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Abstract

As social networks take an ever-prominent role in information access, combating
disinformation becomes increasingly important. Given current volumes of data,
automated approaches for the detection of disinformation are the only ones able to
offer an online solution. We formalize disinformation as an anomaly in the organic
evolution of the network, in terms of users, content or coordination. To identify it,
we propose a solution based on Temporal Graph Networks (TGN) adapted to the
detection of anomalies and completed with a reliability module which permits users
to trade precision for recall. Inheriting the performances of TGN, this solution is
able to scale up, work on continuous time settings, and handle multimodality (text,
image and video). Moreover, when compared to existing models, our approach
outperforms state-of-the-art solutions for anomaly detection in dynamic graphs
on several classical datasets. Lastly, it has been tested on a Twitter dataset of the
French presidential election of 2022, providing useful insights on manipulation
during the campaign.

1 Introduction
In recent years, social networks have become a key venue for public debate. Many users have made
them their preferred access to information. The information quality in these networks is therefore a
matter of concern, with problems ranging from low-quality content to malicious actors following an
economic, political or geopolitical agenda.

After the 2016 US presidential election and Brexit, Fake news have been under scrutiny [1] and have
been partly held responsible [2] for low information quality online. Given massive volumes of online
data, manual moderation of Fake news is infeasible. It is therefore necessary to automate detection so
that only uncertain cases need to be checked by humans.

Several frameworks have been created to propose a theoretical approach of disinformation in the
last years. Most of them consider disinformation as a deviation from a norm. For instance, the ABC
method [3] splits disinformation into Actors, Behaviors and Content, where actors may be malicious,
behaviors coordinated and content containing false claims. Disinformation campaigns combine these
elements. For example, astroturfing, or false amplification of online organizations or narratives,
gathers users, fake or not, to inorganically behave online in order to push the network towards a
desired direction.

Labelling interactions as abnormal requires defining a norm. What would be an organic and “normal"
evolution of the network without disinformation? We consider the question of anomaly detection as
statistical modeling of (ir)regularities over a latent space.

*These authors contributed equally to this work.
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Reliable anomaly detection for disinformation identification

We distinguish two types of anomalies: edge and node anomalies. Edge anomalies consist of adding
or removing edges randomly, and may be considered to be “noisy" anomalies. Node anomalies
consist of malicious nodes that behave differently, such as creating or removing edges according to a
different statistical distribution from that of existing nodes. Edge anomalies must be linked to node
anomalies as proposed by Kagan et al. [4].

1.1 Problem statement

Disinformation can take many forms and approaching it with anomaly detection leads to focusing on
only some of them. We do not seek to characterize disinformation through contents or fake accounts
but with abnormal behaviors. There is no silver bullet solution here, but this approach, is helpful to
circumvent limitation of supervised approaches such as their inability to check the veracity of brand
new pieces of news [5]. Examples of new behaviors found in our dataset will be presented in the
usecase section.

Disinformation detection via anomaly detection in dynamic graphs. Our behavior-based ap-
proach is using a dynamic graph, without label on node. This unsupervised setting is much harder
than supervised classification but it is preferred as it is similar to real-life usecase. Our hypothesis is
that the network has an organic evolution and disinformation is seen as inorganic process deviating it
from its trajectory. This process has many components and explanations and we will only looking for
one; inauthentic behaviors.

This approach is used on a Twitter dataset about French politics, collected through API in a process
described in [6]. It is a temporal retweet graph from the 2022 French presidential election campaign.
In this example, we don’t seek fake accounts or false news but only accounts engaged in inauthentic
behavior. These accounts can, for instance, be bots or share fake contents, but it is not these
characteristics that are used to detect them, as the method focuses on malicious activities.

In this setting, disinformation monitoring in social networks by way of anomaly detection ideally
meets several requirements:

1. Applicable to dynamic graphs in continuous time. In discrete time settings, one must gather
a sufficient amount of data before processing it. In practice, social media events can be time-
sensitive, making these approaches of little use in real life.

2. Scalable. Social graphs can easily contain more than one million nodes, rendering any O(n2) so-
lution intractable. One of the viable approaches to detect anomalies is machine learning. Within
machine learning approaches, supervised learning may overadapt to anomalies represented in
training [7]. Therefore, we turn to self-supervised learning as a more robust and generalizable
approach.

