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On the Statistical Properties of Turbulent Energy
Transfer Rate in the Inner Heliosphere

Luca Sorriso-Valvo1 · Francesco Carbone2 ·
Silvia Perri3 · Antonella Greco3 · Raffaele Marino4 ·
Roberto Bruno5

Abstract The transfer of energy from large to small scales in solar wind turbulence is an
important ingredient of the long-standing question of the mechanism of the interplanetary
plasma heating. Previous studies have shown that magnetohydrodynamic (MHD) turbulence
is statistically compatible with the observed solar wind heating as it expands in the helio-
sphere. However, in order to understand which processes contribute to the plasma heating,
it is necessary to have a local description of the energy flux across scales. To this aim, it is
customary to use indicators such as the magnetic field partial variance of increments (PVI),
which is associated with the local, relative, scale-dependent magnetic energy. A more com-
plete evaluation of the energy transfer should also include other terms, related to velocity and
cross-helicity. This is achieved here by introducing a proxy for the local, scale-dependent
turbulent energy transfer rate ε�t (t), based on the third-order moment scaling law for MHD
turbulence. Data from Helios 2 are used to determine the statistical properties of such a
proxy in comparison with the magnetic and velocity fields PVI, and the correlation with lo-
cal solar wind heating is computed. PVI and ε�t (t) are generally well correlated; however,
ε�t (t) is a very sensitive proxy that can exhibit large amplitude values, both positive and
negative, even for low amplitude peaks in the PVI. Furthermore, ε�t (t) is very well corre-
lated with local increases of the temperature when large amplitude bursts of energy transfer
are localized, thus suggesting an important role played by this proxy in the study of plasma
energy dissipation.
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1. Introduction

The solar wind is the most important example of natural plasma turbulence that can be
probed using satellite-born instrumentation (Tu and Marsch, 1995; Bruno and Carbone,
2013). This means space missions dedicated to in situ measurements of plasma parameters
and electromagnetic fields provide a unique chance to obtain direct experimental observa-
tion of the turbulent dynamics of space plasmas. Solar wind plasma has a very low density
(of the order of a few particles per cubic centimeter) and high temperature (of the order of
105 K), and is embedded in a radially decreasing background magnetic field of the order
of BSW ∼ 5 nT near the Earth, resulting in a weakly collisional, magnetized flow. Strong
acceleration mechanisms push the wind away from the Sun to a typical speed VSW ∼ 350 –
750 km s−1, making the wind supersonic and superalfvénic. Observations also show that the
temperature decreases with the distance from the Sun more slowly than expected for an adi-
abatically expanding plasma (Schwenn, 1983; Freeman, Totten, and Arya, 1992; Goldstein
et al., 1996). Understanding the heating mechanism providing the non-adiabatic cooling
of the expanding solar wind is a long-standing open question in astrophysics (Matthaeus
et al., 1994; Richardson et al., 1995). One of the possible sources of heat is the dissipa-
tion of the kinetic and magnetic energy available in the form of large-scale fluctuations,
which can be traced back to the Sun and the solar corona. This requires that the energy is
transported from large scale to smaller scales by a turbulent cascade, where kinetic plasma
processes can convert it into particle heating. Observations of magnetic and velocity power
spectral density have shown that solar wind fluctuations follow the typical Kolmogorov-like
power-law energy decay (Kolmogorov, 1941; Frisch, 1995; Marsch and Tu, 1997; Bruno and
Carbone, 2013), in a range between the typical correlation length (corresponding to a few
hours) (Matthaeus et al., 2005), and the typical scale where kinetic processes arise (a few
seconds) (Leamon et al., 2000). This gives about three decades of inertial range where non-
linear energy transfer occurs, resulting in high Reynolds number turbulence (Sorriso-Valvo
et al., 2006; Weygand et al., 2007; Sorriso-Valvo, Yordanova, and Carbone, 2010). Turbu-
lence is therefore the major ingredient to make a connection between the large-scale fluctu-
ations and the small-scale microphysics processes (Alexandrova et al., 2013).

