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The dual influence of the reed resonance frequency
and tonehole lattice cutoff frequency on sound
production and radiation of a clarinet-like
instrument

Erik Alan Petersen,1 Philippe Guillemain,1 and Michaël Jousserand2

1Aix-Marseille Université, CNRS, Centrale Marseille, LMA, Marseille, France
2Buffet Crampon, Mantes-la-Ville, France

(Dated: 31 March 2022)

The internal and external spectra of woodwind reed instruments are partially determined
by the tonehole lattice cutoff and reed resonance frequencies. Because they can impact the
spectrum in similar ways, a study of one without accounting for the other risks incomplete
or false conclusions. Here, the dual effects of the cutoff and reed resonance frequencies
are investigated using digital synthesis with clarinet-like academic resonators. It is shown
that the odd and even harmonics have similar amplitudes at and above the cutoff frequency
or reed resonance frequency, which ever is lowest. However, because the resonators radiate
efficiently at the cutoff, it has the additional role of reinforcing the amplitude of both the odd
and even harmonics in the external spectrum. The spectra are analyzed using the single value
descriptors playing frequency, spectral centroid, odd/even ratio, and brightness, as a function
of the musician mouth pressure. Higher reed resonances correspond to higher values for all
descriptors. The odd/even ratio and brightness increase with resonator cutoff frequency,
whereas the spectral centroid exhibits more complicated trends. The reed resonance has a
larger impact on the ‘playing condition oscillation threshold’, implying that it may have a
more important role in sustaining auto-oscillation.

c©2022 Acoustical Society of America. [https://doi.org(DOI number)]
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I. INTRODUCTION1

Like all instruments, the timbre of a woodwind re-2

sults from a number of interacting parameters. Some of3

these, such as the blowing pressure within the mouth, are4

controlled by the musician, while others are innate physi-5

cal characteristics of the instrument such as the geometry6

of the air column. Because it is difficult to independently7

vary only one aspect of an instrument/musician combi-8

nation, it is often unclear how different parameters affect9

the resulting spectrum. This is especially true when two10

or more parameters affect the spectrum in a similar man-11

ner. For cylindrical single-reed instruments, two such pa-12

rameters, the lowest reed resonance frequency fr and the13

tonehole lattice (THL) cutoff frequency fc, can lead to14

similar effects on the internal and external spectrum of an15

instrument; disentangling their dual effects is the subject16

of the current article. Indeed, the ambiguous results of a17

previous study1 using real instruments demonstrates the18

difficulty of separating these two variables and motivates19

a systematic approach to the problem.20

The THL of many woodwind instruments have a cer-21

tain acoustic periodicity which leads to pass- and stop-22

bands within the air column2–6. At low frequencies, an23

acoustic wave traveling from the mouthpiece towards the24

toneholes will largely radiate and reflect from the closest25

open tonehole. The strong reflection from the first open26

tonehole allows for the interference that determines the27

low frequency modes which facilitate auto-oscillation. In28

contrast, higher frequencies are able to propagate past29

the first open tonehole at which point they radiate from30

subsequent toneholes and the bell, as well as reflect from31

various locations within the lattice. The cutoff frequency32

fc that separates these two regimes is determined by the33

specific geometry (tonehole radii, chimney heights, inter-34

hole spacing, and main bore radius) of the THL and, for35

a clarinet, is approximately 1500 Hz5.36

Under normal playing conditions, the oscillation of37

the reed favors frequencies that correspond to the first38

several peaks of the input impedance. These low fre-39

quency peaks are shifted in frequency by changing the40

fingering of the THL, and therefore sounding pitch, of41

the note. The reed has its own natural frequencies, the42

lowest of which is considerably higher than the frequen-43

cies in the first register of the clarinet. For simplicity,44

only the lowest reed resonance frequency fr is considered45

in the current model. It is difficult to experimentally46

measure fr, although it may be estimated using various47

tools such as instrumented mouthpieces or artificial blow-48

ing machines7–9; classically reported values are between49

2000-3000 Hz1,10. Values between 1000-2000 Hz are to50

be expected when the reed is supported by the lip11,51

and previous values used in a numerical continuation ap-52

proach include 1500 Hz12. However, one complication53
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that arises in determining the dynamical properties of the54

