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de Technologie de Compiègne, CNRS
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Abstract—Notwithstanding the introduction of brand new 5G-
based wireless services, single frequency networks supporting
digital television and radio broadcasting still represent a major
source of telecommunications services in modern smart cities. In
this work, we propose a robust optimization model for the green
design of second generation single frequency networks based on
the digital television DVB-T standard, whose ongoing adoption
requires to reconfigure and redesign existing networks. Our
robust model aims at protecting design solutions against the data
uncertainty that naturally affect propagation of signals in a real
environment. For reducing conservatism of solutions, we refer to
a heuristic min-max regret paradigm and to solve the resulting
problem we propose to adopt a hybrid exact-heuristic algorithm
based on the combination of an Ant Colony Optimization-
like learning procedure, exploiting tight formulations of the
optimization model, with an exact large neighborhood search.
Results of computational tests considering realistic instances show
that the heuristic min-max regret approach can produce solutions
characterized by a substantially lower price of robustness without
sacrificing protection against data uncertainty.

Index Terms—Single Frequency Networks, DVB-T, Network
Design, Robust Optimization, Metaheuristics

I. INTRODUCTION

Smart cities are nowadays enjoying a wide range of brand
new telecommunication services enabled by last generation
5G networks [10], [33], [35], [37], [39], [40]. However,
within this ultramodern context, older and more traditional
broadcasting services like television and radio are still con-
sidered critical by many governments, since they support
a cheap, easy and democratic access to information to all
the population. A very important advancement in offering
broadcasting services of higher quality has been represented
by the switch from analogue to digital transmission, which
has allowed to implement the paradigm of Single Frequency
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Networks (SFNs). An SFN is a broadcasting network in
which all transmitting stations emit the same data on the
same frequency. This allows for improving spectrum usage,
a crucial goal considering that radio resources are scarce
and that the expansion of telecommunications services has
rapidly led to the congestion of frequencies (see e.g., [21]–
[23], [26]). Major examples of SFNs are represented by DVB-
T (Digital Video Broadcasting-Terrestrial) networks, which
broadcast television content in a digital format and are based
on the DVB-T standard adopted in more than 140 countries
worldwide [22]. In the last years, SFNs have gained new
attention because of the release of a second generation of
standards like DVB-T2 [22]. The new standards supports
improved modulation scheme and offer higher performance.
In addition, thanks to an improved spectrum efficiency, they
enable a higher number of broadcasting operators to operate
simultaneously. The entrance of new operators and the need
for reconfiguring older networks have renewed the interest
in software for designing SFN networks, in particular those
exploiting mathematical optimization models and algorithms.

In this work, we focus on developing a robust optimization
model and algorithm for designing SFN networks taking into
account the uncertainty that naturally affects propagation of
signals in a real environment. Neglecting such uncertainty
may lead to critical issues, such as infeasibility and sub-
optimality of design solutions, due to unexpected deviations
of the input data representing signal propagation. We remark
that, while the deterministic optimal design (i.e., not including
the modelling of uncertainty) of SFN networks has received
substantial attention (e.g., [3], [12], [14], [19], [29], [30],
[32], [34]), the robust design based on using optimization
under uncertainty techniques has received less coverage. In
this work, we thus propose a new optimization under data
uncertainty approach based on min-max regret. Specifically,
our main original contributions are:



1) we propose a mixed integer linear programming problem
for representing a green SFN optimal design problem
with the objective of minimizing the total power emis-
sion of the transmitters, while serving a target fraction
of the population with a fixed level of quality of service;

2) we deal with the question of modelling the uncertainty
of propagation of wireless signals, proposing a min-
max regret model which offers less conservative design
solutions than a classical robust optimization techniques;

3) since min-max regret reduces solution conservatism at
the price of computational tractability, requiring the
solution of more complex optimization problems, we
propose to adopt a heuristic min-max regret solution ap-
proach, based on the identification of a peculiar median
scenario that attempts at capturing the features of all the
possible (potentially exponential) scenarios of realiza-
tions of the uncertain data. The resulting model is solved
with the support of a metaheuristic that combines an
Ant Colony Optimization-inspired learning algorithm,
based on exploiting stronger formulations available for
the model, with an exact large neighborhood search;

4) we test the performance of the heuristic min-max regret
approach on realistic DVB-T instances, showing that we
obtain a substantial reduction in the price of robustness
without reducing protection against data uncertainty.

