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Abstract. The passage to a second generation of broadcasting Single
Frequency Networks has generated the need for reconfiguring and re-
designing existing networks. In this work, we present a robust optimiza-
tion model for the green design of such networks based on the digital tele-
vision DVB-T2 standard. Our robust model pursues protection against
uncertainty of signal propagation in a complex real-world environment.
As reference model, we adopt Multiband Robustness and we propose
to solve the resulting model by a hybrid metaheuristic that combines
mathematically strong formulations of the optimization model, with an
exact large neighborhood search. We report computational tests based on
realistic instances, showing that the multiband model grants highly pro-
tected solutions without reducing service coverage and without leading
to a high price of robustness.

Keywords: Green Telecommunications Networks · Robust Optimiza-
tion · Hybrid Metaheuristics

1 Introduction

Smart cities are nowadays enjoying a wide range of brand new telecommuni-
cation services enabled by last generation 5G networks [20]. However, within
this ultramodern context, older and more traditional broadcasting services like
television and radio are still considered critical by many governments, since they
support a cheap, easy and democratic access to information to all the population.
A very important advancement in offering broadcasting services of higher quality
has been represented by the switch from analogue to digital transmission, which
has allowed to implement the paradigm of Single Frequency Networks (SFNs).
An SFN is a broadcasting network in which all transmitting stations emit the
same data on the same frequency. This allows to improve spectrum usage, a
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very important goal considering that radio resources are scarce and that the
expansion of telecommunications services has rapidly lead to the congestion of
frequencies (see e.g., [14]). Major examples of SFNs are represented by Digital
Video Broadcasting - Terrestrial (DVB-T) networks, which broadcast television
content in a digital format and are based on the DVB-T standard adopted in
more than 140 countries worldwide [14]. In the last years, SFNs have gained
new attention because of the release of a second generation of standards like
DVB-T2. The new standards offer higher performance, by supporting improved
modulation scheme. Moreover, thanks to an improved spectrum efficiency, they
enable a higher number of broadcasting operators to operate simultaneously.
The entrance of new operators and the need for reconfiguring older networks
have renewed the interest in software for designing SFN networks, in particular
those exploiting mathematical optimization models and algorithms.

In this work, we address the question of developing a robust optimization
model for designing DVB-T2 networks while taking into account the uncertainty
that naturally affects wireless signal propagation. Specifically, our original con-
tributions are:

1. We present a binary linear programming robust counterpart based on signal-
to-interference formulas, which is typically adopted to represent DVB-T de-
sign. The counterpart is defined according to the principles of Multiband
Robust Optimization [6], a refined version of the classical Γ -Robust Opti-
mization model by Bertsimas and Sim [4], which has been widely used to
deal with data uncertainty in optimization problems (see e.g., [2, 3]).

2. Since the resulting robust optimization model may result very challenging
even for a state-of-the art optimization software like IBM ILOG CPLEX,
we define a hybrid metaheuristic for its solution, proposing to combine a
probabilistic variable fixing procedure with an exact large variable neighbor-
hood search. The probabilistic fixing exploits the precious information that
can be derived from a tight linear relaxation of the MILP model adopted to
represent the DVB-T design problem, whereas the exact search consists of
exploring a solution neighborhood formulating the search as an optimization
problem that is solved at the optimum.

3. We highlight the performance of our new modelling and algorithmic ap-
proach by means of tests conducted on realistic DVB-T instances, showing
the superior performance of the multiband approach with respect to both a
benchmark robust and deterministic model.

We remark that, while the deterministic (i.e., not considering data uncer-
tainty) optimal design of wireless networks based on signal-to-interference ratios
has received wide attention, the use of optimization under uncertainty tech-
niques, such as Robust Optimization and Stochastic Programming, has received
less attention and has especially considered the effects of traffic uncertainty This
is also true for the case of DVB-T, in which optimization approaches have ne-
glected data uncertainty (e.g., [10,11,16,18]). To the best of our knowledge, this
is the first work that discusses the adaption of a robust optimization approach
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to DVB-T and presents a hybrid metaheuristic for the solution of the resulting
complex problem.