reed is that the reed/mouthpiece/lip system is inherently55

nonlinear, including the nonlinear characteristic linking56

the pressure in the mouthpiece to the flow through into57

the instrument, nonlinear contact forces between the reed58

and the lay of the mouthpiece, and the nonlinear mate-59

rial properties of the musicians lips. There is a trade-off60

between using a simple model for which the results can61

be easily interpreted, versus a more complex model that62

more accurately captures the nonlinear physical system,63

but which may result in unnecessary higher-order phe-64

nomena.65

The THL fc and fr are both known to impact the66

spectrum of the clarinet1. However, their relative im-67

portance has not been systematically studied. Clarinets,68

which may be idealized as a quarter-wave resonator at69

low frequencies, generally have high-amplitude odd har-70

monics corresponding to the input impedance peaks and71

low-amplitude even harmonics due to the lack of support72

at the input impedance valleys. However, the THL fc73

induces a “region of reinforced spectrum,” for which the74

odd and even harmonics are of similar amplitude and are75

efficiently radiated into the surrounding environment13.76

This phenomena also occurs at the nominal cutoff of real77

instruments1,14. The fr may also induce a reinforced78

amplitude for harmonics that are close in frequency10.79

Other aspects related to the fr, such as the lip force and80

lip position, affect the pitch, sound level, and spectrum81

of the clarinet11,15.82

Determining the influence of fc and fr on the spec-83

trum is challenging in the case of real instruments be-84

cause neither one can be varied without potentially im-85

pacting other aspects of the instrument. This is espe-86

cially true for fc because any alteration requires a mod-87

ification of the lattice geometry, likely damaging the in-88

strument. In order to investigate the dual influence of89

the THL fc and fr, it is necessary to develop a method-90

ology that allows the two parameters to be varied in-91

dependently. While it is relatively straightforward to92

devise and construct resonators with a given cutoff fre-93

quency6,16, the practical challenge of controlling the reso-94

nance frequency of a physical reed17 remains a challenge.95

Therefore, the phenomenon is explored numerically in the96

current article. Choosing to use a numerical model allows97

for precise control of the variables of interest, although98

the results are largely valid for comparing the qualitative99

effects of each model parameter.100

The methodology of the numerical experiment is pre-101

sented in Section II. Because much of the protocol has102

been previously published (citations in relevant sections),103

only a truncated account sufficient to interpret the results104

is provided in the current article. Section III shows the105

effect of fc and fr on general characteristics of the inter-106

nal and radiated spectrum. Analysis highlights how each107

parameter can influence different aspects of the spec-108

trum. Single value descriptors of the spectrum (playing109

frequency, spectral centroid, odd/even ratio, and bright-110

ness), as well as an analysis relating to the oscillation111

threshold, are provided in Section IV. A discussion of112

the results and conclusions are covered in Section V.113

II. METHODOLOGY114

Digital synthesis is used to compare the competing115

effects of the cutoff frequency and reed resonance on both116

the internal and external pressure spectra of simplified117

clarinet-like resonators. This is preferred over other avail-118

able methodologies such as an instrumented mouthpiece119

or an artificial blowing machine because it allows to un-120

ambiguously isolate the variables of interest, notably the121

reed resonance frequency. Similarly, the musician con-122

trol parameters relating to the blowing pressure and em-123

bouchure can be fixed to precise values, which may be124

achieved with a blowing machine, but is generally not125

possible for real musicians to attain when using an in-126

strumented mouthpiece. Furthermore, it obviates com-127

plications relating to spectra measurements in real envi-128

ronments, be it a laboratory space, anechoic chamber, or129

a musically appropriate hall1,14,18.130

While digital synthesis generally does not perfectly131

match experimental results, it is a robust method for132

evaluating the qualitative differences that arise when133

some aspect of an instrument is modified19. For this134

reason, it is an appropriate tool for the current study135

which seeks to isolate the effects of two specific variables.136

Similarly, it may be useful to instrument manufacturers137

who wish to evaluate a hypothetical modification of an138

existing or non-existing instrument, without accruing the139

cost and time associated with manufacturing prototypes.140

A. Resonator design141

The current experiment utilizes four cylindrical res-142

onators that are designed to resemble a simplified ver-143

sion of the clarinet, originally developed by some of the144

current authors for a different study13. Three of the res-145

onators include a geometrically regular THL comprising146

10 toneholes, the geometry of which are chosen to in-147

duce a THL cutoff frequency at 1.0, 1.5, and 2.0 kHz, see148

Table I, hereafter referred to as R1.0,R1.5, and R2.0, re-149

spectively. The inter-hole spacing is kept constant so that150

equivalent fingerings produce approximately the same151

sounding frequencies for each resonator. The upstream152

length, or the section that is between the mouthpiece and153

the first hole of the lattice, is chosen to account for the154

THL length correction such that the note corresponding155

to all the toneholes being open has the same first input156

impedance peak frequency for each resonator. The fourth157

“resonator” (see below), referred to as Rcyl and used as158

a control, is a simple cylinder devoid of toneholes.159

In order to generate enough data to make general160

comments regarding the spectrum, it is necessary to an-161

alyze the harmonic content of multiple notes. There-162

fore, the highest six notes of resonators R1.0,R1.5, and163

R2.0, out of the 11 available notes excluding forked fin-164

gerings, are considered in the analysis. This ensures that165

the lowest note considered still retains a lattice with five166
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Resonator L (cm) b (mm) fc (Hz) Impedance peak frequency (Hz) Inharmonicity (cents)

R1.0 39.9 2.5 1000 185.2; 172.8; 161.9; 152.3; 143.7; 136.1 2.2; 4.3; 6.4; 7.9; 10.4; 11.4

R1.5 41.7 4.0 1500 185.1; 172.6; 161.8; 152.2; 143.6; 136.0 9.3; 11.0; 10.7; 11.3; 12.8; 13.1

R2.0 42.6 5.8 2000 185.0; 172.6; 161.7; 152.1; 143.6; 136.0 11.2; 11.7; 12.4; 12.9; 13.2; 13.1

Rcyl L (cm): 45.2; 48.5; 51.8; 55.0; 58.3; 61.5 185.1; 172.6; 161.7; 152.1; 143.6; 136.0 11.8; 12.7; 13.5; 14.0; 14.0; 13.9

TABLE I. Summary of the geometry and acoustical characteristics of the four resonators used in the current article. All

resonators have a common internal radius a = 6.5 mm. Resonators R1.0,R1.5, and R2.0 have a common inter-hole spacing

` = 32.6 mm (center to center) and tonehole heights h = 9.8 mm, where the six notes are produced by closing the first

five consecutive toneholes. In the bottom row are the six lengths used for Rcyl (no THL), chosen to have similar first input

impedance peak frequencies as R1.0,R1.5, and R2.0, but no THL cutoff. The right columns provide the first input impedance

peak frequency f1 in Hz and the inharmonicity 1200log2(f2/(3f1)) in cents for each of the six notes. It is worth noticing that,

contrary to a real clarinet, the inharmonicity between the first two peaks is positive, but it does not change the results of the

current study.

