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Abstract

Bayesian nonparametric mixture models are common for modeling complex data.
While these models are well-suited for density estimation, their application for clus-
tering has some limitations. Miller and Harrison (2014) proved posterior inconsistency
in the number of clusters when the true number of clusters is finite for Dirichlet pro-
cess and Pitman–Yor process mixture models. In this work, we extend this result
to additional Bayesian nonparametric priors such as Gibbs-type processes and finite-
dimensional representations of them. The latter include the Dirichlet multinomial
process and the recently proposed Pitman–Yor and normalized generalized gamma
multinomial processes. We show that mixture models based on these processes are
also inconsistent in the number of clusters and discuss possible solutions. Notably,
we show that a post-processing algorithm introduced by Guha et al. (2021) for the
Dirichlet process extends to more general models and provides a consistent method to
estimate the number of components.

Keywords: Clustering; Finite mixtures; Gibbs-type process; Finite-dimensional BNP representa-

tions

1 Introduction

Motivation. Mixture models appeared as a natural way to model heterogeneous data,
where observations may come from different populations. Complex probability distributions
can be broken down into a combination of simpler models for each population. Mixture
models are used for density estimation, model-based clustering (Fraley and Raftery, 2002)
and regression (Müller et al., 1996). Due to their flexibility and simplicity, they are widely
used in many applications such as healthcare (Ramı́rez et al., 2019; Ullah and Mengersen,
2019), econometrics (Frühwirth-Schnatter et al., 2012), ecology (Attorre et al., 2020) and
many others (further examples in Frühwirth-Schnatter et al., 2019).

In a mixture model, data X1:n = (X1, . . . , Xn), Xi ∈ X ⊂ Rp, are modeled as coming
from a K-components mixture distribution. If the mixing measure G is discrete, i.e. G =

∗This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) funded
by the French program Investissements d’Avenir.
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∑K
i=1wiδθi with positive weights wi summing to one and atoms θi, then the mixture density

is

fX(x) =

∫
f(x | θ)G(dθ) =

K∑
k=1

wkf(x | θk), (1)

where f(· | θ) represents a component-specific kernel density parameterized by θ. We denote
the set of parameters by θ1:K = (θ1, . . . , θK), where each θk ∈ Rd, k = 1, . . . , K. Model (1)
can be equivalently represented through latent allocation variables z1:n = (z1, . . . , zn), zi ∈
{1, . . . , K}. Each zi denotes the component from which observation Xi comes: p(Xi | θk) =
p(Xi | zi = k) with wk = P (zi = k). Allocation variables zi define a clustering such that
Xi and Xj belong to the same cluster if zi = zj. Moreover, z1, . . . , zn define a partition
A = (A1, . . . , AKn) of {1, . . . , n}, where Kn denotes the number of clusters.

It is important to distinguish between the number of components K which is a model
parameter, and the number of clusters Kn, which is the number of components from which
we observed at least one data point in a dataset of size n (Argiento and De Iorio, 2022;
Greve et al., 2022; Frühwirth-Schnatter et al., 2021). For a data-generating process with K0

components, inference on K0 is typically done by considering the number of clusters Kn and
the present article investigates to which extent this is warranted.

Although mixture models are widely used in practice, they remain the focus of active
theoretical investigations, owing to multiple challenges related to the estimation of mix-
ture model parameters. These challenges stem from identifiability problems (Frühwirth-
Schnatter, 2006), label switching (Celeux et al., 2000), and computation complexity due to
the large dimension of parameter space.

Another critical question, which is the main focus of this article, regards the number of
components and of clusters, and whether is it possible to infer them from the data. This
question is even more crucial when the aim of inference is clustering. The typical approach to
estimating the number of components in a mixture is to fit models of varying complexity and
perform model selection using a classic criterion such as the Bayesian Information Criterion
(BIC), the Akaike Information Criterion (AIC), etc. This approach is not entirely satisfactory
in general, because of the need to fit many separate models and the general difficulty to
perform reliable model selection. Therefore, several methods that bypass the need to fit
multiple models have been proposed. They define a single flexible model accommodating
for various possibilities for the number of components: mixtures of finite mixtures, Bayesian
nonparametric mixtures and overfitted mixtures. These methods have been prominently
proposed in the Bayesian framework, where the specification of prior information is a powerful
and versatile method to avoid overfitting by overly complex mixture models.

Three types of discrete mixtures. Although we consider discrete mixing measures,
G could be any probability distribution (for continuous mixing measures, see for instance
Chapter 10 in Frühwirth-Schnatter et al., 2019). Depending on the specification of the mixing
measure, there exist three main types of mixture models: finite mixture models where the
number of components K is considered fixed (known, equal to K0, or unknown), mixture
of finite mixtures (MFM) where K is random and follows some specific distribution, and
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infinite mixtures where K is infinite. Under a Bayesian approach, the latter category is
often referred to as Bayesian nonparametric (BNP) mixtures.

Specification of the number of components K is different for the three types of mixtures.
When K is unknown, the Bayesian approach provides a natural way to define the number
of components by considering it random and adding a prior for K to the model, as is done
for mixtures of finite mixtures. Inference methods for MFM were introduced by Richardson
and Green (1997); Nobile (1994).

Using Bayesian nonparametric (BNP) priors for mixture modeling is another way to
bypass the choice of the number of components K. This is achieved by assuming an infinite
number of components, which adapts the number of clusters found in a dataset to the
structure of the data. The most commonly used BNP prior is the Dirichlet process introduced
by Ferguson (1973) and the corresponding Dirichlet process mixture was first introduced by
Lo (1984). The success of the Dirichlet process mixture is based on its ease of implementation
and reasonable computational tractability. More general classes of BNP priors used for
clustering include the Pitman–Yor process and Gibbs-type processes. These models are
more flexible, however, their use is more computationally expensive. A common approach to
inferring the number of clusters in Bayesian nonparametric models is through the posterior
distribution of the number of clusters.

Finally, finite mixture models are considered when K is assumed to be finite. We dis-
tinguish two cases, depending on whether the number of components is known or unknown.
The case when the number of components is known, say K = K0, is referred to as the exact-
fitted setting. A common way to handle the other case (K0 unknown) is to take the number
of components K such that K ≥ K0, yielding the so-called overfitted mixture models. A
classic overfitted mixture model is based on the Dirichlet multinomial process, which is a
finite approximation of the Dirichlet process (see Ishwaran and Zarepour, 2002, for instance).
Generalizations of the Dirichlet multinomial process were recently introduced by Lijoi et al.
(2020a,b), which lead to more flexible overfitted mixture models.