2 Optimal SFN design

To derive an optimization model, we refer to an SFN network based on the DVB-
T standard: in such network, all broadcasting stations synchronously transmit
identical data on the same frequency channel according to the OFDM modu-
lation scheme [14]. Broadcasting services are spread over a target territory to
reach the receiving devices of a population. Following the recommendations of
telecommunications regulatory bodies (e.g., [1,15]), we discretize the target ter-
ritory into a raster of pixels: each pixel represents a fragment of territory so
small that the signal strength measured at its center (testpoint) can be consid-
ered representative for the strength of signals in any other point of the pixel. If
we denote by S the set of broadcasting stations and by T the set of testpoints,
the network design problem can be essentially described as that of i) setting
the power emission of every station and b) selecting the serving station of each
pixel/testpoint, with the objective of minimizing the total emitted power (green
perspective) under the condition of granting service to a given fraction of the
people located in the target territory.

The previous problem belongs to the family ofWireless Network Design Prob-
lems (e.g., [11, 18]) and, in particular, it constitutes a variant of the Scheduling
and Power Assignment Problem, known to be NP-Hard [7, 18]. We can model
the two decisions taken in the considered problem by means of two sets of binary
variables, namely:

– to represent the power emission of a station s ∈ S, we introduce a set of
equally spaced discrete power values P = {p1, p2, . . . , pn} on which each
station may emit. We also introduce the set L = {1, 2, . . . , n} to represent
the index of the discrete power values, which we call power levels. Given
the set P , we introduce a set of binary variables ys` ∈ {0, 1} to represent
whether a station s ∈ S emits on power value p` ∈ P , such that ys` = 1 when
s emits on p` and ys` = 0 otherwise (in what follows, we also alternatively
write that a station s ∈ S emits on power level ` ∈ L).

– to represent whether a testpoint t ∈ T is served by a station s ∈ S, we
introduce a binary variable xts ∈ {0, 1} such that xts = 1 when t is served
by s and xts = 0 otherwise.

Canonically, in order to assess the coverage of a testpoint, it is evaluated the
ratio of the total useful signal (i.e., the sum of signals from stations that con-
tribute to increase the quality of service) to the total interfering signal (i.e.,
the sum of signals from stations that contribute to decrease the quality of
service), leading to the definition of the so-called Signal-to-Interference Ratio
(SIR) [19]. In the case of DVB-T-based networks, a testpoint picks up signal
from all stations and the distinction between useful and interfering signals de-
pends upon whether the signals are received within a detection time interval of
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the receiver/testpoint [14, 17, 18]. For practical modelling purposes, the detec-
tion window of a testpoint t ∈ T is considered starting when the signal of its
serving station s ∈ S is received: the set of useful stations U(t, s) and the set
of interfering stations I(t, s) then clearly depends upon the station s chosen as
server of t. We remark that the sets U(t, s) and I(t, s) constitute a partition of
the set of stations S and that, in general, changing server of a testpoint implies
that the sets U(t, s) and I(t, s) change as well. The power Pts that a testpoint
t ∈ T receives from a station s ∈ S is proportional to the power Ps emitted by
s by a coefficient ats ∈ [0, 1], (thus, Pts = ats · Ps), which is commonly called
fading coefficient and represents the reduction to which a signal is subject while
propagating from its emitter s to its receiver t [19].

We now proceed to formally define the SIR formulas, which are at the basis
of the optimization model for designing the considered SFN network based on
DVB-T. For a testpoint t, served by station s, the SIR is written as follows:

SIRts =

∑
σ∈U(t,s) aσt ·

(∑
`=1,...,n p` · yσ`

)
N +

∑
τ∈I(t,s) aσt ·

(∑
`=1,...,n p` · yσ`

) ≥ δ

in which i) N > 0 is the noise of the system, ii) δ > 0 is the minimum SIR
value requested for considering the tesptpoint served, iii) the power emitted by
a station σ ∈ S is expressed by the combination of the power values p` by the
corresponding binary power activation variable yσ` (i.e.,

∑
`=1,...,n p` · yσ`). The

SIR lies at the core of every wireless network design problem and for the specific
case that we consider, the model is:

min
∑
s∈S

 ∑
`=1,...,n

p` · ys`

 (1)

∑
σ∈U(t,s)

aσt ·

 ∑
`=1,...,n

p` · yσ`

− δ ∑
τ∈I(t,s)

aσt ·

 ∑
`=1,...,n

p` · yσ`

+

+M(1− xts) ≥ δ ·N t ∈ T, s ∈ S
(2)∑

`=1,...,n

ys` = 1 s ∈ S

(3)∑
s∈S

xts ≤ 1 t ∈ T (4)

