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Résumé. Les modèles de mélange bayésiens non paramétriques sont souvent utilisés
pour modéliser des données complexes. Si ces modèles sont bien adaptés à l’estimation
de densité, leur application au clustering, bien que courante, reste plus discutée. En
effet, Miller and Harrison (2014) montrent l’inconsistance a posteriori du nombre de clus-
ters lorsque le nombre réel de clusters est fini pour les modèles de mélange à processus
de Dirichlet et à processus de Pitman–Yor. Dans ce travail, nous étendons ce résultat
à d’autres priors bayésiens non paramétriques tels que les processus de type Gibbs et
la représentation en dimension finie de ces différents priors. Ces représentations finies
comprennent le processus multinomial de Dirichlet, de Pitman–Yor et celui de gamma
généralisé normalisé, récemment proposés. Plus précisément, nous montrons que les
modèles de mélange basés sur tous ces processus sont également inconsistants quant au
nombre de clusters.

Mots-clés. Bayésien non-paramétrique, consistance, mélange fini

Abstract. Bayesian nonparametric mixture models are often employed for modelling
complex data. While these models are well-suited for density estimation, their appli-
cation for clustering has some limitations. Miller and Harrison (2014) proved posterior
inconsistency in the number of clusters when the true number of clusters is finite for
Dirichlet process and Pitman–Yor process mixture models. In this work, we extend this
result to additional Bayesian nonparametric priors such as Gibbs-type processes and finite-
dimensional representations of them. The latter include the Dirichlet multinomial process
and the recently emerged Pitman–Yor and normalized generalized gamma multinomial
processes. We show that mixture models based on these processes are also inconsistent
in the number of clusters.

Keywords. Bayesian nonparametric, consistency, finite mixture
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1 Introduction

Finite mixture models are hugely popular in applications, but choosing the appropriate
number of components remains challenging. Using Bayesian nonparametric (BNP) priors
(such as the Dirichlet process) for mixture modelling allows to avoid this choice, by
assuming an infinite number of components, which implies that the number of clusters
found in a dataset is flexibly estimated depending on the amount and the structure of the
data. While BNP mixture models are well-suited for density estimation, they have some
limitations when employed for clustering data known to originate from a finite mixture.
Indeed, Miller and Harrison (2014) states that when using a Dirichlet process or Pitman–
Yor process mixture the posterior will not be consistent for the number of clusters if
the data is generated according to a finite mixture. Here we show that this type of
inconsistency result generalizes to Gibbs-type process mixtures and finite-dimensional
representations of BNP priors.

We start by introducing the notion of a partition-based mixture model, before stating
the inconsistency results of Miller and Harrison (2014) on Dirichlet process mixtures and
Pitman–Yor process mixtures. We then present our generalization of this result to Gibbs-
type processes and to several finite dimensional representations of BNP processes. For
clarity, we omit the proofs of our results. However, the proofs are presented in article in
preparation, which is a part of PhD project of Louise Alamichel.

1.1 Partition-based mixture model

We consider partition-based mixture model as defined in Miller and Harrison (2014).
Firstly, we define the distribution on partitions. Let Ak(n) be the set of ordered partitions
of {1, . . . , n} into k (k ∈ {1, . . . , n}) nonempty sets:

Ak(n) :=

{
(A1, . . . , Ak) : A1, . . . , Ak disjoint,

k⋃
i=1

Ai = {1, . . . , n}, |Ai| ≥ 1 ∀i

}
.

We denote ni := |Ai|. Then, we consider a distribution p(A) on
⋃n

k=1Ak(n), which
induces a distribution on k as p(k | A) = I(A ∈ Ak(n)) where I is the indicator function.

Next we introduce the hierarchical mixture model. We denote π a prior density on the
d-dimensional parameters θ ∈ Θ ⊂ Rd and pθ a parametrized component density. The
hierarchical structure of partition-based mixture model is then:

p(A, k) = p(A)I(A ∈ Ak(n)), p(θ1:k|A, k) =
k∏

i=1

π(θi), p(x1:n|A, k, θ1:k) =
k∏

i=1

∏
j∈Ai

pθi(xj),

where x1:n = (x1, . . . , xn) with xi ∈ X , θ1:k = (θ1, . . . , θk) with θi ∈ Θ, and A ∈ Ak(n). In
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particular, it is a Dirichlet process mixture model when

p(A) =
αk

k!(α)n

k∏
i=1

(ni − 1)!

for A ∈ Ak(n), where α > 0 and (x)n = x(x + 1) · · · (x + n − 1), with (x)0 = 1 by
convention.