The remainder of the paper is organized as follows: the
optimal DVB-T network design model is presented in Sect.II;
the heuristic min-max regret model is derived in Sect.III, while
Sect.IV presents the hybrid exact-heuristic ACO-inspired
learning algorithm. Finally, results of computational tests are
presented in Sect.V and conclusions are presented in Sect.VI.

II. OPTIMAL SFN DESIGN

As reference SFN network, we consider a DVB-T network
in which all the transmitters constituting the network transmit
the same data on the same frequency in a synchronized way,
by means of Orthogonal Frequency Division Multiplexing
(OFDM) [22]. The transmitters offer broadcasting services
to a region in which a number of users are located. The
users constitute the receivers of the DVB-T telecommunication
service. The task of designing the network consists of a)
setting the power emitted by each transmitter and b) choosing
the serving transmitter of each user/receiver, with the goal
of minimizing the total power emission of transmitters, while
guaranteeing service coverage to a target percentage of the
population above a given level of quality of service.

For modelling purposes, we adopt the recommendation of
international and national regulatory bodies like ITU and
AGCOM to model the region where DVB-T services are
provided through a rasterization process [1]: the region is
discretized into a grid of sufficiently small pixels and the
strength of the DVB-T signal picked up in the point at the
center of each pixel (the testpoint) is considered representative
of the strength of signal picked up in all the other points of
the pixel. Given such rasterization of the region to be covered
with DVB-T services, we identify the set of transmitters T ,

which correspond to the DVB-T transmitting stations, and the
set of receivers R, which correspond to the testpoints at the
center of the pixels identified in the region.

The optimal design of an SFN network based on the DVB-T
standard can be traced back to a family of optimization prob-
lems known as Wireless Network Design Problems (WNDPs),
in which the configuration of a set of wireless transmitting
stations must be chosen in order to provide services to users
located in a target region, (see e.g., [14], [18], [28], [32]).
Specifically, referring to the hierarchy of WNDPs, the problem
that we consider corresponds to a variant of a Scheduling and
Power Assignment Problem, which has been proved to be NP-
Hard [32].

The two kind of decisions that must be taken in the optimal
network design problem that we consider, namely choosing a
power emission for the transmitters and choosing the serving
transmitter of a receiver can be modelled by continuous and
binary decision variables, as follows:
• for each transmitter t ∈ T , a continuous variables pt ∈

[0, Pmax] is defined to represent the power emission of
the transmitter;

• for each transmitter t ∈ T and receiver r ∈ R, a binary
variable xtr ∈ {0, 1} is defined to represent the fact that
receiver r is assigned to transmitter t (specifically, xtr =
1 if r is assigned to t - we say in this case that t is the
serving transmitter of r - and xtr = 0 otherwise).

The power Ptr that a receiver r ∈ R obtains from any
transmitter t ∈ T is proportional to the power emitted by t
according to a coefficient atr ∈ [0, 1], i.e.: Ptr = atr · pt.
The coefficient atr sums up the reduction in power that a
signal suffers when propagating from t to r in a real-world
environment and commonly goes under the name of fading
coefficient (see e.g., [36]). Once clarified how power behaves,
we can proceed to discuss how signals combine when picked
up by a receiver: in an OFDM-based DVB-T system, each
receiver picks up signals from all the transmitters and their
distinction in useful signals, which contribute to increase the
quality of service, and interfering signals, which contribute to
decrease the quality of service, depends upon whether they fall
in a detection time window (see e.g., [31], [32] for details).
According to a common design practice, in our model the
detection window of a receiver starts in the instant in which the
signal of the serving station is received. This allows identifying
the useful and interfering transmitters easily once the serving
transmitter is chosen: if t is the serving transmitter of r, then
we denote by U(t, r) the set of useful transmitters and by
I(t, r) the set of interfering transmitters for receiver r (note
that in this setting a transmitter is either useful or interfering
for a receiver).