Asymptotic properties of Bayesian mixtures. A minimal requirement for the reli-
ability of a statistical procedure is that it should have reasonable asymptotic properties,
such as consistency. This consideration also plays a role in the Bayesian framework, where
asymptotic properties of the posterior distribution may be studied. In Table 1, we provide a
summary of existing results of posterior consistency for the three types of mixture models,
when it is assumed that data come from a finite mixture and that the kernel f(· | θ) correctly
describes the data generation process (i.e. the so-called well-specified setting). We denote by
K0 the true number of components, G0 the true mixing measure, and fX0 the true density
written in the form of 1. For finite-dimensional mixtures, Doob’s theorem provides posterior
consistency in density estimation (Nobile, 1994). However, this is a more delicate question
for BNP mixtures. Extensive research in this area provides consistency results for density
estimation under different assumptions for Bayesian nonparametric mixtures, such as results
for Dirichlet process mixtures (Ghosal et al., 1999; Ghosal and Van Der Vaart, 2007; Kruijer
et al., 2010) and for other types of BNP priors (Lijoi et al., 2005). In the case of MFM,
posterior consistency in the number of clusters as well as in the mixing measure follows from
Doob’s theorem and was proved by Nobile (1994). Recently, Miller (2022) provided a new
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proof with simplified assumptions.
For finite mixtures and Bayesian nonparametric mixtures, under some conditions of iden-

tifiability, kernel continuity, and uniformity of the prior, Nguyen (2013) proves consistency
for mixing measures and provides corresponding contraction rates. These results only pro-
vide a guarantee of consistency for the mixing measure and do not imply consistency of the
posterior distribution of the number of clusters. In contrast, posterior inconsistency of the
number of clusters for Dirichlet process mixtures and Pitman–Yor process mixtures is proved
by Miller and Harrison (2014). To the best of our knowledge, this result was not shown to
hold for other classes of priors. We aim to fill this gap and provide an extension of Miller and
Harrison (2014) results for Gibbs-type process mixtures and some of their finite-dimensional
representations.

Inconsistency results for mixture models do not impede real-world applications but sug-
gest that inference about the number of clusters has to be taken with care. On the positive
side, and in the case of overfitted mixtures, Rousseau and Mengersen (2011) establish that
the weights of extra components vanish asymptotically under certain conditions. Additional
results by Chambaz and Rousseau (2008) establish posterior consistency for the mode of
the number of clusters. Guha et al. (2021) propose a post-processing procedure that allows
inferring the number of clusters in mixture models in a consistent way. They focus on dp
mixtures and we provide here an extension for Pitman–Yor process mixtures and overfitted
mixtures. Another possibility to solve the problem of inconsistency is to add flexibility for
the prior distribution on a mixing measure through a prior on its hyperparameters. For
Dirichlet multinomial process mixtures, Malsiner-Walli et al. (2016) observe empirically that
adding a prior on the α parameter helps with centering the posterior distribution of the
number of clusters on the true value (see their Tables 1 and 2). A similar result is proved
theoretically by Ascolani et al. (2022) for Dirichlet process mixtures under mild assumptions.

As a last remark, although we focus on the well-specified case, an important research
line in mixture models revolves around misspecified-kernel mixture models, when data are
generated from a finite mixture of distributions that do not belong to the kernel family
f(· | θ). Miller and Dunson (2019) show how so-called coarsened posteriors allow performing
inference on the number of components in MFMs with Gaussian kernels when data come
from skew-normal mixtures. Cai et al. (2021) provide theoretical results for MFMs, when
the mixture component family is misspecified, showing that the posterior distribution of the
number of components diverges.

Contributions and outline. In this rather technical landscape, it can be difficult for
the non-specialist to keep track of theoretical advances in Bayesian mixture models. This
article aims to provide an accessible review of existing results, as well as the following novel
contributions (see Table 1):

• We extend Miller and Harrison (2014) results to additional Bayesian nonparametric pri-
ors such as Gibbs-type processes (Proposition 1) and finite-dimensional representations
of them (including the Dirichlet multinomial process and Pitman–Yor and normalized
generalized gamma multinomial processes, Proposition 2);

• We discuss possible solutions. In particular, we show that the Rousseau and Mengersen
(2011) result regarding emptying of extra clusters holds for the Dirichlet multinomial
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process and Pitman–Yor multinomial process (Proposition 3). Second, we establish
that the post-processing algorithm introduced by Guha et al. (2021) for the Dirichlet
process extends to more general models and provides a consistent method to estimate
the number of components (Propositions 4 and 5).

Quantity of interest
Finite Infinite MFM

K = K0 K ≥ K0 K =∞ K random

Density fX0 ! [RGL19] ! [RGL19] ! [GvdV17] ! [KRV10]

Mixing measure G0 ! [HN16] ! [HN16] ! [Ngu13] ! [Nob94]

Nb of components K0 N/A % [ours] / ! % [MH14, ours] / ! ! [GHN21]

Table 1: Results on consistency for different mixture models and quantities of interest in
the case where kernel densities are well-specified and data comes from a finite mixture.
Consistency is indicated with ! and inconsistency with %. Our contributions regard
the shaded cells. The references cited are [RGL19] Rousseau et al. (2019, Theorem 4.1);
[GvdV17] Ghosal and Van der Vaart (2017, Theorem 7.15); [KRV10] Kruijer et al. (2010);
[HN16] Ho and Nguyen (2016); [Ngu13] Nguyen (2013); [Nob94] Nobile (1994); [MH14] Miller
and Harrison (2014); [GHN21] Guha et al. (2021).

The structure of the rest of the article is as follows: we start by introducing the notion of a
partition-based mixture model and by presenting Gibbs-type processes and finite-dimensional
representations of BNP processes in Section 2. We then recall in Section 3 the inconsistency
results of Miller and Harrison (2014) on Dirichlet process mixtures and Pitman–Yor process
mixtures and present our generalization. We discuss some consistency results and a post-
processing procedure in Section 4. We conclude with a simulation study illustrating some
of our results in Section 5, while the appendix contains the proofs and additional details on
the simulation study.

2 Bayesian mixture models and mixing measures

We introduce or recall some notions useful for the rest of the paper. We start by defining
the mixture model considered. It is based on a partition, whose distribution determines
important aspects of the mixture. We introduce different types of priors on the partition, the
Gibbs-type process, and some finite-dimensional representations of nonparametric processes
such as the Pitman–Yor multinomial process. We conclude this section by recalling the
notions of posterior consistency and contraction rate.
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2.1 Partition-based mixture model

We consider partition-based mixture models as in Miller and Harrison (2014). Let Ak(n) be
the set of ordered partitions of {1, . . . , n} into k ∈ {1, . . . , n} nonempty sets:

Ak(n) :=

{
(A1, . . . , Ak) : A1, . . . , Ak disjoint,

k⋃
i=1

Ai = {1, . . . , n}, |Ai| ≥ 1 ∀i

}
.

We denote by ni := |Ai| the cardinality of set Ai. We consider a partition distribution
p(A) on

⋃n
k=1Ak(n), which induces a distribution p(k) on {1, . . . , n}.

We denote by π a prior density on the parameters θ ∈ Θ ⊂ Rd and f(· | θ) a parametrized
component density. The hierarchical structure of a partition-based mixture model is:

p(θ1:k |A, k) =
k∏
i=1

π(θi),

p(X1:n |A, k, θ1:k) =
k∏
i=1

∏
j∈Ai

f(Xj | θi),

where X1:n = (X1, . . . , Xn) with Xi ∈ X , θ1:k = (θ1, . . . , θk) with θi ∈ Θ, and A ∈ Ak(n). In
the rest of the article, we denote by Kn the number of clusters in a dataset of size n, which
is denoted k in this section for ease of presentation. Kn highlights the random nature and
the dependence on n of this quantity.

