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Key Points: 20 

• Evaporation products over Europe and Africa were generated using 3 different models 21 

(STIC, SEBS, and TSEB) in the European ECOSTRESS Hub 22 

• Comparison at 19 eddy covariance sites revealed noteworthy model divergence with 23 

increasing aridity and vegetation sparseness  24 

• A substantial overestimation of the official NASA ECOSTRESS ET product was found 25 

under high water limitations 26 

  27 
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Abstract 28 

The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) is 29 

a scientific mission that collects high spatio-temporal resolution (~70 m, 1-5 days average revisit 30 

time) thermal images since its launch on 29 June 2018. As a predecessor of future missions, one 31 

of the main objectives of ECOSTRESS is to retrieve and understand the spatio-temporal variations 32 

in terrestrial evapotranspiration (ET) and its responses to soil water availability. In the European 33 

ECOSTRESS Hub (EEH), by taking advantage of land surface temperature retrievals, we 34 

generated ECOSTRESS ET products over Europe and Africa using three structurally contrasting 35 

models, namely Surface Energy Balance System (SEBS) and Two Source Energy Balance (TSEB) 36 

parametric models, as well as the non-parametric Surface Temperature Initiated Closure (STIC) 37 

model. A comprehensive evaluation of the EEH ET products was conducted with respect to flux 38 

measurements from 19 eddy covariance sites over 6 different biomes with diverse aridity levels. 39 

Results revealed comparable performances of STIC and SEBS (RMSE of ~70 W m-2). However, 40 

the relatively complex TSEB model produced a higher RMSE of ~90 W m-2. Comparison between 41 

STIC ET estimate and the operational ECOSTRESS ET product from NASA PT-JPL model 42 

showed a difference in RMSE between the two ET products around 50 W m-2. Substantial 43 

overestimation (>80 W m-2) was noted in PT-JPL ET estimates over shrublands and savannas 44 

presumably due to the weak constraint of LST in the model. Overall, the EEH is promising to serve 45 

as a support to the Land Surface Temperature Monitoring (LSTM) mission. 46 

1 Introduction 47 

Evapotranspiration (ET) is an intrinsic component of climate in the land-atmosphere system and 48 

plays a critical role in affecting turbulence, cloud formation and convection at the local scale  49 

(Chen and Liu 2020; Fisher et al. 2017). As an important component of the water cycle in the 50 

terrestrial ecosystems, it quantifies the amount of water loss from the Earth surface to atmosphere 51 

(Chen and Liu 2020; Jasechko et al. 2013). ET consists of evaporation from soil (or water bodies) 52 

and wet vegetation and transpiration through pores in plant leaves. Through the stomatal 53 

conductance, transpiration is closely related to CO2 exchange between leaf and atmosphere 54 

(Anderson et al. 2008). Thus, ET links the land surface water, energy, and carbon cycles (Anderson 55 

et al. 2008; Fisher et al. 2017; Mallick et al. 2021), and is a keystone variable in terrestrial 56 

ecosystem processes (Bai et al. 2022; Bayat et al. 2018; Kustas and Anderson 2009; Ryu et al. 57 

2011).  58 

Thermal infrared (TIR) remote sensing has been widely used to obtain ET at large scales 59 

considering land surface temperature (LST) constrains the magnitude and variability of the surface 60 

energy balance (SEB) components and is immensely sensitive to evaporative cooling (Crago and 61 

Qualls 2014; Mallick et al. 2021; Mallick et al. 2014; Norman et al. 1995). ET products are 62 

generated from TIR observations of different sensors, including Landsat (Anderson et al. 2012; 63 

Anderson et al. 2021; Jaafar et al. 2022), Moderate resolution Imaging Spectroradiometer 64 

(MODIS) (Chen et al. 2019; Chen et al. 2021; Senay et al. 2013), Visible Infrared Imaging 65 

Radiometer Suite (VIIRS) onboard polar-orbiting satellites (Jaafar et al. 2022), and Advanced 66 

Baseline Imager (ABI) (Anderson et al. 2007; Fang et al. 2019) onboard Geostationary Operational 67 

Environmental Satellite (GOES). These ET data are harnessed in a variety of applications such as 68 

drought monitoring (Anderson et al. 2011; González-Dugo et al. 2021; Otkin et al. 2013), water 69 

resource management (Anderson et al. 2012), irrigation control (Allen et al. 2011), global change 70 

studies (Dai et al. 2004; Mao et al. 2015), and biodiversity assessments (Fisher et al. 2011). 71 
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However, there remains a gap in retrieving ET with concurrently high spatial and temporal 72 

resolutions at the global scale. For the polar-orbiting satellites, the Landsat ET product has a high 73 

spatial resolution (30 m via thermal sharpening) but coarse temporal resolution (16 days). MODIS 74 

and VIIRS have a daily temporal resolution but coarse spatial resolution (≥500 m). For the 75 

geostationary satellites, the diurnal cycle can be captured by the sub-hourly observations, but the 76 

spatial resolution is above 1 km due to the orbit altitude and spatial coverage is limited to the 77 

continental scale. This constrains subsequent applications of ET products. 78 

The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), 79 

positioned on the International Space Station (ISS) on 29 June 2018, is a pathfinder for the next 80 

generation TIR missions (Fisher et al. 2020; Hook et al. 2019; Hulley et al. 2021). It collects 81 

thermal images in five bands between 8 and 12.5 μm with a high spatio-temporal resolution at 82 

varying times of the day. The spatial coverage is between ±52° latitude over the globe. The pixel 83 

size after resampling at the nadir is ~70 × 70 m. The average revisit time is approximately 1-5 84 

days, depending on the latitude (Xiao et al. 2021). Over high latitude regions where the ISS orbital 85 

direction shifts, the observation frequency can reach several times in a single day. Therefore, the 86 

ECOSTRESS data provides an unprecedented opportunity for monitoring terrestrial ecosystems 87 

(Fisher et al. 2020; Liu et al. 2021; Xiao et al. 2021).  88 

The European ECOSTRESS Hub (EEH) is a project funded by the European Space Agency (ESA), 89 

targeted at generating high spatio-temporal resolution LST and ET products over Europe and 90 

Africa from ECOSTRESS observations. Three structurally contrasting SEB models were selected 91 

to produce ET estimates, i.e., one-source Surface Energy Balance System (SEBS) and Two Source 92 

Energy Balance (TSEB) parametric models, and the one-source Surface Temperature Initiated 93 

Closure (STIC) analytical model. The EEH LST estimates were used as the driving force for ET 94 

retrieval from the three models, with the support of ancillary meteorological data and variables 95 

describing the surface conditions (e.g., albedo, vegetation coverage). The uniform forcing data 96 

describing the lower boundary conditions enables a fair comparison across a wide spectrum of 97 

energy and water availability scenarios among the three models with different parameterization 98 

schemes. EEH LST and ET products between August 2018 and December 2021 can be 99 

downloaded from the Food Security-TEP portal (https://foodsecuritytep.net/). More information 100 

about EEH can be found on the landing page (http://isp-projects.private.list.lu/eeh/public/). 101 

In this paper, we aimed to evaluate the three ECOSTRESS ET products generated in EEH at the 102 

continental scale. A two-step evaluation strategy was adopted. First, the EEH ET products were 103 

compared with flux measurements from 19 eddy covariance sites over Europe between 2018 and 104 

2019. Then, the best performing EEH ET product was compared with the official National 105 

Aeronautics and Space Administration (NASA) ECOSTRESS ET product retrieved using the PT-106 

JPL model. The purpose of this study is two-fold: 1) providing insights into ECOSTRESS ET 107 

products generated using SEB models with different structures and parameterizations schemes, 2) 108 

supporting ET retrieval for the future thermal missions like ESA’s Land Surface Temperature 109 

Monitoring (LSTM) (Koetz et al. 2019), the Franco-Indian joint Thermal infraRed Imaging 110 

Satellite for High-resolution Natural resource Assessment (TRISHNA) (Lagouarde et al. 2018) 111 

and NASA’s Surface Biology and Geology (SBG) (Cawse-Nicholson et al. 2021). 112 

2 ET models in EEH 113 

ET is intrinsically associated with the SEB equation, which is based on the partitioning of net 114 

available energy into sensible and latent heat fluxes. The SEB equation is written as follows 115 
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𝑅𝑁  = 𝜆𝐸 + 𝐻 + 𝐺 (1) 

where RN is the net radiation, H and λE are sensible and latent heat fluxes (W m-2), respectively, 116 

and G is the ground heat conduction flux. The segregation of net available energy (RN - G) into the 117 

two different convective fluxes (H and λE) depends on the land surface moisture status, 118 

atmospheric conditions in the lower boundary layer, and biophysical control of vegetation 119 

(Anderson et al. 2008; Kustas and Anderson 2009; Mallick et al. 2014; Mallick et al. 2018a; 120 

Mallick et al. 2018b). 121 

Most thermal-based ET models calculate ET as a residual of SEB after estimating H or estimate 122 

evaporative fraction first and derive ET from the net available energy. These models can be broadly 123 

characterized as one-source and two-source models based on the conceptualization of the land 124 

surface. In the one-source models, the vegetated surface is regarded as a ‘big leaf’ and the 125 

evaporating front is assumed to be at the source/sink height, which is in the immediate vicinity of 126 

the surface level. Whereas the two-source models assume that the vegetated surface consists of the 127 

soil and vegetation components, and the energy fluxes are partitioned between these two 128 

components.  129 

2.1 STIC 130 

The one-source STIC model was first proposed by Mallick et al. (2014). STIC is based on the 131 

integration of radiometric temperature into the Penman-Monteith (PM) formulation to find the 132 

analytical solution of the aerodynamic and surface conductances. To do so, STIC combines an 133 