3. Multimodal. Text, images and videos are essential vectors of disinformation, and thus must be
considered in disinformation detection.

4. Explainable. A perfect system would be able to return the specific anomalous interaction and
assess the extent to which this information is reliable.

Our contribution is a representation learning solution to disinformation detection based on Temporal
Graph Networks (TGNs) [8], used as as an edge anomaly detector and enriched with a reliability
module. This model meets all aforementioned requirements while being competitive with previous
solutions and achieving state-of-the-art on several benchmarks.

2 Related Work
2.1 Graph based approach and Anomaly Detection in the fight against Disinformation

Disinformation has received significant attention in the last years from the psychology [9], sociology
[10] and computer science research communities. Most solutions from computer science are based
on deep learning [11], where e.g. Monti et al. [12] proposed a geometric deep learning approach that
has been followed since. Indeed, Graph Neural Networks have proven to gather content and context
in one model and have quickly become state-of-the-art [13].

Fighting disinformation is generally split into three main tasks: fake content detection [14], bot/fake
source detection [15], and inauthentic propagation network detection [16]. Several examples illustrate
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the importance of GNNs in these three approaches.
Multiple levels of analysis have been explored in the detection of problematic content. Zellers et al.
[17] address the problem at the document level and therefore adopts an approach mainly focused on
NLP. At a larger scale, Wu et al. [18] propose a new task based on the notion of “cluster of topically
related documents", where both problematic documents and clusters must be detected. The authors
rely on a heterogeneous GNN to address this new task. Hu et al. [19] propose to check the content
against external knowledge via a GNN model.
The performance of GNNs has also been exploited for the task of detecting sources of misinformation,
for example by Feng et al. [20] who rely on graph transformers applied to a heterogeneous information
network to detect bots on Twitter.
Finally, propagation based approaches like [21] are suited for the use of GNNs, since input the data
naturally takes the form of graphs/cascades [22, 23].

Although the interpretation of fake news and fake news spreaders as abnormal elements of the network
is recognized [24], approaches based on the anomaly detection paradigm are less developed than
more classical supervised classification methods [25]. Existing methods have explored a variety of
avenues, [26] focusing on the detection of anomalies in shared images, [27] analyzing the activity
patterns of Twitter and Weibo users to identify anomalous behavior and [28] identifying anomalous
topics to trace them back to the spammers groups behind them. Nevertheless, none of them has tried
to exploit the performance of GNNs to detect anomalous patterns directly on the dynamic social
graph.

Given the performances obtained in general by GNNs in the aforementioned methods, it seems
relevant to build such an approach of disinformation identification via an anomaly detection task
on the social graph. To this end, we need to select an anomaly detection method that meets the
requirements of section 1.1, which leads us to a state of the art of anomaly detection methods on
dynamic graphs.

2.2 Anomaly Detection in Dynamic Graphs

Approaches in anomaly detection in dynamic graphs can be classified depending on whether or not
algorithms make use of learning procedures.
If they do not, methods do not satisfy the above-mentioned needs in disinformation detection. Indeed,
as they do not learn the dynamics of the considered dynamic graph, they tend to rely on an a-priori
conception of what is an anomaly. For instance, GOutlier [29] characterises anomalies as behaviours
that deviate from community patterns that structure the network, CM-Sketch [30] detects outliers
based on several (fixed) edge scores, and SpotLight [31] applies graph sketching to identify the
appearance of dense sub-blocks in a graph stream, considered abnormal.
Learning approaches solve this difficulty, for example by learning a hypersphere in the latent space
of an autoencoder [32]. Various architectures have been proposed to address this detection task.
NetWalk [33] relies on random walks and an autoencoder model to produce a network embedding,
used to detect anomalies through a clustering of vertex representations. AddGraph [34] and StrGNN
[35] are end-to-end GNN anomalous edges detectors that combine GCNs and Gated Recurrent Units
(GRUs) to learn structural and temporal patterns of the network. TADDY [36] uses a transformer
to jointly model those patterns in a unified setting. OCAN [37] learns the characteristics of benign
behaviour via a Long short-term memory-autoencoder and uses a specific Generative Adversarial
Network (GAN) model to train a discriminator to detect malicious users.
Nevertheless, despite modeling capabilities of these algorithms, some problems remain, such as (1)
the difficulty to treat attributed graphs; (2) the lack of scalability [38]; and (3) reliance on discrete
modeling of dynamic graphs.
To solve these issues, we turn to the active field of link prediction in dynamic graphs [39], and more
precisely towards deep learning models developed for this task. Indeed, since anomalies can be
considered as outliers, it seems relevant to try to detect them via the (low) probability that a link
prediction algorithm would assign to them.