The distribution p on the set of ordered partitions determines the type of mixture models
we have. Here, we consider two types of prior distributions on the partition: nonparametric
ones as a Dirichlet process or a Gibbs-type process, and finite-dimensional ones as a Pitman–
Yor multinomial process or a normalized infinitely divisible multinomial process.

2.2 Gibbs-type process

Gibbs-type processes are a natural generalization of the Dirichlet process and Pitman–Yor
process (see for example De Blasi et al., 2015). Gibbs-type processes of type σ ∈ (−∞, 1)
can be characterized through the probability distribution of the induced random ordered
partition A ∈ Ak(n), which has the following form:

p(A) = p(n1, . . . , nk) =
Vn,k
k!

k∏
j=1

(1− σ)nj−1, (2)

where (x)n = x(x+ 1) · · · (x+n−1), with (x)0 = 1 by convention, is the ascending factorial.
Vn,k are nonnegative numbers that satisfy the recurrence relation:

Vn,k = (n− σk)Vn+1,k + Vn+1,k+1, V1,1 = 1. (3)

The probability distribution for the unordered partition Ã can be deduced from (2) multi-
plying by k! to adjust for order: p(Ã) = Vn,k

∏k
j=1(1 − σ)nj−1. Parameters Vn,k admit the

following form (see Pitman, 2003; Gnedin and Pitman, 2006):

Vn,k =
σk

Γ(n− kσ)

∫ +∞

0

∫ 1

0

t−kσpn−kσ−1h(t)fσ((1− p)t)dtdp, (4)
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with Γ the gamma function, fσ the density of a positive σ-stable random variable and h a
non-negative function. We limit ourselves to the case 0 < σ < 1.

The Gibbs-type process is a general class that includes the Dirichlet and Pitman–Yor
processes as said before but also some stable processes. The Pitman–Yor family can be
defined by the probability p in (2) with parameters

Vn,k =

∏k−1
i=1 (α + iσ)

(α + 1)n−1

,

where σ ∈ [0, 1) and α ∈ (−σ,∞). If σ = 0, we obtain the Dirichlet process for which
Vn,k = αk/(α)n.

Another important particular case of Gibbs-type process is the normalized generalized
gamma process which corresponds to

Vn,k =
eβσk−1

Γ(n)

n−1∑
i=0

(
n− 1

i

)
(−1)iβi/σΓ

(
k − i

σ
; β

)
, (5)

where σ ∈ (0, 1), β > 0 and Γ(·; ·) is the following incomplete gamma function: Γ(x; a) =∫∞
x
sa−1e−sds. If β = 0 we obtain the normalized σ-stable process. Furthermore, if σ → 0,

then we also recover the Dirichlet process (see Figure 1(a) for a graphical representation of
these BNP processes).

2.3 Finite-dimensional representations

Finite-dimensional representations for BNP priors have been developed to deal with situ-
ations where the condition that the number of clusters grows with the sample size is un-
realistic. They are convenient and tractable models that share many properties of their
infinite-dimensional counterparts, such as a clear interpretation of their parameters and ef-
ficient sampling algorithms. They naturally approximate their associated nonparametric
priors as their dimension increases. See Figure 1(b) for a graphical representation of these
multinomial mixing measures.

Dirichlet multinomial process. The simplest example of such a finite-dimensional rep-
resentation is the Dirichlet multinomial distribution (see for instance Muliere and Secchi,
1995; Ishwaran and Zarepour, 2000). A Dirichlet multinomial process with concentration
parameter α > 0, number of components K, and base measure P , is a random discrete
measure G =

∑K
k=1wkδθk characterized by a Dirichlet distribution on the weights with pa-

rameter α/K: (w1, . . . , wn) ∼ Dir(α/K, . . . , α/K) and, as usual, location parameters θk are
distributed according to the base measure P . Muliere and Secchi (2003) proves that the
Dirichlet multinomial process with parameters α, K, and P approximates the Dirichlet pro-
cess with parameters α and P , in the sense of weak convergence, when K → ∞. Recent
works by Lijoi et al. (2020a,b) develop finite-dimensional versions of the Pitman–Yor pro-
cess and normalized random measures with independent increments (Regazzini et al., 2003).
The latter include the Dirichlet and normalized generalized gamma multinomial processes
as special cases.
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Pitman–Yor multinomial process. The Pitman–Yor multinomial process is based on
the Pitman–Yor process. Fix some integer K ≥ 1, base measure P , and parameters α, σ as
in the PY case above. The Pitman–Yor multinomial process is defined by Lijoi et al. (2020b)
as a discrete random probability measure pK such that

GK | G0,K ∼ PY(σ, α;G0,K), G0,K =
1

K

K∑
k=1

δθ̃k ,

where θ̃k
iid∼ P . For all A ∈ Ak(n), the distribution for the Pitman–Yor multinomial process

is:

p(A) =

(
K

k

)
1

(α + 1)n−1

∑
(`1,...,`k)

Γ(α/σ + |`(k)|)
σΓ(α/σ + 1)

k∏
i=1

C(ni, `i;σ)

K`i
, (6)

where k = |A| and the sum runs over the vectors `(k) = (`1, . . . , `k) such that `i ∈ {1, . . . , ni}
and |`(k)| = `1 + · · · + `k. Coefficients C(n, k;σ) are the generalized factorial coefficients
defined as

C(n, k;σ) =
1

k!

k∑
j=0

(−1)j
(
k

j

)
(−jσ)n (7)

As with the Pitman–Yor process, the random probability measure pK of the Pitman–Yor
multinomial process reduces to the Dirichlet multinomial process when σ = 0. The Pitman–
Yor multinomial process is thus a generalization of the Dirichlet multinomial process. As
the latter, the Pitman–Yor multinomial process approximates the Pitman–Yor process, as
the Pitman–Yor process is obtained as a limiting case when K →∞ (see Theorem 5 in Lijoi
et al. (2020b)). In addition, it is also more flexible than the Dirichlet multinomial process.
It can be used as an effective computational tool in a nonparametric setting by replacing
the stick-breaking construction in the classic Gibbs sampler (see more details in Lijoi et al.,
2020b).

Normalized infinitely divisible multinomial process. Normalized infinitely divisible
multinomial (nidm) processes are introduced by Lijoi et al. (2020a) and can be seen as a
finite approximation for normalized random measures with independent increments (nrmi),
see for instance Regazzini et al. (2003). nidm processes can be described as nrmi measures
using a hierarchical structure similar to the previous section:

