropic turbulence,
HIT).

However, the invariance of helicity can have a profound
effect on the flow. In HIT, helicity delays the dissipation of
energy, without changing the scaling laws of the energy, in
either space (Fourier spectrum) or time (self-similar decay). It
has also been found that helicity can increase the Lagrangian
correlation time.53 In the presence of rotation or of stratifica-
tion, without helicity, the temporal decay of energy is slowed
down by the waves, and this can be modeled through the
modification to the spatial scaling laws computed through a
weak turbulence approach (see, e.g., Refs. 54 and 55). When
strong helicity is present initially in the flow, this slowing-
down of energy decay is again considerably weakened56,57

because of the conservation (or the quasi-conservation) of
helicity. For example, in the so-called box-limited case when
the integral scale cannot grow because the initial condi-
tion is of the order of the size of the computational box,
the E(t) ∼ t−2 decay law for HIT becomes ∼t−1 in non-
helical rotating or stratified flows and ∼t−1/3 when helicity is
present.56,57

Finally note that, in the presence of dissipation and forc-
ing, when there is no inverse cascade, statistical equilib-
ria E(k) ∼ kD−1—which are flux-less as noted before—are
obtained in the large scales (L > LF), as shown by multiple
studies over the years (for a recent study in the fluid case,
see Ref. 58 and references therein). In the absence of forcing,
there should be sufficient scale separation at large scale to have
a functional statistical equilibrium spectrum that can lead to
the 3D Kolmogorov decay law, EV (t) ∼ t−10/7, as shown in the
specific example of 2D geometry in Ref. 59.

B. Waves and turbulence in the context
of inverse cascades
1. The case of coupling to a magnetic field

Not too long after the paper of Kraichnan on the possibility
of an inverse cascade of energy in 2D turbulence appeared,
extensions of these ideas to systems having more than one
invariant were performed, in particular in the framework of
the statistical mechanics of a flow coupled to a magnetic field

in the MHD framework, neglecting the displacement current
in Maxwell’s equations for velocities much smaller than the
speed of light. Such inverse cascades in MHD exist both in two
and three dimensions, for different invariants including helical
ones. They have been studied using tools such as statistical
mechanics, two-point turbulence closures and direct numerical
simulations, as well as in the context of the dynamics of space
weather or of the solar photosphere (see, e.g., the recent review
in Ref. 60).

It has been shown recently that a dual constant-flux cas-
cade to the large scales and the small scales also exists in
MHD in two dimensions, for both the total energy and the
L2 norm of the magnetic potential Aêz (with b = ∇ × A
the magnetic field).61 Similarly, in three-dimensional geome-
try with only mechanical energy forcing but in the presence
of a strong imposed uniform magnetic field B0, a dual cas-
cade of kinetic energy is obtained, the amplitude of which
varies with B0.62 In the 2D case in particular, enough numer-
ical resolution allows for a demonstration of the criticality of
the phenomenon in terms of the control parameter, which is
the ratio of the magnetic to kinetic forcing amplitudes. Like
for rotating stratified fluids, this may have consequences on
the amount of energy transferred to the small scales of the
flow, and thus on the reconnected flux available for dissipation
and heating of plasmas such as the solar corona and the solar
wind.63–65

2. Other systems with inverse cascades

The concept of upscale cascade has been generalized to
many other physical systems, under the influence of rotation
and/or stratification as in the atmosphere (Refs. 8, 12, 66–69,
and references therein), for surface quasi-geostrophic flows,
for shallow water equations70 in the Charney-Hasegawa-Mima
framework,71 for capillary waves and ocean gravity waves,22

as well as in the early universe under the assumption of a
flat space-time, leading to a phenomenon similar to a Bose-
Einstein condensation, which is reached in a finite time.72

It has also been argued that the direction of the cascade can
change with physical properties of the flow, as, for example,
for the passive scalar in the compressible case, depending on
the dimension of the system and on its degree of compressibil-
ity: when the fluid becomes strongly supersonic, specifically
in the sense that, in a Helmholtz decomposition, the curl-free
part of the flow, uC , dominates the solenoidal div-free part,
uS , then the passive scalar should undergo an upscale cas-
cade;73 it requires a high uC /uS ratio and is difficult to observe
in numerical simulations of the interstellar medium at a high
Mach number, possibly because shocks dissipate fast, includ-
ing in the case of pressure-less (infinite Mach number) Burgers
turbulence.74

For stratified flows, it has been assumed that there is a
decoupling between vertical layers in each of which an inverse
cascade of 2D vortices could form,75 although in fact strong
vertical gradients between these layers appear that destabilize
such a 2D effect, as developed, for example, in Ref. 76, leading
rather to a direct cascade of energy,14 with an important role
played by the anisotropy of the flow.77

Finally, in strongly rotating fluids in the so-called beta-
plane approximation,78 energy can be exchanged both ways



between the sea of interacting waves and zonal flows, for
Rossby wave packets, through a broadening of the resonance
curve corresponding to a given dispersion relation, σ(k). This
idea is generalized in Ref. 79 where it is further conjectured
that for all such systems a link is created between coherent
structures at large scales, formed because of an upscale cas-
cade and intermittent bursts at small scales, formed because of
a direct cascade, through secondary instabilities of the large-
scale structures in the form of collapsing filaments. In the
case of nonlinear optics in the framework of the nonlinear
Schrödinger equation, the two quadratic invariants consid-
ered in Ref. 79 are the number density and total energy.
Whether these invariance properties break-down in a finite
time is still unresolved, at least for 3D turbulent fluids and
MHD. Similarly, one can wonder whether the break-down
of large-scale structures, or condensates, in the absence of
large-scale damping such as friction, leads necessarily to
intermittency.20

In the following, we consider in some detail the inter-
actions of waves and turbulence in the presence of inverse
cascades by examining these in the context of rotating stratified
turbulence (RST). The equations for RST in the Boussinesq
framework are given in Sec. II, together with the dimension-
less parameters and the numerical methods employed. Section
III discusses first the general context of dual cascades and then
focuses on RST. Moreover, temporal and spectral data, includ-
ing fluxes, are analyzed for a set of RST runs forced at inter-
mediate scale and already studied in Refs. 80 and 81 for the
relative scaling of inverse to direct energy fluxes, as observed
in the atmosphere and the ocean. The role of anisotropy in the
dual cascade in the context of geophysical flows is presented
in Sec. IV, and finally Sec. V presents a discussion and our
conclusions.

II. EQUATIONS AND PARAMETERS FOR ROTATING
STRATIFIED TURBULENCE
A. The Boussinesq framework

We now write the Boussinesq equations for a stably strat-
ified and rotating fluid of velocity u, vertical velocity com-
ponent 4, and density (or temperature) fluctuations around
a mean gradient, ρ, in a physical dimension such that the
L2 norm of u and ρ are in units of energy per unit mass,
L2T�2, the buoyancy itself, b = N ρ, having the unit of an
acceleration. The rotation and stratification are assumed to
be vertical, co-linear, but anti-parallel, with gravity pointing
downward,
∂u
∂t

+ ω × u + 2Ω × u = −N ρêz − ∇P + ν∇2u + F, (1)

∂ρ

∂t
+ u · ∇ρ = Nw + κ∇2ρ, (2)

∇ · u = 0. (3)

P is the total pressure; F is a forcing term, isotropic and ran-
dom and for all three components of the velocity field, with
no forcing in the thermodynamic variable, and êz is the unit
vector in the vertical direction. Integer wave numbers corre-
spond to a length scale for the triply periodic computational
box of 2π; kmin = 1 and kmax = np/3, with np the number of

grid points in each direction, are the minimum and maximum
wavenumbers of a run, with de-aliasing performed using the
standard 2/3 rule, respectively.