2.3 Link prediction in Dynamic Graphs

Link prediction can be divided into two main approaches, depending on whether the dynamic graph
representation is discrete or continuous [39]. We will focus here on continuous time representations,
more adapted to our problem. As mentioned in the previous section, only deep learning models are
compared, leaving aside alternative approaches such as those developed in [40], [41] or [42].
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Learning on continuous time dynamic graphs has required the development of specific neural
network architectures, of which the main ones are presented below. Dyrep [43], an inductive
deep representation learning framework, produces time evolving low-dimensional node embeddings
through learned functions. Jodie [44] learns embedding trajectories of nodes through coupled
Recurrent Neural Networks (RNNs). TGAT [45] introduces a temporal graph attention layer to
aggregate temporal and topological features. Finally, Temporal Graph Networks [8] is a generic
framework, adding a memory module to TGAT and of which previous models can be seen as special
cases.
The goal being to evaluate the interest of such dynamic link prediction algorithms for the fight against
disinformation, we choose to use TGN as a reference model for our anomaly detection method, its
framework being the most generic. It can be used to process dynamic graphs of variable sizes in
continuous time, while being scalable up to millions of nodes [46], thus bringing an answer to the
problems raised previously.

3 Methods

3.1 A tool for Anomaly Detection

3.1.1 Problem formalization

Based on the formalism introduced in Skarding et al. [39], the following definition of dynamic
networks is adopted:

Definition: Dynamic graph. A Dynamic Graph is a graph G = (V, E) where: V = {(v, ts, te)}
with v a vertex of the graph and ts, te are respectively the start and end timestamps for the existence
of the vertex (with ts ≤ te). E = {(u, v, ts, te)} with u, v ∈ V and ts, te are respectively the start
and end timestamps for the existence of the edge (with ts ≤ te). Vertices and edges can be endowed
with features.

A continuous representation is chosen, matching the ’graph stream representation’ of Skarding et al.
[39]. More precisely, in the words of Rossi et al. [8], these dynamic networks are represented as
a sequence of time-stamped node-wise events or interaction events. Node-wise events are node
creations, feature updates and deletions. Interaction events are temporal edge creations and deletions.

Our goal is to detect, for any interaction (edge creation event), whether it is abnormal or not. As in
Liu et al. [36], this anomalous edge detection task is defined as an abnormality scoring problem.

This task is approached in the same setting as Liu et al. [36], i.e. an unsupervised setting, without
labeled data, assuming that the train set has no anomalies. For TGN, the training is assessed on the
average precision obtained for the validation set, which contains anomalies.

3.1.2 Method Description

Our method consists in modifying the Temporal Graph Networks [8] architecture to build an anomaly
detection solution with a reliability module. The central idea of TGN is to attach a memory to each
node, allowing the recording of its past interactions, in order to produce a vector representation taking
into account not only its own features, but also its temporal history. In addition to the memory is an
embedding layer, performing aggregation of the neighbourhood information, which can be achieved
by different functions: identity, sum, graph attention mechanism [47], etc.