open holes, and therefore that the intended cutoff fre-167

quency is maintained throughout the scale. The purely168

cylindrical resonator Rcyl is simulated using six differ-169

ent lengths, each with a first input impedance peak fre-170

quency corresponding to those of the 6 fingerings of the171

other three resonators. The maximum difference for a172

given note’s input impedance peak frequency across the173

four resonators is less than 3 cents.174

Simulations were performed under two conditions:175

the ‘realistic’ case where the volume of the closed tone-176

holes (the closed THL20) is included in the calculations177

and the ‘academic’ case where the volume is excluded,178

such that the section between the mouthpiece and the179

first open tonehole is perfectly cylindrical for all finger-180

ings. The realistic case introduced complications because181

the inharmonicity between the first and second input182

impedance peaks was not the same for the different res-183

onators. Specifically, the inharmonicity becomes larger184

for the higher cutoff frequency resonators used in this185

study due to the larger tonehole radii. It was found that186

this affected both the internal and external spectra, al-187

though the effect is subtle. When the tonehole volumes188

are included, at frequencies below cutoff, the amplitude189

of the odd harmonics tend to be lower while the ampli-190

tude of the even harmonics tend to be higher. This is191

expected because the harmonics of the playing frequency192

will not sample as close to the maxima (odd harmonics)193

and minima (even harmonics) of the input impedance194

when there is additional inharmonicity. Including the195

tonehole volumes has a lesser effect above the cutoff be-196

cause the input impedance peaks are no longer harmon-197

ically related to the low frequency resonances, and are198

sampled more or less at random by the harmonics of199

the playing frequency. Additionally, excluding the closed200

tonehole volumes ensures that there is no closed THL fil-201

tering between the internal and external sound fields20.202

To minimize the complexity of the study, closed toneholes203

are not included in the simulation to better isolate the ef-204

fect of the cutoff and reed resonance frequencies without205

the added complication of increased inharmonicity.206

It is important to recall that the cutoff fc is only207

defined for an infinite, lossless lattice, and therefore is208

always approximate for a finite, lossy resonator2. The209

implications of this assumption do not impact the cur-210

rent work because the resonators are designed using a211

physical model, which accurately simulates the standing212

waves that occur above the approximate cutoff for a real213

instrument (traversing the entire length of the resonator,214

rather than confined between the first open tonehole and215

the mouthpiece). Indeed, the results would be different216

if the resonator had a true cutoff (lossless, infinite lat-217

tice) above which no energy is reflected back towards the218

mouthpiece. The relaxed definition of a cutoff frequency219

in this work corresponds more closely to the case of a real220

instrument than the theoretical pass- and stop-bands in221

periodic media, especially considering that the tonehole222

lattice of a real clarinet is not strictly periodic5. Another223

difference between the academic resonators used here and224

a real clarinet is the absence of a bell, which will tend to225

efficiently radiate frequencies above the tonehole lattice226

cutoff, weakening the standing waves within the full bore227

of the instrument. Indeed, the standing waves above cut-228

off for the academic resonators can be seen in the trans-229

fer functions shown in Sect. III C; the weakened standing230

waves above cutoff for real clarinets, in part due to the231

bell, may be observed on the measured or simulated input232

impedance21. Further complicating this topic, clarinet233

bells have their own cutoff response at around 1500 Hz.234

Therefore, while it would be possible to include a bell in235

the resonator simulations, the academic solution is again236

prioritized to better isolate the two factors of interest in237

this study.238

B. Simulation of the resonator characteristics239

The passive acoustic response corresponding to the240

six notes on all four resonators is simulated using an241

extension of the Transfer Matrix Method (TMM) that242

is modified to include external interactions of apertures243

(toneholes and the termination) radiating into the same244

space, known as the Transfer Matrix Method with exter-245

nal Interactions (TMMI)22.246

This calculation was devised to simulate the input247

impedance248

Z0(ω) = P0(ω)/U0(ω), (1)
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where P0(ω) and U0(ω) are the frequency domain (ω =249

2πf) acoustic pressure and flow at the input of the res-250

onator. One advantage of the TMMI algorithm is that it251

also provides the pressure and flow in the nth radiating252

aperture Pn(ω) and Un(ω)13. For the resonators with a253

THL comprising 10 holes, n = 11 including the termina-254

tion of the resonator; n = 1 for the simple cylinders.255

These quantities can be used to calculate a number of256

useful relations, such as the transfer function between the257

input pressure or flow quantities to those in the radiating258

apertures:259

Hu,n(ω) = Un(ω)/P0(ω). (2)

These transfer functions (any combination of P0(ω),260

U0(ω), Pn(ω), and Un(ω)) can be used to understand261

basic characteristics of the resonator beyond what is262

available from the input impedance alone. In particu-263

lar, Eq. (2) can be used used to calculate the far field264

pressure at PExt,m(ω) due to a given mouthpiece pres-265

sure P0(ω), treating each nth aperture as a monopole266

source and ignoring diffraction:267

PExt,m(ω) =

N∑
n=1

jωρ
Hu,n(ω)P0(ω)

4πrn,m
e−jkrn,m . (3)

Here, j is the imaginary unit, ρ is the density of the268

medium, k = ω/c is the wavenumber in free space with269

the speed of sound c, and rn,m is the distance between270

the nth radiating aperture and the mth observation po-271

sition. This simplified radiation model corresponds well272

to measurements performed in an anechoic chamber23.273

C. Digital synthesis274

A previously24,25 developed digital synthesis model275

is used to simulate the discrete time domain behavior of276

each resonator coupled to a single reed mouthpiece, as it277

would be played by a musician. The synthesis results of278

an earlier version of the algorithm was validated against279

acoustic recordings produced by an artificial mouth as280

part of a timbre perception study15.281

The three primary variables describing the dynami-282

cal behavior of the instrument are the reed displacement283

x(t), acoustic pressure p0(t), and acoustic flow u0(t) at284

the input of the resonator285

x(t) =
x̂(t)