We have used the Geophysical High Order Suite for Tur-
bulence (GHOST) code,82 which is a pseudo-spectral code
with a hybrid parallelization consisting of Message Passing
Interface (MPI) for 1D domain decomposition, with Open MP
threads for each MPI task,83 with versatile usage from laptop
to super-computers. It demonstrates linear performance scal-
ing up to in excess of 130 000 cores. GHOST can activate
the tracking of several types of Lagrangian particles, and it
is easily coupled with three-dimensional visualization pack-
ages such as VAPOR.84 GHOST handles a variety of physical
solvers in 2D and 3D, for fluids, MHD and Hall MHD, in both
the incompressible and compressible cases. Two recent add-on
features deal with the Gross-Pitaevskii equations for super-
fluids. Furthermore, preliminary results indicate that GHOST
implements an efficient Graphics Processing Unit (GPU)
capability for the multidimensional Fourier transforms.85 It
also provides several small-scale modeling schemes; these
models include a helical eddy viscosity86,87 and the so-called
Lagrangian alpha model using a constraint on the develop-
ment of small scales through the control of a H1 norm of the
velocity.88,89

The frequency of inertia-gravity waves for the linearized
Boussinesq equations is written as

σ(k) = k−1
√

N2k2
⊥ + f 2k2

‖
, (4)

with f = 2Ω, i.e., twice the rotation frequency, and N, the
Brunt-Väisälä frequency. The isotropic wavenumber is defined

as k =
√

k2
⊥ + k2

‖
, the direction k‖ referring to the common

direction of rotation and gravity. Geostrophic balance, with
hydrostatic balance in the vertical, is obtained when neglecting
all terms but the pressure gradient, the Coriolis force and the
buoyancy restoring force. In the absence of dissipation, these
equations conserve the sum of the kinetic and potential energy,

ET = EV + EP =
〈
|u|2/2 + ρ2/2

〉
=

∫
[EV (k) + EP(k)]dk,

also written in terms of isotropic Fourier energy spectra of
the kinetic and potential fields. Note that kinetic helicity
HV = 〈u · ω〉 is conserved only for N = 0. In RST, it can
in fact be created by the flow90–92 (see Ref. 57 for the purely
stratified case). Furthermore, the potential vorticity, omitting
the constant Nf term, is defined as

PV = f∂z ρ − Nωz + ω · ∇ρ;

it is a quadratic point-wise invariant of the full non-linear
equations in the ideal case.

Fourier spectra are built from their axisymmetric expres-
sions stemming from the two-point one-time velocity covari-
ance as performed in Refs. 93 and 94,

eV (|k⊥ |, k‖) =
∑

k⊥≤ |k×ẑ |<k⊥+1
k‖ ≤kz<k‖+1

U(k) =
∫

U(k)|k| sin θdφ

= eV (|k|, θ) = eV (k, θ), (5)

where φ, θ are, respectively, the longitude with respect to the
kx axis and the co-latitude in Fourier space with respect to



the vertical axis. A similar expression can be written for the
potential energy density eP(|k⊥ |, k‖) in terms of ρ. The 2D-
mode spectra, with no vertical variation, are eV ,P(k⊥, k‖ = 0).
Note that for an isotropic flow, at a given point k in
wavenumber space, the ratio of the axisymmetric spectrum
eV (|k⊥ |, k‖) to the isotropic spectrum is ∼1/|k| because the
size of the volume element in the isotropic case contains
an additional integrating factor of |k| compared with the
axisymmetric case. Hence, if the axisymmetric spectrum
behaves as k−α⊥ , then the corresponding isotropic scaling will
be k−α+1.

One can define as well the reduced perpendicular and
parallel spectra,95

EV ,P(k⊥) = Σk‖eV ,P(k⊥, k‖), EV ,P(k‖) = Σk⊥eV ,P(k⊥, k‖).

(6)

Similarly, corresponding spectra can be written for the helicity,
namely, hV (k⊥, k‖) and HV (k⊥),

hV (|k⊥ |, k‖) =
∑

k⊥≤ |k×ẑ |<k⊥+1
k‖≤kz<k‖+1

Ũ(k) =
∫

Ũ(k)|k| sin θdφ

= hV (|k|, θ) = h⊥(|k⊥ |, k‖) + h‖(|k⊥ |, k‖),

(7)

HV (k⊥) = Σk‖hV (k⊥, k‖), HV (k‖) = Σk⊥hV (k⊥, k‖). (8)

B. Parameters, length scales, and runs

The fundamental dimensionless parameters for this set
of equations are the Reynolds, Froude, Rossby, and Prandtl
numbers,

Re =
U0L0

ν
, Fr =

U0

L0N
, Ro =

U0

L0f
, Pr =

ν

κ
, (9)

with U0, L0 characteristic flow velocity and length scales,
respectively, and ν = κ the kinematic viscosity and scalar dif-
fusivity, taken equal for a unit Prandtl number. The buoyancy
and rotational Reynolds numbers are defined as

RB = ReFr2, RΩ = ReRo2; (10)

Rω ≡
√

RΩ = ωrms/f is the micro Rossby number, ωrms =

[εV/ν]1/2 is the r.m.s. vorticity, and εV = DtEV is the effective
energy dissipation rate that differs from its dimensional evalua-
tion, εD = U3

0/L0, in the presence of waves.96 A micro-Froude
number can be written similarly, Fω = ωrms/N , thereby link-
ing the actual rate of energy dissipation and the Brunt-Väisälä
frequency. Defining RI = εV/[νN2] as the interaction param-
eter,97 widely used in the analysis of mixing properties of
geophysical flows,98 one has RI = F2

ω , and it is easily shown
that RI = RB only when the dissipation efficiency β = εV/εD

is of order one. It is found in Ref. 96, using a simple model and
analyzing numerical data, that in fact β scales quasi-linearly
with the Froude number for strongly stratified flows in the
regime of wave-eddy interactions, including in the presence
of weak rotation, and with a possible scaling that is shallower
(β ∼ Fr0.93) because of rotation. This is expected from a phe-
nomenology of wave turbulence in which the time to transfer
energy to small scales is longer than the eddy turn-over time by

a factor that is proportional to the inverse of the small parameter
of the system, namely, here, Fr. This argument was used in
Ref. 81 to estimate the ratio of inverse to direct energy fluxes
in RST forced at intermediate scale found to be proportional
to [RoFr]�1 [see Eq. (14)], with a role for both the Froude
and the Rossby numbers and similarly to justify the observed
scaling for the mixing efficiency Γf in RST, e.g., Γf ∼ Fr−1

∼ R−1/2
B , in the high Re turbulence regime of such flows and

for Fr > 0.2.
Finally, the following length-scales can be monitored:

Lint = 2πE−1
V

∫
[EV (k)/k]dk, LB = 2πU0/N ,

LEll = 2π
√

EP/N , (11)

`Oz = 2π[εV/N
3]1/2, `Ze = 2π[εV/f

3]1/2,

η = 2π[εV/ν
3]−1/4; (12)

these are the integral scale, the buoyancy and Ellison scales
LB ,Ell, the Ozmidov and Zeman scales, `Oz,Ze, at which isotropy
presumably recovers, and the dissipation scale η, based on an
isotropic Kolmogorov energy spectrum in the small scales.
Note that the Zeman scale was named the Hopfinger scale by
Gibson.99 The Rossby deformation radius is LD = [N/f ]L‖ ,
and εV = νZV ; εP = κZP are the kinetic and potential energy
dissipation rates, with ZV =

〈
|∇ × u|2

〉
(already defined),

and ZP =
〈
|∇ρ|2

〉
. Note that LB/`Oz ∼ Fr−1/2, and that

`Oz/η ∼ R3/4
B , showing that the buoyancy Reynolds number in

stratified flows plays an equivalent role to the Reynolds number
in homogeneous isotropic turbulence, when the Ozmidov scale
is taken instead of the integral scale, since the isotropic range
of the stratified turbulence starts at `Oz, with presumably a
Kolmogorov k�5/3 spectrum. In strongly stratified turbulence,
care must be taken in the evaluation of the energy dissipa-
tion rate on which the Ozmidov scale is based since, as stated
before, β = εV/εD now differs from unity (see Ref. 96 for
more details).

In order to measure the small-scale and large-scale
anisotropy of the flow, one can also define the perpendicular
and parallel integral and Taylor scales as

L⊥,‖ = 2π
Σk−1
⊥,‖EV (k⊥,‖)

ΣEV (k⊥,‖)
, λ⊥,‖ = 2π



ΣEV (k⊥,‖)

Σk2
⊥,‖EV (k⊥,‖)



1/2

,

(13)
where Σ stands for a sum from either k⊥ = 1 or k‖ = 1 to
k = kmax.