These first two elements, memory and embedding module, form an encoder associating the considered
graph to a representation of its nodes in a latent space, that can then be used as an input by a decoder
adapted to a specific task. For the link prediction task, this decoding function is performed by a
Multi-Layer Perceptron allowing the calculation of an affinity score between nodes giving, after
application of a sigmoid, probabilities of interactions.
In the rest of this section, the configuration of the algorithm used in this study is presented. One can
consult Rossi et al. [8] for an in-depth description of the other modules that can be used. An overview
of the whole architecture can be found in Figure 1.
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Figure 1: Flow of operations used to train and to compute abnormality and reliability scores

Message treatment. For an interaction involving nodes i and j, messages mi(t) and mj(t) will be
calculated as the following concatenations:{

mi(t) = si(t
−)||sj(t−)||eij(t)||ϕ(∆ti)

mj(t) = sj(t
−)||si(t−)||eij(t)||ϕ(∆tj)

where sk(t
−) is the memory of node k ∈ {i, j} before its update and ∆tk is the time difference

between the time of the last update of the node k ∈ {i, j} and the time of the interaction at the origin
of the message. eij(t) denotes the edge features and ϕ a generic time encoding function introduced
in Xu et al. [45].
In practice, as interaction data are processed in batches, several links involving the same node may
appear before the memory has been updated. Only the most recent message is kept.

Memory. The nodes’ memory corresponds to the hidden vector, initially zero, of a recurrent neural
network (RNN). Its update mechanism is a GRU unit, shared by the whole network. When a node
interacts, the message attached to that interaction is computed and then used as the input vector of the
RNN, with the previous node’s memory serving as the incoming hidden vector; the outgoing hidden
vector becomes the new memory of the node.
The memory of nodes i and j after interaction at time t ≥ 0 is thus :

sk(t) = GRU(mk(t), sk(t
−)), k ∈ {i, j} .

Embedding Module. The aggregation function used in this study is the temporal graph attention
module, derived from TGAT [45], whose inputs are modified to take into account nodes’ memory
and temporal features. The embedding of node i at time t is denoted zi(t).

Final MLP and Loss Function. Prediction of link probability between nodes i, j ∈ {1, ..., n(t)}
at time t ≥ 0 is performed via a two-layer MLP and a sigmoid function:

P̂((i, j), t) = σ(MLP(zi(t)||zj(t)).

The model is self-supervised, as it learns, for each batch, to predict the probability of next interactions.
Negative sampling is used with a rate of one to one, a negative edge being sampled for each considered
interaction. In training, link probabilities obtained for batch interactions and for interactions of
negative sampling are injected into a BCE loss function.

3.1.3 Use for Anomaly Detection - reliability module

As anomaly detection can be understood as an outlier detection task, it seems natural to consider the
probability associated to an edge as a measure of its normality [48]. Conversely, it can be used to
construct an anomaly score, which we choose here to define as a(e, t) = 1− P̂(e, t), e ∈ E , while
other choices are possible.

Results for anomaly detection can be visualised via a diagram showing the abnormality scores
associated with interactions, in order of appearance. Figure 2 is an example of such a diagram,
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Figure 2: Visualisation of the anomaly scores for the 31933 edges of the Synthetic graph. Anomalies
are marked in red. Original interactions are marked in blue. As it can be seen, anomalies were
injected in the whole graph, including the training part.

corresponding to a synthetic dynamic graph, denoted Synthetic in the following, generated according
to modalities detailed in the Appendix A.2.

It can be seen that anomalies are not the only interactions to be associated with high abnormality
scores. Although such a situation still allows a high ROC AUC to be obtained, it presents practical
problems of use in our context. Indeed, as human analysis resources are limited, it is important to
ensure a good precision of the results, i.e. a low false positive rate.

Thus, to complete the adaptation of TGN to the use we wish to make of it, the last step remaining is
to identify an ad hoc methodology to mitigate this problem. For this purpose, we adopt an approach
based on the norm of the gradient of the abnormality score w.r.t. the model inputs. Indeed, this
quantity allows to address both the questions of robustness [49–51] and explainability [52, 53].

As denoted by Yuan et al. [54], gradient-based explanation methods have important limitations.
Nevertheless, the development of a brand new explainability method for GNNs on continuous time
dynamic graphs goes far beyond the scope of this paper*. We have thus decided to use the static
method which is the most immediate to adapt to our context and which, moreover, allows to couple
explainability and robustness. Moreover, this choice does not alter the appreciated properties of TGN,
especially in terms of scalability, since these gradients are computed online via PyTorch autograd
[57].

By analogy with the abnormality score, we therefore introduce a reliability score constructed from
the normalized sum of the gradient norms:

r(e, t) = 1−

∑
i∈inputs(e)

||∇ia(e, t)||

max
e′∈E

( ∑
i∈inputs(e′)

||∇ia(e′, te′)||

) ,

where ∇ia(e, t) denotes the gradient of a with respect to input i at point (e, t).