H
, p0(t) =

p̂0(t)

pM
, u0(t) = zc

û0(t)

pM
, (4)

where H is the height of the reed channel at rest, pM286

is the pressure required to close the reed channel com-287

pletely, and zc is the characteristic impedance of the res-288

onator. The three primary variables are dimensionless,289

while the hat notation is used for the physical value of290

each variable. The subscript used for the acoustic pres-291

sure and flow indicate that they are the discrete time292

domain representation of the frequency domain variables293

defined in Eq. (1) corresponding to the plane at the input294

of the resonator.295

The dimensionless musician control parameters cor-296

respond to the mouth pressure γ and embouchure ζ en-297

acted by the musician26,298

γ =
pm
pM

, ζ = wHzc

√
2

ρpM
, (5)

where pm is the musician mouth pressure in physical299

units and w is the width of the reed channel. The reed300

is treated as a single degree of freedom oscillator27:301

1

2πfr
ẍ+

qr

2πfr
ẋ+ x = p0(t)− γ + Fc(x), (6)

where fr and qr are the resonance frequency and damping302

coefficient of the reed. It is possible to include higher reed303

modes: the next lowest, which is also flexural, is approxi-304

mately 2.6 times the first resonance7. However, harmon-305

ics in this frequency range (2600-5200 Hz, depending on306

the first resonance) are generally more than 40 dB below307

the fundamental, and are therefore of secondary impor-308

tance compared to the effect of the first reed resonance309

and THL cutoff frequency. A contact force Fc between310

the reed and the mouthpiece lay28 is defined by311

Fc = Kc

(
x+ 1− |x+ 1|

2

)2

(1 + βẋ) , (7)

where Kc = 100 and β = 5e-4 are nonlinear stiffness and312

damping coefficients, respectively. Note that the contact313

force is only activated when x ≤ −1, corresponding to314

the condition for which the reed is in contact with the315

lay of the mouthpiece28,29.316

The flow through the reed channel is linked to the317

pressure differential between the bore and the mouth of318

the player:319

u0(t) = ζ

(
x(t) + 1 + |x(t) + 1|

2

)
sign(γ−p0(t))

√
γ − p0(t).

(8)
In order to regularize the nonsmooth functions of Eqs. (7)320

and (8), each absolute value term |Λ| (for an arbitrary321

argument Λ) is replaced by
√

Λ2 + η, where η = 0.01 is322

a small regularization quantity30. Note that this model323

is inherently nonlinear, and that the regularization term324

likely captures a more realistic reed/lay interaction than325

the simplest single degree of freedom reed model17,27,31.326

It has been checked that the specific value chosen for η327

does not alter the qualitative trends observed in the syn-328

thesized spectra. However, the values may impact the329

emergence of higher registers. While this is not a concern330

for the academic resonators used in the current study, it331

may become important with realistic instrument geome-332

tries, particularly with the addition of narrow register333

holes.334

The resonator is modeled by a reflection function for-335

malism that is computed from the inverse Fourier trans-336

form of the reflection coefficient, which is itself deter-337

mined by the input impedance32. This is preferential338

to a truncated modal representation because it includes339
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high frequencies in the synthesis, which is of particular340

importance when considering the effect of the THL cutoff341

frequency.342

D. Numerical experiment343

The six notes for each resonator are synthesized with344

a duration of 10 seconds using different reed resonance345

values equal to 1000 Hz, 1500 Hz, and 2000 Hz (au-346

dio examples provided in online supplementary material).347

These values are chosen to be approximately those of a348

clarinet, but with a wide enough range to observe their349

effect on the resulting waveform. The dimensionless mu-350

sician control parameters corresponding to mouth pres-351

sure and embouchure are set to central values of γ = 0.7352

and ζ = 0.4, and are both slowly varied by approximately353

15 % in order to mimic the natural instability of a real354

musician. Only first register notes were observed, likely355

due to the resonators simple geometry, although other356

regimes may be produced for other combinations of mu-357

sician control parameters.29 The reed quality factor is358

fixed at qr = 0.4. These values, corresponding to a ‘forte’359

playing level, were chosen in order to ensure synthesized360

tones that have substantial energy in the high frequency361

harmonics.362

The frequency domain mouthpiece pressure P0(ω) is363

calculated from the time domain pressure p0(t) using the364

built in MATLAB fft function in 0.5 s intervals that365

are treated with a Hann window. Similarly, the inter-366

nal flow spectrum U0(ω) can be calculated from u0(t).367

Equation. (2) is used to determine the resulting flow in368

each aperture.369

The external pressure PExt,m(ω) is calculated using370

Eq. (3) at M = 100 far field locations (|r1,m| = 10 m371

∀m), evenly distributed on a circle in the plane of the res-372

onator with the first open tonehole at the origin. There373

is no need to account for observation positions outside374

the plane because each tonehole is assumed to radiate375

as a monopole and diffraction is ignored, resulting in an376

axis-symmetric directivity pattern. The total radiated377

pressure spectrum is approximated by the sum of the378

pressures at all 100 external observation locations:379

P̄ext(ω) =

M∑
m=1

PExt,m(ω). (9)