The buoyancy scale corresponds to the thickness of the
layers in the purely stratified case and to the scale at which
the ratio of kinetic to potential energy reaches its minimum in
RST.100 Finally, the Ellison scale is associated with the vertical
distance traveled by a fluid particle before being completely
mixed101 (see, e.g., Refs. 102–105). The Thorpe scale106–109

was introduced to estimate the length scale at which turbulent
overturning occurs in stratified flows to recover stability; it
was found to be comparable with the Ozmidov scale at which
isotropy is recovered in Ref. 110, whereas it was found to be
proportional to the Ellison scale in a series of recent numerical
simulations.111,112



III. DUAL CASCADES OF ENERGY IN THE THREE
DIMENSIONAL CASE

A. General context

A new paradigm has emerged recently, that of a dual cas-
cade, by which it is meant that the same invariant (say, total
energy) undergoes a self-similar cascade both to the large
scales and to the small scales, in both cases with constant
fluxes, of opposite signs and of different magnitudes a priori,
the ratio of the direct to inverse flux being an unknown of
the problem. We now briefly review some of these systems in
which a dual cascade is observed.

To our knowledge, the first indication of such a dual
cascade can be found in Ref. 40. Because the numerical res-
olution at the time was limited, several features were imple-
mented to achieve this, perhaps somewhat unexpected, result.
First, a small aspect ratio of the computational box was used,
in order to enforce as is possible the two-dimensionality of
such a flow; this further allowed for a sufficient scale separa-
tion in two inertial ranges, at scales smaller and larger than
the forcing scale. Moreover, both an eddy viscosity model
and a hyper-diffusivity (with a higher power of the Lapla-
cian operator) were used in some cases. Finally, the forcing
was two-dimensional and with only two components (2D2C).
This allowed for an explicit demonstration of the coexistence
of an inverse and direct cascade and, as pointed out by the
authors, it included a physical behavior that was more general
than quasi-geostrophy, which contains only two-dimensional
dynamics with a (sole) inverse cascade of energy, causing a
problem of interpretation of atmospheric and oceanic data
that show clear and strong mixing at small scales (see, e.g.,
Refs. 113 and 114 for reviews). This approach was further
analyzed, with substantially more resolution, in Ref. 41. The
“splitting” of turbulent cascades, for the passive scalar variance
for compressible flows and for the kinetic energy, was associ-
ated with the link between Eulerian statistics and Lagrangian
particles. Under basically the same conditions as in Ref. 40,
the dual cascade was shown to depend on the ratio of the
vertical length scale Lz to the forcing scale `f ; it can then
be interpreted as a phase transition with control parameter
Lz/`f .

When performing both laboratory experiments and
numerical simulations on surface capillary waves in super-
fluid helium, it is found in Ref. 115 (see also Ref. 116) that
again a dual energy cascade occurs, this time in the absence of
a second invariant such as enstrophy. In this case, the dual cas-
cade is attributed to providing a means of replacing large scale
energy that is lost due to the existence of a large-scale dis-
sipation process; this allows for replenishing the large-scale
energy dissipated by friction. The formation of these large-
scale coherent structures can be diagnosed through the wings
of the Probability Distribution Function of the wave amplitude,
i.e., to a departure from the Gaussianity assumed in weak tur-
bulence. Thus, the dual cascade provides a link between large
and small scales, but with cascades retaining their locality in
scale interactions (with spectral laws between k�1 and k�3).
The energy flux towards large scales (here, in terms of tempo-
ral frequencies) is seen to increase as the damping coefficient
is increased, whereas the flux to small scales, which is not

shown, is well-known to exist corresponding to the traditional
Kolmogorov-Zakharov spectral law for these waves in the
weak turbulence regime.

An inverse energy cascade was observed in experi-
ments117 on second sound waves in superfluid Helium above
a critical threshold in the amplitude of the driving, with the
generation of sub-harmonics, e.g., through a modulational
instability as also observed for rogue waves in the ocean.118

The “sharing” of the energy flux between the large and small
scales corresponds to a reduction of the energy being trans-
ferred to the small scales and results in a lesser amount of
dissipation and mixing, as reviewed in Ref. 98 (see also, e.g.,
Ref. 119 for stratified flows and Ref. 81 for RST).

Finally, the presence of a dual cascade is also hinted at
in the numerical data of Ref. 120 for the Rayleigh-Taylor
instability, with a small-scale Kolmogorov cascade and a
Bolgiano-Obukhov (BO) scaling in the large scales for the
energy spectrum, identified through a reversal of sign of the
third-order structure function corresponding to the nonlinear
energy flux, the small-scale flux being called a “remnant.”
It is also noted that the vertical buoyancy flux is large in
the large scales (see Refs. 94, 121, and 122 for the unforced
rotating stratified case for which BO scaling is also identi-
fied). The resultant dual energy cascade is attributed to the
presence of a transitional regime between 2D and 3D behav-
ior, as clearly demonstrated in MHD in two and three space
dimensions.61,62

B. Temporal evolution of rotating stratified turbulence

In rotating stratified flows, two specific characteristics are
that they carry dispersive inertia-gravity waves and that they
are anisotropic. This implies that, for some parameter regimes,
the dynamics will be governed by the interplay of waves and
eddies, at least for a range of scales in which the ratio of the
nonlinear frequency to the wave frequency is small, as for
small Rossby or Froude numbers. Taking for f the value of
10−4 s−1 corresponding to mid latitudes, N /f is typically ≈100
in the atmosphere and ≈10 or less in the ocean.

A dual energy cascade was already found in Ref. 123 in the
context of purely rotating flows in the presence of helicity. In
that case, the energy flux is constant at scales both larger and
smaller than the forcing scale, with opposite signs, whereas
the helicity only goes to the small scales. Furthermore, it was
concluded that the helicity flux, normalized by the scale of
the forcing, becomes progressively dominant over the flux of
energy to small scales as the rotation increases in intensity,
recovering a single energy cascade dynamics in the limit of
infinite rotation.

The switch from a wave-dominated to a vortex-dominated
regime in such flows was studied, for example, in Ref. 124 as a
function of the Burger number, defined as N2/f 2, with the large
scales dominated by the slow eddy mode and the small scales
by the wave modes (see also Ref. 125). In flows dominated
by stratification (large N /f ) as in the atmosphere, the small
scales are characterized mostly by the wave modes, whereas
the situation is more complex for the opposite case of rotation
dominance, with a transitional wavenumber. This double cas-
cade, including in regimes far from geostrophic balance, can
be interpreted, as done in Ref. 68, as an inverse cascade of the



purely 2D geostrophic (eddy) mode and a direct cascade of
the ageostrophic field interacting with the former in a catalytic
way.

Such a dual energy cascade can be an essential feature of
the overall dynamics of the ocean and of the atmosphere, pro-
viding a bridge between the large scales in quasi-geostrophic
equilibrium due to a balance between the Coriolis force, grav-
ity, and the pressure gradient and undergoing an inverse energy
cascade, and the small scales likely fed by a direct energy cas-
cade allowing for the dissipation of the energy injected, for
example, through solar radiation, wind forcing on the surface
of the ocean and tidal waves (see Ref. 114 for a recent review).
The dual cascade could be attributed to the fact that, in a wave-
vortex decomposition, the slow mode and the wave modes are
not constrained in the same way by invariance properties, with
a degeneracy of the quadratic invariant of potential enstrophy
(in the quasi-linear limit).126 In fact, for purely rotating flows,
it was shown in Ref. 127 that the inverse energy cascade in that
case could be attributed to the slow modes with zero frequency,
i.e., the modes with k‖ = 0.

The inverse cascade is less efficient as the Rossby number
is increased. For example, Fig. 1 (top) shows the temporal evo-
lution of the kinetic energy for various values of N /f, i.e., for
different relative intensities of the imposed rotation and stratifi-
cation, for the runs listed in Table I; these runs were succinctly
analyzed in Ref. 81 to study the scaling with parameters of
the direct and inverse fluxes and of their ratio. The two runs at
high Reynolds numbers were done on grids of 20483 points,
the other runs on grids of 10243 points, and the unit of time is
the turn-over time τNL = L0/U0, computed for each flow.

FIG. 1. Temporal evolution, in units of turn-over time, of the kinetic energy
EV (top) and of its dissipation rate (bottom), εV = ν〈 |∇ × v |2〉 = νZV ; the
plots are color-coded for different parameters (see insets and Table I).