See appendix A.1 for a quantitative evaluation of this module.

4 Comparison with Anomaly Detection methods on Dynamic Graphs

Existing anomaly detection solutions didn’t fit all stated requirements. Hence, TGN was used as an
anomaly detection tool. Once adapted as presented above, it can be compared on some benchmarks.
TGN settings and technical details of the experiments are precised in appendix A.3.

*To the best of our knowledge, current explainability methods for dynamic GNNs were designed for discrete
time settings [55, 56].
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4.1 Datasets

In this study, our method is evaluated on six benchmark datasets. In all the datasets, nodes are agents
(users or autonomous systems) and edges are interactions between agents (messages, replies, emails
or ratings). They are described in appendix A.4.

4.2 Baselines

Four state-of-the-art algorithms for anomaly detection in dynamic graphs are compared to our
TGN-based solution:

• Netwalk [33], a network representation-based anomaly detection algorithm, relying on the
dynamic clustering of nodes embeddings, obtained via random walks and an auto-encoder;

• AddGraph [34], an end-to-end anomalous edge detection model, based on a temporal GCN
module and an attention-GRU unit;

• StrGNN [35], an end-to-end GNN which detects abnormal edges by considering an h-hop
enclosing subgraph centered on the considered edge, analysed by combining GCN and GRU;

• TADDY [36], an end-to-end transformer model, which learns coupled temporal and spatial
information from the dynamic graph, allowing it to generate informative node attributes when
these are absent from the raw graph.

In addition to these GNN-based methods, we consider, as in the TADDY paper, the following
traditional methods: node2vec [58], Spectral Clustering [59] and DeepWalk [60].

4.3 Experimental Design

The protocol used for this experiment is similar to Liu et al. [36]: the datasets are split into two equal
parts to obtain training and testing sets. Different proportions (1%, 5% and 10%) of anomalies are
then injected into the testing set. Finally, the performance of the considered algorithm on the task of
detecting these anomalies is evaluated via ROC AUC metric.

For the generation of anomalies, the TADDY generator* has been adapted to a continuous time
framework. Once anomalies are generated, timestamps are created based on previous and following
interactions. Abnormal edges can thus be injected into the raw data, not having undergone the
pre-processing of TADDY (removal of multiple edges, grouping of edges into graph snapshots, etc.).
Using the same raw data ensures that all the algorithms have had the same information for their
training.

4.4 Results for AD

The results for node2vec, Spectral Clustering, DeepWalk, Netwalk, AddGraph, StrGNN and TADDY
are taken directly from the TADDY paper. Results can be found in Table 1. For three datasets, our
method outperforms TADDY, which was the previous state-of-the-art solution. It should also be
noted that in our approach, TGN can take into account attributes of edges and nodes, which are not
meaningful here. Moreover, our approach is scaling up [46], compared to NetWalk, AddGraph and
TADDY [38]. The code allowing the reproduction of these results is available online *.

5 Use Case
As stated in introduction, one of the end goal of detecting disinformation is to identify problematic
users. Our use case will focus on this task. Abnormality scores on edges can be combined in many
ways to create a score for nodes [4]. Here, a variant of the Sum Edge Label will be used. It consists
in summing edge labels for each interaction where the user is the one who retweets. Our solution is
trained on a political dataset of retweets in the French political landscape the week before the French
presidential election of 2022. Edges features are tweets embedded with BERT and the abnormality
and reliability thresholds are set to 0.8 and 0.89 respectively.