(GK | G0,K) ∼ nrmi(c, ρ;G0,K), G0,K =
1

K

K∑
k=1

δθ̃k ,

where θ̃k
iid∼ P a base measure. In this expression, ρ is a function that characterizes the nrmi

process used. The choice ρ(s) = s−1e−s corresponds to the Dirichlet process. It yields the
Dirichlet multinomial process whose distribution for all A ∈ Ak(n) is defined as:

p(A) =

(
K

k

)
1

(α)n

k∏
j=1

(α/K)nj , (8)
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Gibbs NRMI

PY NGG

DP

“Multinomialization”−−−−−−−−−−−−→

Weak limit as K→∞←−−−−−−−−−−−−

NIDM

PYM NGGM

DMP

(a) BNP processes (b) Multinomial processes

Figure 1: Graphical representation of the relationships between the discrete mixing mea-
sures considered in this article. An arrow indicates that the target is a special case of the
origin. (a) BNP processes: Gibbs-type priors (Gibbs), normalized random measures with
independent increments (NRMI), Pitman–Yor process (PY), normalized generalized gamma
process (NGG), and Dirichlet process (DP). (b) Multinomial processes (finite-dimensional
approximations of their respective BNP counterparts in the left panel): normalized infinitely
divisible multinomial (NIDM), Pitman–Yor multinomial process (PYM), normalized general-
ized gamma multinomial process (NGGM), and Dirichlet multinomial process (DMP). Going
from left to right can be done according to a “multinomialization” of the BNP processes as
described in Section 2.3, while the reverse direction is achieved by taking a weak limit as
K → ∞. Our contributions generalize results known for mixing measures in red to mixing
measures in green. The case of mixing measures in gray remains an open problem.

where k = |A|. Similarly, choosing ρ(s) = 1
Γ(1−σ)

s−1−σe−βs, 0 ≤ σ < 1 and β ≥ 0 amounts

to considering an ngg characterized by (5). We then get the ngg multinomial process. In
this case, for all A ∈ Ak(n) the probability is:

p(A) =

(
K

k

) ∑
(`1,...,`k)

Vn,|`(k)|

K |`(k)|

k∏
i=1

C(ni, `i;σ)

σ`i
, (9)

where k = |A| and C(n, k;σ) are defined in (7) and the sum over `(k) = (`1, . . . , `k) is as in
the PY case. Parameters Vn,k are defined in (5) for the particular case of ngg processes,
which depend on β and σ.

2.4 Posterior consistency

Posterior consistency is an asymptotic property of the posterior. As in frequentist inference,
we consider that there exists a true value for the parameter of the distribution of the data.
Then the posterior is said to be consistent if it converges to the true parameter when the
sample size increases to infinity.

More formally, given a prior distribution π on the parameter space Θ, we denote by
Π(· | X1:n) the posterior distribution with X1:n a given sample of the data. The posterior
distribution is said to be consistent at θ0 ∈ Θ if Π(U c | X1:n) −→

n→∞
0 in Pθ0-probability for all

neighborhoods U of θ0.
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For instance, in our case, we consider mixture models for densities. In this type of models,
the posterior density is said to be consistent at fX0 if, for a distance d on the parameter space,
Π(d(f, fX0 ) ≥ ε | X1:n) −→

n→∞
0 in PfX0 -probability for all ε > 0. It is also possible to define

posterior consistency for quantities of interest such as the number of clusters. The posterior
number of clusters Kn is said to be consistent at K0 if Π(Kn = K0 | X1:n) −→

n→∞
1 in PfX0 -

probability.
A refinement in the study of posterior consistency is to evaluate the speed at which a

posterior distribution concentrates around the true parameter. The quantity which evaluates
this speed is named a posterior contraction rate. More formally, the parameter space Θ is
supposed to be a metric space with a metric d. A sequence εn is a posterior contraction rate
at the parameter θ0 with respect to the metric d if for every Mn →∞, Π(d(θ, θ0) ≥ Mnεn |
X1:n) −→

n→∞
0 in Pθ0-probability.

For more details on posterior consistency or contraction rates, the reader could refer to
Ghosal and Van der Vaart (2017, Chapters 6 to 9).

3 Inconsistency results

In this section, we generalize the inconsistency results by Miller and Harrison (2014). Under
the context defined previously, Miller and Harrison (2014) states sufficient conditions that
imply posterior inconsistency for the number of clusters and also proves that these condi-
tions are satisfied for the Dirichlet process and Pitman–Yor process mixture models. For
completeness, we first recall here this inconsistency result and then prove that it also applies
to the different models introduced in Section 2.

3.1 Inconsistency theorem of Miller and Harrison (2014)

The central result of Miller and Harrison (2014, Theorem 6) is reproduced below as Theorem
1. This result depends on two conditions which are discussed thereafter.

We start with some notations. For A ∈ Ak(n), we define RA =
⋃
i:|Ai|≥2Ai, the union of

all clusters except singletons. For index j ∈ RA, we define B(A, j) as the ordered partition
B ∈ Ak+1(n) obtained by removing j from its cluster A` and creating a new singleton for
it. Then B` = A` \ {j}, and Bk+1 = {j}. Let ZA := {B(A, j) : j ∈ RA}, for n > k ≥ 1, we
define

cn(k) :=
1

n
max

A∈Ak(n)
max
B∈ZA

p(A)

p(B)
,

with the convention that 0/0 = 0 and y/0 =∞ for y > 0.

Condition 1. Assume lim supn→∞ cn(k) <∞, given some particular k ∈ {1, 2, . . .}.

Miller and Harrison (2014) show that this condition holds for any k ∈ {1, 2, . . .} for the
Pitman–Yor process, and thus for the Dirichlet process.

The second condition, named Condition 4 in Miller and Harrison (2014), controls the
likelihood through the control of single-cluster marginals. The single-cluster marginal for

cluster i is m(XAi) =
∫

Θ

(∏
j∈Ai f(Xj | θ)

)
π(θ)dθ. This condition induces, for example,
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that as n → ∞, there is always a non-vanishing proportion of the observations for which
creating a singleton cluster increases its cluster marginal. This condition only involves the
data distribution and is shown to hold for several discrete and continuous distributions, such
as the exponential family (see Theorem 7 in Miller and Harrison, 2014). In the following,
we assume that this condition is satisfied and mainly focus on Condition 1.

Theorem 1 (Miller and Harrison, 2014). Let X1, X2, . . . ∈ X be a sequence of random vari-
ables, and consider a partition-based model. Then, if Condition 4 from Miller and Harrison
(2014) holds, and Condition 1 above holds for any k ≥ 1, we have for any k ≥ 1

lim sup
n→∞

Π(Kn = k | X1:n) < 1 with probability 1.

As said previously, Condition 1 is only related to partition distribution, while Condition
4 from Miller and Harrison (2014) only involves the data distribution and single-cluster
marginals. Hence, to generalize this inconsistency result to other processes, it is enough to
show that Condition 1 also holds for these different processes. This is what we aim to do in
the next section for Gibbs-type processes and for finite-dimensional discrete priors.

3.2 Inconsistency with Gibbs-type and multinomial processes

We extend the result of inconsistency for all the processes introduced in Section 2 by proving
that Condition 1 holds.

Proposition 1 (Gibbs-type processes). Consider a Gibbs-type process with 0 ≤ σ < 1, then
Condition 1 holds for any k ∈ {1, 2, . . .}, and so does the inconsistency of Theorem 1.

Proposition 2 (Multinomial processes). Consider any of the following priors: Dirichlet
multinomial process, Pitman–Yor multinomial process and normalized generalized gamma
multinomial process, with K components. Then Condition 1 holds for any k < min(n,K),
and so does the inconsistency of Theorem 1.

The proofs of Propositions 1 and 2 are provided in Appendix A. Note that although the
Dirichlet multinomial process is a particular case of Pitman–Yor multinomial process and
normalized generalized gamma multinomial process, we include it as a separate case in the
statement as the proof for this case differs from the proofs for its generalizations.