This method is chosen in order to avoid problems as-380

sociated with the strong directivity of the resonator at381

frequencies above the cutoff.382

III. RESULTS I: GENERAL CHARACTERISTICS383

A. Internal spectrum384

Figure 1 shows the results for the resonators385

R1.0,R1.5, and R2.0 in the left three columns and Rcyl386

in the right column, where the reed resonances are, from387

top to bottom, fr = 1000, 1500, and 2000 Hz. (The left388

to right order of the resonators is maintained in Figs. 2-6389

and the top to bottom order of reed resonances is main-390

tained in Fig. 2.) The square and circular data markers391

(online: black and red) denote the odd and even har-392

monics, respectively. The vertical axes are represented393

in normalized decibels: 20log10(|P0(ω)|), where the di-394

mensionless pressure P0(ω) is normalized by an implicit395

reference equal to unity.396

The dual effects of the THL cutoff and reed resonance397

on the internal spectrum can be observed in Fig. 1: both398

appear to induce a boost in the amplitude of the even399

harmonics at, and above, either fc or fr, whichever is400

lower. The effect of the cutoff can be observed by com-401

paring the gap between odd and even harmonics at the402

cutoff of each resonator: they tend to merge at 1000 Hz403

in the left panels, 1500 Hz in the middle-left panels, and404

2000 Hz in the middle right panels, corresponding to the405

cutoffs of R1.0,R1.5, and R2.0. The effect of the reed406

resonance is more subtle and is most easily observed for407

Rcyl in the right column, where there is a distinct bump408

in the even harmonics at each reed resonance. It can also409

be observed for resonators R1.5,R2.0. For example, the410

top panel for R1.5 shows a gap of approximately 20 dB at411

1000 Hz while the bottom has a gap greater than 30 dB.412

A similar comment may be made for R2.0. It is less413

clear in the panels corresponding to R1.0, for which fc414

is less than or equal to fr for all combinations. Figure 1415

demonstrates that, while both the THL cutoff frequency416

and the reed resonance cause a reinforcement of the even417

harmonics, the cutoff appears to be the stronger effect.418

B. External spectrum419

The external pressure spectrum for the four res-420

onators and three reed resonances are shown in Fig. 2,421

where the columns and rows follow the same scheme as422

in Fig. 1. The vertical axis is proportional to Fig. 1. As423

with the internal spectrum, odd and even harmonics be-424

come more similar in amplitude at and above the reed425

resonance. The effect of the cutoff frequency, however,426

is more pronounced: in addition to boosting the ampli-427

tude of the even harmonics, it introduces a ‘region of428

reinforced spectrum’ at the cutoff frequency comprising429

both odd and even harmonics. Notice that the envelop430

of the spectrum around cutoff is highest for R1.0, and431

drops by 5-10 dB for R1.5 and R2.0. This is due to the432

natural decrease in harmonic envelop characteristic of a433

clarinet-like system1.434

Note that including higher reed resonances would435

likely have a subtle affect on the spectral envelop shown436

in Figs. 1 and 2. However, any influence would occur437

at frequencies (2600-5200 Hz) where the harmonics are438

already very weak. More importantly, the characteris-439

tics of the clarinet spectrum are particularly important440

between 1000 and 2000 Hz, where the amplitude of the441

odd and even harmonics become equal due to the cutoff442

and/or reed resonance. Higher reed resonances will not443

have the same degree of impact as the first reed resonance444

because the odd and even harmonics already have equal445

amplitudes at frequencies above the first resonance and446
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FIG. 1. (color online) Power spectra of synthesized non-dimensional pressure in the mouthpiece P0(ω) for resonators with

THLs R1.0,R1.5, and R2.0 (left three columns; fc marked by vertical line) and no THL Rcyl (right column) for varying reed

resonances fr = 1000, 1500, 2000 Hz, from top to bottom. Each panel contains the spectra of six different notes with fundamental

frequencies ranging from 136 Hz to 185 Hz, see Table I. Odd and even harmonics denoted by square (black) and circular (red)

data markers, respectively.

FIG. 2. (color online) Synthesized external non-dimensional pressure P̄Ext(ω) power spectra. Panel organization and pressure

amplitudes relative to Fig. 1.

THL cutoff frequencies. That the spectrum has two prin-447

ciple frequency ranges (strong odd/weak even harmonics448

at low frequencies, parity at high frequencies) is likely an449

important perceptual characteristic of the clarinet.450

C. The lattice as a filter451

As seen in Sections III A and III B, the THL cutoff452

and reed resonance frequencies both impact the inter-453

nal and external spectra by reinforcing the amplitude of454

the even harmonics. However, the external spectrum ap-455

pears to be more strongly impacted by the THL cutoff456

frequency. Here, the effect of the THL as a filter is ex-457

plored to better understand the distinction between the458

internal and external spectra.459

Figure 3 shows the transfer function between the460

pressure in the mouthpiece and the summed time deriva-461

tives of the flow in each radiating aperture:462

Hrad(ω) =

N∑
n=1

jωUn(ω)/P0(ω). (10)
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FIG. 3. Transfer function between the pressure at the input of the resonator and the sum of time derivative of the flow at

each radiating aperture for, from left to right, resonators R1.0,R1.5,R2.0, and Rcyl. This is an approximation of the transfer

function between the mouthpiece pressure and the external sound field. The transfer functions are continuous in frequency

and different for each fingering: for readability, only the highest fingering of each resonator is shown (grey line). The transfer

function is sampled at integer multiples of the first input impedance peak, corresponding approximately to the harmonics in

the spectrum, denoted by large diamonds (odd) and large circles (even) data markers. To reinforce the trends associated with

cutoff (regardless of fingering), integer multiples of the first input impedance peak for the other five fingerings are depicted by

small data markers.

To within a constant scaling factor, this expression is pro-463

portional to the transfer function between the internal464

pressure and farfield pressure ignoring diffraction, source465

separation, and spherical spreading, and is a reasonable466

approximation of general radiation characteristics that467

do not include the effects of directivity. Note that this468

is a passive characteristic of the resonator that depends469

solely on the geometry: the results are the same regard-470

less of reed properties (such as resonance frequency) and471

other musician control parameters. The transfer func-472

tion is calculated for all six notes of each resonator, but473

for clarity, only the highest note is shown in totality by474

the thin grey line. The first input impedance resonance475

frequency (corresponding approximately to the sound-476

ing frequency) is extracted for each fingering, and the477

transfer function Hrad(ω) is sampled by integer multi-478

ples of this frequency with odd and even harmonics de-479

noted by diamonds and circles, respectively. The large480

diamond/circle data markers correspond to the transfer481

function of the highest note, shown in grey.482

The panels in Figure 3 demonstrate the impact of the483

THL on some radiation properties of the resonators. Be-484

low the cutoff, odd harmonics are radiated weakly com-485

pared to even harmonics, in accordance with the quarter-486

wave low frequency approximation of the resonator in487

which the lattice is ignored. At and above the cutoff,488

both the even and odd harmonics are efficiently radiated489

into the surrounding space. ResonatorRcyl demonstrates490

the extreme case, where the distinction between odd and491

even harmonics is maintained even at high frequencies.492

Figure 4 shows the transfer function between the493

power flowing through the plane at the input of each494

resonator and the sum of the power flowing through each495

radiating aperture:496

HΠ,n(ω) =

N∑
n=1

Re

[
Pn(ω)U∗n(ω)

P0(ω)U∗0 (ω)