*https://github.com/yixinliu233/TADDY_pytorch
*https://github.com/LoG-sub-16/Anomaly-Detection-on-Dynamic-Graph-to-identify-disinformation
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Methods UCI Messages Digg Email-DNC
1% 5% 10% 1% 5% 10% 1% 5% 10%

node2vec 0.7371 0.7433 0.6960 0.7364 0.7081 0.6508 0.7391 0.7284 0.7103
Spect. Clust. 0.6324 0.6104 0.5794 0.5949 0.5823 0.5591 0.8096 0.7857 0.7759
DeepWalk 0.7514 0.7391 0.6979 0.7080 0.6881 0.6396 0.7481 0.7303 0.7197
NetWalk 0.7758 0.7647 0.7226 0.7563 0.7176 0.6837 0.8105 0.8371 0.8305

AddGraph 0.8083 0.8090 0.7688 0.8341 0.8470 0.8369 0.8393 0.8627 0.8773
StrGNN 0.8179 0.8252 0.7959 0.8162 0.8254 0.8272 0.8775 0.9103 0.9080
TADDY 0.8912 0.8398 0.8370 0.8617 0.8545 0.8440 0.9348 0.9257 0.9210

Our method 0.8846 0.8789 0.8597 0.8575 0.8358 0.7942 0.9413 0.9352 0.9447

Methods Bitcoin-Alpha Bitcoin-OTC AS-Topology
1% 5% 10% 1% 5% 10% 1% 5% 10%

node2vec 0.6910 0.6802 0.6785 0.6951 0.6883 0.6745 0.6821 0.6752 0.6668
Spect. Clust. 0.7401 0.7275 0.7167 0.7624 0.7376 0.7047 0.6685 0.6563 0.6498
DeepWalk 0.6985 0.6874 0.6793 0.7423 0.7356 0.7287 0.6844 0.6793 0.6682
NetWalk 0.8385 0.8357 0.8350 0.7785 0.7694 0.7534 0.8018 0.8066 0.8058

AddGraph 0.8665 0.8403 0.8498 0.8352 0.8455 0.8592 0.8080 0.8004 0.7926
StrGNN 0.8574 0.8667 0.8627 0.9012 0.8775 0.8836 0.8553 0.8352 0.8271
TADDY 0.9451 0.9341 0.9423 0.9455 0.9340 0.9425 0.8953 0.8952 0.8934

Our method 0.9084 0.8849 0.8841 0.8665 0.8553 0.8481 0.9516 0.9490 0.9472

Table 1: AUC results for anomaly detection on benchmark datasets. The best performing method is
in bold and the second best in italics.

Users with several interactions labeled as suspicious have been manually inspected. These accounts
appear with features that are dramatically different from average users. Most of the users doesn’t
have a picture and for those who have the large majority doesn’t provide information about the user,
such as memes for instance. A part of these accounts have Twitter handle with 8 digits in it, meaning
that they have been automatically given by the platform. Without being a strong clue, it suggests
a lack of importance given to the account. Lastly, almost all labeled accounts are highly active on
the platform and some of them among the top active ones. For instance, some accounts produce on
average 300 tweets or retweets per day during the past years, suggesting at least partially automated
accounts.

Thanks to a manual check, we can confirm that more than half of accounts labeled as suspicious
by our solution are engaged in identified inauthentic behaviors. About 10% of the accounts have
been deleted or suspended since the data collection six months ago. Most of the accounts belongs
to the French AltRight community, defined using graph clustering. Depending on the account, they
push anti-vaccine, pro-Russian or anti-immigration narratives. Two kinds of accounts are engaged in
behaviors.

The first ones are accounts that seems to be at least partially automated, with a small audience (usually
< 100 followers), without profile picture. Most of them retweet massively or are engaged in automated
action. Several types of inauthentic behaviors have been observed. For instance, some accounts keep
replying to a unique account with pictures. Others comment the same picture under many targeted
accounts. Lastly, some accounts repeatedly tweets news links and then the screenshot of the news
title.

The second kind of accounts have a larger audience (usually between 1000 and 10000 followers),
with a human-like behavior. Some accounts are trying to raise awareness with unauthentic behaviors.
For instance, an account uses a strange strategy consisting of various similar interaction with an
account. It comments on a post, quotes the same post and tweets mentioning the account with the
same message, identical the three times. These accounts also uses a mix of appealing content such as
beautiful landscape combined with political content. This deceiving behaviors is meant to create an
audience before using it.

This diversity of behaviors are not fully covered by TGN as it does not take into account all interactions
but it seems to provide meaningful insight about abnormality of accounts. Moreover, among accounts
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labeled as suspicious but not engaged in inauthentic behavior, many accounts seem to be engaged in
advertising behaviors, hard to distinguish from truly inauthentic behaviors.