While at spatial scales smaller than the typical ion scales, kinetic processes must
be included in the dynamics, at larger scales the magnetohydrodynamics (MHD) frame-
work (Biskamp, 1997) is a good approximation to describe the turbulent motion of the solar
wind plasma. The properties of solar wind turbulence have been studied for more than 40
years using both experimental data and, more recently, numerical simulations. It is now
understood that the spectral properties of the magnetic and velocity fluctuations depend
on the wind speed, distance from the Sun, solar activity, correlation between velocity and
magnetic field, and other local plasma parameters, making the solar wind a complex en-
vironment with high variability (Bruno and Carbone, 2013). Solar wind turbulence is also
characterized by anisotropy and intermittency, which have been deeply studied in the past
(Bavassano et al., 1982; Marsch and Tu, 1997). Intermittency, in particular, is related to the
appearance of small-scale structures typical of turbulence. In the solar wind, these are mostly
current sheets, magnetic discontinuities, vorticity structures or similar features, and they are
usually identified using field increments or wavelet-based detection techniques (Veltri and
Mangeney, 1999; Bruno et al., 2001; Greco et al., 2009; Greco and Perri, 2014; Zhdankin,
Boldyrev, and Chen, 2016). One example of identification technique recently introduced is
the partial variance of increments (PVI), based on the evaluation of the intensity of the field
gradients at a given position and scale (Greco et al., 2009; Greco and Perri, 2014). Recent
investigations have confirmed that the intermittent structures are associated with enhanced



plasma heating. Both ions (Osman et al., 2012; Tessein et al., 2013) and electrons (Chas-
apis et al., 2015) display energization in the proximity of the most intense current sheets.
This has also been confirmed through the analysis of numerical simulations of the Vlasov–
Maxwell equations (Servidio et al., 2012). The processes responsible for such heating may
involve magnetic reconnection, plasma instabilities and enhancement of collisions, and they
are still poorly understood (Chen, 2016). In this work, a different data analysis technique is
proposed to identify the regions of space that are carrying energy towards the small scales,
in order to understand the link between the presence of strong turbulent fluctuations and
a local enhancement of the temperature. In analogy with the von Karman–Howart law for
Navier–Stokes turbulence, the MHD turbulent energy flux across the scales is regulated by
a relation, often referred to as the Politano–Pouquet law (PP) (Politano and Pouquet, 1998).
This is a statistical prescription for the scaling law of the mixed third-order moment of the
Elsasser fields increments, and is obtained directly from the MHD equations under the as-
sumptions of stationarity, isotropy, incompressibility and vanishing dissipation coefficients
(i.e. within the inertial range). Although some of the above assumptions are only marginally
satisfied in the solar wind, the validity of the PP law has been successfully verified in nu-
merical simulations (Sorriso-Valvo et al., 2002) and in the solar wind (MacBride, Forman,
and Smith, 2005; Sorriso-Valvo et al., 2007; Marino et al., 2008; MacBride, Smith, and
Forman, 2008; Marino et al., 2012). Subsequently, a variety of extensions of the PP law
to more complex, realistic systems have been introduced, where the approximations of in-
compressibility (Carbone et al., 2009; Banerjee and Galtier, 2013) and isotropy (Stawarz
et al., 2011; Osman et al., 2011) have been relaxed, and in some cases verified in experi-
mental data (Banerjee et al., 2016; Hadid, Sahraoui, and Galtier, 2017). The effects of the
solar wind expansion have also been considered (Gogoberidze, Perri, and Carbone, 2013;
Hellinger et al., 2013), and an attempt to include the small-scale effects described by Hall
MHD has been performed (Galtier, 2008). In this work, we chose not to take into account
any of the above modifications, in order to provide a first-order estimation of the energy
transfer rate. The evaluation of the contributions emerging when approximations are relaxed
represents an interesting possible improvement that we leave to future work.