Top row of Figure 2 illustrates Condition 1 for different partition distributions, such as the
Dirichlet multinomial process (dmp), the Dirichlet process (dp), the Gibbs-type process for
the normalized generalized gamma process (ngg) special case and the Pitman–Yor process
(py). In all these cases, we represent function cn(k) defined in Section 3 for different values
of k, k ∈ {1, 10, 100}, with n ∈ {1, . . . , 5000} and for some fixed parameters chosen such
that E[K50] = 25. We draw all the priors we considered for this choice of the parameters in
Figure 2 bottom row. We also illustrate how the priors vary depending on n, fixing the priors
parameters such that E[K50] = 25 then we made n varying, n ∈ {50, 250, 1000}. In Figure 2
top row, we can see n 7→ cn(k) function reaches a plateau, thus indicating its boundedness
for every process and values of k.

More precisely, the proof (as in Miller and Harrison, 2014, Proposition 5) consists in
controlling the ratio of probability 1

n
p(A)/p(B), where B = B(A, j) is defined in Section
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Figure 2: (Top row) Illustrations of Condition 1, for k ∈ {1, 10, 100}: the function n 7→ cn(k)
reaches a plateau for large values of n for a range of priors (see infra).
(Bottom row) Prior probability on the number of clusters for different processes and different
values of n. In both rows, parameters are fixed such that E[K50] = 25: for Dirichlet process
dp(α = 19.2), for Pitman–Yor process py(σ = 0.25, α = 12.2), for ngg process ngg(σ =
0.25, β = 48.4) and for Dirichlet multinomial process dmp(α = 22.5, K = 200).

3.1. For the Gibbs-type process, as the ratio of probability is raised by (Vn,k/Vn,k+1), it
is enough to show that the sequence (Vn,k/Vn,k+1)n≥1 is bounded. Since there is no simple
formula for Vn,k in the general case of the Gibbs-type process, we prove this by using a
Laplace approximation. The idea of the original proof of Miller and Harrison (2014) is the
same but this ratio simplifies as they consider Pitman–Yor process.

For the Pitman–Yor multinomial process and the ngg multinomial process, the partition
distribution depends on a sum over the vectors `(k) = (`1, . . . , `k) such that `i ∈ {1, . . . , ni}
and |`(k)| = `1 + · · · + `k. We write this sum as k different sums over each `i. As in
the nonparametric case, we consider the ratio of probability 1

n
p(A)/p(B). By definition of

partition B, if j ∈ Ak then the sum over `k is different for p(A) and p(B), one is of nk
elements and the other of nk − 1 elements. We separate the sum of nk elements into two
sums, the first one of nk − 1 elements and the second one of one element. In this way,
we can use some known properties of the generalized factorial coefficients and some specific
properties of each process to conclude.

4 Consistency results

The inconsistency results of the previous section show that the posterior number of clusters
is not necessarily the most relevant quantity to consider when the number of clusters is a
quantity of interest. Instead, results by Rousseau and Mengersen (2011); Nguyen (2013);
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Scricciolo (2014) suggest that it might be better to focus on the mixing measure. In particu-
lar, recent works on consistency can be extended to the models we consider. In this part, we
consider the framework of Rousseau and Mengersen (2011) and investigate to which extent
it might apply to some models we have been considering, the Dirichlet multinomial process
and Pitman–Yor multinomial process mixture models. Guha et al. (2021) introduced a post-
processing procedure, the Merge-Truncate-Merge (MTM) algorithm, for which the output,
the number of clusters, is consistent. Guha et al. (2021) proved that this algorithm can be
applied to the Dirichlet process mixture model so that there is consistency for the number
of clusters after applying this algorithm. Next, we extend this result and prove that we can
apply the algorithm to overfitted mixture models and to the Pitman–Yor process mixture
model.

4.1 Emptying extra clusters

Overfitted mixtures can be constructed based on the Dirichlet multinomial process or the
Pitman–Yor multinomial process. Rousseau and Mengersen (2011) show in their Theorem 1
that overfitted mixtures, under some conditions on the kernel and the mixture model, have
the desirable property that in the mixing measure the weights of extra components tend to
zero as the sample size grows. This result only concerns the weights and not the number
of clusters, but a near-optimal posterior contraction rate for the mixing measure can be
deduced from it (see section 3.1 in Guha et al., 2021). To be more precise, Rousseau and
Mengersen (2011) consider a prior π on the mixture weights w written as follows

π(w) = C(w)wα1−1
1 · · ·wαk−1

k ,

with specific properties for the function C(w) recalled in Condition 3. Two types of prior
hyper-parameter configurations are studied, which lead to opposite conclusions: merging or
emptying of extra components. Let d be the dimension of the component-specific parameter
θ. If ᾱ = minj(αj) is such that ᾱ < d/2, then the posterior expectation for the extra
components weights tends to zero. This is the case where extra components are emptied.
The other case corresponds to ᾱ > d/2. In this case, the extra components are merged with
non-negligible weight, which means that they become identical to an existing component
and inadvertently borrow some of its weight. This case is less stable as there are different
merging possibilities. It is therefore preferable to choose parameters of the prior that belong
to the first case. The result stated in Theorem 1 in Rousseau and Mengersen (2011), depends
on five conditions. The first one is a posterior contraction condition on the mixture density.
Conditions 2, 3, and 4 are some standard conditions on the kernel density, respectively on
regularity, integrability, and strong identifiability. The last condition concerns the prior
which needs to have some classic properties.

To apply Theorem 1 in Rousseau and Mengersen (2011) to our case, as the kernel is
not the focus of this article, the only conditions we need to check are the conditions on the
mixture model. We recall here these two conditions, which correspond to the condition on
the posterior contraction of the mixing measure and the one on the prior.
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Condition 2 (Rousseau and Mengersen, 2011, Condition 1). There exists εn ≤ log(n)q/
√
n,

for some q ≥ 0, such that

lim
M→∞

lim sup
n

{
En0
[
Π(‖fX − fX0 ‖1 ≥Mεn | X1:n)

]}
= 0,

where fX0 is the true mixture density.

Condition 3 (Rousseau and Mengersen, 2011, Condition 5). The prior density with respect
to Lebesgue measure on cluster-specific parameter θ is continuous and positive on Θ, and the
prior π(w) on w = (w1, . . . , wK) satisfies

π(w) = C(w)wα1−1
1 · · ·wαK−1

K ,

where C(w) is a continuous function on the simplex bounded from above and from below by
positive constants.

Proposition 3. Assume that the kernel considered satisfies Conditions 2, 3, and 4 of The-
orem 1 in Rousseau and Mengersen (2011). Let G be a Dirichlet multinomial process or a
Pitman–Yor multinomial process with parameter σ = 1/2. Then, Conditions 2 and 3 are
satisfied, and Theorem 1 of Rousseau and Mengersen (2011) holds.

The proof of this proposition can be found in Appendix B. It relies on Theorem 4.1 from
Rousseau et al. (2019) through which Condition 2 holds for mixture models based on the
Dirichlet multinomial process or the Pitman–Yor multinomial process. This theorem gives
a result on density consistency for finite mixture models in the exact setting, which remains
true in the overfitted mixture case.