]
, (11)

where ∗ indicates the complex conjugate operation. All497

four resonators have approximately the same radiation ef-498

ficiency below the cutoff and tend to converge to a similar499

value at high frequencies. There is a distinct increase in500

radiation efficiency at the cutoff of resonators R1.0,R1.5,501

and R2.0, which is not observed for Rcyl.502

These passive radiation characteristics, demon-503

strated by Figs. 3 and 4, provide the link between the504

internal and external spectra depicted in Figs. 1 and 2.505

While the reed resonance induces reinforced even har-506

monics in the nearby frequency band, it has no effect507

on the ability of the resonator to efficiently radiate these508

frequencies to the surrounding environment. The THL509

also induces reinforced even harmonics, but within a fre-510

quency band for which the resonator radiates efficiently.511

Therefore, both even and odd harmonics are reinforced512

in the radiated spectra. That the cutoff induces both of513

these effects is not to be viewed as a coincidence, but514

rather the dual results of an intertwined phenomena: be-515

cause the resonator radiates efficiently at and above the516

cutoff frequency, the internally reflected waves that result517

in constructively interfering odd and destructively inter-518

fering even resonances no longer correspond to a quarter-519

wave resonator model. This allows even harmonics to be520

reinforced internally in addition to a strong radiation of521

both even and odd harmonics externally. Note that this522

is analogous to the interpretation that the harmonics of523

the playing frequency sampling the input impedance: be-524

low the THL cutoff, the odd harmonics tend to fall on or525

near peaks, while the even harmonics correspond primar-526

ily to valleys, while above cutoff, they are equally likely527

coincide with a peak or valley.528

As seen in Fig. 3 (especially in the right panel which529

shows the lattice-less Rcyl), the behavior deviates from530

this simple description at high frequencies. One cause531

is inharmonicity: the peaks and valleys of the input532

impedance do not coincide at perfect integer multiples of533

the first peak due to increased viscothermal losses at high534
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FIG. 4. Transfer function between the power flowing through the input of the resonator and the sum of the power flowing

through the radiating apertures for, from left to right, resonators R1.0,R1.5,R2.0, and Rcyl.

frequencies. This is also why the closed tonehole volumes535

are excluded in the simulations of the resonator; includ-536

ing those volumes increases the inharmonicity. Another537

reason is that higher frequencies radiate more efficiently538

than lower frequencies, so the transfer function increases539

up to the THL cutoff frequency of resonators R1.0, R1.5,540

and R2.0, and across the entire frequency band for Rcyl.541

Above the THL cutoff, there is no simple application of542

this observation due to increased viscothermal losses as543

the sound wave reflects back and forth throughout the544

entire length of the resonator. Note that, under playing545

conditions, the playing frequency is always slightly lower546

than the first input impedance peak frequency so, even547

ignoring losses, the harmonics do not sample the input548

impedance exactly on the peaks and valleys.549

IV. RESULTS II: SINGLE VALUE DESCRIPTORS OF THE550

SPECTRUM551

The relative effect of the THL cutoff and the reed res-552

onance frequencies on the internal and external spectrum553

is evaluated using objective descriptors. The purpose of554

this section is to demonstrate how the qualitative effects555

observed in Sect. III map to numerical descriptors that556

are often used for describing timbre. Here, the spectrum557

for each cutoff/resonance frequency combination is sim-558

ulated for a wide range of normalized musician mouth559

pressures γ and fixed ζ = 0.4, providing some insight on560

how the spectrum varies with the musician mouth pres-561

sure control parameter. Each signal is simulated for a562

duration of two seconds using a constant value for γ (in563

contrast to Section III), sufficiently long to extract the564

spectrum descriptors. Signals that are either unstable in565

pitch or sound outside of the first register are discarded.566

The MIRtoolbox33 is used to process the spectral567

characteristics of the internal and external soundfields.568

The external signal P̄ext(ω) is computed following the569

same procedure as in Section II B, from which the tem-570

poral signal is determined by the inverse Fourier trans-571

form assuming Hermitian symmetry in order to be pro-572

cessed as an audio file by the MIRtoolbox. A peak find-573

ing scheme (mirpeaks) is applied to identify the har-574

monic components of each signal. The spectral centroid,575

odd/even ratio, and brightness are computed from the576

FIG. 5. Playing frequency as a function of musician mouth

pressure γ for, from left to right, resonators R1.0,R1.5,R2.0,

and Rcyl. The thick black, thin black, and thick grey lines

correspond to reed resonances fr = 1000, 1500, and 2000 Hz,

respectively.

harmonic power spectrum of the signal up to 9500 Hz,577

although choosing a lower value such as 5000 Hz does not578

change the qualitative trends because most of the energy579

in the signals is below 2000 Hz.580

A. Playing frequency581

Figure 5 shows the playing frequency as a function582

of γ for the six notes considered on each of the four res-583

onators. The thick black, thin black, and thick grey lines584

correspond to reed resonance frequencies fr = 1000, 1500,585

and 2000 Hz, respectively. With a maximum discrepancy586

of approximately 17 cents for a given fingering, the six587

note ‘scale’ available to each resonator are reasonably588

similar in frequency, especially for the higher fingerings.589

This provides confidence that a comparison of spectrum590

characteristics across resonators is not likely to be com-591
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plicated by a difference in intonation, although it could592

induce difficulties in a subjective listening experiment.593

Despite the significant differences in resonator ge-594

ometries used in the current study compared with a real595

clarinet, the general trends seen in Fig. 5, such as the596

decrease in pitch up to γ = 0.5 followed by an increase in597

pitch for higher γ, is consistent with previous results24,26.598

The deviation in pitch from the first input impedance599

peak frequencies is likely primarily due to the inhar-600

monicity between the first and second input impedance601

peaks and the reed induced flow, although the reed dy-602

namics also play a role.24 It is interesting to note that603

higher reed resonance frequencies result in higher play-604

ing frequencies for all four resonators.605

B. Spectrum descriptors606

Single value descriptors are extracted from the wave-607

forms to determine global spectra differences due to the608

THL cutoff and reed resonance. The descriptors estimate609

the relative distribution of power between different sets610

of frequencies, calculated from harmonics extracted from611

the steady portion of the tone, discarding the transient.612

The first descriptor is the spectral centroid (SC),613

SC =

∑N
n=1 fnA

2
n∑N

n=1A
2
n

, (12)

which is often linked to the perceived ‘brightness’ of614

a tone34. The second descriptor, the odd/even ratio615

(OER), is the ratio between the power in the odd and616

even harmonics:617

OER =

∑N
n=1A

2
2n−1∑N

n=1A
2
2n

. (13)