LST-driven water stress index with aerodynamic equations of H and λE and a modified 134 

complementary relationship advection-aridity hypothesis (Mallick et al. 2015). The latest version 135 

of STIC (Bhattarai et al. 2018; Mallick et al. 2016) combines the Shuttleworth-Wallace sparse 136 

canopy formulation model with the PM big-leaf model to calculate the vapour pressure at the 137 

source/sink height (Shuttleworth and Wallace 1985).  138 

2.1.1 State equations of STIC 139 

The four state equations are at the core of STIC, which describe aerodynamic and surface 140 

conductances (gA and gC), aerodynamic temperature (T0), and evaporative fraction (FE): 141 

𝑔𝐴 =
𝜙

𝜌𝑐𝑝 [(𝑇0 − 𝑇𝐴) +
𝑒0 − 𝑒𝐴

𝛾 ]
 (2) 

𝑔𝐶 = 𝑔𝐴

𝑒0 − 𝑒𝐴

𝑒0
∗ − 𝑒0

 (3) 

𝑇0 = 𝑇𝐴 + (
𝑒0 − 𝑒𝐴

𝛾
) (

1 − 𝐹𝐸

𝐹𝐸
) (4) 

𝐹𝐸 =
2𝛼𝑠

2𝑠 + 2𝛾 + 𝛾
𝑔𝐴

𝑔𝐶
(1 + 𝑀)

 (5) 

where Φ is the net available energy, ρ is the density of air (kg m-3), cp is the specific heat of air at 142 

constant pressure (MJ kg-1 K-1), γ is the psychrometric constant (hPa K-1), TA is air temperature at 143 

ESSOAr | https://doi.org/10.1002/essoar.10512884.1 | CC_BY_NC_4.0 | This content has not been peer reviewed. 



manuscript submitted to Water Resources Research 

 

the reference height, e0 and e0
* is the vapor pressure at the source/sink height, eA is atmosphere 144 

vapor pressure, α is the Priestley-Taylor (PT) coefficient, s is the slope of saturation vapour 145 

pressure versus temperature curve estimated at TA, M is the surface moisture availability (between 146 

0 and 1), which is estimated from LST. Based on the four state equations, algebraic closure is not 147 

possible due to the involvement of additional unknowns. Therefore, an iterative solution is adopted 148 

to estimate the additional unknown variables (e0
*, e0, α and M). 149 

2.1.2 Iterative solution of e0
*, e0, α and M in STIC 150 

From the aerodynamic equation of λE, e0
* can be expressed as 151 

𝑒0
∗ = 𝑒𝐴 +

𝛾𝜆𝐸(𝑔𝐴 + 𝑔𝐶)

𝜌𝑐𝑝𝑔𝐴𝑔𝐶
 (6) 

Following Shuttleworth and Wallace (1985), the vapour pressure deficit (D0 = e0
* - e0) and vapour 152 

pressure (e0) at the source/sink height are expressed as follows: 153 

𝐷0 = 𝐷𝐴 +
𝑠𝜙 − (𝑠 + 𝛾)𝜆𝐸

𝜌𝑐𝑝𝑔𝐴
 (7) 

𝑒0 = 𝑒0
∗ − 𝐷0. (8) 

A physical equation of α is expressed as  154 

𝛼 =
[2𝑠 + 2𝛾 + 𝛾

𝑔𝐴

𝑔𝐶
(1 + 𝑀)] 𝑔𝐶(𝑒0

∗ − 𝑒𝐴)

2𝑠[𝛾(𝑇0 − 𝑇𝐴)(𝑔𝐴 + 𝑔𝐶) + 𝑔𝐶(𝑒0
∗ − 𝑒𝐴)]

. 
(9) 

M is expressed as the ratio of the vapour pressure difference to the vapour pressure deficit between 155 

the surface and atmosphere as follows 156 

𝑀 =
𝑒0 − 𝑒𝐴

𝑒0
∗ − 𝑒𝐴

=
𝑒0 − 𝑒𝐴

𝑘(𝑒𝑆
∗ − 𝑒𝐴)

=
𝑠1(𝑇0𝐷 − 𝑇𝐷)

𝑘𝑠2(𝑇𝑅 − 𝑇𝐷)
 (10) 

where T0D is the dew-point temperature at source/sink height and TD is the air dew-point 157 

temperature, TR is the radiometric surface temperature, s1 and s2 are the psychrometric slopes of 158 

the saturation vapour pressure and temperature between the (T0D - TD) vs. (e0 - eA) and (TR - TD) 159 

vs. (es
* - eA), and k is the ratio between (e0

* - eA) and (es
* - eA), as shown in Figure 1. Despite T0 160 

driving the sensible heat flux, the comprehensive dry-wet signature of the underlying surface due 161 

to soil moisture variations is directly reflected in TR. Thus, TR in the denominator is directly related 162 

to the surface moisture availability (M). In Equation 10, T0D can be calculated as 163 

𝑇0𝐷 = 𝑇𝐷 +
𝛾𝜆𝐸

𝜌𝑐𝑝𝑔𝐴𝑠1
. (11) 
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 164 
Figure 1. Schematic representation of the exponential relationship between saturation vapor 165 

pressure versus temperature. 166 

An iterative method is applied to solve the equations because the four state variables and e0
*, e0, α 167 

and M are entangled. 168 

2.1.3 Initialization 169 

An initial value of α is assigned as 1.26 and initial estimates of e0
*, e0 are obtained from TR and M 170 

as 171 

𝑒0
∗ = 6.13753𝑒

17.27𝑇𝑅
𝑇𝑅+237.3 (12) 

𝑒0 = 𝑒𝐴 + 𝑀(𝑒0
∗ − 𝑒𝐴). (13) 

M is initialized by assuming e0
* = es

*, i.e., k in Equation 10 equals 1, expressed as follows 172 

𝑀 =
𝑠1(𝑇0𝐷 − 𝑇𝐷)

𝑠2(𝑇𝑅 − 𝑇𝐷)
. (14) 

T0D can be expressed as 173 

𝑇0𝐷 =
𝑒𝑠

∗ − 𝑒𝐴 − 𝑠3𝑇𝑅 + 𝑠1𝑇𝐷

𝑠1 − 𝑠3
. (15) 

The slopes s1 and s3 can be expressed as  174 

𝑠 = 4098
6.13753𝑒

17.27𝑇
𝑇+237.3

(𝑇 + 237.3)2
 

(16) 

where T is set to TD and TR for s1 and s3, respectively. With the initial estimates of e0
*, e0, α, and 175 

M, gA, gC and λE can be calculated. Then e0
*, e0, α and M are updated, and λE is recalculated. The 176 

iteration continues until the convergence of λE is achieved.  177 

2.1.4 Hysteresis consideration 178 

By considering the hysteresis between TR, DA, and λE, the surface moisture availability M can be 179 

expressed as  180 
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𝑀 =
𝛾𝑠1(𝑇0𝐷 − 𝑇𝐷)

𝑠3(𝑇𝑅 − 𝑇0𝐷)𝑠 + 𝛾𝑠4(𝑇𝐴 − 𝑇𝐷)
. (17) 

Hysteresis occurs because the capacity of the soil and vegetation to supply moisture to the 181 

atmosphere is larger in the morning than in the afternoon (Boegh et al. 1999). As such, two 182 

equations are used for estimating M in STIC depending on the occurrence of hysteresis. It is 183 

assumed that Equation 10 is used to indicate surface wetness that controls the evapotranspiration 184 

from the upper few centimetres of the surface, whereas Equation 17 is used to indicate the root-185 

zone wetness that controls the evapotranspiration under strong hysteretic conditions between λE, 186 

RN, TR and DA.  187 

2.1.5 Driving parameters for STIC 188 

The input variables used for driving the STIC model are listed in Table 1. The LST and emissivity 189 

are retrieved from the EEH L2 LST product. The land surface properties including albedo, and 190 

land use land cover (LULC) data and fractional vegetation coverage (FVC) are obtained from the 191 

Copernicus Global Land Service (CGLS, https://land.copernicus.eu/global/index.html). The 192 

meteorological data are obtained from the ERA5 reanalysis data 193 

(https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset). All these CGLS and ERA5 data 194 

are spatially (bilinearly) and temporally (linearly) interpolated to match the ECOSTRESS LST 195 

data.  196 

Table 1. Input parameters for STIC, SEBS, and TSEB 197 

Data Purpose Model Source Spatial 

resolution 

Temporal 

resolution 

LST RN, TR STIC, SEBS, TSEB ECOSTRESS ~70 m daily 

Emissivity RN STIC, SEBS, TSEB ECOSTRESS ~70 m daily 

Black sky and 

white sky 

albedo 

(abs, aws) 

RN STIC, SEBS CGLS 1 km 10-day 

FVC surface 

condition 
STIC, TSEB CGLS 300 m 10-day 

NDVI surface 

condition 

SEBS CGLS 300 m 10-day 

LAI surface 

condition 

TSEB CGLS 300 m 10-day 

LULC surface 

condition 

STIC, SEBS, TSEB CGLS 100 m annual 

Shortwave 

direct radiation 

(RSdir) 

RN STIC, SEBS ERA5 0.25° 1 hour 

Shortwave 

global radiation 

(RS) 

RN STIC, SEBS, TSEB ERA5 0.25° 1 hour 

Air temperature 

(TA) 

lower boundary 

condition (2 m) 

STIC, SEBS, TSEB ERA5 0.25° 1 hour 
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Atmosphere 

vapour pressure 

(eA) or 

Dewpoint 

temperature 

(TD) 

lower boundary 

condition (2 m) 