∑
t∈T

∑
s∈S

πt · xts ≥ α ·
∑
t∈T

πt (5)

ys` ∈ {0, 1} s ∈ S, ` ∈ L .
(6)

xts ∈ {0, 1} t ∈ T, s ∈ S .
(7)

in which, a) the objective function (1) pursues the minimization of the total
power emission; b) the quality-of-service conditions are expressed by the SIR
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formulas (easily reorganized by simple algebra operations) and including the
big-M term M(1 − xts) to activate or deactivate the constraint depending on
whether testpoint t is served by station s (see [10,11] for details); c) constraints
(3) imposes that each station emits by exactly one power value whereas (4)
imposes that each testpoint is served by at most one station. The constraints
(5) impose that at least a fraction α ∈ [0, 1] of the total population of the region
must be covered with service (in the left-hand-side, each service decision variable
is multiplied by a coefficient πr that equals the population of the pixel associated
with receiver r, while in the right-hand-side the total sum of the population over
all the pixels is multiplied by the value α). Finally, (6) and (7) are the decision
variables previously defined.

3 Protecting against propagation uncertainty

The fading coefficients ats that are part of the SIR constraints (2) are naturally
subject to uncertainty because of the wide range of factors that influence signal
propagation in a real environment (e.g., landscape, obstacles, weather, etc.) and
that are hard to precisely assess [19]. These coefficients are commonly computed
by (empirical) propagation models that, using extensive field propagation mea-
surements, provide a formula for computing the coefficient values on the basis of
factors like the distance between the communicating points, the portion of the
spectrum adopted for transmissions, and the characteristics of the propagation
environment (e.g., with many obstacles like tall buildings or in line of sight). As
well-known by telecommunication professionals, the actual propagation values
may be sensibly different from the values returned by the propagation models
and it is thus very important to protect design solutions from possible fluctua-
tions in these values.

Since the fading coefficients constitute uncertain data, i.e. data whose value is
not exactly known when the problem is solved, we protect against fluctuations in
their value that could cause infeasibility or sub-optimality of produced solutions
by Robust Optimization (RO). RO is one of the most successful methodology for
protecting against data uncertainty optimization and is based on the following
main assumptions [3]:

– the actual value of each uncertain coefficient is unknown to the decision
maker;

– the decision maker has at disposal a nominal value of each uncertain coeffi-
cient, representing an estimation of its actual value;

– deviations against which solutions must be protected are specified by an
uncertainty set ;

– the problem that is solved is a robust counterpart, a modified version of
the original deterministic problem, including only robust feasible solutions,
namely solutions that remain feasible for all the deviations values of the
uncertainty set applied to the nominal values;

– a robust optimal solution offers the best objective value under the worst data
deviations;
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– since the robust counterpart excludes a subset of feasible solution of the
deterministic problem, the robust feasible set is a subset of the deterministic
feasible set; as a consequence, a robust optimal solution grants protection
against deviations, but generally presents a worse value than a deterministic
optimal solution. This reduction in optimality constitutes the so-called price
of robustness [4].

As Robust Optimization model, we propose here to adopt Multiband Ro-
bust Optimization (MB) introduced in [6] to generalize and refine classical Γ -
Robustness [4]: MB uses multiple deviation bands for better modeling arbitrary
discrete distributions, under the form of histograms, which are commonly con-
sidered by professionals to analyze deviations in the input data in real-world
optimization problems (as also illustrated in [2]). As basis, we assume that the
actual value of a generic uncertain fading coefficient ats belongs to the symmet-
ric interval [āts − dts, āts + dts] (here, āts is the nominal value of the uncertain
coefficient, while dts is its maximum allowed deviation). Practically, āts could
be the value provided by a propagation model, while dts could be set as the
maximum deviation that the network planner wants to consider according to its
risk aversion. Following the principles of MB, for the uncertain fading coefficient
we define the following Multiband Uncertainty Set (MBUS):

1. we partition the overall deviation range [−dts, dts] into K bands, defined on
the basis of K deviation values:
−dts = dK

−

ts < · · · < d−1ts < d0ts = 0 < d1ts < · · · < dK
+

ts = dts;
2. through these deviation values, K deviation bands are defined, namely: a set

of positive deviation bands k ∈ {1, . . . ,K+} and a set of negative deviation
bands k ∈ {K− + 1, . . . ,−1, 0}, such that a band k ∈ {K− + 1, . . . ,K+}
corresponds to the range (dk−1t , dkt ], and band k = K− corresponds to the
single value dK