The quality of service for receiver r served by transmitter t
depends upon the Signal-to-Interference Ratio (SIR), namely
the ratio of the sum of the power of the useful signals to the
sum of the power of the interfering signals [36]:

SIRtr =

∑
τ∈U(t,r) aτr · pτ

N +
∑
τ∈I(t,r) aτr · pτ

≥ δ . (1)



which involves the power emissions pτ of all transmitters and
in which N > 0 and δ > 0 are the noise of the system and
the minimum SIR value that guarantees the desired quality of
service, respectively. It is easy to rewrite SIR inequality (1) as∑

τ∈U(t,r)

aτr · pτ − δ
∑

τ∈I(t,r)

aτr · pτ ≥ δ ·N (2)

which allows to highlight the linear nature of the constraint
with respect to the power decision variables pτ . The next step
in the modelling procedure is to express the other decision of
identifying the serving transmitter of each receiver. To do so,
we link the binary variable xtr, denoting whether receiver r
is served by transmitter t, to the corresponding SIR inequality
(2) defining the following modified SIR constraint:∑
τ∈U(t,r)

aτr · pτ − δ
∑

τ∈I(t,r)

aτr · pτ +M · (1− xtr) ≥ δ ·N

(3)

that constitutes a so-called big-M constraint, in which the
inclusion of the binary variable xtr multiplied by a suitably
large coefficient M ≥ 0 (the big-M) is needed to activate
or deactivate the constraints. Indeed, when xtr = 0, r is not
served by t and it is not necessary to satisfy the corresponding
SIR inequality: the term M(1−xtr) is then equal to the large
value M , which is added to the left-hand-side of the constraint
(3) and the constraint is thus satisfied by any combination of
the decision variables pτ . If instead xtr = 1, r is served by
t and the corresponding SIR constraint must be satisfied - in
this case M(1 − xtr) = 0 and thus (3) reduces to (2). The
complete model can then be written as:

min
∑
t∈T

pt (4)∑
τ∈U(t,r)

aτr · pτ − δ
∑

τ∈I(t,r)

aτr · pτ+

+M(1− xtr) ≥ δ ·N t ∈ T, r ∈ R (5)∑
t∈T

xtr ≤ 1 r ∈ R (6)∑
r∈R

∑
t∈T

πr · xtr ≥ α ·
∑
r∈R

πr (7)

0 ≤ pt ≤ Pmax t ∈ T (8)
xtr ∈ {0, 1} t ∈ T, r ∈ R . (9)

in which, a) the objective function (4) pursues the minimiza-
tion of the total power emission; b) the quality-of-service con-
ditions are expressed by the SIR constraints (5) accompanied
by constraints (6) imposing that at most one transmitter can
act as server of each receiver. The constraints (7) impose that
at least a fraction α ∈ [0, 1] of the total population of the
region must be covered with service (in the left-hand-side,
each service decision variable is multiplied by a coefficient πr
that equals the population of the pixel associated with receiver
r, while in the right-hand-side the total sum of the population
over all the pixels is multiplied by the value α). Finally, (8)
and (9) are the decision variables previously defined.