STIC, SEBS, TSEB ERA5 0.25° 1 hour 

Wind speed lower boundary 

condition (10 

m) 

SEBS, TSEB ERA5 0.25° 1 hour 

2.2 SEBS 198 

The one-source SEBS model was developed by Su (2002), which also includes sub-models for the 199 

roughness length of heat as well as momentum transfer and a formulation for the determination of 200 

the evaporative fraction on the basis of energy balance at limiting cases. 201 

To derive the sensible and latent heat fluxes, the similarity theory is used. In the Atmospheric 202 

Surface Layer (ASL) similarity relationship, the profiles of the mean wind speed u and the mean 203 

temperature θ0 – θa can be expressed as follows 204 

𝑢 =
𝑢∗

𝑘
[𝑙𝑛 (

𝑧 − 𝑑0

𝑧0𝑚
) − 𝛹𝑚 (

𝑧 − 𝑑0

𝐿
) + 𝛹𝑚(

𝑧0𝑚

𝐿
)] (18) 

𝜃0 − 𝜃𝑎 =
𝐻

𝑘𝑢∗𝜌𝑐𝑝
[𝑙𝑛 (

𝑧 − 𝑑0

𝑧0ℎ
) − 𝛹ℎ (

𝑧 − 𝑑0

𝐿
) + 𝛹ℎ(

𝑧0ℎ

𝐿
)] (19) 

where z is the height above the surface (m), u* = (τ0/ρ)1/2 is the friction velocity (m s-1), τ0 is the 205 

surface shear stress (kg m-1 s-2), ρ is the density of air (kg m-3), k = 0.4 is von Karman’s constant, 206 

d0 is the zero plane displacement height (m), z0m is the roughness height for momentum transfer 207 

(m), θ0 is the potential temperature at the surface (°C), θa is the potential air temperature (°C)at 208 

height z, z0h is the scalar roughness height for heat transfer (m), ψm and ψh are the stability 209 

correction functions for momentum and sensible heat transfer respectively. L is the Obukhov 210 

length, which is defined as follows. 211 

𝐿 = −
𝜌𝑐𝑝𝑢∗

3𝜃𝑣

𝑘𝑔𝐻
 (20) 

where g is the acceleration due to gravity (m s-2) and θv is the potential virtual temperature near 212 

the surface. 213 

The friction velocity, the sensible heat flux and the Obukhov stability length are obtained by 214 

solving the system of non-linear Eqs. 18-20. Derivation of the sensible heat flux using the above 215 

equations requires only the wind speed and temperature at the reference height as well as the 216 

surface temperature and is independent of other SEB terms. 217 

The input parameters used for the SEBS model are listed in Table 1. Most of the input parameters 218 

are the same as used for the STIC model, except for two additional parameters. The normalized 219 

differential vegetation index (NDVI) data from CGLS are used in the retrieval of leaf area index 220 

(LAI) and canopy height. The wind speed from the ERA5 data is used in the retrieval of 221 

aerodynamic resistance. 222 
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2.3 TSEB 223 

The TSEB model was first proposed by Norman et al. (1995) who represented the surface by a 224 

combination of soil and vegetation components. Through the introduction of the TSEB model, the 225 

problem of defining the extra resistance (caused by using the radiometric temperature instead of 226 

aerodynamic temperature) in the calculation of sensible heat is bypassed. 227 

Component radiometric temperatures are used to compute the surface energy balance fluxes for 228 

the canopy and soil components of the combined land surface system: 229 

𝑅𝑁,𝑆 = 𝐻𝑆 + 𝜆𝐸𝑆 + 𝐺 (21) 

𝑅𝑁,𝐶 = 𝐻𝐶 + 𝜆𝐸𝐶  (22) 

where HS and HC are soil and canopy sensible heat fluxes, respectively. λES and λEC are the soil 230 

evaporation and canopy transpiration, respectively. G is the soil conduction heat flux, RN,S and RN,C 231 

are the net radiation for the soil and canopy components.  232 

By using the series resistance network to account for the interactions between the soil and 233 

vegetation canopy fluxes, the sensible heat fluxes can be expressed as follows: 234 

𝐻𝑆 = 𝜌𝑐𝑝

𝑇𝑆 − 𝑇𝐴𝐶

𝑅𝑆
 

(23) 

𝐻𝐶 = 𝜌𝑐𝑝

𝑇𝐶 − 𝑇𝐴𝐶

𝑅𝑋
 

(24) 

where RS and RX are the aerodynamic resistance from soil surface and total boundary layer 235 

aerodynamic resistance of the complete canopy leaves, respectively, TAC is the momentum 236 

aerodynamic temperature. 237 

For the latent heat flux from the canopy, the Priestly-Taylor formula is used to initially estimate 238 

a potential rate for λEC  239 

𝜆𝐸𝐶 = 𝛼𝑃𝑇𝑓𝐺

𝑠

𝑠 + 𝛾
𝑅𝑁,𝐶 (25) 

where αPT is the Priestly-Taylor constant, with the initial value set to 1.3 and a higher value (~2) 240 

under well-watered partial canopy cover conditions in advective environments, fG is the fraction 241 

of green vegetation, with the initial value set to 1. Based on λEC, the initial canopy temperature TC 242 

can be obtained as follows 243 

𝑇𝑐 = 𝑇𝑎 +
𝑅𝑁,𝐶𝑅𝐴

𝜌𝑐𝑝
[1 − 𝛼𝑃𝑇𝑓𝐺

𝑠

𝑠 + 𝛾
] 

(26) 

where RA is the aerodynamic resistance to heat transfer (s/m). The soil component temperature can 244 

be calculated based on the ensemble radiometric temperature TR and TC. Then the sensible and 245 

latent heat fluxes of soil are calculated based on the energy balance. 246 

Non-physical solutions, such as daytime condensation at the soil surface (i.e., λES <0), can be 247 

obtained under conditions of moisture deficiency. This occurs because the initial value of αPT used 248 

for the initiation of λEC can lead to an overestimation of transpiration in water deficit environments. 249 

If this is encountered, αPT is iteratively reduced until λES approaches 0. 250 
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The input parameters used for the TSEB model are listed in Table 1, which are almost the same as 251 

used for SEBS. The canopy height is calculated using the FVC and LULC data by linear scaling 252 

between a seasonal minimum and maximum canopy height value for each land surface type 253 

(Massman 1997). The uniform driving variables for the three models facilitate a fair and thorough 254 

comparison among the three different SEB models. 255 

3 Evaluation method 256 

To evaluate the three EEH ET products, 19 eddy covariance (EC) sites over Europe were selected 257 

(Table 2) from the Integrated Carbon Observations System (ICOS) and European Fluxes Database 258 

Cluster (EFDC). These sites cover six different biomes, including forest (deciduous broadleaf 259 

forest, evergreen needleleaf forest and mixed forest), cropland, grassland, shrubland, wetland and 260 

savanna. The instantaneous clear-sky ET estimates (in the form of latent heat flux) were compared 261 

against half-hourly latent heat flux measurements closest to the ECOSTRESS overpass times 262 

between 2018 and 2019 at the selected sites. A Bowen ratio SEB closure correction was applied 263 

to the EC data before the comparison based on the measurements of four components in surface 264 

radiation budget, λE, H, and G  (Bhattarai et al. 2018). Some extracts were unbale to provide all 265 

the seven measurements required for the SEB closure correction and thus discarded. Moreover, 266 

the extracts were also discarded if any of these seven measurements did not have a good quality 267 

(indicated by the quality control flag). Considering the average footprint of the EC sites (Fisher et 268 

al. 2020), subsets of 3 × 3 pixels were extracted centred on the tower coordinates and the average 269 

ET values were used in the comparison. To mitigate the uncertainties introduced due to cloud 270 

contamination, only extracts surrounded by 15 × 15 (approximately 1 km) cloud-free pixels (based 271 

on the EEH cloud mask product) were considered for further evaluation. The evaluation was first 272 

conducted over different land surface types, followed by an overall comparison by gathering the 273 

samples at all the sites. 274 

Table 2. List of the selected eddy covariance flux sites. The biomes are according to the IGBP 275 

classification, and climate is according to the Köppen climate type. Biomes covered in this study 276 

include deciduous broadleaf forest (DBF), evergreen needleleaf forest (ENF), mixed forest (MF), 277 

savanna (SAV), cropland (CRO), grassland (GRA), shrubland (SHR) and wetland (WET). Climate 278 

types include humid subtropical (Cfa), temperate oceanic (Cfb), hot-summer Mediterranean (Csa), 279 

hot-summer humid continental (Dfa), warm-summer humid continental (Dfb), and subarctic (Dfc). 280 

Mean annual precipitation (MAP) and aridity index (AI) indicate the aridity level at the sites. AI 281 

is calculated as the ratio between precipitation and potential ET for 30 years and indicates the local 282 

climatology. 283 

Site ID Biome Climate Latitude (◦) Longitude (◦) MAP 

(mm) 

AI Source 

BE-Lcr DBF Cfb 51.11 3.85 861 0.93 ICOS 

BE-Lon CRO Cfb 50.55 4.75 743 0.97 ICOS 

BE-Maa SHR Cfb 50.98 5.63 839 0.93 ICOS 

BE-Vie MF Cfb 50.31 6.00 1062 1.37 EFDC 

CZ-Wet WET Dfa 49.03 14.77 604 0.74 EFDC 

DE-Geb CRO Cfb 51.10 10.92 470 0.58 EFDC 

DE-Gri GRA Dfb 50.95 13.51 872 0.91 ICOS 

DE-Kli CRO Dfb 50.89 13.52 842 1.00 EFDC 

DE-Rur GRA Cfb 50.62 6.30 1033 1.38 EFDC 

DE-RuS CRO Dfb 50.87 6.45 698 0.82 ICOS 

ES-LM1 SAV Csa 39.94 -5.78 700 0.30 EFDC 
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ES-Abr SAV Csa 38.70 -6.79 400 0.32 EFDC 