−

t . Note that K = K+ ∪K−;
3. we define a lower and upper bound on the number of values that may expe-

rience a deviation of value in each band: for each band k ∈ K, two bounds
lk, uk ∈ Z+: 0 ≤ lk ≤ uk ≤ |T | · |S| are introduced. Furthermore, the num-
ber of coefficients that may deviate in the zero-deviation band k = 0 is not
limited (i.e., u0 = |T | · |S|) and we impose that

∑
k∈K lk ≤ |T | · |S|, so as

to ensure that there exists at least one feasible assignment of coefficients to
deviations bands.

An MB uncertainty set is particularly suitable for modelling histograms. Fur-
thermore, it also considers bands associated with beneficial and non-adversarial
deviations: this is done since, in real-world applications, our main objective is
to be protected against adversarial data deviations that lead to infeasibility, but
at the same time we want to take into account also beneficial deviations which
may take place and compensate the adversarial deviations, therefore reducing
the price of robustness.

The linear robust counterpart of an uncertain SIR constraint defined for a
couple (s, t) is obtained according to the theoretical results of Multiband Ro-
bust Optimization (in particular Theorem 1 of [6] about the mathematical form
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of a linear and compact multiband robust counterpart). Specifically, the sin-
gle deterministic SIR constraint (2) of (s, t) is replaced by the following set of
constraints:

∑
σ∈U(s,t)

atσ ·

 ∑
`=1,...,n

p` · ys`

− δ ∑
σ∈I(s,t)

atσ ·

 ∑
`=1,...,n

p` · ys`

−(∑
k∈K

θkts · wkts

+
∑
s∈S

zts

)
+M(1− xts) ≥ δ ·N (8)

wkts + zts ·

 ∑
`=1,...,n

p` · ys`

 ≥ dkts
 ∑
`=1,...,n

p` · ys`

 k ∈ K

(9)

wkts ≥ 0 k ∈ K
(10)

zts ≥ 0 (11)

which includes the additional constraints (9) and variables (10), (11) to linearly
reformulate the original (non-linear) robust SIR constraints.

The robust optimization problem that we consider and that we denote by
Robu-DVB-MILP is obtained by DVB-MILP substituting each SIR constraints
with (8) and the auxiliary dual constraints and variables (9), (10), (11).

4 A hybrid solution algorithm

The previous robust problem results challenging to be solved even for a state-
of-the-art optimziation solver like CPLEX, especially because of the presence
of the complicating (robust) SIR constraints. To solve it, we thus propose a
hybrid metaheuristic that combines heuristic exploration of the feasible set with
the adoption of exact optimization methods (i.e., guaranteeing convergence to an
optimal solution) for suitable subproblems of the complete problem. Specifically,
we propose a metaheuristic that follows the algorithmic principles presented
in [9, 12], to which we refer the reader for more details. It is mainly based on a
probabilistic variable fixing procedure integrated with an exact large neighborhood
search.

The probabilistic fixing procedure combines an a-priori and an a-posteriori
fixing measures. In our case, the a-priori measure is provided by a linear relax-
ation of the robust model (model (1)-(7) with SIR constraints (2) replaced by
(8)-(11)), denoted by Robu-DVB-MILP, while the a-posteriori measure is given
by a (tighter) linear relaxation of the model (1)-(7), denoted by DVB-MILP
(where a subset of variables has been fixed in value). At the end of each cycle
of variable fixing, the a-priori fixing measure is updated, evaluating how good
were the applied fixing. Once a time limit is reached, the fixing cycle stops and
an exact large neighborhood search is executed for trying to improve the best
solution found.
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In the probabilistic fixing procedure, a number of solutions are built itera-
tively: at every iteration, a partial solution (i.e., a solution where only a subset
of variables has its value fixed) is available and we can fix the value of an ad-
ditional variable. Once the value of all the variables has been fixed, we obtain
a complete solution whose quality is evaluated by means of its objective value.
The fixing procedure is based on the observation that once the power emission
variables have been fixed in value, it is possible to easily check which testpoints
are covered with service by some station and compute the value of the objective
function. We thus base the fixing procedure on deciding the values assumed by
the power variables. At a generic iteration of the construction cycle of a feasi-
ble solution, we have at disposal a partial solution to the problem (obtained by
having chosen the power emissions of a subset of stations SFIX ⊆ S by fixing
their variables ysl while respecting (3)). We probabilistically choose the next
station whose power emission is fixed by means of the following formula, defined
∀s ∈ S\SFIX, l ∈ L:

psl =
α τsl + (1− α)ηsl∑

s∈S\SFIX

∑
λ∈L[α τσλ + (1− α) ησλ]