The proof in Appendix B consists mainly in proving that Condition 3 holds true for the
different priors we consider. In the Pitman–Yor multinomial case, we are able to prove that
Condition 3 holds only for σ = 1/2. Indeed, σ = 1/2 is the only value for which the prior on
the weights, a ratio-stable distribution, has a closed-form density. Therefore, it is interesting
to choose σ = 1/2 when using the Pitman–Yor multinomial process, as we want at least
to be in the case where Proposition 3 applies. In this case, Theorem 1 from Rousseau and
Mengersen (2011) applies which ensures that the weights of extra components tend to zero
when ᾱ < d/2.

However, note that the condition ᾱ < d/2 is more restrictive for the Pitman–Yor multi-
nomial process with parameters ᾱ and σ = 1/2, than for Dirichlet multinomial process with
parameter α. Indeed, in the former case ᾱ = ᾱ+ K−1

2
(see proof in Section B), so condition

ᾱ+ K−1
2

< d/2 imposes a restriction on the choice of K in addition that on ᾱ. For example,
if d = 2 then K ≤ 2. This means that a Pitman–Yor multinomial model is likely to be in the
merging regime, ᾱ > d/2. Conversely, in the case of the Dirichlet multinomial process, there
is no restriction on K. Thus, it is always possible to be in the first regime where ᾱ < d/2
and extra components are emptied.

4.2 Merge-Truncate-Merge

We assume throughout this section as in Guha et al. (2021) that the parameter space Θ is
compact. We denote by Wr(·, ·) the Wasserstein distance of order r, r ≥ 1. We recall in
Theorem 2 the following result by Guha et al. (2021).
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Theorem 2 (Guha et al., 2021, Theorem 3.2.). Let G be a posterior sample from posterior
distribution of any Bayesian procedure, namely Π(· | X1:n) such that for all δ > 0

Π (G : Wr(G,G0) ≤ δωn | X1:n)
pG0−→ 1,

with ωn = o(1) a vanishing rate, r ≥ 1. Let G̃ and K̃ be the outcome of the Merge-Truncate-
Merge algorithm (Guha et al., 2021) applied to G. Then the following hold as n→∞.

(a) Π(K̃ = K0 | X1:n) −→ 1 in PG0-probability.

(b) For all δ > 0, Π(G : Wr(G̃, G0) ≤ δωn | X1:n) −→ 1 in PG0-probability.

Proposition 4 (Pitman–Yor process). Let G be a posterior sample from the posterior distri-
bution of a Pitman–Yor process mixture. Under conditions of Lemma 1, Theorem 2 applies
to G.

Proposition 5 (Overfitted mixtures). Let G be a posterior sample from the posterior distri-
bution of an overfitted mixture. Under conditions of second-order identifiability and uniform
Lipschitz continuity of the kernel (Nguyen, 2013; Ho and Nguyen, 2016), Theorem 2 applies
to G with r ≤ 2.

To prove Proposition 4, we introduce a lemma which derives from Theorem 1 in Scricciolo
(2014). The conditions of this theorem are three standard conditions (A1)-(A3). (A1) is a
condition on the kernel density, (A2) is a tail condition on the true mixing distribution, and
(A3) is a condition on the base measure. To state this lemma, we also need another condition
on the kernel f(· | θ). We suppose that for some constants 0 < ρ < ∞ and 0 < η ≤ 2, the
Fourier transforms f̂ of f(· | θ) satisfies |f̂(t)| ∼ e−(ρ|t|)η

Lemma 1. Under the conditions above and by assuming Θ bounded, with G the posterior
mixing measure of a Pitman–Yor process mixture model, with σ ∈ [0, 1), then for every
1 ≤ r <∞, there exists a sufficiently large constant M and some 0 < η ≤ 2 such that

Π(G : Wr(G,G0) ≥M(log n)−1/η | X(n))→ 0 in PG0-probability.

The proof of this lemma can be found in Appendix B. This lemma is similar of Corollary
2 from Scricciolo (2014) which applies to the special case of Dirichlet process. With this
lemma, we can now prove Proposition 4.

Proof of Proposition 4. Theorem 2 holds when the posterior G is such that for all δ > 0,
there exists a vanishing rate ωn such that

Π (G : Wr(G,G0) ≥ δωn | X1:n) −→ 0 in PG0-probability.

Under the conditions of Lemma 1, we have

Π(G : Wr(G,G0) ≥M(log n)−1/η | X1:n)→ 0 in PG0-probability,

so that δωn = M(log n)−1/η.
Hence, the consistency results of Theorem 2 hold for a Pitman–Yor process mixture model

satisfying the conditions of Lemma 1.
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In the case of Proposition 5, we also need a contraction rate for the mixing measure of
overfitted mixture models. Let G be the mixing measure of any overfitted mixture model.
It is known that under some conditions on the kernel there exists a rate of contraction for
G (see Equation (5) Guha et al., 2021),

Π
(
G : W2(G,G0) & (log n/n)1/4 | X1:n

)
−→ 0 in PG0-probability. (10)

This rate can be suboptimal for some overfitted mixture models but is sufficient to prove
Proposition 5.

Proof of Proposition 5. The proof of Theorem 2 is the same in the case of overfitted mixtures
as in the Bayesian nonparametric case. This theorem holds when the posterior G is such
that for all δ > 0, there exists a vanishing rate ωn such that

Π (G : Wr(G,G0) ≥ δωn | X1:n) −→ 0 in PG0-probability.

We use Equation (10) to conclude with δωn ≤ (log n/n)1/4 and r = 2.
Hence, the consistency results of Theorem 2 hold for a Pitman–Yor process mixture model

satisfying the conditions of Lemma 1.

The work of Guha et al. (2021) can be applied to different Bayesian procedures. The only
condition is to have a contraction rate for the mixing measure under the Wasserstein distance.
However, this condition is not easy to prove, here we prove it for the Pitman–Yor process but
there is no direct generalization for Gibbs-type processes. In the overfitted mixtures case,
there is a general contraction rate for the mixing measure under the Wasserstein distance (see
Nguyen, 2013; Ho and Nguyen, 2016). This rate could be suboptimal for some procedure as it
is an upper bound but it guarantees the consistency of the Merge-Truncate-Merge algorithm.

5 Simulation study

We consider a simulation study to illustrate our theoretical results. We study the posterior
distribution of the number of clusters for the Dirichlet multinomial mixture of multivariate
normals. The simulated data was generated using the location Gaussian mixture, using the
parameter setting similar to one in Guha et al. (2021). More precisely, we have K0 = 3
clusters according to

f(x) =
3∑
i=1

wiN (x | µi,Σ),

where w = (w1, w2, w3) are weights, which we fix as w = (0.4, 0.3, 0.3) and N(x | µi,Σ) is a
multivariate Gaussian distribution with mean µi and covariance matrix Σ. We considered
the following parameters for the mean and the covariance matrix:

µ1 = (0.8, 0.8), µ2 = (0.8,−0.8), µ3 = (−0.8, 0.8) and Σ = 0.05I2.