FR-Aur CRO Cfb 43.55 1.11 669 0.74 ICOS 

FR-Bil ENF Cfb 44.49 -0.96 960 0.89 ICOS 

FR-Hes DBF Cfb 48.67 7.07 820 0.89 EFDC 

FR-LGt WET Cfb 47.32 2.28 700 0.73 ICOS 

FR-Mej GRA Cfb 48.12 -1.80 722 0.79 ICOS 

IT-Lsn SHR Cfa 45.74 12.75 1100 0.91 ICOS 

IT-Tor GRA Dfc 45.84 7.58 945 1.42 ICOS 

Three statistical metrics were used to assess the performances of ET products: 284 

𝑟 =   
∑ (𝐸𝑖 − �̅�) (𝑂𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝐸𝑖 − �̅�)2𝑛
𝑖=1 √∑ (𝑂𝑖 − �̅�)2𝑛

𝑖=1

 (27) 

𝑅𝑀𝑆𝐸 = √∑
(𝐸𝑖 − 𝑂𝑖)

𝑛

2𝑛

𝑖=1

 
(28) 

𝑏𝑖𝑎𝑠 =  ∑
𝐸𝑖 − 𝑂𝑖

𝑛

𝑛

𝑖=1

 (29) 

where r is the Pearson’s correlation coefficient, RMSE is root-mean-square error, bias is the mean 285 

bias, between the model and measurements, n is the total number of data pairs. Ei and Oi are the 286 

model estimated and measured latent heat fluxes and �̅� is the average of observed values and �̅� is 287 

the average of estimated values. Additionally, the Kling-Gupta efficiency (KGE) is adopted to 288 

provide a quantitative and objective assessment of the agreement between the measured latent heat 289 

fluxes and ET estimates (Gupta et al. 2009). It is calculated as follows 290 

𝑲𝑮𝑬 = 𝟏 − √(𝒓 − 𝟏)𝟐 + (
𝝈𝒔

𝝈𝟎
− 𝟏)𝟐 + (

𝒖𝒔

𝒖𝟎
− 𝟏)𝟐 

(30) 

where r is the Pearson correlation coefficient, σ0 and σs are the standard deviations of EC site 291 

measurements and EEH estimates, respectively, and u0 and us are the averages of measurements 292 

and estimates, respectively. The closer KGE is to 1, the more consistent the ET estimates are with 293 

the flux measurements. 294 

Furthermore, the best performing ET product among the three was compared with the operational 295 

NASA ECOSTRESS ET product generated using the PT-JPL model (Fisher et al. 2020) at the 296 

same EC sites. The three statistical metrics described in Equations 27-29 were also used in the 297 

comparison. 298 

4 Results  299 

4.1 Model intercomparison 300 

Comparison among the three EEH ET products over six different biomes (Figure 2) for a wide 301 

range of soil water content (SWC) reveals that the STIC ET estimates produce the least statistical 302 
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errors over forest, cropland, shrubland and savanna (RMSE between 57.21 and 78.90 W m-2, bias 303 

between -21.43 and 38.36 W m-2). While the SEBS ET estimates have the highest consistency with 304 

respect to EC measurements over grassland and wetland, the performance of SEBS is poor in 305 

semiarid shrubland and savanna. SEBS shows the highest RMSE (~135 W m-2) and bias (~119 W 306 

m-2) in these water-scare ecosystems among the three ET products. In contrast, TSEB ET estimates 307 

have the maximum RMSE (between 68.39 and 132.37 W m-2) and bias (between 36.77 and 92.83 308 

W m-2) over most of the land surface types except for shrubland and savanna (RMSE between 60 309 

and 85 W m-2, bias between 10 and 50 W m-2). The performances of STIC and TSEB are 310 

comparable over shrubland and savanna, with differences of RMSE and bias within 10 W m-2. 311 

Overall, ET estimates from STIC have consistent performances across different biomes. The SEBS 312 

ET estimates perform reasonably well in radiation-controlled ecosystems, which is on the contrary 313 

to the TSEB estimates. 314 

All the models show relatively higher uncertainties in ET estimates over forest and wetland, where 315 

RMSEs are approximately 80 W m-2 and biases are above 30 W m-2. The large error in ET 316 

estimates over forest is probably partly caused by the inconsistency between the meteorological 317 

variables from the ERA5 reanalysis data and the actual conditions at the reference height above 318 

the forest. On the contrary, due to the low canopy height and uniform landscape, the atmospheric 319 

conditions are better depicted by the meteorological data over grassland and cropland, which leads 320 

to a better ET estimation accuracy in these biomes. For the wetland, the high ET errors under high 321 

SWC condition could be due to the presence of background water, which does not match the 322 

conceptualized surface (soil-vegetation-atmosphere continuum) in the three SEB models. Over 323 

savanna, the overestimation by all the models reflects the challenges in estimating ET over 324 

semiarid complex landscapes with substantial water stress and low magnitude of ET. 325 
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Figure 2. Comparison between the observed ET at EC sites and instantaneous ET estimates from 326 

STIC, SEBS and TSEB for 6 biomes during the period 2018−2019. The colour bar represents the 327 

soil water content (SWC) measurements from the EC sites. 328 

The time series of EEH ET estimates at six representative biomes is shown in Figure 3. Overall, 329 

the ET estimates capture the variation in EC flux measurements although the magnitude is different 330 

on some days. The diurnal variation of ET is reasonably represented by the estimates (Figure 3(a) 331 

and (c)). The lagged responses of ET to rainfall events are shown. In line with the better 332 

performances over grassland and cropland in Figure 2, the EEH ET estimates are also closer to the 333 
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EC measurements over these two biomes as compared to the other four. The overestimation of the 334 

EEH ET products over savanna is clearly embodied (Figure 3(f)). 335 
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Figure 3. Time series of the observed ET and EEH ET estimates from STIC, SEBS and TSEB at 336 

six representative sites of different biomes (a) forest (BE-Vie), (b) cropland (DE-RuS), (c) 337 

grassland (DE-Rur), (d) shrubland (IT-Lsn), (e) wetland (FR-LGt), and (f) savanna (ES-LM1). 338 

The blue line represents the diurnal cycle of latent heat flux measurements at the EC sites. The bar 339 

represents the daily precipitation obtained by accumulating the half-hourly measurements from the 340 

EC sites. 341 

Overall, the STIC ET estimates have the lowest statistical errors (Figure 4). The accuracy of SEBS 342 

is similar, with an RMSE around 70 W m-2, bias of ~10 W m-2, and correlation coefficient (r) 343 

around 0.8. ET estimates from TSEB have a relatively larger RMSE (92.90 W m-2) and bias (49.45 344 

W m-2) although having a similar r (0.77) to the other two models.  345 

   

Figure 4. Comparison between the observed ET and EEH ET estimates at all the eddy covariance 346 

sites for (a) STIC, (b) SEBS and (c) TSEB during the period between 2018 and 2019. The colour 347 

bar represents the SWC measurements from the EC sites. 348 

To understand the model performance under different aridity conditions, the relationship between 349 

KGE and aridity index is shown in Figure 5. Aridity index is calculated as the ratio between 350 

precipitation and potential ET for 30 years, which indicates the local climatology. Here, the Global 351 
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Aridity Index and Potential Evapotranspiration Climate Database v3 (Zomer and Trabucco 2022) 352 

(Global-AI_PET_v3) at 1 km pixel scale was used to obtain the aridity indices at the EC sites. The 353 

KGE for STIC at most of the sites are close to 1, indicating a good agreement between the ET 354 

estimates and EC measurements. Only the two sites over wetland and two sites over savanna are 355 

below 0.5, which is consistent with the large biases in these two biomes as found in Figure 2. It is 356 

also clear that the accuracy of ET estimates improves when the sites have a humid climate (aridity 357 

index >0.65) as compared to those with a semiarid (0.2-0.5) or dry subhumid (0.5-0.65) climate. 358 

The SEBS estimates have a similar performance when the aridity index is above 0.5. Whereas 359 

KEG is notably lower for SEBS under a semiarid climate. The KGE samples for TSEB are more 360 

scattered, and the magnitudes of KGE at most of the sites are lower than STIC and SEBS.  361 

   

Figure 5. KGE at different aridity levels for various sites for (a) STIC, (b) SEBS and (c) TSEB 362 

during the period between 2018 and 2019. Sites over the same land surface type are represented 363 

using the same marker. The KEG at ES-Abr for SEBS (-5.07) and TSEB (-2.50) are not shown 364 

due to the excessively low values. The higher the aridity index is, the more humid conditions are. 365 

4.2 Comparison between STIC and PT-JPL 366 

Given that the ET estimates from STIC showed the best agreement with the EC measurements, 367 

STIC ET was compared with the official ECOSTRESS ET that was generated using the PT-JPL 368 

model (Figure 6). The performance of STIC is pronouncedly better as compared to PT-JPL over 369 

all the biome types. The differences in RMSE are ~50 W m-2 in all the cases except over cropland 370 

where the difference is around 20 W m-2. The PT-JPL ET estimates are scattered, with most 371 

samples above the 1:1 line. This is reflected in the large positive biases of PT-JPL estimates. The 372 

overestimation of PT-JPL as compared to STIC in dry conditions (with low EC ET) is clearly 373 

shown. In particular over shrubland and savanna, all the estimates from PT-JPL are greater than 374 

from STIC. We infer that this is caused by the weak LST constraint in the PT-JPL model, which 375 

makes the model insensitive to surface water stress. In the PT-JPL model, LST is just used in the 376 

calculation of surface net radiation. Whereas in the STIC model, LST is embedded in the 377 

calculation of surface soil moisture availability and thus directly linked to evaporative fraction 378 