Finally, we denote by Kn the number of clusters.

1.2 Inconsistency theorem

The central result of Miller and Harrison (2014, Theorem 6) is reproduced below as
Theorem 1.1. This result depends on two conditions which are given thereafter.

Firstly, we introduce some notations for Condition 1. For A ∈ Ak(n), we define
RA =

⋃
i:|Ai|>2Ai, the union of all clusters except singletons. For j ∈ RA, we define

B(A, j) to be the ordered partition B ∈ Ak+1(n) obtained by removing j from its cluster
and creating a new singleton for it. Then Bi = Ai \ {j}, i = 1, . . . , k, and Bk+1 = {j}.
Let ZA := {B(A, j) : j ∈ RA}, for n > k ≥ 1, we define

cn(k) :=
1

n
max

A∈Ak(n)
max
B∈ZA

p(A)

p(B)
,

with the convention that 0/0 = 0 and y/0 = ∞ for y > 0.

Condition 1. Assume lim supn→∞ cn(k) < ∞, given some particular k ∈ {1, 2, . . .}.

The second condition induces a control on the likelihood through the control of single-

cluster marginals. A single-cluster marginal of the model is m(xAi
) =

∫
Θ

(∏
j∈Ai

pθ(xj)
)

π(θ)dθ. Given c ∈ [0,∞), we introduce

φk(x1:n, c) := min
A∈Ak(n)

1

n
|SA(x1:n, c)| ,

where SA(x1:n, c) is the set of indices j ∈ {1, . . . , n} such that the part Aℓ containing j
satisfies m(xAℓ

) ≤ cm(xAℓ\j)m(xj), i.e. the set of observations for which the marginals of
the new clusters obtained after taking out that observation and creating a new singleton
cluster dominates the marginal of the original cluster up to a constant c.

Condition 2. Given a sequence of random variables X1, X2, . . . ∈ X , and k ≥ 1, assume
supc∈[0,∞) lim infn→∞ φk(X1:n, c) > 0 a.s.

For c = 1, Condition 2 means that as n → ∞, there is always a non-vanishing
proportion of the observations for which creating a singleton cluster will increase its
cluster marginal.
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Theorem 1.1 (Miller and Harrison, 2014). Let X1, X2, . . . ∈ X be a sequence of r.v., and
consider a partition-based model. Then, if Conditions 1 and 2 hold for any k ≥ 1, we
have

lim sup
n→∞

p(Kn = k|X1:n) < 1 with probability 1.

The first condition is only related to partition distribution, while the second condition
only involves the data-distribution and single cluster marginals. Hence, to generalize this
inconsistency result to other processes, it is enough to show that Condition 1 also holds
for these different processes.

2 Gibbs-type process

Gibbs-type processes are a natural generalization of the Dirichlet and Pitman–Yor pro-
cesses. Gibbs-type processes of order: σ, σ < 1, can be characterized through the proba-
bility distribution of the induced random partition, which has the following form:

p(n1, . . . , nk) = Vn,k

k∏
j=1

(1− σ)nj−1, (1)

where Vn,k are nonnegative numbers that satisfy the recurrence relation

Vn,k = (n− σk)Vn+1,k + Vn+1,k+1, V1,1 = 1. (2)

In this case, we have a probability distribution for ordered partition A ∈ Ak(n) which can

be deduced from (1) by dividing on k! to adjust for order: p(A) =
Vn,k

k!

∏k
j=1(1− σ)nj−1.

Proposition 2.1. Consider a Gibbs-type process with 0 < σ < 1, then Condition 1 holds
for any k ∈ {1, 2, . . .}, so does inconsistency of Theorem 1.1.

Idea of proof. For B = B(A, j) as defined in section 1.2, we want to prove that

cn(k) =
1

n
max

A∈Ak(n)
max
B∈ZA

p(A)

p(B)
< ∞

As 1
n
p(A)
p(B)

≤ Vn,k

Vn,k+1
(k+1), we just have to prove that the sequence

(
Vn,k

Vn,k+1

)
n≥0

is bounded.