, (12)

which expresses the probability of fixing the power emission of station s ∈
S\SFIX to power level Pl by considering all the couples σ ∈ S\SFIX, λ ∈ L
of stations whose emission is not yet fixed. In the formula, τsl is the a-priori
attractiveness measure obtained from the optimal value of Robu-DVB-MILP in-
cluding power-indexed variables, while ηsl is given by the value of a tight linear
relaxation of DVB-MILP including fixing of variables done in previous iterations.
The two measures are combined by a coefficient α ∈ [0, 1]. After having fixed
ysl = 1 for some couple (s, l), because of constraint (3) we can set ysλ = 0 for
all λ ∈ L : λ 6= l.

After having defined the power emissions of all stations (assume this is de-
noted by a binary power vector ȳ), all the SIR ratios can be easily computed. On
the basis of the value of these ratios, we can also easily check which testpoints
are covered with service and thus derive a valorization of the server assignment
variables x̄. The resulting solution (ȳ, x̄) which is feasible for DVB-MILP is ac-
cepted as robust when it maintains its feasibility also when the fading coefficients
are deviating to their worst value.

Once a round of construction of feasible solutions has been operated, the
a-priori measures are updated using the following formula:

τsl(h) = τsl(h− 1) +

γ∑
SOL=1

∆τSOL
sl

∆τSOL
sl = τsl(0) ·

(
OG(vAVG, u)−OG(vSOL, u)

OG(vAVG, u)

)
(13)

where τsl(h) is the a-priori measure of fixing station s at power level Pl at
the h-th execution of the cycle and ∆τSOL

sl is the modification to the value of
the a-priori measures, computed over a summation that considers the last γ
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solutions that have been constructed. Moreover, u is an upper bound on the
optimal value of the problem, vSOL is the value of the SOL-th feasible solution
built in the last construction cycle, vAVG is the average of the values of the last
γ solutions that have been constructed. The optimality gap OG(v,u) measures
how far is the value v of a solution from the upper bound u and is defined
as OG(v, u) = (u − v)/v. The role of formula (13) is to update the a-priori
measure rewarding (penalizing) those fixing that have lead to a solution with
lower (higher) optimality gap in comparison to the moving average value vAVG.

At the end of the construction cycle, with the aim of improving the best
robust solution found, an exact neighborhood search is conducted, i.e. we explore
a (very large) neighborhood of the best solution, formulating the search as an
optimization problem which is optimally solved by a state-of-the-art solver (see
e.g., [5,13]). The adoption of exact searches is motivated by the fact that, while
it can be difficult and long for a solver to solve the complete problem, it is
instead possible to efficiently solve to optimality some subproblems. The large
neighborhood that we define is built from a robust solution (ȳ, x̄) allowing to
change the power emission of all stations by either 1) turning off a station s
(i.e., setting ys0 = 1 or 2) allowing a modification of the power emission to the
adjacent power level set by ȳ (i.e., if ysl = 1 then it is allowed to set ysl−1 = 1
or ysl+1 = 1. The exact search is then conducted by expressing the previous
conditions as linear constraints that are added to Robu-DVB-MILP and the
resulting problem is solved by an exact solver.

The pseudocode of the matheuristic for solving Robu-DVB-MILP is pre-
sented in Algorithm 1. The first step consists of solving the linear relaxation of
Robu-DVB-MILP including the power fixing of each couple (s, l) with s ∈ S
and l ∈ L. The obtained optimal values are employed to initialize the a-priori
measures τsl(0). Then a solution construction cycle is executed until reaching a
time limit. In each execution of the cycle, a number of feasible solutions are built
first by fixing the power emission binary variables through formula (12), then
deriving the corresponding valorization of variables x and finally checking their
robustness. At the end of each execution of the cycle, the a-priori measures τ are
updated on the basis formula (13). As last step, once the construction time limit
is reached, the exact large neighborhood search is conducted, using as basis the
best robust feasible solution defined during the construction cycle.