III. PROTECTING FROM PROPAGATION UNCERTAINTY

The optimization problem (4)-(9) is a deterministic model
in which it is neglected the fact that the fading coefficients atr
constitute uncertain data: propagation of signals in a real-world
environment is indeed affected by many factors (presence of
obstacles, complexity of the lay of the land, etc.) and it is thus
very complicated to accurately estimate the values of ats over
large territories like those involved in DVB-T services. The
coefficients are then commonly estimated through empirical
propagation models [36], which specify formulas to compute
the coefficients. However, as telecommunication professionals
know well, the actual values of the propagation coefficients
may (even largely) vary with respect to those provided by the
models. In our design problem, issues may arise both in cases
of over- and under-estimation: if the fading coefficient of an
interfering signal is under-estimated, the actual interference
will result higher than expected, thus decreasing the quality
of service; in contrast, in the case of a useful signal, issues
arise in case of over-estimation, since the actual useful signal
will result lower than expected. Consequently, the fading co-
efficients represent uncertain data in an optimization problem,
i.e. data whose value is not exactly known when the problem
is solved. The presence of uncertain data cannot be neglected,
since the occurrence of unexpected deviations in the value
of coefficients may cause infeasibility and suboptimality of
solutions recognized as feasible and optimal (e.g., [4]–[7]).

For tackling the uncertainty of fading coefficients, we as-
sume that for each transmitter-receiver (t, r) we know a set
of possible values that the coefficient may assume: we denote
such set by Atr = {a1tr, a2tr, . . . , aktr} and we assume that the
k possible values are sorted increasingly. We then introduce
the set A = A11 × · · · ×Atr × · · · ×A|T ||R| to denote all the
possible |T ||R|-tuples, which represent the set of all possible
combinations of fading coefficients when considering all the
transmitter-receiver couples.

If we follow the paradigm of Robust Optimization (e.g., [6]),
the aim is to find a robust optimal solution, namely a solution
which guarantees the best objective value for the worst realiza-
tion of the uncertain coefficients. If we denote the feasible set
of solutions of problem (4)-(9) by F and its objective function
by f(x, p, a) , highlighting that it does not only depends upon
the value of the service assignment variables x and power
variables p, but also on the realization of the fading coefficients
a ∈ A, the robust version of the optimal design problem can
be wrttien as: min(x,p)∈F maxa∈A f(x, p, a), which pursues
the identification of an optimal solution (x∗, p∗) that offers
the minimum power emission while protecting against the
worst fading coefficient realization of A [2]. It is important
to stress that such an optimal solution remains feasible for
all the realizations of data of A and is thus fully protected
against data uncertainty. However, at the same time, this full
protection may entail a too high price of robustness, i.e. a
too high reduction in optimality due to excluding non-robust
solutions that are not feasible for all fading realizations in A.

Since the price of robustness may result too high and look-



ing for full protection may result excessive, we investigate the
adoption of an alternative robust methodology, min-max regret,
which is less conservative [2]. This methodology is based on
evaluating the effects of taking a non-optimal decision through
a regret function R(x, p, a), which in our case is defined as
the following difference of the objective value of a solution
(x, p) ∈ F with respect to the value of the optimal solution
(x∗, y∗) for a fading realization a ∈ A:

R(x, p, a) = f(x, p, a)− f(x∗, y∗, a) (10)

The maximum regret Rmax(x, p) for a solution (x, p) is then
equal to the maximum of the regret function for all a ∈ A:

Rmax(x, p) = max
a∈A

R(x, p, a) (11)

and the min-max regret version of (4)-(9) can be written as the
problem of finding the feasible solution (x, p) that minimizes
the maximum regret for all the fading realizations:

min
(x,p)∈F

max
a∈A

R(x, p, a) . (12)