The basic version of the PP law reads

Y ±(�t) = 〈∣∣�z±
�t (t)

∣∣2
�z∓

‖,�t (t)
〉 = −4

3

〈
ε±〉

�t〈v〉. (1)

Here �z±
�t (t) = z±(t +�t)− z±(t) indicates the increment of the field z± across a temporal

scale �t . The same notation applies to the other fields used in this work. The subscript ‖
indicates the longitudinal component, i.e. parallel to the bulk speed in solar wind time series;
z± = v ± B/

√
4πρ are the Elsasser variables that couple the solar wind velocity v and the

magnetic field B, transformed in velocity units using the solar wind density ρ; Y ±(�t) are
the mixed third-order moments, and 〈ε±〉 is the mean energy transfer rate, estimated over the
whole domain. In order to study spacecraft time series, all spatial scales � were customarily
transformed in the time lags �t = �/|〈v〉| through the bulk flow speed 〈v〉 averaged over
the entire dataset. This is allowed by the Taylor hypothesis (Taylor, 1938), which is robustly
valid for solar wind fluctuations in the inertial range (Perri et al., 2017). The PP law in
Equation 1 thus indicates that the nonlinear transport of energy across the time scales is
proportional to the time scale via the mean energy transfer rate.

In MHD numerical simulations, the statistical properties of the local energy dissipation
can be studied directly (Zhdankin, Boldyrev, and Chen, 2016). However, when the plasma
is weakly collisional, MHD viscous and resistive dissipative terms are not defined. In such
cases, if a sufficient scale separation exists between the inertial range and the dissipative
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scales, even though the dissipation mechanisms are unknown the PP law can provide an
estimate of the mean energy transfer rate. This has recently been measured from solar wind
data, providing values compatible with the energy necessary for the observed non-adiabatic
cooling (Marino et al., 2008; Smith et al., 2009; Carbone et al., 2009; Marino et al., 2011;
Coburn et al., 2012; Banerjee et al., 2016; Hadid, Sahraoui, and Galtier, 2017).

Although the PP law is only valid in a statistical sense, dimensional considerations sug-
gest that it may be possible to use its local values as a proxy of the local energy transfer
rate (Marsch and Tu, 1997). This proxy was recently used to validate a multifractal model
of the statistical properties of the turbulent fluctuations (Sorriso-Valvo et al., 2015). In this
paper, it will be used as a tool to identify places where energy is being transferred towards
the small scales.

By analogy with the definition of mean energy transfer rate, we define a “local” pseudo-
energy transfer rate proxy (LET) by

ε±
�t (t) = |�z±

�t (t)|2�z∓
‖,�t (t)

�t〈v〉 , (2)

so that the local energy transfer rate at the scale �t is computed as ε�t (t) = (ε+
�t (t) +

ε−
�t (t))/2. At a given scale, each field increment can thus be associated with the local value

of ε�t (t) (Marsch and Tu, 1997; Sorriso-Valvo et al., 2015). In terms of velocity and mag-
netic field, the LET is ε�t (t) ∝ 2�v‖(�v2 + �b2) − 4�b‖(�v · �b), where the first term is
associated with the energy advected by the velocity, and the second to the velocity–magnetic
field correlations coupled to the longitudinal magnetic field. The statistical properties of this
proxy will be explored here using Helios 2 measurements in the inner heliosphere. This ar-
ticle is organized as follows: in Section 2 we describe the data and the diagnostic variables
used for the analysis; in Section 3 we study the scale-dependent statistical properties of the
local energy transfer rate, and compare them with the PVI, a standard identification tool;
finally, in Section 4 the correlation with the local proton temperature is studied.

2. Description of Data

This work presents a study on Helios 2 data, which have been thoroughly analyzed for
about 40 years and still represent a milestone in the study of the inner heliosphere. More in
particular, the data selected here are for 11 intervals taken during the first 4 months of 1976,
at low solar activity, while Helios 2 orbit spanned between 1 AU, on day 17, to 0.29 AU on
day 108. Each interval includes 2178 data points at 81-s cadence, covering about 2 days of
measurements. All intervals were extracted during relatively stationary wind conditions, i.e.
far from the inter-stream interaction regions, and include time series of magnetic field B(t),
velocity v(t), proton number density np(t) and proton temperature Tp(t). Five samples refer
to slow solar wind, with average bulk speed VSW � 450 km s−1, and six to fast solar wind,
with VSW � 550 km s−1. General parameters of the 11 intervals are given in Table 1.