A third descriptor, known as brightness (B3000),618

B3000 =

∑N
n(f≥3000)A

2
n∑N

n=1A
2
n

, (14)

is the fraction of the total power that is above some619

fixed cutoff frequency. Common values are 1000 Hz35,620

1500 Hz33, and 3000 Hz36. For this article, the bright-621

ness calculation is in relation to a cutoff at 3000 Hz in622

order to be well above the THL cutoff and reed reso-623

nance frequencies. Therefore, this descriptor provides an624

indication of the variables effect on the high frequency625

portion of the spectrum, above the region of reinforced626

spectra (due to the THL) and above the frequency by627

which the odd and even harmonics have reached parity628

(due to either the THL or reed resonance).629

Figure 6 shows the descriptors applied to the same630

THL cutoff and reed resonance configurations as in631

Figs. 1 and 2 as a function of the excitation pressure. The632

values shown correspond to the average of all six finger-633

ings, thereby emphasizing the global spectra characteris-634

tics. The reed resonance categorically raises the values of635

all three descriptors regardless of resonator cutoff. It may636

be pointed out that higher reed resonances fr also result637

in higher playing frequencies, which should naturally lead638

to higher descriptors of the spectra. However, it has been639

checked that the dimensionless SC (such that it has been640

normalized by the playing frequency) exhibits the same641

trends as the normal SC defined in Eq. (12). The OER642

and B3000 descriptors cannot be equivalently modified to643

account for different playing frequencies. However, be-644

cause they quantify the high frequency content (B3000 is645

relative to 3000 Hz), it is unlikely that small variations in646

the playing frequency will influence the global qualitative647

trends.648

1. Spectral centroid649

As previously shown by some of the current authors,650

the SC of the internal spectrum increases with increasing651

THL cutoff frequency16. In contrast, there is not a mono-652

tonic increase in SC for increasing fc for the external653

spectra. This may initially seem counter-intuitive: if it654

increases with internal spectra one might expect the same655

for the external spectra. Furthermore, Fig. 2 shows a re-656

gion of reinforced spectra at the cutoff, so it is sensible to657

expect this to shift the SC higher for higher cutoffs. How-658

ever, for a clarinet-like instrument, the vast majority of659

acoustical energy is contained in the low ranking harmon-660

ics. A low THL cutoff will create the region of reinforced661

spectra for harmonics that have a relative large fraction662

of the total energy compared to those in the region of663

reinforced spectra for the higher THL cutoffs. There is a664

complicated balance in the SC calculation between inher-665

ently high-energy low-ranking harmonics and boosting666

the inherently low-energy high-ranking harmonics. This667

indicates that the SC may not be a very useful descrip-668

tor to distinguish between the competing effects of the669

THL cutoff and the reed resonance frequency, especially670

in relation to human perception which is very sensitive to671

frequencies around 2000 Hz. However, it is worthwhile to672

note that R1.5, which has a cutoff that is most similar to673

real clarinets, has the largest range of SC available when674

considering different reed resonance frequencies. This675

suggests that an instrument with fc ≈ 1500 Hz might676

have the most flexibility for finding an adequate timbre677

by using reeds with different mechanical properties.678

2. Odd/even ratio679

The OER is shown in the middle row of panels in680

Fig. 6. At low γ, this descriptor has very large values681

because the signal is primarily composed of the playing682

frequency, with very little energy in higher harmonics.683

As the pressure is increased, the value drops to a mini-684

mum value at approximately γ = 0.5 as other harmonics685

emerge. Above γ = 0.5, the value once again increases686

as the signal approaches the square-wave shape charac-687

teristic of a clarinet played at a high level37,38.688

Generally, the OER increases for resonators with689

higher THL cutoffs, and is the highest for the lattice-690

less cylinder. Similarly, the OER also increases with691
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FIG. 6. Objective descriptors calculated from the harmonic power spectra of the synthesized waveforms as a function of blowing

pressure γ for each THL cutoff and reed resonance frequency combination, averaged from the highest six fingerings of each

resonator. Top: spectral centroid; Middle: odd/even ratio of harmonics; Bottom: Brightness relative to a cutoff at 3000 Hz.

Left to right: R1.0,R1.5,R2.0, and Rcyl. Reed resonance frequencies fr = 1000, 1500, and 2000 Hz are denoted by thick black,

thin black, and thick grey lines, which are solid for the external field and dotted for the internal field.

the reed resonance frequency. However, this narrative692

is challenged by the details: at high γ, the OER cor-693

responding to fr = 1500 Hz is higher for R1.0 than for694

R1.5. An interesting result is that the presence (or not)695

of a THL, regardless of it’s cutoff frequency, appears to696

have the greatest impact on the OER. Resonators R1.0,697

R1.5, andR2.0 all have much lower OER thanRcyl. For a698

lattice-less cylinder, the OER is strongly impacted by the699

reed resonance frequency, which is a much smaller effect700

for the other resonators. Although outside the scope of701

this study, it would be interesting to study how the pres-702

ence of a bell, which is sometimes treated as a surrogate703

THL21, would impact these results.704

3. Brightness705

The bottom panels of Fig. 6 show the brightness as706

defined by the MIR toolbox, not to be confused with707

the subjective use of this word to describe timbre. The708

brightness descriptor is perhaps the easiest to interpret:709

it increases with cutoff frequency and it increases with710

reed resonance. The conclusion is that both of these vari-711

ables enable energy in the higher harmonics for both the712

internal and external spectra. The lattice-less resonator713

has brightness values that are greater than the resonators714

with a THL.715

FIG. 7. Playing condition threshold of oscillation as

a function of reed resonance frequency fr for resonators

R1.0,R1.5,R2.0, and Rcyl.