Coefficients Vn,k can be equivalently defined through the density fσ of a positive stable
random variable

Vn,k =
σk

Γ(n− kσ)

∫ +∞

0

∫ 1

0

t−kσpn−kσ−1h(t)fσ((1− p)t)dtdp.

Applying the Laplace approximation method as in Arbel and Favaro (2021), we obtain

that the sequence
(

Vn,k

Vn,k+1

)
n≥0

is bounded and Condition 1 is satisfied.
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3 Finite dimensional representation

The recent works by Lijoi et al. (2020a,b) develop finite-dimensional versions of the
Pitman–Yor process and normalized randommeasures with independent increments (NRMI).
The latter includes the Dirichlet and normalized generalized gamma multinomial processes
as special cases. These processes can be seen as approximations for the corresponding
infinite dimensional processes.

3.1 Pitman–Yor multinomial process

The Pitman–Yor multinomial process is defined in Lijoi et al. (2020b) as a discrete random
probability measure p̃H such that p̃H |p̃0,H ∼ PY(σ, α; p̃0,H), p̃0,H = 1

H

∑H
h=1 δθ̃h where

H ≥ 1, θ̃h
iid∼ P , σ ∈ [0, 1) and α > −σ. The distribution on ordered partitions for the

Pitman–Yor multinomial process is as follows

p(A) =
H!

(H − k)!k!

1

(α + 1)n−1

∑
(ℓ1,...,ℓk)

Γ(α/σ + |ℓ(k)|)
σΓ(α/σ + 1)

k∏
i=1

C(ni, ℓi;σ)

Hℓi
,

where the sum runs over the vectors ℓ(k) = (ℓ1, . . . , ℓk) such that ℓi ∈ {1, . . . , ni} and
|ℓ(k)| = ℓ1 + · · ·+ ℓk. The C(n, k;σ) are the generalised factorial coefficients defined as

C(n, k;σ) =
1

k!

k∑
j=0

(−1)j
(
k

j

)
(−jσ)n. (3)

Proposition 3.1. Consider a Pitman–Yor multinomial process, then Condition 1 holds
for any k < min(n,H), so does the inconsistency of Theorem 1.1.

3.2 Normalized infinitely divisible multinomial processes

Normalized infinitely divisible multinomial (NIDM) processes were introduced in Lijoi
et al. (2020a). NIDM processes can be described through NRMI measures using following
hierarchical structure: (p̃H | p̃0,H) ∼ NRMI(c, ρ; p̃0,H), p̃0,H = 1

H

∑H
h=1 δθ̃h .

If the NRMI process in the definition of the NIDM process is a Dirichlet process, then
we can we obtain the Dirichlet multinomial process and the distribution on the ordered
partitions is defined as:

p(A) = ΠH(n1, . . . , nk) =
H!

(H − k)!k!

∏k
j=1(c/H)nj

(c)n

Proposition 3.2. Consider a Dirichlet multinomial process, then Condition 1 holds for
any k < min(n,H), so does inconsistency of Theorem 1.1.
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Similarly, when we consider normalized generalized gamma as NRMI process in the
definition, we get NGG multinomial process.

In this case the probability on the ordered partition is slightly more involved: We have
with k ≤ min(n,H) (see Example 2 Lijoi et al., 2020a):

P (A) =
H!

(H − k)!k!

∑
(ℓ1,...,ℓk)

Vn,|ℓ(k)|

H |ℓ(k)|

k∏
i=1

C(ni, ℓi;σ)

σℓi
,

Here, the C(n, k;σ) are again the generalized factorial coefficients defined in (3). The Vn,k

are the parameters defined in (2) for the particular case of NGG processes.

Proposition 3.3. Consider a normalized generalized gamma multinomial process, then
Condition 1 holds for any k < min(n,H), so does inconsistency of Theorem 1.1.

4 Discussion

We have proved that Gibbs-type process mixtures are inconsistent a posteriori for the
number of clusters, when the true number of components is finite. It is also the case,
for some finite-dimensional representations of BNP priors as the Dirichlet multinomial
process. However, we did not prove inconsistency in general for NIDM. A recent proposal
by Guha et al. (2021) shows that this inconsistency problem can be resolved for Dirichlet
process mixtures using a simple post-processing procedure based on merging neighbouring
clusters. This procedure is effective as long as the posterior contracts at a known rate
under the Wasserstein metric to the true mixing measure, which raises hope concerning
its applicability to a larger class of processes than the Dirichlet process mixture.
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