5.1 Explainability

As mentioned before, the explanatory power of gradient norms is limited. In practice, they allow us
to understand simple situations to the first order.
For example, one of the two nodes with a score of seven has repeatedly retweeted content from
one political community, then from another, and so on. Our solution detected as abnormal all the
switching interactions, i.e. the first interaction with one community after several retweets of the other.
This analysis of the origin of the anomalies is confirmed with the reliability module. Interactions
following these community switches were followed by strong gradients, corresponding to ’echoes’ of
the above-mentioned anomalies, the network being no longer ’confident’ in the representation of the
considered node.
The lack of ambiguity in this anomaly made it fairly straightforward to understand and it would be
interesting to have an explainability method giving insights in more complex cases. Specifically,
consider one of the use case examples. When the abnormal behavior involves, in the eyes of the
human analyst, a mixture of tweets, quotes and retweets, we cannot be sure what led TGN to make
its prediction. Indeed, it can be seen that the account is abnormal, but we know that this specific
type of abnormality could not be detected by an algorithm working only on the retweet graph. This
raises the question of what TGN really saw in the retweet patterns, i.e. how the abnormality of the
account manifests itself in the retweets behaviour. The limited explainability allowed by gradient
norms appears here as one of the main limitations of the model. This corresponds to one of the main
avenues of development that we identify for this article and we discuss it in part 6.

6 Discussion
Understanding of the benchmark results. Table 1 shows performances of our method on various
datasets. The variability of results can be explained by analyzing the strength of each algorithm.

Thanks to its architecture, TGN has a good expressive power but it is only an advantage when there is
enough data for each node to have a truly representative history of its behavior, with continuous time
settings. As a result, for datasets with a sufficiently high average degree, such as Email, UCI and, to a
lesser extent, Bitcoin-Alpha, our approach works better whereas for low average degree like Digg, it
limits its possibilities.

The structure of the algorithm, and in particular the use of a memory module, offers a good model for
the behavior of the nodes within a community. For instance, for dataset AS-Topology, even if the
average degree appears insufficient, it seems that its clustered structure with a few very active users
help our approach to make use of these user activities and to detect cross-community anomalies.

Gradients for interpretability. As stated in the use case, though high gradients can be used to
track origins of anomalies in some specific cases, in general, they provide limited explanations. It
would thus be interesting to try to adapt more efficient methods developed in the static case [54] to
TGN. Nevertheless, it would require to combine these new explainability methods with the respect of
the requirements listed in part 1.1.

Disinformation detection. Approaching disinformation as anomalies detection has some limits.
For instance, in some fields such as emerging crypto-currencies, fake users and coordinated behaviors
can almost represent the norm. In such situations, detecting anomalies would lead to real users.

Working with supervised solutions may lead to strong inductive biases. The strength of our approach
is to approach politically sensitive issues with unsupervised methods. Even if this approach is not
bias-free, it does not have priors towards shared opinions. The fact that it returns the interaction that
creates the anomaly makes it interpretable by end users.

Our use case is an example of how our solution can be used to detect manipulation during a campaign.
Starting from anomaly scores and reliability scores, it finds anomalous interactions that, once gathered
lead to anomalous users.
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A Appendix

A.1 Experimental evaluation of the reliability module

Figure 3: Areas of the abnormality/reliability diagram obtained for the Synthetic dataset. As in
4a-4c, interactions are in blue if their abnormality score is lower than the threshold of 0.5, in green if
it is higher and in red if they are anomalies.

For each interaction of the Synthetic dataset, abnormality score is plotted against reliability score for
both real and synthetic datasets (see Figures 4a to 4c and 3).

A spike, oriented to the left, is observed which can be interpreted as: the less reliable (in the sense of
the gradient norm) the prediction is, the more the model tends to predict a probability of one half, not
knowing if the link is plausible. This diagram shows how to separate the reliable predictions from the
less reliable ones and, thus, to improve the classification performance of the abnormal edges*.