(Equation 5).  379 
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Figure 6. Comparison between the observed ET at EC sites and instantaneous ET estimates from 380 

STIC and PT-JPL over 6 land surface types during the period between 2018−2020. The colour bar 381 

represents the SWC measurements from the EC sites. 382 

Overall, the PT-JPL model has a RMSE of 123.55 W m-2 and bias of 48.54 W m-2, which are both 383 

~50 W m-2 higher than those of STIC. The PT-JPL ET estimates are scattered, in contrast to the 384 

STIC estimates that are tightly and evenly distributed around the 1:1 line (Figure 7(a) and (b)). 385 

The Taylor diagram further clarifies the closeness of STIC ET estimates to the ground ‘truth’ 386 

although the standard deviation of PT-JPL ET estimates is closer to that of the observations. 387 

  
 

Figure 7. Comparison between the observed ET and instantaneous ET estimates at all the eddy 388 

covariance sites for (a) STIC and (b) PT-JPL and (c) Taylor diagram during the period between 389 

2018 and 2020. 390 

5 Discussion 391 

5.1 Factors affecting model performances 392 

Different impact factors influencing the model performances were investigated, including SWC 393 

(Figure 8), vapor pressure deficit (VPD, Figure 9), viewing zenith angle (VZA, Figure 10), and 394 

FVC (Figure 11), respectively. 395 

For all the models, the variation of ET bias with SWC is exponential (Figure 8). A sharp increase 396 

in ET bias with progressive surface drying (decreasing SWC) is evident when SWC is below 0.1 397 

m3 m-3, which is also associated with low ET magnitude. This is particularly obvious for SEBS, 398 

which showed a large overestimation under dry conditions. This reflects the challenges as well as 399 

opportunities in enhancing the performances of ET models in water-scarce regions where the 400 

coupling between the land surface and atmosphere is strong and evaporation is mainly driven by 401 

soil water induced stomatal control (Mallick et al. 2022; Mallick et al. 2016). In contrast, when 402 

SWC is above 0.2 m2 m-2, the ET bias tends to diminish and approaches zero, although 403 

underestimation is indicated when EC ET are high. Due to the scattered samples of TSEB 404 
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estimates, the relationship between ET bias and SWC is not so strong (R2 = 0.07) as found in STIC 405 

and SEBS. However, the overall trends in ET bias versus SWC are similar in all the three models.  406 

   

Figure 8. ET bias (ET estimate minus ground measurement) versus SWC for (a) STIC, (b) SEBS 407 

and (c) TSEB during the period between 2018 and 2019. Samples at all the sites except for the 408 

wetland sites are included. The wetland sites are excluded due to the high SWC and different 409 

pattern between ET bias and SWC from the other land surface types. 410 

Compared with SWC, the relationship between ET bias and VPD is not so strong although the bias 411 

is generally larger when VPD is above 20 hPa (Figure 9). The increase of ET bias with VPD is 412 

more noticeable for SEBS. This is consistent with the large uncertainty of SEBS that could not 413 

adequately capture the low ET magnitudes over shrubland and savanna. 414 

   

Figure 9. ET bias (ET estimate minus ground measurement) versus VPD for (a) STIC, (b) SEBS 415 

and (c) TSEB during the period between 2018 and 2019.   416 

No impact of VZA on ET bias is found for all the three models (Figure 10). The magnitude of ET 417 

bias across different VZAs is close. We infer this is partly because the angular variation of thermal 418 

radiation is not pronounced when VZA is below 30° (Ermida et al. 2018; Hu et al. 2019; Mwangi 419 

et al. 2022). Moreover, the high spatial homogeneity at the EC sites (Fisher et al. 2020) is also an 420 

important factor for the weak angular variation of thermal radiation. 421 

   
Figure 10. ET bias (ET estimate minus ground measurement) versus VZA for (a) STIC, (b) SEBS 422 

and (c) TSEB during the period between 2018 and 2019. 423 
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The overestimation of ET over sparsely vegetated surfaces (FVC <0.5) is notable for all the three 424 

models (Figure 11). The ET bias of STIC is lower as compared to the other two models, with most 425 

of the samples below 100 W m-2. The ET bias of SEBS for FVC <0.2 is substantially higher than 426 

STIC and TSEB, which is consistent with the high RMSE of SEBS ET estimates over shrubland 427 

and savanna. This is also reported in previous studies (Bhattarai et al. 2018; Boulet et al. 2012; 428 

Faivre et al. 2017), which is mostly associated with the underestimation of H due to uncertainties 429 

in the estimation of kB-1 and z0M when the difference between TR and T0 is substantial. Chen et al. 430 

(2013) proposed an improved roughness height parameterization by updating kB-1 of bare soil, 431 

which showed a better performance than the original SEBS model by correcting for the 432 

underestimation of H. However, it is beyond the scope of this study to compare the revised SEBS 433 

model with the others in detail. For densely vegetated surfaces (FVC >0.8), the ET bias is evenly 434 

distributed above and below the zero-bias line. However, the magnitude of bias is higher over 435 

densely vegetated surfaces due to the relatively higher ET. For TSEB, high biases in ET are found 436 

when FVC approaches unity. This high bias in TSEB is presumably due to the uncertainty in 437 

fraction of green vegetation, which is also reflected in the large RMSE of TSEB ET over forests 438 

in Figure 2. Given no attempt was made to change the pyTSEB version of Nieto et al. (2016), we 439 

adopted the default value of fraction of green vegetation (=1) of pyTSEB in EEH. This can be 440 

somehow problematic when vegetation senescence occurs. However, accurate retrievals of these 441 

vegetation biophysical parameters are difficult to obtain at large spatial scales, especially for 442 

ECOSTRESS that only has TIR observations, which could add additional challenges to TSEB. 443 

Moreover, the PT-TSEB version with a single PT coefficient was used in the EEH. The PM-TSEB 444 

version with tabulated minimum stomatal resistance might mitigate the large uncertainties of 445 

TSEB over densely vegetated surfaces (Colaizzi et al. 2014). 446 

   
Figure 11. ET bias (ET estimate minus ground measurement) versus FVC for (a) STIC, (b) SEBS 447 

and (c) TSEB during the period between 2018 and 2019. 448 

5.2 Contrasting performances of ECOSTRESS ET products 449 

The STIC ET estimates showed consistent performances over different land surface types. This 450 

could be attributed to the non-parameterized structure of this model. Different from the other 451 

thermal based models, the aerodynamic and surface resistances in STIC are expressed through 452 

physical equations without empirical parameterization of surface roughness and atmospheric 453 

stability corrections. However, the calculation of aerodynamic resistance relies on wind speed in 454 

SEBS and TSEB, which makes these models relatively more sensitive to uncertainties associated 455 

with wind velocity. Moreover, the aerodynamic temperature is directly retrieved in STIC instead 456 

of utilizing the radiometric temperature as a proxy and involving subsequent empirical corrections 457 

as commonly conducted in one-source models (Mallick et al. 2022). As a result, the dependence 458 

of ET estimates on additional inputs (e.g., wind speed and canopy height) is also eliminated in 459 

STIC. LST is mainly used for depicting surface water availability in STIC rather than directly 460 
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calculating sensible heat flux. Considering the current validation datasets, the STIC model is 461 

relatively robust across varying biomes.  462 

The SEBS ET estimates showed similar accuracy to the STIC estimates in all cases except for over 463 

sparsely vegetated surfaces (i.e., shrubland and savanna). This could be associated with empirical 464 

parameterizations of resistances to accommodate the inequality between radiometric temperature 465 

and aerodynamic temperature (Mallick et al. 2022; Trebs et al. 2021). Over sparse canopies, large 466 

uncertainties exist in the parameterization scheme. Bhattarai et al. (2018) and Trebs et al. (2021) 467 

reported that uncertainties in kB-1 greatly hindered the accuracy of ET estimates in the arid and 468 

semiarid ecosystems. Moreover, there is no universal methodology for calculating the heat 469 

roughness length, which varies with vegetation structure, surface water stress and climatic 470 

conditions (Kustas and Anderson 2009; Mallick et al. 2022). As such, the SEBS model should be 471 

used with caution in operational ET retrieval. 472 

The TSEB ET estimates had larger uncertainties overall as compared to STIC and SEBS. Over 473 

forests, the RMSE and bias reached 132.37 and 92.83 W m-2, respectively. As reported by Yang 474 

et al. (2015), a major factor is the uncertainty in determining the initial P-T coefficient, which 475 

represents the aerodynamic forcing and vegetation controls on ET. We used the value of 1.26 in 476 

the model implementation. However, the P-T coefficient has strong spatial variations with surface 477 

dryness, VPD, wind speed and canopy biophysical properties. Thus, a deterministic P-T coefficient 478 

can lead to uncertainties at large scales. An adjustment of the initial P-T coefficient based on land 479 

surface type may mitigate the uncertainty in ET estimates (Andreu et al. 2018; Cristóbal et al. 480 

2020; Cristóbal et al. 2017; Guzinski et al. 2013). Also, the soil aerodynamic resistance 481 

parameterization and the associated empirical coefficients could be another reason (Li et al. 2019). 482 