Since the min-max regret problem needs to identify the
maximum regret of every solution (x, y), therefore request-
ing to execute the impractical task of potentially verifying
exponentially many realizations of the fading coefficients and
optimally solving the associated optimization problems, we
rely on a heuristic min-max regret method introduced in [24]
for a wireless sensor network application. This method is
centered around what we call a pessimistic median fading
coefficient realization scenario: we first define a median fading
coefficient scenario amed that, for every transmitter-receiver
couple (t, s), includes the fading value ātr ∈ Atr that is closest
to the median value of the values in the set Atr. Solving the
design problem (4)-(9) for the median scenario amed would
allow to identify a solution that is on average of good quality
and reliable. However, we could still take a chance on facing
infeasibility in case of substantial deviations from the median
values. Consequently, for reducing this risk, we identify a more
robust fading realization scenario by introducing the concept
of super-transmitters, namely transmitters that, favoured by
their location with respect to the population to be covered,
tend to contribute more decisively to the coverage of a target
region (see [16] for more details) and the setting of their power
emission is more critical. For these super-transmitters, denoted
by S ⊆ T the fading coefficient is set to the lowest value
when act as serving transmitter and to the highest value when
acting as interfering transmitter. We call Pessimistic Median
(PM) scenario the resulting fading realization scenario and we
denote the corresponding fading realization by aPM . A robust
solution for problem (4)-(9) is then identified by optimally
solving the problem for the pessimistic median scenario aPM .

IV. AN ACO-BASED LEARNING SOLUTION APPROACH

Being a Mixed Integer Linear Program, problem (4)-(9)
could be solved through an optimization software like IBM
ILOG CPLEX [11]. However, since it is hard to optimally
solve it within the limited time budget that is typically at

disposal of network professionals, especially because of the
presence of the complicating big-M SIR constraints, we pro-
pose to accelerate the convergence of a software like CPLEX
by defining a warm-start heuristic (i.e., a heuristic algorithm
that fast identifies good quality solutions to be passed as initial
solutions to CPLEX). Specifically, we propose to adopt a hy-
brid exact-heuristic approach originally proposed in [15], [16]
that draws inspiration from Ant Colony Optimization (ACO -
see e.g.,m [8], [9], [20]), as a kind of reinforcement learning
algorithm that is based on rewarding value settings of decision
variables that have led to the definition of good quality feasible
solutions and on penalizing value settings that have led to
bad quality solutions (see e.g., [25], [38]). More precisely,
the solution approach combines a probabilistic variable fixing
procedure integrated with an exact large neighborhood search.

In the probabilistic fixing procedure, a number of solutions
are built iteratively (according to the ACO metaphor, each of
these solutions corresponds with an ant): at every iteration,
we have at disposal a partial solution, namely a solution in
which just a subset of decision variables has been assigned a
value, and we can further complete the solution by setting
the value of one or more additional variables. When all
the variables have been assigned a value, we finally have a
complete solution and its quality can be assessed using the
corresponding value of the objective function.

In the case of our wireless network design problem, we
can note that if we set the value of the power variable pt of
each transmitter, we can then readily compute the coverage of
receivers that is granted by checking which SIR constraints (5)
are satisfied. We thus recognize the power variables as critical
decision variables in our hybrid solution procedure. To this
end, we identify equally spaced power values in the power
emission range of each transmitter: we therefore characterize a
set P = P1 = 0, P2, . . . , Pn = Pmax of discrete power values
in the range [0, Pmax] and each transmitter must be assigned
a power value belonging to this discrete set. This allows to
derive a power-indexed model of the network design problem,
which provides stronger mathematical formulations (see [14]).

When we are at a generic iteration of the cycle that has the
task of defining a feasible solution, we have a partial power
solution in which a subset of transmitters T FIX ⊆ T has been
assigned a power emission value of P . The next transmitter
whose power is fixed is then chosen on the basis of probability
formula that represents an improved formula of the classical
ACO (see [15] for details):

P (pt = P`) =
β · φt` + (1− β) · ηt`∑

τ∈T\T FIX

∑
l∈L[β · φτl + (1− β) · ητl]

,

(13)
that computes the probability of setting the power of trans-
mitter t ∈ T\T FIX equal to P` ∈ P , taking into account all
the transmitters τ ∈ T\T FIX and power emission levels l ∈ L
whose power has not yet been set.