In the next sections, we will use the Helios 2 data to characterize the statistical properties
of LET.

3. Statistical Properties of the Local Energy Transfer Rate

The statistical properties of LET can provide quantitative information as regards the char-
acteristics of the turbulent cascade occurring in the “fluid” range in solar wind plasma. For



Table 1 List of the 11 49-hour
intervals used for this work. For
each interval: the day of the year
1976 when the sample begins,
DOY; the heliocentric
distance, R; the mean speed,
VSW are indicated.

DOY R (AU) VSW (km s−1)

22 0.98 676

28 0.97 348

32 0.96 587

46 0.90 433

49 0.88 643

72 0.70 411

75 0.67 632

81 0.59 343

85 0.54 543

99 0.35 431

105 0.30 727

each of the samples indicated in Table 1, we have calculated the proxy of LET, ε�t (t), at
different time scales �t , using Equation 2 as described in Section 1. Figure 1 shows one
example of ε�t (t), at two different scales (two upper panels). The scale-dependent nature of
the signal is evident from the comparison of the two panels, and is the typical signature of
intermittency, resulting in the strongly bursty field observed at small �t . In order to compare
LET with the standard PVI, we estimated the latter, including both velocity and magnetic
structure contributions, as

PVI2
�t (t) = �B(t)2

�B2
rms

+ �v(t)2

�v2
rms

, (3)

where �Brms and �vrms indicate the standard deviation of the magnetic field and velocity in-
crements at the scale �t , computed over each interval. The main difference between the two
proxies is that, while the PVI account for the amplitude of magnetic and velocity gradients
(so being an estimate of electric current and vorticity structures), the LET carries informa-
tion on the magnetic and kinetic energy coupled to the advecting velocity field, and on the
cross-helicity coupled to the longitudinal magnetic field. Furthermore, contrary to PVI, the
LET is signed, and might contain additional information as regards the local direction of
the energy flux. Examples of PVI2

�t (t) for the same interval and for the two same scales
are given in Figure 1, in the third and fourth panels from the top. A similar scale-dependent
burstiness is observed for the PVI, although qualitative difference is present. In particular,
the LET appears burstier than PVI. For a direct visual comparison, in the bottom panel of
Figure 1 we show the two proxies at the smallest scale �t = 81 s, in a short time interval,
as to compare the correspondence of energy bursts. As is evident, there are times of good
correspondence between LET and PVI, but also times when only one of the two proxies
has one or more peaks. Figure 2 shows scatter plots of the two variables for one fast (top
panel) and one slow wind (bottom panel) interval, which demonstrates a good qualitative
agreement between them. This is confirmed by the large associated Spearman correlation
coefficient, ρS ∼ 0.9. However, it should be noticed that the correlation is less evident when
large values of ε�t and PVI�t (t) are considered, i.e. where the energy flow is larger and at the
most intense current structures. In particular, for the fast wind of DOY 85 (top panel) there
is an evident presence of points with larger ε�t and small PVI�t (t) (the isolated population
lying above the correlated points), indicating times when an enhanced energy flux does not
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Figure 1 Examples of ε�t (t) and PVI�t (t) at two different scales �t , for the slow wind interval of DOY 28.
A magnification of both proxies at the resolution scale �t = 81 s is shown in the bottom panel, for a shorter
time interval.



Figure 2 Scatter plots of
|ε�t (t)| versus PVI�t (t) at the
smallest scale �t = 81 s, for the
fast wind interval of DOY 85
(top) and for the slow wind
interval of DOY 99 (bottom). The
corresponding Spearman
correlation coefficients ρS are
indicated.

necessarily correspond to comparably strong current sheets. This effect is still present, but it
is less relevant in slow wind intervals, where the smaller correlations between velocity and
magnetic field reduce the difference between the two proxies.