Moreover, the determination of fraction of green vegetation was simplified in EEH and set to 1 483 

directly. This could also contribute to the large uncertainties of TSEB ET estimates considering 484 

the import role of canopy biophysical parameters in heat transfer (Kustas et al. 2016). A possible 485 

solution could be estimating fG based on the empirical approach proposed by Fisher et al. (2008). 486 

In this case, additional input parameters are required such as fraction of absorbed 487 

photosynthetically active radiation (fAPAR), which will bring extra complexity in operational ET 488 

retrieval. Although the biophysical parameters (e.g., LAI and FVC) used in TSEB are the same as 489 

in STIC and SEBS, the TSEB ET estimates seem to be more susceptible to uncertainties in these 490 

biophysical inputs due to the model structure and partitioning of energy between soil and 491 

vegetation. Due to the absence of visible and shortwave infrared (VSWIR) bands in the 492 

ECOSTRESS observations, external biophysical parameters were used in the ET retrieval. 493 

However, the temporal and spatial mismatches between these biophysical parameters and the 494 

instantaneous ECOSTRESS LST estimates could have introduced errors into the TSEB ET results 495 

(Anderson et al. 2021).   496 

The accuracy of PT-JPL ET estimates was substantially lower as compared to the STIC estimates 497 

over all the land surface types. This could be attributed to the following reasons. First, the 498 

ECOSTRESS LST is only used for calculating surface net radiation in PT-JPL ET retrieval. Net 499 

radiation has a weak dependence on LST and therefore the ET products generated using PT-JPL 500 

does not take full advantage of surface water stress information embodied in LST. Second, PT-501 

JPL relies on atmospheric vapor pressure deficit instead of LST for constraining the ET 502 

components. Moreover, the determination of the P-T coefficient for different biomes is a challenge 503 

as well as a major source of uncertainties. Thus, a physically based formula is needed to estimate 504 
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the P-T coefficient for better interpolation of the aerodynamic forcing and soil-vegetation control 505 

in the SEB process.  506 

5.3 Uncertainties and limitations in the current evaluation 507 

Although we selected EC sites with good maintenance and only used good quality flux 508 

measurements, uncertainties could still exist in the measured fluxes, which may have influenced 509 

the evaluation results. Due to the unavailability of well-maintained EC sites over Africa, we only 510 

evaluated the EEH ET products over Europe. Also, sites in semiarid regions (e.g., over savanna) 511 

have limited sample numbers due to the sparse spatial coverage of ECOSTRESS over the Iberian 512 

Peninsula. Inclusion of more EC sites over Africa and semiarid regions in Europe would benefit a 513 

more thorough and comprehensive evaluation of EEH ET products in the future. 514 

In the ECOSTRESS observations, only five thermal bands (three since May 2019 due to the loss 515 

of the two onboard Mass Storage Units) are available. Therefore, ancillary data related to land 516 

surface biophysical properties can only be obtained from external sources. In the case of EEH, we 517 

used the CGLS FVC, and albedo data generated from Sentinel-3/OLCI and PROBA-V. Therefore, 518 

discrepancies in spatial resolution and satellite overpass times cannot be avoided, which could 519 

impact the ET retrieval process. Moreover, cloud masking without the support of VSWIR bands 520 

is challenging and problematic. Although strict cloud screening was exercised in the evaluation, 521 

residuals from the cloud mask could still harm the accuracy of LST retrieval, thus impacting ET 522 

estimation. Fortunately, in the future thermal missions such as TRISHNA and LSTM, these 523 

problems will be minimized substantially with the measurement in VSWIR bands. 524 

Correspondingly, the accuracy of ET estimates can be envisaged to further improve. 525 

Due to the issue with the sensor’s radiometric calibration in Collection 1 ECOSTRESS data, a cold 526 

bias of ~1 K was found in the ECOSTRESS LST products (Hulley et al. 2021). This has been 527 

addressed in Collection 2 that will be released in 2022. Accordingly, we will reprocess the 528 

ECOSTRESS LST, and ET products based on the Collection 2 ECOSTRESS radiance data and 529 

extend the temporal coverage of EEH products to September 2023 in the Phase-2 of EEH. The 5-530 

year time series of high spatio-temporal resolution ECOSTRESS products with improved accuracy 531 

is expected to greatly benefit the studies on terrestrial ecosystem processes. 532 

6 Conclusion 533 

TIR observations from ECOSTRESS onboard the ISS with high spatio-temporal resolution 534 

provide a good opportunity for generating LST and ET products at the field scale over the globe. 535 

In this study, we evaluated three ECOSTRESS ET products generated in the EEH project based 536 

on three structurally contrasting thermal-based SEB models (i.e., STIC, SEBS, and TSEB). The 537 

ET estimates were compared against latent heat flux measurements at 19 EC sites over Europe 538 

between 2018 and 2019. Furthermore, the best performing STIC ET estimates were compared with 539 

the NASA official ECOSTRESS ET products using the PT-JPL model at the same sites. Six 540 

different land surface types were encompassed in the evaluation, including forest, grassland, 541 

cropland, shrubland, wetland and savanna. 542 

The results revealed that the STIC ET estimates had consistent performance over different land 543 

surface types with a relatively better accuracy as compared to the other two models, which is 544 
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directly linked to the analytical framework of STIC without resistance parameterizations. The 545 

SEBS estimates had similar performances to STIC except over shrubland and savanna where the 546 

uncertainties of SEBS ET were substantially higher than for the other two models. This is attributed 547 

to the large uncertainties in empirical parameterizations of resistances to accommodate the 548 

inequality between radiometric temperature and aerodynamic temperature in SEBS over sparsely 549 

vegetated surfaces. The performance of TSEB was particularly good in water-scarce ecosystems. 550 

However, large uncertainties were found in TSEB in radiation-controlled ecosystems. The setting 551 

of P-T coefficient, soil aerodynamic resistance parameterization, fraction of green vegetation 552 

values, and temporal and spatial mismatches between the input biophysical parameters and the 553 

instantaneous ECOSTRESS LST retrievals could account for the high uncertainties to some extent. 554 

Compared with the PT-JPL estimates, the performance of STIC was substantially better over all 555 

the land surface types. The overall RMSE and bias were both ~50 W m-2 higher in the PT-JPL 556 

estimates than those of STIC. The serious overestimation of PT-JPL ET estimates could be 557 

explained by the weak LST constraint in the model. 558 

We conclude that the high spatio-temporal resolution EEH ET products provide an unprecedented 559 

opportunity for environmental and agricultural applications. The comprehensive evaluation among 560 

the EEH ET estimates driven by uniform forcing data provides insights into SEB models with 561 

different structures and contrasting parameterization schemes. Overall, the EEH is promising to 562 

serve as a support for the future thermal missions such as TRISHNA jointly collaborated by France 563 

and India, SBG from NASA and LSTM from ESA. 564 

Acknowledgments  565 

The authors wish to extend their gratitude to all the scientists involved in the ECOSTRESS mission 566 

and ground measurement collection in ICOS and EFDC. We would like to thank Dr. Hector Nieto 567 

and Dr. Johannes van der Kwast for the open-source Python codes of TSEB 568 

(https://github.com/hectornieto/pyTSEB) and SEBS (https://github.com/jvdkwast/PySEBS), 569 

respectively. The manuscript is greatly benefited from the comments and advice from Dr. Dennis 570 

Baldocchi and Dr. William P. Kustas on the interpretation of the TSEB ET estimates. The study 571 

was conducted under the European ECOSTRESS Hub project (EEH, Contract No. 572 

4000129873/20/I-NS), funded by the European Space Agency (ESA) Earth Observation Envelop 573 

Programme (EOEP). Part of this research was carried out at the Jet Propulsion Laboratory, 574 

California Institute of Technology, under a contract with the National Aeronautics and Space 575 

Administration (80NM0018D0004). K. M. acknowledges the Mobility Fellowship from the FNR 576 

Luxembourg (INTER/MOBILITY/2020/14521920/MONASTIC). 577 

References 578 

Allen, R.G., Pereira, L.S., Howell, T.A., & Jensen, M.E. (2011). Evapotranspiration information 579 

reporting: I. Factors governing measurement accuracy. Agricultural Water Management, 98, 899-580 

920 581 

Anderson, M.C., Allen, R.G., Morse, A., & Kustas, W.P. (2012). Use of Landsat thermal imagery 582 

in monitoring evapotranspiration and managing water resources. Remote Sensing of Environment, 583 

122, 50-65 584 

ESSOAr | https://doi.org/10.1002/essoar.10512884.1 | CC_BY_NC_4.0 | This content has not been peer reviewed. 



manuscript submitted to Water Resources Research 

 

Anderson, M.C., Hain, C., Wardlow, B., Pimstein, A., Mecikalski, J.R., & Kustas, W.P. (2011). 585 

Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the 586 

continental United States. Journal of Climate, 24, 2025-2044 587 

Anderson, M.C., Norman, J.M., Kustas, W.P., Houborg, R., Starks, P.J., & Agam, N. (2008). A 588 

thermal-based remote sensing technique for routine mapping of land-surface carbon, water and 589 

energy fluxes from field to regional scales. Remote Sensing of Environment, 112, 4227-4241 590 

Anderson, M.C., Norman, J.M., Mecikalski, J.R., Otkin, J.A., & Kustas, W.P. (2007). A 591 

climatological study of evapotranspiration and moisture stress across the continental United States 592 

based on thermal remote sensing: 1. Model formulation. Journal of Geophysical Research: 593 

Atmospheres, 112 594 

Anderson, M.C., Yang, Y., Xue, J., Knipper, K.R., Yang, Y., Gao, F., Hain, C.R., Kustas, W.P., 595 