C. Playing condition oscillation threshold716

The threshold of oscillation, a parameter that is re-717

lated to the ‘playability’ of an instrument, is known to be718

impacted by the reed resonance frequency39,40, while the719

effect of the THL cutoff has, to the authors’ knowledge,720

never been studied. Here, the phenomena is explored us-721

ing a quantity that may be considered a ‘Playing Condi-722

tion Oscillation Threshold’ (PCOT). Rather than study-723

ing the oscillation threshold using a slow pressure ramp724

or continuation scheme12, the PCOT assumes that the725
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mouth pressure undergoes a rapid jump from γ = 0 to726

its final value. The PCOT is the lowest value of γ that727

results in a stable first regime oscillation for a given reed728

resonance frequency. Perhaps due to the relative simplic-729

ity of the resonators considered in this study, the second730

regime occurs very rarely, always close to the PCOT,731

and develops from an unstable first regime within sev-732

eral seconds. Therefore, the signals are synthesized for733

a duration of 10 seconds (as in Section II D) in order to734

disregard the γ values that result in this phenomenon. It735

is noted that a full bifurcation analysis is not the goal of736

the current study, which is mainly interested in the effect737

of fc and fr on the internal and external spectra.738

In order to study the relative effects of the reed reso-739

nance and THL cutoff frequency, the PCOT is computed740

as a function of reed resonance frequency (ζ = 0.4) for741

the four resonators. Figure 7 shows the results for the742

highest note of each resonator. The PCOT has a rel-743

atively high value when the reed resonance is less than744

1200 Hz, drops rapidly to a minimum at approximately745

1300 Hz and then rises slowly with increasing reed res-746

onance frequency. It is interesting to note that, above747

1300 Hz, R1.5,R2.0, and Rcyl have similar values while748

R1.0 has a uniformly higher value. The deviation forR1.0749

may be due to the small number of low frequency input750

impedance peaks that facilitate in the auto-oscillation of751

the reed, making it harder to achieve oscillation. How-752

ever, because the general trends are the same for all four753

resonators including the cylinder without a THL, it is754

reasonable to conclude that fc is secondary to fr in de-755

termining the PCOT.756

The PCOT demonstrates a fundamental difference757

between the roles of the THL cutoff frequency and the758

reed resonance that is not evident when only considering759

the spectrum. While fc appears to affect the spectrum760

more than fr, it is the latter that may have the dominant761

role in sound production. This indicates that the ‘ease762

of playing’ and possibly articulation may be more closely763

linked to the reed resonance than the THL cutoff.764

V. CONCLUSION765

Digital synthesis using clarinet-like academic res-766

onators shows that the tonehole lattice cutoff frequency767

fc and reed resonance fr impact the internal and ex-768

ternal spectra. While they both lead to an increase in769

parity between the odd and even harmonics, the THL770

also induces increased radiation at its cutoff frequency.771

The single value descriptors of playing frequency, spec-772

tral centroid, odd/even ratio, and brightness all increase773

for higher reed resonance frequencies. The spectral cen-774

troid does not monotonically increase or decrease with775

the cutoff frequency. The ratio between the odd/even776

harmonics increases with both increasing tonehole lat-777

tice cutoff frequency and reed resonance. However, the778

presence of any tonehole lattice, regardless of it’s cutoff,779

appears to be the greatest effect when compared with the780

lattice-less resonator. The brightness, corresponding to781

the ratio of power above 3000 Hz to the power below, does782

increase with cutoff frequency. These conflicting trends783

demonstrate that single value descriptors may not be a784

reliable tool to characterize the sounds of clarinet-like785

instruments. An analysis of the ‘playing condition os-786

cillation threshold’ demonstrates that the reed resonance787

has a larger impact than the cutoff frequency on the min-788

imum blowing pressure γ necessary for the emergence of789

first register oscillations. This indicates that the reed790

resonance may be the more important variable relating791

to the ‘ease of playing’ of a particular instrument.792

A future study that would make these results practi-793

cal for instrument manufacturers could involve listening794

experiments to link fc and fr to subjective impressions of795

the timbre. This poses two challenges: (1) controlling the796

mechanical properties of the reed is not easily achieved797

for real instruments; (2) digitally synthesized tones do798

not always produce realistic sounds, which could hinder799

their use in such a study. One possible solution may800

be to estimate the mechanical properties of a reed us-801

ing an artificial mouth or instrumented mouthpiece9,41,802

perhaps coupled to a cylindrical, lattice-less resonator,803

and observing trends in the amplitude of the even har-804

monics in the internal spectrum in comparison with syn-805

thesis results. An additional challenge for in situ exper-806

iments arises due to the variation in playing frequency807

caused by fr; even a difference of 2 Hz (about 17 cents808

for the highest note of the resonators used in the cur-809

rent study) can complicate a subjective impression of810

‘brightness.’ One could use a variable length L for the811

upstream portion of the resonator that can be adjusted812

to match the tuning of each note and reed resonance813

frequency, although the practicality of this solution is814

questionable. Finally, generalizations to real instruments815

should be made cautiously due to their more complicated816

THL geometries, which inherently have ambiguous cut-817

off frequencies. However, the THL cutoff is known to be818

an important characteristic of woodwind instruments, so819

the results in the current article likely remain applicable.820

Because the cutoff frequency has a strong impact on the821

external spectrum of an instrument, but only a minimal822

effect on the production of sound, it is conceivable that it823

may be utilized as a design parameter relating primarily824

to timbre.825
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24W. L. Coyle, P. Guillemain, J. Kergomard, and J.-P. Dalmont,910

“Predicting playing frequencies for clarinets: A comparison be-911

tween numerical simulations and simplified analytical formulas,”912

The Journal of the Acoustical Society of America 138(5), 2770–913

2781 (2015) doi: 10.1121/1.4932169.914

25T. Colinot, “Numerical simulation of woodwind dynamics: inves-915

tigating nonlinear sound production behavior in saxophone-like916

instruments,” Ph.D. thesis, Aix-Marseille Université, 2020.917
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