In order to fully describe the statistical properties of the two proxies, we compute for each
interval the probability distribution function (PDF) of both variables, at different scales. For
the LET, we show the distribution P (|ε�t (t)|), having verified that the positive and negative
parts of the variable have very similar statistics. Figure 3 illustrates the difference between
the two proxies. It can be noted that at large values the functional form of the PDFs of the
two proxies change. Although most of the data are in the core of the distribution (small
values), the interesting large bursts represented in the right tails are particularly relevant
for this work. Both proxies clearly show scale-dependent PDF, with the typical increase of
the tails as the scale decreases, indicating the increasing presence of bursts of energy trans-
fer (Sorriso-Valvo et al., 2015), typical of intermittency. The scaling behavior of the PDFs
of |ε�t | and PVI�t (t) can be described through standard models of the turbulent cascade.
The distribution of |ε�t | appears to be a stretched exponential function (Sorriso-Valvo et al.,
2015)

P
(|ε�t |

) ∼ exp
(−b|ε�t |c

)
, (4)

where b is a parameter related with the most probable value of the distribution, and
c ≡ c(�t) describes the shape of the curve. In particular, for c = 2 a Gaussian PDF is



Page 8 of 16 L. Sorriso-Valvo et al.

Figure 3 Examples of PDFs of
|ε�t (t)| (top panel) and
PVI�t (t) (bottom panel) at three
different scales �t , for the fast
wind interval of DOY 22. The
error bars are obtained by
propagating the standard Poisson
statistical uncertainty of each bin
count.

obtained, while c = 1 corresponds to an exponential distribution. Values 0 < c < 1 are asso-
ciated with distribution whose tails can be more and more approximated by power laws as c

decreases. The stretched exponential distribution can be interpreted in the framework of the
extreme deviations theory (EDT) applied to the fragmentation process occurring in the tur-
bulent cascade, and more specifically when the statistics is controlled by a small number of
extremely intense events (Frisch and Sornette, 1997). As turbulence is intermittent, this con-
dition applies when the scale decreases, and EDT can be invoked to describe the statistics.
Moreover, the PDF tail’s “flatness” can be quantitatively represented through the parameter
c, so that smaller c corresponds to higher-tailed distributions and then to a higher probabil-
ity of occurrence of extreme intense events. Thus, this is the most relevant scale-dependent
parameter to describe the intermittency of the system.

The fit of P (|ε�t |) at one time scale for the interval of DOY 22 is displayed in the top
panel of Figure 4. Similar fitting quality is achieved for all scales and all datasets. For each
data interval, it is thus possible to describe the scale dependence of P (|ε�t |) through c(�t).
The top panel of Figure 5 shows one example of scaling of c(�t) for the same interval. In
the same plot, the vertical bar indicates the turbulence correlation time estimated for this
interval, τc ∼ 1000 s (Bruno et al., 2009). Note that time scales smaller than the correlation
time lie in the inertial range, while larger time scales are often associated with the 1/f spec-
tral region (Bruno and Carbone, 2013). A double power-law scaling c(�t) ∼ �tγ is evident.
Indeed, the break occurs near the correlation time, so that the scaling exponent γ is different
for the inertial range and for the 1/f range. Power laws are often associated with the pres-



Figure 4 Examples of fitted
PDF of |ε�t (t)| for the fast wind
interval of DAY 22 (top panel)
and PVI�t (t) for the fast wind
interval of DOY 32 (bottom
panel) at the smallest time scale
�t = 81 s. The error bars are
obtained by propagating the
standard Poisson statistical
uncertainty of each bin count.

ence of correlations between bursts, indicating the presence of a non-stochastic process. The
values found from power-law fits are γkol = 0.076 ± 0.01 and γ1/f = 0.30 ± 0.02. Accord-
ing to EDT, γ may be inversely proportional to the typical number of fragmentation steps
Nc occurring during the cascade. Therefore, larger γ values are associated with a smaller
number of steps in the cascade. For the example given here Nc 
 12 in the inertial range,
while Nc 
 3 in the 1/f range. Although the EDT model might not be fully adapted to de-
scribe solar wind turbulence, it allows us to estimate the properties of intermittency based
on the dissipation, at variance with standard approaches based on the field increments (PVI
being an example of the latter). Moreover, the appearance of a power law in the scaling of
the parameter c in the inertial range is indicative that |ε�t (t)| is a suitable variable for the
description of the turbulent cascade.