Cawse-Nicholson, K., & Hulley, G. (2021). Interoperability of ECOSTRESS and Landsat for 596 

mapping evapotranspiration time series at sub-field scales. Remote Sensing of Environment, 252, 597 

112189 598 

Andreu, A., Kustas, W.P., Polo, M.J., Carrara, A., & González-Dugo, M.P. (2018). Modeling 599 

surface energy fluxes over a dehesa (oak savanna) ecosystem using a thermal based two-source 600 

energy balance model (TSEB) I. Remote Sensing, 10, 567 601 

Bai, Y., Bhattarai, N., Mallick, K., Zhang, S., Hu, T., & Zhang, J. (2022). Thermally derived 602 

evapotranspiration from the Surface Temperature Initiated Closure (STIC) model improves 603 

cropland GPP estimates under dry conditions. Remote Sensing of Environment, 271, 112901 604 

Bayat, B., van der Tol, C., & Verhoef, W. (2018). Integrating satellite optical and thermal infrared 605 

observations for improving daily ecosystem functioning estimations during a drought episode. 606 

Remote Sensing of Environment, 209, 375-394 607 

Bhattarai, N., Mallick, K., Brunsell, N.A., Sun, G., & Jain, M. (2018). Regional evapotranspiration 608 

from an image-based implementation of the Surface Temperature Initiated Closure (STIC1. 2) 609 

model and its validation across an aridity gradient in the conterminous US. Hydrology and Earth 610 

System Sciences, 22, 2311-2341 611 

Boegh, E., Soegaard, H., Hanan, N., Kabat, P., & Lesch, L. (1999). A remote sensing study of the 612 

NDVI–Ts relationship and the transpiration from sparse vegetation in the Sahel based on high-613 

resolution satellite data. Remote Sensing of Environment, 69, 224-240 614 

Boulet, G., Olioso, A., Ceschia, E., Marloie, O., Coudert, B., Rivalland, V., Chirouze, J., & 615 

Chehbouni, G. (2012). An empirical expression to relate aerodynamic and surface temperatures 616 

for use within single-source energy balance models. Agricultural and Forest Meteorology, 161, 617 

148-155 618 

Cawse-Nicholson, K., Townsend, P.A., Schimel, D., Assiri, A.M., Blake, P.L., Buongiorno, M.F., 619 

Campbell, P., Carmon, N., Casey, K.A., & Correa-Pabón, R.E. (2021). NASA's surface biology 620 

and geology designated observable: A perspective on surface imaging algorithms. Remote Sensing 621 

of Environment, 257, 112349 622 

Chen, J.M., & Liu, J. (2020). Evolution of evapotranspiration models using thermal and shortwave 623 

remote sensing data. Remote Sensing of Environment, 237, 111594 624 

Chen, X., Su, Z., Ma, Y., & Middleton, E.M. (2019). Optimization of a remote sensing energy 625 

balance method over different canopy applied at global scale. Agricultural and Forest 626 

Meteorology, 279, 107633 627 

Chen, X., Su, Z., Ma, Y., Trigo, I., & Gentine, P. (2021). Remote sensing of global daily 628 

evapotranspiration based on a surface energy balance method and reanalysis data. Journal of 629 

Geophysical Research: Atmospheres, 126, e2020JD032873 630 

ESSOAr | https://doi.org/10.1002/essoar.10512884.1 | CC_BY_NC_4.0 | This content has not been peer reviewed. 



manuscript submitted to Water Resources Research 

 

Chen, X., Su, Z., Ma, Y., Yang, K., Wen, J., & Zhang, Y. (2013). An improvement of roughness 631 

height parameterization of the Surface Energy Balance System (SEBS) over the Tibetan Plateau. 632 

Journal of Applied Meteorology and Climatology, 52, 607-622 633 

Colaizzi, P.D., Agam, N., Tolk, J.A., Evett, S.R., Howell, T.A., Gowda, P.H., O’Shaughnessy, 634 

S.A., Kustas, W.P., & Anderson, M.C. (2014). Two-source energy balance model to calculate E, 635 

T, and ET: Comparison of Priestley-Taylor and Penman-Monteith formulations and two time 636 

scaling methods. Transactions of the ASABE, 57, 479-498 637 

Crago, R.D., & Qualls, R.J. (2014). Use of land surface temperature to estimate surface energy 638 

fluxes: Contributions of Wilfried Brutsaert and collaborators. Water Resources Research, 50, 639 

3396-3408 640 

Cristóbal, J., Prakash, A., Anderson, M.C., Kustas, W.P., Alfieri, J.G., & Gens, R. (2020). Surface 641 

energy flux estimation in two Boreal settings in Alaska using a thermal-based remote sensing 642 

model. Remote Sensing, 12, 4108 643 

Cristóbal, J., Prakash, A., Anderson, M.C., Kustas, W.P., Euskirchen, E.S., & Kane, D.L. (2017). 644 

Estimation of surface energy fluxes in the Arctic tundra using the remote sensing thermal-based 645 

Two-Source Energy Balance model. Hydrology and Earth System Sciences, 21, 1339-1358 646 

Dai, A., Trenberth, K.E., & Qian, T. (2004). A global dataset of Palmer Drought Severity Index 647 

for 1870–2002: Relationship with soil moisture and effects of surface warming. Journal of 648 

Hydrometeorology, 5, 1117-1130 649 

Ermida, S.L., Trigo, I.F., DaCamara, C.C., & Roujean, J.-L. (2018). Assessing the potential of 650 

parametric models to correct directional effects on local to global remotely sensed LST. Remote 651 

Sensing of Environment, 209, 410-422 652 

Faivre, R., Colin, J., & Menenti, M. (2017). Evaluation of methods for aerodynamic roughness 653 

length retrieval from very high-resolution imaging lidar observations over the Heihe Basin in 654 

China. Remote Sensing, 9, 63 655 

Fang, L., Zhan, X., Schull, M., Kalluri, S., Laszlo, I., Yu, P., Carter, C., Hain, C., & Anderson, M. 656 

(2019). Evapotranspiration data product from NESDIS GET-D system upgraded for GOES-16 657 

ABI observations. Remote Sensing, 11, 2639 658 

Fisher, J.B., Lee, B., Purdy, A.J., Halverson, G.H., Dohlen, M.B., Cawse‐Nicholson, K., Wang, 659 

A., Anderson, R.G., Aragon, B., & Arain, M.A. (2020). ECOSTRESS: NASA's next generation 660 

mission to measure evapotranspiration from the international space station. Water Resources 661 

Research, 56, e2019WR026058 662 

Fisher, J.B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., McCabe, M.F., Hook, 663 

S., Baldocchi, D., & Townsend, P.A. (2017). The future of evapotranspiration: Global 664 

requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, 665 

and water resources. Water Resources Research, 53, 2618-2626 666 

Fisher, J.B., Tu, K.P., & Baldocchi, D.D. (2008). Global estimates of the land–atmosphere water 667 

flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote 668 

Sensing of Environment, 112, 901-919 669 

Fisher, J.B., Whittaker, R.J., & Malhi, Y. (2011). ET come home: potential evapotranspiration in 670 

geographical ecology. Global Ecology and Biogeography, 20, 1-18 671 

González-Dugo, M.P., Chen, X., Andreu, A., Carpintero, E., Gómez-Giraldez, P.J., Carrara, A., & 672 

Su, Z. (2021). Long-term water stress and drought assessment of Mediterranean oak savanna 673 

vegetation using thermal remote sensing. Hydrology and Earth System Sciences, 25, 755-768 674 

ESSOAr | https://doi.org/10.1002/essoar.10512884.1 | CC_BY_NC_4.0 | This content has not been peer reviewed. 



manuscript submitted to Water Resources Research 

 

Gupta, H.V., Kling, H., Yilmaz, K.K., & Martinez, G.F. (2009). Decomposition of the mean 675 

squared error and NSE performance criteria: Implications for improving hydrological modelling. 676 

Journal of Hydrology, 377, 80-91 677 

Guzinski, R., Anderson, M.C., Kustas, W.P., Nieto, H., & Sandholt, I. (2013). Using a thermal-678 

based two source energy balance model with time-differencing to estimate surface energy fluxes 679 

with day–night MODIS observations. Hydrology and Earth System Sciences, 17, 2809-2825 680 

Hook, S.J., Cawse-Nicholson, K., Barsi, J., Radocinski, R., Hulley, G.C., Johnson, W.R., Rivera, 681 

G., & Markham, B. (2019). In-flight validation of the ECOSTRESS, Landsats 7 and 8 thermal 682 

infrared spectral channels using the Lake Tahoe CA/NV and Salton Sea CA automated validation 683 

sites. IEEE Transactions on Geoscience and Remote Sensing, 58, 1294-1302 684 

Hu, T., Renzullo, L.J., Cao, B., van Dijk, A.I.J.M., Du, Y., Li, H., Cheng, J., Xu, Z., Zhou, J., & 685 

Liu, Q. (2019). Directional variation in surface emissivity inferred from the MYD21 product and 686 

its influence on estimated surface upwelling longwave radiation. Remote Sensing of Environment, 687 

228, 45-60 688 

Hulley, G.C., Göttsche, F.M., Rivera, G., Hook, S.J., Freepartner, R.J., Martin, M.A., Cawse-689 

Nicholson, K., & Johnson, W.R. (2021). Validation and quality assessment of the ECOSTRESS 690 

level-2 land surface temperature and emissivity product. IEEE Transactions on Geoscience and 691 

Remote Sensing, 60, 1-23 692 

Jaafar, H., Mourad, R., & Schull, M. (2022). A global 30-m ET model (HSEB) using harmonized 693 