The fastest growth is for the lower Rossby number, and
the growth rate varies with the Rossby number as well as with
N /f,128 where it is also shown that the stronger growth rate
occurs when there are no resonances, that is, for 1/2 ≤ N/f
≤ 2;129 no growth is found in the purely stratified case. At
the bottom in Fig. 1 is given the kinetic energy dissipation
for the same runs. Note the substantial growth of EV and the
corresponding smaller growth of εV = νZV for the runs with
strong rotation (runs 1, 2, and 4): the more energy goes to
the large scales in an inverse cascade, the less energy goes to
the small scales, where it is available for dissipation. All runs
reach a peak of dissipation within a few turn-over times (t/τNL

between ≈1.5 and ≈3.6), with a slight dominance of kinetic
energy over potential energy, immaterial of the rotating and
stratified parameters. Also, a possible saturation of dissipation
may be reached at long times. Here, N /f varies by roughly a
factor of 2, and the main effect is that of the Rossby number.
It was shown in Ref. 128 that the rate of increase of the kinetic
energy depends on N /f as well (see also Ref. 5), and the only
cases showing a decrease—after an initial transient where the
dynamics is dominated by kinetic-potential energy exchanges
induced by inertia-gravity waves—are cases with no rotation
( f = 0).128

The runs considered in this paper have been selected for
the fact that potential energy is also observed to grow measur-
ably with time, as seen in Fig. 2, which displays the temporal
evolution of the potential energy (top) and of the ratio of kinetic
to potential energy, rE = EV /EP (bottom), for the same runs.
Again, the larger the rate of growth of EP, the stronger the
rotation. The growth of EP is followed by a rough plateau
with, for most runs, a slowly decreasing trend. This plateau is
reached at later times for the runs with the two largest Froude
numbers.

The evolution of the ratio of kinetic to potential energy,
rE (Fig. 2, bottom), is more complex. It displays several tem-
poral regimes. First, a strong growth occurs that corresponds
to the flow developing under the forcing from zero initial con-
ditions and up to the peak of dissipation. At that time, there is
a high (≈5) relative kinetic energy. A second phase follows
in which the waves are influencing the dynamics, drawing
the kinetic and potential energy towards equipartition, but not
quite. But as the kinetic energy grows, the Rossby number
increases and a third temporal phase begins, with a strong
relative increase of kinetic energy that takes over, with no
clear saturation for the runs, after up to 50 turn-over times
or more than 500 N�1. The starting time of that third phase
depends inversely on the Rossby number, and after that time
waves are almost not discernible any longer for the evolution of
these global quantities. This is consistent with the fact that the
growth of potential energy decreases when the rotation weak-
ens, and the peak of the growth is delayed, whereas no such
slowing-down of the growth of kinetic energy is observed,
the smallest wavenumber of the system having been barely
reached at the end of these three-dimensional computations,
so that no sizable finite-size box-limited effect is felt yet,
although some are visible in the energy spectra as a function
of k⊥.

Finally, in Fig. 3, we show the potential energy dissipa-
tion εP = κ〈|∇ρ|

2〉 = κZP as a function of time (top) and the



TABLE I. DNS parameters of the runs discussed in this paper. Id is an identification, a star indicating runs on grids of 20483 points, the other runs being on
grids of 10243 points. Run 1 also has kF = 7.5, in order to maximize the Reynolds number; all other runs have kF = 10.5, and 2π/kF is taken as the length
scale entering the expression of the dimensionless parameters. Fr and N /f are the Froude number and the ratio of the Brunt-Väisälä frequency to twice the
rotation frequency. Re, RB, Ro, and Rω are the Reynolds and buoyancy Reynolds numbers, the Rossby, and micro Rossby numbers, respectively. RΠ defined in
Eq. (14) is the ratio of inverse to direct kinetic energy fluxes. Finally, εV and β = εV/εD are the kinetic energy dissipation rate and its adimensionalized value,
with εD = U3

0/L0, measured at the time tM of peak of dissipation for each run. C123, C45, and C6 are the color codes used for these runs in Figs. 1–3, Figs. 4
and 5, and in Fig. 6, respectively. All these runs show an inverse flux of potential energy (see Fig. 6), with a measurable energy growth (see Fig. 2). 1/[RoFr] is
the parameter identified in Ref. 81 for establishing the scaling of RΠ .

Id Fr N/f Re RB Ro Rω RΠ tM εV β C123 C45 C6 [RoFr]�1

1* + 0.028 5 38 900 30 0.14 27 11 2.8 0.06 4.5 × 10�3 Black . . . . . . 258
2* 0.047 7 19 800 44 0.33 47 3.6 3.6 0.16 2.4 × 10�2 Red . . . . . . 64
3 0.061 8 7 560 28 0.48 42 1 2.7 0.16 3.3 × 10�2 Blue Cyan Blue 34
4 0.063 5 7 850 31 0.31 28 2.2 2 0.12 2.4 × 10�2 Magenta Black Green 50
5 0.073 10.5 7 270 39 0.77 65 0.3 2.9 0.19 5.2 × 10�2 Green Blue Cyan 18
6 0.088 5 7 320 57 0.44 38 1 2 0.19 6.6 × 10�2 Cyan Green Black 26
7 0.089 8 6 360 51 0.71 57 0.2 1.5 0.16 4.2 × 10�2 Dash Magenta Magenta 16

ratio of kinetic to potential energy dissipative rates, ZV /ZP

(bottom), using ν = κ. With powerful inverse cascades at
low Rossby numbers, part of the energy available for dissi-
pation is in fact stored in the large scales, and moreover, with
small Froude numbers as here, one is in the regime of strat-
ified turbulence at intermediate buoyancy Reynolds numbers
(see, e.g., Refs. 96, 119, and 130). The potential energy dis-
sipation is similar to its kinetic counterpart, although, when
examining their ratio, there is again a clear trend in the Rossby
number, with more kinetic energy dissipation as the rotation
weakens: the three runs with the lowest Rossby numbers have

FIG. 2. Temporal evolution, with tNL the turn-over time, of the potential
energy (top) and of the ratio of kinetic to potential energy EV /EP (bottom),
for the same runs as in Fig. 1.

the lowest EP/EV ratio, as expected, leading to the lowest peak
of both kinetic and potential dissipation for these flows as well
(see Figs. 1 and 2). This may have an impact on the scal-
ing with parameters of the mixing efficiency of RST, as it is
sometimes evaluated on the ratio of potential to kinetic energy
dissipation.96,119

C. Spectral data

We now examine this behavior in more detail through the
distribution with scale of the kinetic and potential energy and

FIG. 3. Temporal evolution, as a function of t/tNL , of the potential energy
dissipation εP = κ〈 |∇ρ |

2〉 = κZP (top) and of the ratio of kinetic to potential
energy dissipation ZV /ZP (bottom), for the same runs as in Fig. 1.



FIG. 4. Spectra of the runs at 10243 res-
olution at the final time (see Fig. 1).
The plots are color-coded for differ-
ent parameters (see insets): blue, green,
cyan, magenta, and black correspond,
respectively, to run 5, 7, 3, 6, and 4 of
Table I, with spectra shifted by a factor
of 10 each, for clarity. Kinetic (left) and
potential (right) energy spectra in terms
of isotropic wavenumber, EV (k),EP(k)
(top), and of perpendicular wavenum-
ber, EV (k⊥), EP(k⊥) (middle). Bottom:
kinetic energy spectra, EV (k‖ ) as a func-
tion of k‖ . The dashed lines represent
Kolmogorov spectral indices.

their ratio, for the runs of Table I at the resolution of 10243

points. In Fig. 4 are given the energy spectra towards the end of
the computation, the kinetic energy having reached the gravest
mode, k = 1. The dotted lines represent k�5/3 scaling laws. At
large scales, a Kolmogorov spectrum is clearly followed for
the kinetic energy, in terms of isotropic wavenumber and of
both k⊥ and k‖ , corresponding to the inverse cascade; note an
accumulation of energy at the smallest wavenumber particu-
larly visible in terms of k⊥, which corresponds to the dynamics
of the inverse cascade. The potential energy spectrum also
follows a Kolmogorov law in terms of k⊥, showing a strong
energy exchange between kinetic and potential modes, but the
isotropic EP(k) spectra (top right) are markedly different, with
some growth at scales slightly larger than the forcing scale, fol-
lowed by a rapid decrease at even larger scales. Note that the
growth of EP(k) at large scales is similar for all runs except for
the one with the lowest Rossby number (in black), for which
it is stronger.