On the other hand, as shown in the bottom panel of Figure 4, the PVI distribution can be
well described by a log-normal function:

P (PVI�t ) = 1

(
√

2πλPVI�t )
e− log(PVI�t−〈PVI�t 〉)2/2λ2

, (5)

where 〈PVI�t 〉 is the mean of PVI at the scale �t and λ ≡ λ(�t) is its scale-dependent vari-
ance, which determines the width of the distribution. The log-normal statistics of PVI can be
naively understood in terms of the multiplicative process underlying the intermittent turbu-
lent cascade (Frisch, 1995): at each position, for a given scale, the field increment is the result



Page 10 of 16 L. Sorriso-Valvo et al.

Figure 5 Examples of scaling of
the fitting parameters c(�t) for
the fast wind interval of DOY 22
(top panel) and λ(�t) for the fast
wind interval of DOY 32 (bottom
panel), obtained from the fit of
the PDFs of |ε�t (t)| and
PVI�t (t), respectively. The
vertical dashed line indicates the
turbulence correlation scale for
those intervals (Bruno et al.,
2009). For the parameter c, two
power-law fits are also
superposed. The scaling
exponent is γkol = 0.076 ± 0.01
in the inertial range
(corresponding to Nc 
 12 steps
in the intermittent cascade) and
γ1/f = 0.30 ± 0.02 in the 1/f

range (corresponding to only
Nc 
 3 steps in the cascade, if
any exists). In both panels, error
bars represent the uncertainty of
the parameters obtained from the
χ2 minimization of the fitting
procedure.

of all the previous fragmentation steps, which can be expressed in terms of multiplicative
random factors. After a large number of fragmentations, the logarithm of the field increment
will be the sum of the logarithms of randomly distributed multiplicative factors, so that the
central limit theorem applies and the final log(PVI) value will obey Gaussian statistics. The
fitting procedure provides, again, a quantitative estimation of the non-randomness of the
fields, in terms of the presence of high tails. The parameter λ(�t) controls the width of the
distribution, so that, for larger λ, the distribution is broader, and the tails include the increas-
ingly larger bursts of PVI�t (t) arising at small scales because of intermittency. As for the
stretched exponential parameter c(�t), the decrease of the parameter λ(�t) with the scale,
shown in the bottom panel of Figure 5 for DOY 32, suggests the non-self-similar nature of
the fluctuations, although a clear power law is not identified in this case. This confirms that
a common mechanism, the nonlinear energy cascade, underlies the generation of the energy



bursts in the turbulent field. Note that a similar scale dependence of the distributions was ob-
tained analyzing the coarse-grained energy dissipation in MHD numerical simulations, and
a proxy of dissipation, similar to PVI, in solar wind data (Zhdankin, Boldyrev, and Chen,
2016).