Landsat and Sentinel-2, MODIS and VIIRS: Comparison to ECOSTRESS ET and LST. Remote 694 

Sensing of Environment, 274, 112995 695 

Jasechko, S., Sharp, Z.D., Gibson, J.J., Birks, S.J., Yi, Y., & Fawcett, P.J. (2013). Terrestrial water 696 

fluxes dominated by transpiration. Nature, 496, 347-350 697 

Koetz, B., Bastiaanssen, W., Berger, M., Defourney, P., Del Bello, U., Drusch, M., Drinkwater, 698 

M., Duca, R., Fernandez, V., & Ghent, D. (2019). Agriculture: Land Surface Temperature 699 

Monitoring (LSTM) Mission. In: 2019 ESA Living Planet Symposium. Milan, Italy 700 

Kustas, W., & Anderson, M. (2009). Advances in thermal infrared remote sensing for land surface 701 

modeling. Agricultural and Forest Meteorology, 149, 2071-2081 702 

Kustas, W.P., Nieto, H., Morillas, L., Anderson, M.C., Alfieri, J.G., Hipps, L.E., Villagarcía, L., 703 

Domingo, F., & Garcia, M. (2016). Revisiting the paper “Using radiometric surface temperature 704 

for surface energy flux estimation in Mediterranean drylands from a two-source perspective”. 705 

Remote Sensing of Environment, 184, 645-653 706 

Lagouarde, J.P., Bhattacharya, B.K., Crebassol, P., Gamet, P., Babu, S.S., Boulet, G., Briottet, X., 707 

Buddhiraju, K.M., Cherchali, S., & Dadou, I. (2018). The Indian-French Trishna mission: Earth 708 

observation in the thermal infrared with high spatio-temporal resolution. In: 2018 IEEE 709 

International Geoscience and Remote Sensing Symposium (pp. 4078-4081). Valencia, Spain 710 

Li, Y., Kustas, W.P., Huang, C., Nieto, H., Haghighi, E., Anderson, M.C., Domingo, F., Garcia, 711 

M., & Scott, R.L. (2019). Evaluating soil resistance formulations in thermal‐based two‐source 712 

energy balance (TSEB) model: Implications for heterogeneous semiarid and arid regions. Water 713 

Resources Research, 55, 1059-1078 714 

Liu, N., Oishi, A.C., Miniat, C.F., & Bolstad, P. (2021). An evaluation of ECOSTRESS products 715 

of a temperate montane humid forest in a complex terrain environment. Remote Sensing of 716 

Environment, 265, 112662 717 

Mallick, K., Baldocchi, D., Jarvis, A., Hu, T., Trebs, I., Sulis, M., Bhattarai, N., Bossung, C., Eid, 718 

Y., & Cleverly, J. (2022). Insights into the Aerodynamic versus Radiometric Surface Temperature 719 

ESSOAr | https://doi.org/10.1002/essoar.10512884.1 | CC_BY_NC_4.0 | This content has not been peer reviewed. 



manuscript submitted to Water Resources Research 

 

Debate in Thermal‐based Evaporation Modeling. Geophysical Research Letters, 49, 720 

e2021GL097568 721 

Mallick, K., Boegh, E., Trebs, I., Alfieri, J.G., Kustas, W.P., Prueger, J.H., Niyogi, D., Das, N., 722 

Drewry, D.T., & Hoffmann, L. (2015). Reintroducing radiometric surface temperature into the 723 

Penman‐Monteith formulation. Water Resources Research, 51, 6214-6243 724 

Mallick, K., Hu, T., Bai, Y., Bhattarai, N., Trebs, I., Schlerf, M., Boulet, G., Wang, T., Sanchez, 725 

C.R., & Shortt, R. (2021). Thermal and Shortwave Infrared Remote Sensing of Ecosystem 726 

Processes: Opportunities, Synergies, and Challenges. In: 2021 IEEE International India 727 

Geoscience and Remote Sensing Symposium (InGARSS) (pp. 440-443). Ahmedabad, India 728 

Mallick, K., Jarvis, A.J., Boegh, E., Fisher, J.B., Drewry, D.T., Tu, K.P., Hook, S.J., Hulley, G., 729 

Ardö, J., & Beringer, J. (2014). A Surface Temperature Initiated Closure (STIC) for surface energy 730 

balance fluxes. Remote Sensing of Environment, 141, 243-261 731 

Mallick, K., Toivonen, E., Trebs, I., Boegh, E., Cleverly, J., Eamus, D., Koivusalo, H., Drewry, 732 

D., Arndt, S.K., & Griebel, A. (2018a). Bridging Thermal Infrared Sensing and Physically‐Based 733 

Evapotranspiration Modeling: From Theoretical Implementation to Validation Across an Aridity 734 

Gradient in Australian Ecosystems. Water Resources Research, 54, 3409-3435 735 

Mallick, K., Trebs, I., Boegh, E., Giustarini, L., Schlerf, M., Drewry, D.T., Hoffmann, L., Von 736 

Randow, C., Kruijt, B., & Araùjo, A. (2016). Canopy-scale biophysical controls of transpiration 737 

and evaporation in the Amazon Basin. Hydrology and Earth System Sciences, 20, 4237-4264 738 

Mallick, K., Wandera, L., Bhattarai, N., Hostache, R., Kleniewska, M., & Chormanski, J. (2018b). 739 

A critical evaluation on the role of aerodynamic and canopy–surface conductance parameterization 740 

in SEB and SVAT models for simulating evapotranspiration: A case study in the upper biebrza 741 

national park wetland in poland. Water, 10, 1753 742 

Mao, J., Fu, W., Shi, X., Ricciuto, D.M., Fisher, J.B., Dickinson, R.E., Wei, Y., Shem, W., Piao, 743 

S., & Wang, K. (2015). Disentangling climatic and anthropogenic controls on global terrestrial 744 

evapotranspiration trends. Environmental Research Letters, 10, 094008 745 

Massman, W.J. (1997). An analytical one-dimensional model of momentum transfer by vegetation 746 

of arbitrary structure. Boundary-Layer Meteorology, 83, 407-421 747 

Mwangi, S., Boulet, G., & Olioso, A. (2022). Assessment of an extended SPARSE model for 748 

estimating evapotranspiration from directional thermal infrared data. Agricultural and Forest 749 

Meteorology, 317, 108882 750 

Nieto, H., Guzinski, R., Kustas, W.P., & Andreu, A. (2016). pyTSEB. 751 

https://github.com/hectornieto/pyTSEB 752 

Norman, J.M., Kustas, W.P., & Humes, K.S. (1995). Source approach for estimating soil and 753 

vegetation energy fluxes in observations of directional radiometric surface temperature. 754 

Agricultural and Forest Meteorology, 77, 263-293 755 

Otkin, J.A., Anderson, M.C., Hain, C., Mladenova, I.E., Basara, J.B., & Svoboda, M. (2013). 756 

Examining rapid onset drought development using the thermal infrared–based evaporative stress 757 

index. Journal of Hydrometeorology, 14, 1057-1074 758 

Ryu, Y., Baldocchi, D.D., Kobayashi, H., Van Ingen, C., Li, J., Black, T.A., Beringer, J., Van 759 

Gorsel, E., Knohl, A., & Law, B.E. (2011). Integration of MODIS land and atmosphere products 760 

with a coupled‐process model to estimate gross primary productivity and evapotranspiration from 761 

1 km to global scales. Global Biogeochemical Cycles, 25, GB4017 762 

Senay, G.B., Bohms, S., Singh, R.K., Gowda, P.H., Velpuri, N.M., Alemu, H., & Verdin, J.P. 763 

(2013). Operational evapotranspiration mapping using remote sensing and weather datasets: A 764 

ESSOAr | https://doi.org/10.1002/essoar.10512884.1 | CC_BY_NC_4.0 | This content has not been peer reviewed. 



manuscript submitted to Water Resources Research 

 

new parameterization for the SSEB approach. JAWRA Journal of the American Water Resources 765 

Association, 49, 577-591 766 

Shuttleworth, W.J., & Wallace, J.S. (1985). Evaporation from sparse crops‐an energy combination 767 

theory. Quarterly Journal of the Royal Meteorological Society, 111, 839-855 768 

Su, Z. (2002). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. 769 

Hydrology and Earth System Sciences, 6, 85-100 770 

Trebs, I., Mallick, K., Bhattarai, N., Sulis, M., Cleverly, J., Woodgate, W., Silberstein, R., Hinko-771 

Najera, N., Beringer, J., & Meyer, W.S. (2021). The role of aerodynamic resistance in thermal 772 

remote sensing-based evapotranspiration models. Remote Sensing of Environment, 264, 112602 773 

Xiao, J., Fisher, J.B., Hashimoto, H., Ichii, K., & Parazoo, N.C. (2021). Emerging satellite 774 

observations for diurnal cycling of ecosystem processes. Nature Plants, 7, 877-887 775 

Yang, Y., Long, D., Guan, H., Liang, W., Simmons, C., & Batelaan, O. (2015). Comparison of 776 

three dual‐source remote sensing evapotranspiration models during the MUSOEXE‐12 campaign: 777 

Revisit of model physics. Water Resources Research, 51, 3145-3165 778 

Zomer, R.J., & Trabucco, A. (2022). Version 3 of the “Global Aridity Index and Potential 779 

Evapotranspiration (ET0) Database”. https://doi.org/10.6084/m9.figshare.7504448.v4  780 

 781 

ESSOAr | https://doi.org/10.1002/essoar.10512884.1 | CC_BY_NC_4.0 | This content has not been peer reviewed. 