At small scales, the departure from a �5/3 scaling for
some runs is particularly visible in the kinetic energy spectrum
in terms of k⊥, although all 5 runs have comparable dimen-
sionless parameters, with 0.061 ≤ Fr ≤ 0.089, 0.31 ≤ Ro

≤ 0.77, 5 ≤ N/f ≤ 10.5, 28 ≤ RB ≤ 57. In fact, some
of these spectra appear to be steeper than k�3, and the steep
spectra result from the highest N /f values, and represent for
this series of runs the highest Rossby numbers (Ro ≥ 0.48):
stratification prevails and, with low Froude numbers, spectra
are steep. On the other hand, the two remaining runs—runs 1
and 4—have a lower Rossby number, and the spectral dynam-
ics is known to be shallower in that case.93 Thus, a possible
differentiation in these runs is feasible in terms of the Rossby
number being smaller or larger than a critical value estimated
to be close to 0.45, corresponding to the predominance or not
of the inverse cascade. For example, the shallower small-scale
energy spectra in terms of k⊥ obtain for the two runs with
the stronger rotation (magenta and black curves, Ro = 0.31
and 0.44).

Figure 5 gives the ratio of kinetic to potential energy as a
function of isotropic (left) and perpendicular (right) wavenum-
bers, with, at left, an inset giving a blow-up of the main part of
the inertial range. These flows have a similar behavior, with a
strong dominance of the kinetic energy in the large scales, as
expected since the inverse cascade is primarily driven by the
so-called slow mode, that is, by the horizontal velocity. There is



FIG. 5. Mode-by-mode ratio of kinetic
to potential energy spectra for the runs
on 10243 grids at the final time, in
terms of isotropic wavenumber, rE (k) =
EV (k)/EP(k) (left), and of perpendicular
wavenumber, rE (k⊥) (right). The plots
are color-coded as in Fig. 4. The inset at
left is a blow-up of the central spectral
region. The dash-dot horizontal black
lines indicate EV /EP = 1.

a large range of wavenumbers, roughly for 4 ≤ k ≤ 100, where
the kinetic and potential energy are in approximate equipar-
tition. This quasi-equipartition, noticeably, goes through the
region of forcing, with kF ≈ 10, towards larger scales as
well. It will be of interest to see if such an equipartition
depends on time: does it extend to even larger scales as time
evolves?

When examining the blow-up of that spectral region, it
is seen that the equipartition solution is in fact being relaxed
progressively, at a Froude-dependent wavenumber, after which
the relative kinetic energy slowly increases with k, in similar
fashion for all runs. Finally, there is a steep growth of the
kinetic to potential energy ratio in the vicinity of the maxi-
mum wavenumber of the runs, quite close to the dissipation
wavenumber (see below).

The dynamics is more complex in terms of k⊥, and in this
case the forcing scale is quite clear, although there is no poten-
tial energy forcing. A relaxation of the dominance of kinetic
energy occurs both at small and large scales, with for high
wavenumber, a change of behavior at a parameter-dependent
wavenumber that varies between roughly 40 and 100. Note
that a similar slow trend away from equipartition was found
in the run studied in Ref. 130 at a resolution of 40963 points
for the isotropic spectra; the run in Ref. 130 has parameters
that are close to run 3 of this paper, except for a substantially
higher Reynolds number (Re ≈ 54 000) and for the absence of
forcing. In the study performed in Ref. 100, this change of the
regime in the ratio of kinetic to potential energy was associ-
ated with a scale wavenumber, LR = 2π/KR, corresponding to
the buoyancy scale, which is also the scale at which the domi-
nance of waves over eddies is reversed. The parametric study in
Ref. 100 finds a scaling KR ∼ Fr−1, which is in rough agree-
ment with the present data. Finally note that, at either large or
small scale, the excess of kinetic energy is never more than a
factor of 10, contrary to the case at left in Fig. 5 in terms of |k|.

Where does the strong tendency for dominance of the
kinetic modes over the scalar modes in terms of isotropic
wavenumber come from? One can argue that, in the small
scales, the temperature or density perturbations are becom-
ing progressively passive, granted the buoyancy Reynolds
number is larger than unity, which is the case for all runs
of Table I examined here. One could resort to an argument
linked to the behavior of small-scale turbulence for which, in
the idealized setting of homogeneous turbulence using Feyn-
man diagram techniques, is known to develop in most cases
a turbulent Prandtl number, defined as the ratio of turbulent

viscosity to turbulent diffusivity, slightly smaller than unity:
the small-scale velocity modes, on average, dissipate less effi-
ciently than the small-scale passive scalar modes, perhaps
because the latter are not constrained by the pressure and
develop very fine structures in the form of fronts and fila-
ments.131–133 Indeed, numerous studies, for example, using the
Renormalization Group (RNG) formalism134,135 have evalu-
ated the turbulent Prandtl number νturb/κX,turb, where νturb is
the eddy viscosity created by the turbulent motions of the fluid,
and similarly κX,turb is the anomalous diffusivity of a passive
scalar X, such as a chemical pollutant. One can also define
parallel and perpendicular effective viscosities in the context
of anisotropic flows, with their ratio ν‖/ν⊥ of order 2 or more
in the case studied in Ref. 136, applying the RNG for MHD
flows in the presence of an imposed uniform magnetic field.
These studies show that the turbulent Prandtl number is of
order unity, but not quite; phenomenology would suggest that
Prturb ≈ 1 since these two transport coefficients can both be
estimated dimensionally in the simplest case as ∼U0L0. How-
ever, it is found to be in general slightly smaller than unity,
≈0.7,134 with a variation of the order of up to 15% in the
presence of helicity.137,138 Similarly, when considering rotat-
ing stratified flows, the turbulent Prandtl number, which is an
essential parameter when considering anomalous dissipation
in the ocean is again found to be .1 for buoyancy Reynolds
numbers of the order of 50 or above.139 Such an imbalance
in the effective small-scale dissipation could be at the origin
of the clear but rather small tendency of the EV /EP ratio to
increase at small scales, up to quite close to the dissipation
wavenumber.

On the other hand, the steep accumulation of kinetic
energy close to the numerical cutoff may not be explained
by such a subtle effect. It is in fact systematically found in
a separate study of rotating stratified flows in the absence of
forcing (see Ref. 130 for temporal data), whereas the ratio of
wave to eddy modal energy, as done in Refs. 68 and 126, does
not display this effect. This latter fact excludes any numerical
origin to this accumulation. Another possibility is the fact that
fully helical structures develop at small scale, weakening the
nonlinear advection term, which is the source of the turbulent
viscosity, whereas no such geometrical effect is directly avail-
able to the scalar field. This point clearly deserves more study.
Furthermore, at these small scales, dissipation sets in and the
zero forcing and initial conditions in the potential fluctuations
lead to an abrupt and strong transition towards dominance of
kinetic energy.



FIG. 6. Flux spectra for the runs at
10243 resolution in terms of isotropic
wavenumber and all normalized by the
kinetic energy dissipation rate εV , at the
final time. The plots are color-coded for
different parameters (see insets), with
blue, green, cyan, magenta, and black
now corresponding, respectively, to run
3, 4, 5, 7, and 6 of Table I.

Finally, this steep increase in rE(k) may be related to the
fact that, at small scales, the fluxes of potential energy for
the runs described in this paper are all strongly negative, cor-
responding to a gain of kinetic energy at small scales (see
Fig. 6 and Sec. III D), since the total energy flux is con-
stant. This could be due to small-scale instabilities, which at
these buoyancy Reynolds numbers are known to exist. Such
a complexity in spectral dynamics reflects the complexity of
the anisotropic energy exchanges between scales and between
energetic modes.

D. Energy fluxes

A clear diagnostic of the dual cascade phenomenon is
through the observation of the energy flux. Oceanic data indi-
cate that the energy flux can be both positive at some small
scales and negative at larger scales,11 but the spatial resolution
for such data is not very high. Using high-resolution DNS of
forced RST with grids of up to 20483 points, it was shown
clearly in Refs. 80 and 81 that the energy flux can be con-
stant and negative at large scales and constant and positive at
small scales. This large parametric study allowed for finding a
scaling with dimensionless parameters of these two fluxes and
specifically of their ratio,

RΠ = |ΠLS |/Πss ∼ [Ro ∗ Fr]−1, (14)

where ΠLS,ss stand, respectively, for the large-scale and small-
scale total energy fluxes.