Finally, the estimation of a proxy for the local energy transfer rate permits the study of the
multifractal properties of the turbulent cascade, which are related to intermittency (Frisch,
1995). In the framework of the multifractal cascade models, the energy dissipation rate
should be distributed in space as a multifractal object (Paladin and Vulpiani, 1987). Thus,
the inhomogeneous character of the time series ε�t (t) highlighted by our analysis can be in-
terpreted in terms of the multifractal properties of the field. It is therefore interesting to use
this approach to characterize the degree of intermittency of the solar wind data, as opposed
to the standard approach based on the scaling properties of velocity and magnetic field in-
crements (Burlaga, 1992; Macek, 2006; Macek, Wawrzaszek, and Carbone, 2011). In order
to do so, we have evaluated the multifractal spectrum of the proxy (|ε�t (t)|), estimated at
the resolution scale �t = 81 s, using a standard box-counting procedure (see for example
the details given in Macek, Wawrzaszek, and Carbone, 2011; Sorriso-Valvo et al., 2017).
The presence of singular structures (e.g. the bursts of local energy transfer rate) is revealed
by the power-law scaling of the qth order partition functions (χq(δt) ∝ δtτq ) of a suitably
defined coarse-grained probability measure associated to the LET, for each scale δt . Note
that δt is the time scale over which the coarse graining is computed and is not related to the
scale �t used for field increments computation. The set of scaling exponents (τq ) describes
the inhomogeneity of the singularity strength, and thus the multifractal properties of the
field (Frisch and Parisi, 1983). In particular, the exponents are expected to depend linearly
on the order q for mono-fractal objects, where only one singularity exponent is present. On
the contrary, deviation from linearity indicates multifractality, i.e. a broader set of singu-
larity exponents (Grassberger and Procaccia, 1983). Such deviation can be estimated using
theoretical models, e.g. the p-model (Meneveau and Sreenivasan, 1987), which is the one
adopted in this work. The p-model was originally developed for the description of the energy
cascade in Navier–Stokes turbulence. It is a simple representation of the cascade in which
the energy at one given position and scale is redistributed unevenly to two smaller scale (or
“daughter”) structures. The fraction of energy transferred at each step to each daughter struc-
ture is given by a cascade of multipliers randomly extracted from a binomial distribution,
i.e. p or 1 −p, where 0 ≤ p ≤ 0.5 is the parameter that determines the characteristics of the
cascade. In this simplistic view, the scaling exponents τq are directly related to the value of
p through τq = − log2[pq + (1 − p)q] (Meneveau and Sreenivasan, 1987). The parameter
p is thus a good quantitative measure of the deviation from self-similar (or fractal) scaling,
i.e. of the degree of multifractality of the system. In particular, p 
 0.5 is an indication of
mono-fractal fields, while smaller values are associated with greater multifractality.

For each solar wind |ε�t (t)| sample, the probability measures and their partition functions
χq(δt) have been computed, for q ∈ [−3,3] with step dq = 0.05. The values of τq have
then been evaluated by a fit of the partition functions to power laws, in the range δt ∈
[162,2000] s. Then the exponents τq have been fitted to the p-model and the parameter p has
been estimated. In Figure 6 we show one example of the scaling exponents τq for DOY 22.
A fit with the p-model is also indicated. The values of p obtained for all intervals lie in the
range 0.8 ≤ p ≤ 0.9, and they are compatible with the usual strong intermittency parameters
obtained using the fields increments (Horbury et al., 1997; Sorriso-Valvo et al., 2017). Thus,
the strong intermittent character of the field is well captured by such a multifractal analysis,
based on a simple multiplicative model.
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Figure 6 Scaling exponents τq
(symbols) for the Helios 2
interval of DOY 22 with the
p-model fit (red line). For the
interval in this example,
p = 0.87.

4. Conditioned Analysis of Temperature

After describing the general statistical properties of the LET, it is interesting to point out its
relationship with solar wind temperature. To this aim, the same analysis carried out by Os-
man et al. (2012) has been performed on Helios 2 data using both the PVI and the LET at
the resolution scale �t = 81 s, for the localization of the small-scale structures. In this case,
all 11 intervals were analyzed together, in order to increase the statistical significance of the
conditioning procedure. For this reason, for each sample the temperature time series was
previously normalized to its mean value, allowing the comparison between different helio-
centric distances and different wind type. Upon identification of five incremental thresholds
of the PVI values, and ten (five positive, five negative) of the LET, the conditioned average
proton temperature has been estimated as a function of the distance D from each PVI or LET
structure, i.e. where their values overcome a given threshold, θPVI and θε , respectively. This
procedure provides the secular temperature profile around structures, 〈Tp|θPVI〉 and 〈Tp|θε〉.
Figure 7 shows these temperature profiles as a function of the distance D from the structures,
conditioned to the indicated thresholds θε (coded in different colors and symbols). Note that
all the curves have been arbitrarily shifted vertically for clarity. While the low-threshold
curve (θε = 1) is approximately constant (no local temperature increase), there is a striking
evidence of temperature increase localized near the energetic LET structures, which is more
evident as the conditioning value of ε�t is increased. In particular, for (θε = 5) the amplitude
of the central peak indicates approximately 8% higher temperature where the energy trans-
fer rate is higher. Such evidence results from the robust presence of hotter plasma near the
structures, whereas the random fluctuations of the temperature are statistically canceled out
far from these. There is also the appearance of a typical size of the higher-temperature site,
which is approximately 160 s around the structure. This might depend on the scale under
study, so that a deeper analysis is left to an investigation in progress, based on higher reso-
lution data. For the data associated with negative energy flux (lower part of the panel), the
temperature profile has an evident threshold-dependent, incremental decrease approaching