Here, the dimension of the kernel parameter θ = (µ,Σ) is d = 5 (2 for µ and 3 for Σ).
In this setting, we generated a sequence of datasets with n = {20, 200, 2000, 20000}, such
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that the smaller datasets are sub-samples of the larger ones. The number of components of
the Dirichlet multinomial process is set to K = 10, thus satisfying the overfitted condition
K ≥ K0. We chose the maximum parameter of the Dirichlet distribution, ᾱ = α/K,
according to the intuition of Rousseau and Mengersen (2011) results. To obtain vanishing
weights for extra components, parameter ᾱ should be less than d/2 = 2.5. We consider the
following values: ᾱ = {0.01, 1, 2.5, 3}.

We used the Markov chain Monte Carlo (MCMC) sampler proposed by Malsiner-Walli
et al. (2016)†. Although the proposed algorithm allows using a hyperprior on the parameter α
and shrinkage priors on the component means, we have used the basic version with standard
priors on parameters (see details in Appendix C). In Figure 3, we present the posterior
distribution of the number of clusters for different values of parameter ᾱ and different sizes
of the dataset n. In addition, we present the prior distribution on the number of clusters for
the corresponding ᾱ and n. Table 2 summarizes the values of the parameters ᾱ and sample
sizes n used in the simulation study and displays the associated prior and posterior expected
number of clusters Kn. When ᾱ = 0.01 the posterior distribution is concentrated around
true value K0 = 3. For ᾱ > 0.01, as proved in Proposition 2, the posterior distribution is
diverging with n.

†The code is available at https://statmath.wu.ac.at/∼malsiner/.
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Figure 3: Prior and posterior distribution of the number of clusters Kn for Dirichlet multi-
nomial process mixtures with parameters (α,K), for various choices of ᾱ = α/K and n.
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n
Prior E[Kn] Posterior E[Kn|X1:n]

ᾱ = 0.01 ᾱ = 1 ᾱ = 2.5 ᾱ = 3 ᾱ = 0.01 ᾱ = 1 ᾱ = 2.5 ᾱ = 3

20 1.3 6.9 7.9 8 3.01 4.1 4.9 5

200 1.5 9.6 9.9 9.98 3.01 6.4 9.3 9.5

2000 1.7 9.9 ≈ 10 ≈ 10 3.01 7.9 9.99 9.99

20000 1.9 9.99 ≈ 10 ≈ 10 3.03 8.5 ≈ 10 ≈ 10

Table 2: Prior and posterior expected number of clusters Kn for the various values of ᾱ
considered in our experiments.

6 Discussion

We have proved that Gibbs-type process mixtures are inconsistent a posteriori for the number
of clusters when the true number of components is finite. It is also the case, for some
finite-dimensional representations of BNP priors as the Dirichlet multinomial process and
Pitman–Yor multinomial process. However, we did not prove inconsistency in general for
NIDM (Lijoi et al., 2020a).

The Merge-Truncate-Merge algorithm proposed by Guha et al. (2021) can be applied to
Dirichlet multinomial, Pitman–Yor multinomial and Pitman–Yor process mixture models,
without constraints on the parameters. However, the Merge-Truncate-Merge algorithm is a
post-processing procedure, while the result from Rousseau and Mengersen (2011) (applicable
to Dirichlet multinomial and Pitman–Yor multinomial process mixtures) is a property of
posterior consistency for the overfitted mixture model.
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A Proofs of the results of Section 3

Proof of Proposition 1. For all k ∈ {1, 2, . . .}, we want to prove that

lim sup
n→∞

cn(k) = lim sup
n→∞

1

n
max

A∈Ak(n)
max
B∈ZA

p(A)

p(B)
<∞,

where ZA and Ak(n) are defined in Section 2.1.
So, it is sufficient to prove that for any fixed k, there exists a constant C such that for any
n, for all A ∈ Ak(n) and B = B(A, j) with j ∈ A`, 1

n
p(A)
p(B)
≤ C.

We consider the Gibbs-type prior case with σ > 0, as case σ = 0 is a Dirichlet process
and is already proven in Miller and Harrison (2014). As we are in the Gibbs-type prior case,

we have, for A ∈ Ak(n), p(A) =
Vn,k
k!

∏k
i=1(1− σ)ni−1, and so

1

n

p(A)

p(B)
=

1

n

Vn,k
k!

k∏
i=1

(1− σ)|Ai|−1
(k + 1)!

Vn,k+1

(
k+1∏
i=1

(1− σ)|Bi|−1

)−1

=
k + 1

n

Vn,k
Vn,k+1

(1− σ + |A`| − 2)︸ ︷︷ ︸
≤n

≤ Vn,k
Vn,k+1

(k + 1).

Therefore, we just have to prove that the sequence
(

Vn,k
Vn,k+1

)
n≥1

is bounded.

Using the recurrence relation (3), we have

Vn,k = Vn+1,k+1 + (n− σk)Vn+1,k ⇐⇒
Vn,k

Vn+1,k+1

=
Vn+1,k+1

Vn+1,k+1

+ (n− σk)
Vn+1,k

Vn+1,k+1

⇐⇒ Vn+1,k

Vn+1,k+1

=

(
Vn,k

Vn+1,k+1

− 1

)
1

n− σk
. (11)

We denote by fn(p, t) = t−σkpn−1−kσh(t)fσ(t(1− p)) the integrand function of Equation
(4). From the definition of the Vn,k in (4), we can write

Vn+1,k

Vn,k
=

1

n− σk

∫∫
pfn∫∫
fn

.

Using again the recurrence relation (3), we have

Vn+1,k+1

Vn,k
= 1− (n− σk)

Vn+1,k

Vn,k
.

Then, applying the Laplace approximation method twice and by setting (tn, pn) the mode
of fn, we obtain as in Arbel and Favaro (2021)

Vn+1,k+1

Vn,k
= g(tn, pn) + o

(
1

n

)
, (12)
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with g(tn, pn) = 1 − pn. Indeed, to use the Laplace approximation, we write the integrand
as fn = en`n , then

Vn+1,k+1

Vn,k
=

∫∫
gen`n∫∫
en`n

.

As the exponential term is the same in both integrands of this ratio, by applying the Laplace
approximation method to both integrals, we obtain

Vn+1,k+1

Vn,k
=
g(tn, pn) + a(tn, pn)/n+O

(
1
n2

)
1 +O

(
1
n

) ,

where a(tn, pn) is a second order term such that a(tn, pn) = o(1/n). Hence, the previous
ratio finally simplifies to (12).

Let ϕh(t) = −th′(t)/h(t), we can finally write using the partial derivatives above

Vn+1,k+1

Vn,k
=

σk + ϕh(tn)

n+ ϕh(tn)− 1
+ o

(
1

n

)
. (13)

Thus, if ϕh(tn) converges as n tends to infinity, we have that
Vn+1,k+1

Vn,k
× n

σk
→ 1 as n → ∞,

so with the relation (11),
Vn+1,k

Vn+1,k+1
−→
n→∞

1
σk

. If ϕh(tn) diverges as n tends to infinity, we have

that

lim
n→∞

Vn+1,k+1

Vn,k
=

{
1
c+1

if n
ϕh(tn)

−→
n→∞

c, c ∈ R,
0 if n

ϕh(tn)
−→
n→∞

±∞.

And then, using again (11),
Vn+1,k

Vn+1,k+1
−→
n→∞

0. Hence,

lim
n→∞

Vn+1,k

Vn+1,k+1

=

{
1
σk

if ϕh(tn) converges,
0 if ϕh(tn) diverges.