In the absence of mean flow, for strong waves (or weak
eddies), a weak turbulence formalism can be developed lead-
ing at lowest order to closed integro-differential equations

for the energy spectra.140–142 There are several limitations
to this theory. For example, it is non-uniform in scale, since
the small parameter—a priori the ratio of the wave period
to the nonlinear eddy turn-over time or here the Froude or
Rossby numbers—varies with scale. Moreover, other charac-
teristic times can arise, which, at some scale, are faster than
the waves, such as the sweeping by large-scale motions of
small–scale eddies.133,143 Indeed, it is shown in Ref. 144 using
numerical modeling that, at a critical layer,145 roughly one
third of the energy is transmitted to the mean flow. As noted in
Ref. 141, “For wave turbulence, we are only at the beginning
of the experimental stage.” These specific issues are discussed
more at length in Ref. 133, in the context of rotating and/or
stratified flows.

The result in Ref. 81, using a phenomenological argument
backed by large direct numerical simulations, of a variation
with the Froude and Rossby numbers of the ratio of the inverse
to direct total energy flux does not consider directly the pos-
sible variations in the forcing amplitude or shape function.
Indeed, the forcing F is constant in the momentum equation,
but results in an energy input that depends on the dynamics of
the flow, that is, 〈u · F〉. Therefore, the effective energy input
due to the forcing is likely to change across the set of runs.
For example, in runs dominated by strong stratification, or for
the purely stratified case, let us assume that there is a balance
between the upscale vortex mode energy (in k⊥), if there is such
an upscale cascade, and the so-called saturation energy spec-
trum in the small scales, or that k⊥E(k⊥) = k−2/3

⊥ ε2/3
V = N2k−2

‖
,

where the characteristic vertical scale is the buoyancy scale
U/N. Expressing εV = εD = U3/Lint , for the high-enough
buoyancy Reynolds number, yields k⊥ ∼ kint , i.e., under



these circumstances, no inverse cascade is taking place; in
the rotating stratified case, it is known that the ratio of the
direct to inverse flux is proportional to FrRo:81 in the limit
of no rotation (Ro → ∞) at a fixed Froude number, the
direct energy flux is dominant, consistent with the previous
argument.

The flux ratio scaling given above is explained on a phe-
nomenological basis relying on the fact that the turbulence in
these cases is weak and that the inverse cascade is stronger
when the rotation is stronger. This scaling is not well observed
when the buoyancy Reynolds number is not sufficiently large
for the turbulence to be developed, and a different scaling
emerges for N/f ≈ 8. This latter result is related to the fact
that for these values, the Rossby number is too large for an
effective inverse cascade to develop, as noted before, since the
Froude number must be large enough to have RB ≥ 20 and
yet still small enough to be in a regime still dominated by the
wave dynamics at large scales.

We show in Fig. 6 the kinetic, potential, and total energy
fluxes, ΠV ,P,T (k), normalized by the kinetic energy dissipa-
tion rate εV , computed individually for each case. The fluxes
are all averaged over 5 to 6 turn-over times. Note the dif-
ferent scale for ΠP(k): the potential flux is at best 10% of
the kinetic flux, the energy of the horizontal velocity being
the driver of the inverse cascade. ΠV shows a sharp variation
around the forcing wavenumber kF ≈ 10, whereas the change
around kF is smoother for ΠP. For the two runs with a higher
Rossby number, there is as expected a strong direct flux and
a weaker inverse flux for EV . For the two runs with compa-
rable Rossby numbers at an intermediate value, the fluxes are
comparable, and direct and inverse fluxes are similar. Finally,
the run with the smaller Ro has the strongest inverse flux. The
run with Ro = 0.48 (thick blue line) is intermediate between
high and low Rossby numbers. For Ro < 0.48, the behavior
is different, with now more inverse than direct kinetic energy
flux.

The behavior of the potential energy flux is more complex
(see Fig. 6, top right). At small scales, it is strongly negative,
leading to an input of kinetic energy at those scales. This may
be linked to the excess of kinetic energy in the very small
scales observed in Fig. 5. It corresponds to the many instabili-
ties that can arise in such flows, as overturning occurs because
of vertical shear or through frontal collapse114 (see also Ref.
146). At large scales, the potential energy flux is negative but
rather small. Note that the ordering for the inverse cascade
flux is the same as for the flux of EV and is governed by the
Rossby number. For the two larger Ro, the inverse and direct
fluxes around the forcing wavenumber kF ≈ 10 are compara-
ble and small. Finally the total flux (Fig. 6, bottom) is quite
close to the kinetic energy flux, which is dominant, except
towards k = kmax, indicating that indeed the total energy
is conserved, and the total energy flux has thus to be zero
there.

E. Exact laws

Another possible diagnostic for these dual cascade sys-
tems is through the use of the so-called exact laws for tur-
bulent flows, laws that stem from conservation principles

and that relate directly third-order structure functions and the
injection (and dissipation) rate of the invariant.147–151 Such
laws, obtained under a set of hypotheses, namely, incom-
pressibility, stationarity, high Reynolds number, homogene-
ity, and isotropy, allow one to deduce the actual values of
the dissipation rates of energy, as done, for example, in the
Solar Wind,63–65 and potentially in the atmosphere and the
ocean as well. One can also observe directly the sign of the
third-order structure function, which is a straightforward indi-
cation of the nature of the transfer, upscale or downscale.
In the simplest case, that of HIT, the Kolmogorov law is
written as147〈

δu3
L(r)
〉
= −

4
5
εV r, δuL(r) = u(x + r) − u(x);

the velocity difference is taken along the distance r, and uL

being the longitudinal component of the velocity projected on
r. A remarkable feature is that we have both the sign and the
numerical factor in this law, but we do not know a priori the
sign of the kinetic energy flux rate εV . The corresponding exact
Yaglom law for a passive scalar is148〈

δuL(r)δρ(r)2
〉
= −

4
3
εPr.

It has been tested on observational data in the lower strato-
sphere at roughly 10 km of altitude, using commercial air-
crafts,152 with the assumption that at small scale the scalar
is passive, which can be expected a priori beyond the Ozmi-
dov scale at which isotropy and HIT recovers (≈10 m). Note
that this assumption is not necessarily needed since the extra
term in the scalar equation, that of energy exchanges with the
vertical velocity, occurs on a time of the order of the inverse
Brunt-Väisälä frequency, possibly much faster than the sam-
pling frequency. A negative flux is found at large scales, with
a change of sign around 103 km; from this, it is deduced
that the large scales undergo an inverse cascade and the small
scales a direct cascade. Similarly, changes of signs in energy
fluxes are found in Ref. 153 observing the troposphere over
Owens Valley (California), with the change of sign associated
with Kelvin-Helmholtz instabilities leading to wave break-
ing and thus to small-scale dissipation. In Antarctica as well,
the data indicate changes of sign of the flux function, but in
this latter case, these changes do not take place simultane-
ously154 and are rather linked to the onset (or not) of convective
motions.

In Ref. 36, the Kolmogorov and the Yaglom laws are com-
puted using direct numerical simulations for a set of rotating
stratified flows at a fixed small Froude number, Fr = 0.01. Two
input formulations are used: one forcing only the geostrophic
component of the flow and the other one forcing also the
ageostrophic eddies. These laws, in terms of isotropic dis-
tance r = |r|, show a change of sign (indicative a priori of
a change of direction of the energy cascades) at different
scales between themselves and for different N /f. Such a sign
change is associated with the geostrophic component of the
flow. Flux-laws with at least one sign change in the third-
order structure function are also observed in fact in numerical
models of the atmosphere.15 These same exact laws will be
computed for the runs described in this paper in the near
future.



IV. GEOPHYSICAL TURBULENCE AND ANISOTROPY

The recovery of small-scale symmetries in HIT, such as
isotropy, has been studied for a long time, for example, finding
a quasi-linear relaxation to isotropy for axisymmetric flows,
using either the Direct Interaction Approximation (DIA)155

or DNS.156 As mentioned earlier, since it is known that in
HIT the helicity has a k�5/3 spectrum (omitting possible inter-
mittency corrections), the relative helicity, HV (k)/[kEV (k)]
decays slowly and full isotropy with negligible helicity is only
recovered as 1/k.