5 Preliminary computational results

The robust optimization approach was tested on 15 instances including realistic
data defined from regional DVB-T networks deployed in Italy, including up to
about 300 stations and 4000 testpoints. The revenue associated with covering
a testpoint is represented by the population of the testpoint, so, in what fol-
lows, the value of the best solution found by an algorithm is expressed as the
percentage of the population covered with service. As optimization software, we
used IBM ILOG CPLEX [8] and the algorithms were tested on a Windows ma-
chine with 2.70 GHz Intel i7 and 8 GB of RAM. The hybrid metaheuristic of
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Algorithm 1
1: compute the linear relaxation of the power-indexed version of Robu-DVB-MILP

for all ysl = 1 and initialize the values τsl(0) with the corresponding optimal values
2: let (x∗, y∗) be the best robust feasible solution found
3: while a global time limit is not reached do
4: for SOL := 1 to γ do
5: construct a feasible power vector ȳ using the probabilistic fixing formula

(12)
6: compute the set of station-testpoint couples associated with satisfied SIR

quantities and derive the corresponding x̄ vector
7: check the robustness of the feasible solution (x̄, ȳ)
8: if the coverage granted by (x̄, ȳ) is better than that of (x∗, y∗) then
9: update (x∗, y∗) with (x̄, ȳ)
10: end if
11: end for
12: update τ according to (13)
13: end while
14: execute the exact large neighborhood search using (x∗, y∗) and the modified power-

indexed version of Robu-DVB-MILP as basis
15: return (x∗, y∗)

Algorithm 1 ran with a time limit of 1 hour (50 minutes are devoted to the
solution construction and 10 minutes are reserved to the execution of the exact
neighborhood search). The parameters α and γ are set equal to 0.5 and 5, re-
spectively. The robust model takes into account a deviation range that allows
deviation up to 20% of the value of the fading coefficients and that is partitioned
into 5 deviation bands. In order to evaluate the performance of the multiband
robustness model, we considered the coverage of the population that is able to
guarantee and the corresponding Price of Robustness (PoR), which we recall to
be the reduction in solution optimality that we must pay in order to guaran-
tee protection against uncertain coefficients. We also generated 1000 scenarios
of realizations of the uncertain fading coefficients for evaluating the protection
that the best found robust solution is able to guarantee. The preliminary results
of the computational tests are presented in Table 1, where: i) ID identifies the
instance; ii) COV is the percentage coverage of the population associated with
the best solution found within the time limit and is reported for three models of
the design problem, namely Det, which is the model not considering the presence
of uncertain fading coefficient, Full, which considers the model including all the
fading coefficients set to their worst value, and Multi, which is the Multiband
Robust Optimization model; ; iii) PROT is the percentage of scenarios in which
the best solution found results feasible (specified for the three considered mod-
els); iv) PoR% is the price of robustness, expressed as percentage increase in
the total power value emitted by all stations (specified for the three considered
models).

Looking at the table, a first observation that can be made is that the per-
centage coverage granted by the solution associated with full robustness is much
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lower than those by the deterministic and multiband models (on average only an
unsatisfying 83% of the population is covered). This is not so surprising, since
imposing full robustness forces the model to take into account all worst data
deviations occurring simultaneously and this leads to a substantial shrinkage of
the feasible set and to the identification of robust solutions that are unneces-
sarily conservative (it is indeed highly unlikely that all data jointly deviate to
their worst value). In contrast, multiband robustness allows to guarantee a per-
centage coverage of the population that is very close to that of the deterministic
model (on average 96.0% granted by the deterministic model versus 95.9% of the
multiband model). This (superior) performance of the multiband model must be
observed also taking into account the protection that is offered: the multiband
model is able to offer the same full 100% protection of the full robustness model,
which is much higher than that associated with the deterministic model, whose
solutions turn out to be infeasible for about 12% of the cases. Finally, if we look
at the price of robustness, the multiband model is able to entail a percentage
increase in total power which is about halved on average with respect to full
robustness (naturally, the deterministic model is associated with null price of ro-
bustness since it does not provide any protection). Looking jointly at the three
performance indicators, multiband robustness is thus able to guarantee a full
protectiona against deviations in propagation while maintaining the same level
of coverage of the deterministic model and granting a substantial reduction in
the price of robustness with respect with the full robustness model.

As future work, we intend to widen the computational experience to a larger
set of instances, also conducting a study about the impact of parameter tuning.
Moreover, we intend to also better study the impact of different characterization
of the uncertainty set on the robustness of solutions.
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