Improving results through reliability. Our models with and without reliability module are com-
pared on a task of binary classification of anomalies to check if the reliability module actually
helps finding more anomalies. More precisely, thresholds are applied to scores (from 0 to 1) to
transform them into binary classes (0 or 1). We compare the performances of thresholding only on
the abnormality score (no reliability module) with that of cross-thresholding between abnormality
and reliability (by associating the label 0 to the links of insufficient reliability). This is summarized
in Figure 3 with Zone 1 considered as normal, Zone 2 as abnormal and Zone 3 as unreliable so not
abnormal*.

The relevance of a reliability threshold is confirmed by Table 2 results. It achieves a better optimum
than any threshold of abnormality taken separately. Moreover, the trade-off between precision and
recall is, in the case of double thresholding, to the advantage of precision. The F1-score and the
AUC ROC remains of a comparable order of magnitude with those obtained by simple thresholding.
It thus seems that the use of the abnormality/reliability diagram is relevant for anomaly detection
tasks in real conditions, the global performances of the classifier being then re-oriented towards the
robustness of predictions.

*Right after an anomaly, the memory of the involved nodes is disturbed, which induces, potentially, high
anomaly scores for their subsequent interactions. The reliability score makes it possible to distinguish them from
the original anomalies. In short, anomalies are effectively separated from their echoes.

*It should be noted that this division could be refined, in particular by using a boundary following the global
curvature of the base of the spike.
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Simple threshold Double threshold
Classifier B-F1
(a = 0.97)

Classifier B-RA
(a = 0.45)

Classifier B-F1
(a = 0.93, r = 0.98)

Classifier B-RA
(a = 0.41, r = 0.795)

Precision 0.551 0.074 0.657 0.101
Recall 0.462 0.832 0.509 0.823
F1-score 0.503 0.137 0.574 0.181
AUC ROC 0.729 0.864 0.753 0.875

Table 2: Comparison of the performance of the best classifiers, in the sense of F1-score and AUC
(denoted Classifiers B-F1 and B-RA respectively in the table), obtained by single thresholding and
double thresholding. The best results are in bold and the second best in italics.

A.2 Synthetic data generation

The Synthetic dynamic graph is generated by the following procedure:

• three input parameters are first set: the number of users, the time range of exchanges and the
proportion of anomalies;

• a random draw, following an exponential law, gives the number of interactions of which each
node will be the source;

• the instants of these interactions are then selected in a uniform way on the above-mentioned
temporal range;

• similarly, moments for anomalies are drawn uniformly, their number is given by the initially
chosen proportion and the total number of interactions;

• with a loop on the instants of the time range, the interactions are then added one after the other.
Destinations of interactions are obtained by a uniform draw on the nodes of the graph of the
same degree as the source. Conversely, for the anomalies, the destination is chosen among the
nodes of different degree than the source.

A.3 TGN settings and experiment details

The configuration of the TGN framework* used in our method, corresponding to the TGN-attn variant
in the original paper, is the following: nodes memory is used, the memory updater is GRU cell, the
embedding consists in attention layer considering the 10 most recent neighbors, message aggregation
is done by keeping only the last one and the message function is the identity. The hyperparameters
used are the same as in the original paper.

As these datasets have no features for edges and nodes, vectors of size 169, filled with −1, are used
as edge features, and vectors of size 172, filled with 1, as node features.

A.4 Datasets description

• UCI Messages [61] is a directed social network dataset of online exchanges between students at
the University of California, Irvine.

• Digg [62] is a reply network collected from the website digg.com.
• Email-DNC [63] is a network of emails exchanged by members of the Democratic National

Committee, leaked in 2016.
• Bitcoin-Alpha [64] is a bitcoin users network collected from www.btc-alpha.com.
• Bitcoin-OTC [65] is a dataset network similar to the previous one from www.bitcoin-otc.com.
• AS-Topology [66] is a connection network between autonomous systems of the internet.

A.5 Results on datasets

*https://github.com/twitter-research/tgn
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(a) UCI Messages (b) Bitcoin-Alpha

(c) Email-DNC

Figure 4: Abnormality/reliability diagrams of some benchmark datasets. Interactions are displayed
according to their reliability score on the x-axis and their abnormality score on the y-axis. Edges with
an abnormality score higher than 0.5, considered unlikely, are displayed in green. For a score lower
than this value, the edges are displayed in blue. Finally, the added anomalies are displayed in red
(these diagrams correspond to the 5% of anomalies datasets).
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