As reviewed in the introduction, the quasi bi-
dimensionalization of flows implies strongly anisotropic statis-
tics for such configurations, a topic tackled in numerous
instances and more recently with improved computer power.
For purely stratified flows, it was found, in the context of
turbulence collapse, that vortices and waves co-exist on dif-
ferent time scales.157 Anisotropy in rotating turbulence was
studied in Ref. 158 using the Eddy-Damped Quasi-Normal
Markovian (EDQNM) closure model including the Coriolis
frequency f = 2Ω in the eddy-damping of triple correlations;
these authors could show a trend towards bi-dimensionality
insofar as there was a transfer from the parallel to the per-
pendicular wavenumber energy (see also Refs. 159 and 160
for reviews of more recent works and Ref. 161 for a model
of rotating flows). Anisotropic spectra were derived in the
context of weak turbulence in Ref. 162 but with no inverse
cascade because of the decoupling, at lowest order, of the 2D
modes from the 3D waves, as well as in Ref. 159 on the basis
of a phenomenological argument following weak turbulence
scaling, with a prefactor proportional to Ω1/2 (see also Ref.
163). Anisotropic structures correspond to Taylor columns for
purely rotating flows, to horizontal layers in purely stratified
flows, and such layers become progressively slanted as the
rotation is increased, with an a priori isotropic flow for N = f
since the dispersion relation becomes simply in that case,
kσ(k) = N = f .

In RST, the large-scale anisotropy and the small-scale
isotropy, provided the buoyancy Reynolds number is large
enough, can be diagnosed, respectively, through the veloc-
ity and vorticity statistics, as well as the temperature field
and its gradients. This is done, for example, in the context
of the Rayleigh-Taylor instability, with small-scale properties,
measured in the middle of the mixing layer, being similar
to HIT.164,165 Another simple way to diagnose anisotropy
is through the ratio of the perpendicular to parallel inte-
gral scales and Taylor scales [see Eq. (13) for definitions],
rL = L⊥/L‖ , rλ = λ⊥/λ‖ , the former characterizing large
scales and the latter the small scales. For rotating flows, rL is
found to vary by a factor three between weak and strong rotat-
ing cases,123,166 whereas rλ itself, sensitive to small scales, is
quite close to unity.

Furthermore, in regimes in which the nonlinear part of
potential vorticity, namely, ω · ∇θ, can be neglected, it is
predicted in Ref. 167 that EP ∼ k−3

‖
for k‖ >> k⊥, i.e., for

pancakes as the predominant structure, whereas in the oppo-
site case of a columnar regime, it is the energy spectrum of
the perpendicular velocity field that becomes proportional to
k−3
⊥ . This is a finding that can be seen as a generalization of

that of Charney8 when moving away from geostrophic bal-
ance. This prediction, backed up by computations done for
N /f = 1, is based on the dominance of the potential enstro-
phy cascade at small scales (also observed for some cases
in Ref. 81, supplementary material). This enstrophy cascade
is interpreted as being an anisotropic constraint of the con-
servation of potential enstrophy on energy spectra, but note
that for such a frequency ratio, there are no exact resonant
interactions.129

It was discussed in detail in Refs. 77 and 128 (see also
Ref. 160 for thorough reviews) how the transfer of energy
occurs in rotating stratified flows as a function of the angle
between the wavevector k and the direction of rotation and
gravity, assumed to be common and taken as the vertical. The
purely stratified and the purely rotating cases are quite different
in this regard because of the strong anisotropy of the dispersion
relation, respectively, kσ(k) = Nk⊥ and kσ(k) = f k‖ . In the
purely rotating case, in the limit of strong rotation, no transfer
occurs in the vertical direction; energy at the forcing scale (or
initial conditions) moves towards k‖ = 0; the flow becomes
two-dimensional and then undergoes a nonlinear inverse cas-
cade of energy, as originally envisaged by Kraichnan, in the
so-called 2D vortex mode, with no vertical velocity. The trans-
fer in terms of k⊥ is constant and negative; however, the flux
in terms of k‖ is negligible.

Finally, note that anisotropic flows can be modeled
through a generalization of two-point closure equations intro-
duced in the isotropic case (see Ref. 160 for review), using
analytical formulations of both eddy viscosity and eddy-noise,
in terms of energy and helicity spectra that are dependent on
scale and on time. This is done for rotating flows in Ref. 86,
in a framework that is compatible with the model developed
in Ref. 168. A recent work incorporating the effect of small-
scale helicity in both the turbulent viscosity and turbulent
noise can be found in Ref. 87; this modeling allows for the
confirmation of the indetermination (untanglement) of spec-
tral indices for the energy and helicity, as discussed earlier.
Models of helical shear flows using helicity as an essential
ingredient were also developed in Ref. 169. Helicity can lead
to the generation of large-scale flows, similar to the MHD
case of the helical dynamo, but with the added feature of
anisotropy due to solid-body rotation,170 although it is not
clear whether such a large-scale instability leads to an inverse
cascade proper, a point which will be investigated in future
work.

V. DISCUSSION AND CONCLUSIONS: THE RICH
DYNAMICS OF COMPLEX FLOWS
A. Summary of new results

The runs analyzed in this paper have in common the fact
that they display a measurable flux of potential energy to the
large scales, together with a flux to the small scales, similar to
the kinetic energy and of course the total energy. Differences
between these flows, such as the rate of growth of kinetic and
potential energy and dissipation, or the amplitude of fluxes,
can be directly attributed to the Rossby number that governs
the existence of the inverse energy cascades. We also note
that, even though the buoyancy Reynolds numbers are not



very high in these runs (RB ≤ 58), the energy spectra seem
compatible with a �5/3 index at large scale, consistent with
all known studies of inverse energy cascades in the absence
of long-time finite-size effects or of large-scale friction. The
dynamics of small scales differs from flow to flow and with
angular variations as well. In some cases a �5/3 spectrum is
obtained, whereas in other cases steeper spectra appear that
could be related to the so-called saturation spectrum result-
ing from a balance between advection and buoyancy flux
in the purely stratified case but which can also occur here
since the Coriolis force does not affect directly the energy
balance.

There is in fact little variation in the Froude number for
the runs, of the order of 15%, thus the changes in spectral
behavior at small scale can be related to the role rotation
plays in small-scale dynamics in these flows, as well as to the
amount of anisotropy induced both by the rotation, the strat-
ification, and their relative strength. This is particularly true
considering that the Froude numbers of all the runs consid-
ered here are in the so-called intermediate range where waves
and non-linear eddies are competing with each other.96 Strong
rotation is clearly seen affecting the overall ratio of potential
to kinetic energy and potential to kinetic dissipation. Finally,
the scale-by-scale ratio of kinetic to potential energy, shown
in spectral space, is found to settle for all flows, throughout
most of the inertial range, to a constant value close to one and
with differences in the large scales corresponding to global
parameters.

B. How much dissipation and mixing?

The lack of universality in wave turbulence, correspond-
ing, for example, to different spectral indices for, say, the
total energy, when all the invariants of the problem are the
same, is the signature of a richer set of dynamics than that first
envisaged in the weak turbulence formalism. This is well doc-
umented, for example, for gravity-capillary waves,171 or for
elastic waves,172,173 as well as in MHD.174 Different branches
in the [σ(k), k] diagram are identified for different forcing
intensities and are attributed to the formation of coherent struc-
tures as suggested, for example, in Ref. 175. Similarly, for
rotating or stratified flows, the existence of different branches
in that diagram corresponds to the interactions of the quasi-
linear waves with a mean flow, which may have been produced
by the nonlinear interactions in the fluid.133,143,176 A simi-
lar phenomenon is already known in turbulent flows that are
inhomogeneous and anisotropic. For example, the shear layers
of a von Kármán flow are shown to be destabilized, as with
a Kelvin-Helmholtz instability, leading to enhanced dissipa-
tion at small scale,177,178 a phenomenon directly observed in
Antarctica in the Romanche fracture, with the strong turbulent
mixing directly linked to long Kelvin-Helmholtz billows.179

As such and as already envisaged in Ref. 180, when examin-
ing a wave in a turbulent shear flow, the velocity field should
be decomposed into a mean flow U and a fluctuating compo-
nent u′, the latter having two components itself, a coherent or
wave part, uc or u4, and a purely stochastic turbulent part, u′′.
Thus, a spatio-temporal analysis should be performed for these
flows, with the turbulent flow viewed as a perturbation to the

time-averaged flow, in which the pure waves should disap-
pear. As suggested in Ref. 178, the sequence of bifurcations at
low and at high Reynolds number appear to be similar, lead-
ing these authors to the conclusion that this provides a strong
justification to the approach of modeling turbulent flows with
eddy viscosities.