In (13), two measures of value fixing attractiveness are com-
bined: φτl constitutes an a-priori attractiveness measure that
resembles the pheromone trails of ACO and is obtained from a



tight-relaxation of the model (in particular from model (4)-(9)
strengthened through the (strong) valid inequalities proposed
in [13], [14]), whereas ητl is an a-posteriori attractiveness
measure obtained from the linear relaxation of (4)-(9) (i.e.,
a version of the model in which the integrality requirement of
variables is removed). The two measures are combined by a
parameter 0 ≤ β ≤ 1.

The probability measure is used in the parallel construction
of γ > 0 solutions and, once that a round of solution
construction is completed, we proceed to reward/penalize the
single construction moves that have been operated, on the
basis of the quality of the solutions that have been defined.
Specifically, the update rule of the a-priori measure is:

φτl(i) = φτl(i− 1) +

γ∑
SOL=1

∆φSOL
τl (14)

∆φSOL
τl = φτl(0) ·

(
OG(vAVG, u)−OG(vSOL, u)

OG(vAVG, u)

)
(15)

in which φτl(i) is the a-priori attractiveness measure of setting
the power of transmitter τ ∈ T equal to P` in the i-th execution
of the cycle and ∆φSOL

τl is the correction to this measure,
computed considering a moving average over the last γ so-
lutions that have been constructed. Furthermore, u is an upper
bound on the optimal value, vSOL is the value of the SOL-
th feasible solution built in the last construction cycle, vAVG

is the average of the values of the last γ solutions that have
been constructed. The value OG(v, u) is an optimality gap and
assesses the difference between the value v of a solution and an
upper bound u (formally, OG(v, u) = (u−v)/v). Concretely,
after having defined all its elements, formula (14) is introduced
to update the a-priori measure with the aim of rewarding
(penalizing) the setting of decision variables to values which
have conducted to solutions associated with lower (higher)
optimality gap, when compared to a moving average vAVG

that involves the last γ solutions.
After the cycle of solution construction has ended, we

conduct an improvement phase in which we rely on an exact
large neighborhood search for improving the best solution
found. Specifically, the strategy is to formulate the search
in a large neighborhood of solutions of the best solution as
an optimization problem which is solved by an optimization
software like CPLEX [8]. This is motivated by noticing that
the software may be unable to find the optimal solution of the
complete problem, but may instead efficiently identify optimal
solutions of appropriate subproblems. In our specific case, we
explore solution neighborhoods defined by allowing to modify
the power emission of the transmitters: each transmitter can be
either switched off (thus its power emission is set to zero) or its
power emission can be increased to the closest higher discrete
power level or decreased to the closest lower power level. This
can be easily expressed through linear constraints involving
binary variables representing the power modifications and that
can be added to problem (4)-(9), similarly to the procedure
illustrated in [17]. The resulting model is then passed to
CPLEX to be solved to an optimum. For not letting CPLEX

waste too much time on closing the optimality gap, we impose
a time limit on the solution of the problem corresponding to
exploring the solution neighborhood (high quality solutions
are typically fast obtained).

We provide the pseudocode of the hybrid ACO-based learn-
ing heuristic in Algorithm 1. The best solution found by the
algorithm is used to warm-start the solver CPLEX, i.e. it is
passed to CPLEX as starting feasible solution to accelerate its
convergence to an optimum. In Algorithm 1, problem (4)-(9)
is solved referring to the pessimistic median scenario aPM and
the first step corresponds with solving the strengthened power-
indexed optimal design model and use it for initializing the
values of the a-priori fixing measure. After this, the algorithm
is centered around running a cycle for building solutions, with
a time limit as stopping criterion. Each run of the cycle leads
to the definition of γ solutions, built by first setting the value
of the power decision variables by means of the probability
measure (13) and then by evaluating the obtained population
coverage, checking which SIR constraints are satisfied by the
power setting. Once a run of the cycle is completed, the next
step is to update the a-priori attractiveness measure φ by means
of formula (14), learning from the quality of the value fixing
of decision variables that has been operated. Finally, once the
construction time limit has been reached, the best solution
found is used as initial solution in the conclusive exact large
neighborhood search, to further improve it.

