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Mixture models

v~ [ p(10)G(d6),

with G the mixing measure.

K
=1

where K is the number of components, w the
weights and p a kernel parametrized by 6.
K may be fixed, infinite or random.

v|w, 6 K~ f()

Posterior consistency

The posterior distribution is said to be consistent
at 0y it II(U” | X1.n) —= 0 in Py-probability for
all neighborhoods U of 6.

(7o defines a finite mixture with K, components;
consistency for G with K components:

Quantity Finite Infinite ~ MFM
of interest K = Ky K > Ky K = oo K random

Density fg v v v v
Gy v v v v
K, N/A X/ X/ v

Partition-based model

e Partitions in k sets:
Ai(n ):{(Al,... A)'U’?C A-zl'fn}
skor A e Aip(n), Z1={B(A,j), j €1:n}

'. - 'Oo

A€ Au(n) B = B(A,j) € Ap(n)
e {,,: number of clusters
p(A, k) = p(A)I(A € Ay(n))
6’@|A,k~7’(’, Z:,,Tl
x]‘AakvelkNp(w’f) lf] EA€7 ]:77n

Partition distributions
Gibbs-type process with
Vn,k a

® & p(A) =7 T —0), 1.

]‘C' ]:1

V.1 satisty the recurrence relation

Vakg = —0k)Vigix + Vigipsr, Vig=1.

Examples of Gibbs-type processes finite representation:

e Dirichlet multinomial process,

@ e Pitman—Yor multinomial process,

e NGG multinomial process,

@ parametrized by K < oo: for
k <min(n, K), A € Ai(n),

p(A) =g (i, ..., np).

0<o<l1, Ae Ax(n), n;:=|A;l:

Inconsistency Theorem |1}

Condition 1: Assume for any k£ > 1

)
: 1 A
lim sup,, o, - Max ge 4, (n )maXBGZApg ; < 00.

Condition 2: Condition on the data distribution which
involves a control on the likelihood.

Theorem 1 [1]:

Let X1, Xo,... € X be a sequence of r.v..

and consider a partition-based model. Then, for any k& > 1

if Conditions 1 and 2 hold, we have

limsup [I(K,, = k| X7.,) <1 with probability 1.

n—oo

Inconsistency results

Proposition 1: Consider a Gibbs-type process with 0 <
o < 1, then Condition 1 holds for any k € {1,2,...}, so
does the inconsistency of Theorem 1.

Proposition 2: Consider any of the following priors:
e Dirichlet multinomial process,
e Pitman—Yor multinomial process,
e Normalized Generalized Gamma multinomial process,
then Condition 1 holds for any k£ < min(n, K), and so
does the inconsistency of Theorem 1.

Illustration on simulated data:
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Figure 1: Distribution of K, for a Dirichlet multinomial process, e = 0.9.

Idea of the proof for Gibbs-type processes

o For fixed k, VA € Ax(n) and B = B(A, ) we want

Lmax 4 p EA; < 00, we can show ggg)) < MH(k + 1).

Van
Vn,k+1

V - :
T ) converges, so is bounded.
n,k—l—l nZO

e [t is sufficient to prove ( ) 0 is bounded. By an
n

approximation of V, x: (

[llustration of function n —» %max Ac Au(n) MAXBez, %, for
ke {1,10,100}:
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Consistency results

e Dirichlet multinomial process: satisfies as-
sumptions in (2| for some «, so the weights of
extra clusters — 0, a form of mixing measure
consistency.

o PY multinomial process: for o 1/2
and some « satisfies assumptions in 2|, the
weights of extra clusters — 0.

e Dirichlet process: Posterior consistency for
K, by MTM shown in [3|.
o Pitman—Yor process: from [4] we deduce a

contraction rate, hence by using MTM algo-
rithm we have posterior consistency for K,

o Querfitted mixtures:
for K,, by MTM.

Posterior consistency

Merge-Truncate-Merge
algorithm [3]

W (G, Gy) = op(w,) for posterior

SUpPpPose wy, :
sample GG

CONORS
& @

@Q

Figure 1: Initial distribution G. Figure 2: After first stage-"merge’
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Figure 3: After second stage-"truncation”. Figure 4: After seco

Figure 2: MTM algorithm illustration (figure from [3]).

k number of support atoms of the output G.
[1 (l} = ky | Xm) — 1 in probability:.

Future work

e Do the inconsistency results generalize to
NIDM processes 7

e Can consistency be recovered by adding a prior
on «, as in [5| 7

Preprint available on arXiv, search for

“Alamichel”.
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