Figure 7 Conditionally
averaged normalized temperature
〈Tp |θε〉 as a function of the
distance from the structure
center, for different positive and
negative values of the threshold.
All curves are arbitrarily
vertically shifted for clarity.

the structure, suggesting that whenever the energy flows from smaller to larger scale, the
plasma is heated less than on average. This effect is less localized than the possible heating
observed at positive ε�t (t), and may be similar to the effect observed by Osman et al. (2012)
for low PVI data. Therefore, it is evident that there is a strong localization of higher plasma
temperature near the sites of larger energy flux towards the small scales, possibly associated
with local plasma heating, while the times with larger, negative energy flux are associated to
colder plasma. For comparison, the same analysis was carried out using PVI, i.e. repeating
the Osman et al. (2012) procedure, and it is depicted in Figure 8. In this case, indication of
higher temperature at the PVI structures is strongly reduced with respect to LET.

The discrepancy between LET and PVI conditioning is related to the difference, already
observed in Figure 2, between the two proxies for large values, which are the most relevant
for this analysis. The better performance of the LET shows that it is a more sensitive proxy,
able to highlight the possible turbulent heating properties even when using a limited size
dataset.

5. Conclusions

Unveiling the connection between the processes occurring at fluid scales and at kinetic scales
ranges is important to understand how weakly collisional space plasmas dissipate the energy
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Figure 8 Conditionally
averaged normalized temperature
〈Tp |θPVI〉 as a function of the
distance form the structure
center, for different positive
values of the threshold. All
curves are arbitrarily vertically
shifted for clarity.

cascading from large to small scales. In particular, the solar wind represents an example of a
collisionless plasma with a clear indication of heating due to turbulent energy dissipation. At
the same time, it has the important advantage of the availability of in situ measurements, at
variance with other astrophysical plasmas. In this article we have presented one possible tool
for the identification of the local transfer of turbulent energy across scales, the LET ε�t (t),
based on the third-order moment scaling law for MHD turbulence (Politano and Pouquet,
1998). This proxy differs from the usual tools such as LIM and PVI, as it includes, besides
the direct kinetic and magnetic energy contributions, also cross-terms representing for ex-
ample the cross-helicity contribution. The statistical analysis of the proxy provides insight
into the scaling properties of the turbulent cascade, consistent with the standard turbulence
analysis of solar wind plasmas. We have used Helios 2 data to describe the properties of LET
as compared to the PVI. Good correlations are found between PVI and LET, confirming that
both indicators are suitable for the description of the turbulent cascade of energy. However,
for large energy flux important differences arise. Moreover, the signed variable ε�t (t) car-
ries information as regards the possible direction of cross-scale energy flow, which is hidden
in the positive-defined variables LIM and PVI. This could be useful for better understanding
the coupling mechanisms occurring near the MHD break scale. The study of this particu-
lar aspect is being addressed in a different work. The LET has also been studied through
multifractal analysis based on the dissipation, rather than on the field increments. Such an
alternative analysis has confirmed the highly intermittent character of solar wind MHD tur-
bulence. Finally, a convincing correspondence between times of enhanced energy transfer
rate and local temperature increase has been clearly demonstrated, indicating that LET is
a useful tool for the identification of regions of interest for the study of turbulent energy
dissipation.

Because of its ability to track the link between the two ranges of scales, the LET could
be useful for interpreting data from numerical simulations of the Vlasov–Maxwell system
for the description of kinetic processes in collisionless plasmas. Similarly, it could have
important implications for the analysis and interpretation of data from space missions pro-
viding high-resolution plasma measurements, such as MMS (Burch et al., 2016) and the
ESA candidate mission THOR (Vaivads et al., 2016), but also for the forthcoming Parker
Solar Probe (Fox et al., 2016) and Solar Orbiter (Müller et al., 2013).
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