Algorithm 1 (Hybrid ACO-based learning heuristic)
1: define the pessimistic median scenario aPM

2: compute the linear relaxation of the strengthened power-indexed
version of (4)-(9) for aPM and initialize the values φt`(0) with
the corresponding optimal values

3: let (p∗, x∗) be the best solution found
4: while a time limit is not reached do
5: for SOL := 1 to γ do
6: iteratively set the power emission pt of every transmitter

t ∈ T using formula (13) and let p̄ be the corresponding
fixed power vector

7: check which SIR constraints (3) are satisfied by p̄ and let
x̄ be the corresponding service coverage vector

8: compute the total population coverage of solution (p̄, x̄)
9: if the coverage satisfies constraint (7) and the total power

emission of (p̄, x̄) is lower than that of (p∗, x∗) then
10: update (p∗, x∗) with (p̄, x̄)
11: end if
12: end for
13: update the a-priori measure φ according to (14)
14: end while
15: run the exact large neighborhood search using (p∗, x∗) as incum-

bent solution
16: return (p∗, x∗)

V. COMPUTATIONAL RESULTS

We test the performance of the heuristic min-max regret
approach, based on considering the pessimistic media scenario,
on a set of realistic DVB-T instances corresponding to region-
wide networks deployed in Italy. The fading coefficients are
computed according to propagation models defined taking into



account recommendation of regulatory bodies [1], [27]. These
recommendations also specify how to model propagation
stochasticity of DVB-T signals and we considered discussion
held with professionals working in the field of single frequency
networks for defining a range of deviation for the standard
robust optimization model that does not result too conservative
and include unlikely deviations. The instances that we consider
refer to 20 Italian DVB-T regional networks that involve up
to about 300 stations and 4000 pixels and for each pixel the
population is derived from demographic data. In order to solve
the considered mixed integer linear programming problem, we
rely on the software IBM ILOG CPLEX [11], running on a
Windows machine with 2.70 GHz Intel i7 and 8 GB of RAM.
In the warm-start hybrid heuristic presented in Algorithm 1,
we allow the parallel construction of γ = 10 solutions and we
assign a weight β = 0.5 so as to assign the same weight to the
combination of the a-priori and a-posteriori measure. A time
limit of 600 seconds is imposed to the final exact search.

The results of the preliminary computational tests that we
have conducted are presented in Table I in which: 1) ID
identifies the regional DVB-T network instance; 2) columns
2 and 3 report the Price of Robustness (PoR%) for the case
of the standard robust optimization approach (SR) and for the
case of the min-max regret approach (mMR) - we note that
the PoR% is computed as the percentage increase in the total
power that must be faced with respect to the deterministic
version of the design problem which neglects the presence of
uncertain fading coefficients; 3) column ∆PoR% reports the
percentage decrease in the price of robustness that the use
of the less conservative min-max regret approach grants with
respect to the standard robust optimization approach; 4) the
last three columns report measures Prot% about the protection
granted by standard robustness SR and min-max regret mMR.
More in detail, for each instance, we generate 1000 realizations
of the uncertain fading coefficients and we then compute the
percentage of realizations in which the robust solutions of SR
and mMR are feasible. The percentage difference between the
two measures of protection is expressed by ∆Prot%,

If we analyze the data reported in Table I, a first important
remark that can be made is that granting protection against
fading coefficient uncertainty leads to a remarkable increase
in the total power needed to cover the population in the
considered territory. Indeed, for both SR and mMR the total
power emission of the transmitters increase of more than
10% on average. However, at the same time, it can be
clearly seen that for all instances the increase in power and
thus the price of robustness is substantially higher for the
standard robust optimization model: SR on average requires
16% more of average power emission, while mMR entails
a lower increase in power that allows to save 26% of power
emission. This is of course a remarkable result, since a greener
and less power consuming network does not only lead to lower
operational costs, but also limits electromagnetic pollution,
exposing people to lower electromagnetic fields. The reduction
of the total power emission needed to handle uncertainty
results particularly significant in the case of instances like