When examining the set of decaying runs analyzed in
Refs. 96 and 130, the kinetic energy decay rate εV varies by
one order of magnitude when the Froude number varies in
the range 10−3 ≤ Fr ≤ 0.26; a large range of N /f values is
covered in this study; on the other hand, when keeping N /f
constant, viz. N /f = 4.95, the energy dissipation rate varies
in the range 0.19 ≤ εV ≤ 0.57 for 0.04 ≤ Fr ≤ 0.14.
For both sets of runs, the Reynolds number is rather constant
(between 8 ×103 and 1.4 ×104). In both cases, with or without
forcing, the variations in εV may be the signature of a strength-
ening of nonlinear interactions compared with the waves, as
the characteristic dimensionless parameters increase. The rate
of dissipation in a given flow may also depend on the nature
of the forcing. For example, it is shown in Ref. 146 that, in
a container with a large aspect ratio, as in the atmosphere
but with a more modest value, namely, L0z/L0⊥ = 8 where
L0z,0⊥ are characteristic length scales in the vertical and the
horizontal, leading to the presence of strong large-scale shear
layers, the energy dissipation can be close to the dimensional
evaluation, namely, εD = U3

0/L0⊥, even for the buoyancy
Reynolds numbers that are moderate (specifically, RB ≈ 30
in the computation in Ref. 146); this energetic flow dissipa-
tion is associated with the formation of fronts and filaments,
as already examined in Ref. 114 (see also Ref. 132). Further-
more, several observations and numerical simulations indicate
that, for stratified turbulence in the presence of weak rotation,
the mixing efficiency Γf , that is, the ratio of the buoyancy
flux 〈Nwρ〉 to the kinetic energy dissipation rate, decreases as
Fr�1, as detailed in Ref. 96; it can be related to a R−1/2

B scaling
at a fixed Reynolds number, assuming Re is high enough, a
scaling rather commonly observed (see, e.g., Ref. 119). This
is because in the regime of stably stratified strong turbulence,
the density fluctuations have become passive, and isotropy has
recovered so that w ∼ U0 and β ≈ 1, leading to the desired
scaling.

However, many phenomena combine to render the weak
turbulence theory invalid. One concerns finite box effects, as
demonstrated, for example, in Ref. 181: four-wave resonances
can form independent clusters of Fourier modes, hence weak-
ening the energy transfer to (small) scales and thus leading
to steeper energy spectra. As argued in Ref. 182, taking the
limit of an infinite box must precede taking the limit of the
small parameter leading to a closure of the equations; in other
words, the resonance broadening must be larger than the dis-
cretization step in Fourier space due to the limited length of
the computational box or experiment. Another argument con-
cerns the non-uniformity in scale of the assumption of a small
parameter for the weak turbulence closure to be valid. It was
shown recently, using laboratory experiments183 as well as
direct numerical simulations,176 that the sweeping of turbu-
lent eddies by large-scale flows can also alter significantly
the effective dispersion relation as documented in a spatio-
temporal, ωk − k diagram; thus, it modifies the break-down



from the weak wave turbulence to the strong turbulence
regime, thereby possibly altering the lateral and vertical mix-
ing and dissipative properties of such flows that are central
to an accurate modeling of geophysical flows for weather and
climate.

C. Two-dimensional versus three-dimensional
behavior, intermittency, and numerical fractality

It was shown in Ref. 184 that the transition between a
2D and a 3D behavior, in a cubic box for non-helical flows,
could be modeled through an analytic continuation of the equa-
tions (in Fourier space) to a variable, real dimension, d ∈ R.
A crossover between the 2D and 3D behavior is found using
a numerical integration of a model for a critical dimension of
dc ≈ 2.03, whereas in Ref. 185, the critical dimension is eval-
uated on the basis of a change of sign of the eddy viscosity
computed through the use of the Test Field Model.186 This was
more recently suggested heuristically in Ref. 40 for rotating
turbulence (see also Ref. 41). Similarly, it was found in Ref.
187 using a fractal Fourier decimation for the inverse cascade
that the inverse cascade existed down to a critical dimension
Dc = 4/3 (see also Ref. 188), with a diverging Kolmogorov
constant. On the other hand, using again a fractal Fourier dec-
imation, it was shown in Refs. 189 and 190 that the flow
loses abruptly its intermittency—observed via a decrease of
the extent of the wings of probability distribution functions
of velocity gradients—and multi-fractality—observed via a
decrease of skewness and flatness, with the kurtosis of the
vorticity going from ≈11 for d = 3 to ≈4 for d = 2.98—as soon
as the effective dimension of the set of Fourier modes goes
below dcc ≈ 2.98.

In that light, it has been stated that the large scales in
rotating stratified turbulence behave like a 2D flow, in quasi-
geostrophic equilibrium, whereas the three-dimensional small
scales are under the influence of gravity waves, such flows real-
izing naturally a transition between 2D and 3D behavior, with
a change at the Zeman scale93,191 or at the Ozmidov scale (see
Ref. 160 for review). This result may be of use in the follow-
ing context: for a well-resolved direct numerical simulation,
one expects that the Kolmogorov dissipation scale be twice the
minimally resolved scale. This means that in fact most of the
modes are in the dissipative regime, which could be modeled
in simpler ways such as a progressive decimation,192 or using
a stochastic elimination of modes, or a form of eddy noise.193

For example, in Ref. 194, it is shown that the ratio of turbulent
production to turbulent dissipation remains approximately the
same, down to an effective dimension of ≈2.7, corresponding
to the elimination of more than one quarter of the total num-
ber of modes, although each term varies, and in particular,
the angular distribution of energy is modified. This tendency
towards a bi-dimensionalization of the flow is associated, as
expected, with the growth of an inverse cascade together with a
diminution of intermittency. It would be of interest to re-tackle
these studies of random decimation of modes for flows with
large aspect ratio, to see whether such results remain in that
case.

Large-scale anisotropy has been attributed to truncation
errors195 at low wavenumbers and is sensitive to the form of

the energy input or rather to the ratio of the scale at which
energy is fed into the system to the overall size of the con-
tainer. Given the computational cost to increase such a ratio,
it is further suggested in Ref. 195 that a damping be intro-
duced at large scales, a point that will require further study.
An inadequate simulation of the isotropy of the large scales
can also lead to spurious energy decay, as clearly shown in
two dimensions.59 On the other hand, at small scale, the resid-
ual anisotropy, as such might be the case in HIT simulations
at Reynolds numbers that are not quite high enough, has
been shown recently to affect differently the scaling of lon-
gitudinal and of transverse structure functions, an effect that
disappears at a higher Reynolds number, as shown on data
using a grid of 81923 points, with a Taylor Reynolds number
of ≈1300.

D. Concluding remarks

Turbulence is more complex than was thought 50 years
ago, with richer dynamics brought about by the variety of
time scales and length scales that can characterize and affect
the dynamical evolution of such flows. From entrainment, i.e.,
the sweeping of structures by the large-scale field, to untan-
glement, i.e., the effect of advection by the velocity field
of all field variables leading to non-universality of spectra,
new dynamics arise that lead to a richness of behavior of
such flows, that should still be considered as turbulent, but
in the presence of waves, with multi-scale interactions, con-
stant flux scaling behavior, multi-fractality, and intermittency,
and with physical insight gained from statistical mechanics
centered on the role of the ideal invariants preserved by the
truncation.

The path, from the seminal work of Kraichnan on the
inverse cascade of energy in two-dimensional fluids, has
proven to be quite rich and varied, with extensions to many
physical environments. Much work remains to be done in the
study of flows with dual cascades and with anisotropy, as for
instance the eventual role of the type of initial conditions and
forcing (balanced or not, constant or variable in time, large
scale or small scale), and what are the different regimes, in
terms of the buoyancy Reynolds number, Reynolds number,
or Rossby number, as well as the resolution by the flow of
some of the characteristic length scales (LB, LEll, `Oz, `Ze, LD).
For example, it is known that mixing efficiency depends on
RB,98,105,196 with a weak dependence on rotation in the decay
case,96,130 but such mixing should also be studied in the dual
cascade framework as described here. This is left for future
work. Improved understanding of such flows, as, for exam-
ple, in the interchange of energy between kinetic and potential
modes197,198 will lead to better parametrizations of unresolved
small scales in large weather, oceanic, and climate codes,
allowing for a better modeling of the atmosphere and the
oceans.
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