I17 and I19, for which the price of robustness and thus
the total power emission is reduced of more than 30% and
even reaches more than 40%. A natural question that then
arises is whether this reduction in the price of robustness
granted by the min-max regret approach is accompanied also
by a significant reduction in protection. However, this is not
the case as it can be seen from the column Prot%: the
min-max regret solutions are feasible for more than 93% of
the 1000 scenarios of fading realizations that we generated,
leading to a very small decrease in protection with respect
to standard robustness (which offers on average protection for
about 95% of the scenarios). The small reduction in protection
is thus much more than compensated by the very relevant
reduction in total power. This shows the expediency and
advantages of adopting the min-max regret approach, which,
for the considered wireless network design problem, is able
to return optimal solutions that, at the same time, are well-
protected against uncertainty and grant sensibly lower price
of robustness.

TABLE I
COMPUTATIONAL RESULTS

ID PoR% PoR%
∆PoR% Prot% Prot%

∆Prot%(SR) (mMR) (SR) (mMR)
I1 17.2 13.1 23.6 93.2 91.5 1.8
I2 13.4 11.0 17.4 95.7 93.4 2.4
I3 14.9 12.7 14.7 97.7 94.8 2.9
I4 11.6 7.8 31.9 97.3 95.7 1.6
I5 13.2 9.5 27.8 92.6 91.9 0.7
I6 18.8 14.0 25.5 94.2 90.7 3.7
I7 21.5 15.3 28.8 96.4 94.2 2.2
I8 16.5 13.6 17.3 92.9 91.0 2.0
I9 17.4 13.1 24.7 96.8 94.5 2.3

I10 14.9 10.7 28.1 95.2 91.4 3.9
I11 14.5 9.9 31.6 97.4 95.3 2.1
I12 19.7 13.8 29.6 95.9 94.9 1.0
I13 15.3 11.3 26.1 94.8 92.8 2.1
I14 14.2 10.7 24.4 96.0 92.0 4.1
I15 18.4 14.7 19.6 96.1 93.6 2.6
I16 16.0 10.9 31.5 95.7 92.6 3.2
I17 17.0 9.7 42.9 93.8 93.2 0.6
I18 14.7 10.6 27.4 97.0 95.4 1.6
I19 18.8 12.3 34.3 96.2 93.7 2.5
I20 21.3 15.7 26.1 95.1 94.1 1.0

VI. CONCLUSION AND FUTURE WORK

We have considered the problem of optimally designing
a single frequency network while taking into account the
uncertainty that naturally affects the propagation of wireless
signals in a real-world environment. Since neglecting such
uncertainty may lead to wrong design solutions affected by
unexpected holes in the coverage of users, we have proposed
to adopt a robust optimization approach. Robust optimization
is a major methodology adopted in optimization to deal with
the presence of uncertain data, namely data whose value
is not exactly known when the problem is solved. Since
canonical robustness may result too conservative, leading to



robust solutions that entails a too high price of robustness
(i.e., a too high deterioration in the objective value to guar-
antee protection), we have investigated the adoption of an
alternative way to guarantee protection, namely a (heuristic)
min-max regret approach, which grants less conservatism and
higher computational tractability. The solution of the resulting
problem is accelerated by a hybrid heuristic that combines an
Ant Colony Optimization (ACO)-inspired learning algorithm
with exact large neighborhood search. Computational results
considering realistic instances show that the heuristic min-max
regret approach can identify substantially less conservative
solutions, without sacrificing protection. This encourages to
further develop the approach, in particular by investigating
the definition of refined median scenarios that could better
capture the stochastic behaviour of signal propagation and
lead to robust optimal solutions associated with even lower
price of robustness. Furthermore, we plan to investigate a
multi-objective version of the problem, pursuing joint coverage
maximization and power minimization, adopting an iterative
solution procedure as in [41].
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