Thus, the sequence
(

Vn,k
Vn,k+1

)
n≥1

is bounded and Condition 1 is satisfied.

Proof of Proposition 2. We consider A ∈ Ak(n) and B = B(A, j), and we assume for sim-
plicity, and without loss of generality, that the cluster in A which contains the element j is
the k-th cluster Ak. As in the previous proof, we want to bound the ratio p(A)

p(B)
for the three

different partition probabilities considered in the proposition. First, we consider the Dirich-
let multinomial process, which is a special case of the Pitman–Yor multinomial process and
normalized generalized gamma when σ = 0. Then we consider the Pitman–Yor multinomial
process and the normalized generalized gamma process with σ > 0.
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(a) Dirichlet multinomial process: using (8), we have

1

n

p(A)

p(B)
=

1

n

p(n1, . . . , nk)

p(n1, . . . , nk − 1, 1)

=
1

n

(k + 1)!(K − k − 1)!
∏k

j=1(c/K)nj(c)n

k!(K − k)!
∏k+1

i=1 (c/K)ni(c)n

=
(k + 1)(c/K + nk − 1)

n(K − k)c/K

≤ K(k + 1)

c(K − k)
.

Thus, Condition 1 is satisfied for the Dirichlet multinomial process.

(b) Pitman–Yor multinomial process with σ > 0: we denote by q`(k) =
∏k

i=1C(ni, `i;σ)/K`i .
Using (6), we have

1

n

p(A)

p(B)
=

1

n

p(n1, . . . , nk)

p(n1, . . . , nk − 1, 1)

=
(k + 1)!(K − (k + 1))!

nk!(K − k)!

∑
(`1,...,`k)

Γ(α/σ+|`(k)|)
σΓ(α/σ+1)

q`(k)∑
(`1,...,`k+1)

Γ(α/σ+|`(k+1)|)
σΓ(α/σ+1)

q`(k+1)

=
k + 1

n(K − k)

∑
(`1,...,`k−1)

∑nk
`k=1 Γ(α/σ + |`(k)|) q`(k)∑

(`1,...,`k−1)

∑nk−1
`k=1

∑1
nk+1=1 Γ(α/σ + |`(k+1)|) q`(k+1)

=
k + 1

n(K − k)

∑
(`1,...,`k−1)

∑nk
`k=1 Γ(α/σ + |`(k)|) q`(k)∑

(`1,...,`k−1)

∑nk−1
`k=1

∑1
nk+1=1 Γ(α/σ + |`(k+1)|) q`(k)

C(1,1;σ)

K`k+1

=
K(k + 1)

nσ(K − k)

∑
(`1,...,`k−1)

∑nk
`k=1 Γ(α/σ + |`(k)|) q`(k)∑

(`1,...,`k−1)

∑nk−1
`k=1 Γ(α/σ + |`(k)|+ 1) q`(k)

=:
K(k + 1)

nσ(K − k)
(R1 +R2).

We separate the sum over `k in the numerator in two, R1 corresponds to the first nk − 1
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terms and R2 to the last one. We compute separately R1 and R2.

R1 =

∑
(`1,...,`k−1)

∑nk−1
`k=1 Γ(α/σ + |`(k)|) q`(k)∑

(`1,...,`k−1)

∑nk−1
`k=1 Γ(α/σ + |`(k)|+ 1) q`(k)

=

∑
(`1,...,`k−1)

∑nk−1
`k=1 Γ(α/σ + |`(k)|) q`(k)∑

(`1,...,`k−1)

∑nk−1
`k=1 (α/σ + |`(k)|)Γ(α/σ + |`(k)|) q`(k)

≤
∑

(`1,...,`k−1)

∑nk−1
`k=1 Γ(α/σ + |`(k)|) q`(k)

(α/σ + k)
∑

(`1,...,`k−1)

∑nk−1
`k=1 Γ(α/σ + |`(k)|) q`(k)

≤ 1

α/σ + k
.

Using twice the fact that k 7→ C(n, k;σ) is non increasing for k ∈ {1, . . . , n} (see Bystrova
et al., 2021), so C(nk, 1;σ) ≥ C(nk, `k;σ) ≥ C(nk, nk;σ), and that Γ(α/σ + |`(k−1)|+ nk) ≤∑nk−1

`k=1 Γ(α/σ + |`(k−1)|+ `k + 1), we obtain

R2 =

∑
(`1,...,`k−1)

∑nk
`k=nk

Γ(α/σ + |`(k)|) q`(k)∑
(`1,...,`k−1)

∑nk−1
`k=1 Γ(α/σ + |`(k)|+ 1) q`(k)

=

∑
(`1,...,`k−1) Γ(α/σ + |`(k−1)|+ nk) q`(k−1)

C(nk,nk;σ)
Knk∑

(`1,...,`k−1)

∑nk−1
`k=1 Γ(α/σ + |`(k−1)|+ `k + 1) q`(k−1)

C(nk,`k;σ)

K`k

≤ C(nk, nk;σ)

Knk

Knk−1

C(nk, 1;σ)

∑
(`1,...,`k−1) q`(k−1)Γ(α/σ + |`(k−1)|+ nk)∑

(`1,...,`k−1) q`(k−1)

∑nk−1
`k=1 Γ(α/σ + |`(k−1)|+ `k + 1)

≤ C(nk, nk;σ)

K C(nk, 1;σ)
≤ 1

K
.

Finally, we have that

1

n

p(A)

p(B)
=

K(k + 1)

nσ(K − k)
(R1 +R2) ≤ K(k + 1)

nσ(K − k)

(
1

α/σ + k
+

1

K

)
.

So Condition 1 is satisfied for the Pitman–Yor multinomial process.

(c) Normalized generalized gamma multinomial process: using (9) and following the same
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way as for the Pitman–Yor case, we have

1

n

p(A)

p(B)
=

1

n

p(n1, . . . , nk)

p(n1, . . . , nk − 1, 1)

=
k + 1

n(K − k)

 ∑
(`1,...,`k)

Vn,|`(k)|

K |`(k)|

k∏
i=1

C(ni, `i;σ)

σ`i

 ∑
(`1,...,`k+1)

Vn,|`(k+1)|

K |`(k+1)|

k+1∏
i=1

C(ni, `i;σ)

σ`i

−1

=
k + 1

n(K − k)

 ∑
(`1,...,`k)

Vn,|`(k)|

K |`(k)|

k∏
i=1

C(ni, `i;σ)

σ`i

 ∑
(`1,...,`k)

Vn,|`(k)|+1

K |`(k)|+1

k∏
i=1

C(ni, `i;σ)

σ`i

−1

=:
K(k + 1)

n(K − k)
(R1 +R2).

As in pym (b) proof, we separate the sum over `k in the numerator in two, R1 corresponds
to the first nk − 1 terms and R2 to the last one.

In the proof of Proposition 1, we have shown that the ratio
(

Vn,k
Vn,k+1

)
n≥1

is bounded. Let

B ∈ R?
+ denote an upper bound of this sequence. Then

R1 =

 ∑
(`1,...,`k−1)

nk−1∑
`k=1

Vn,|`(k)|

K |`(k)|

k∏
i=1

C(ni, `i;σ)

σ`i

 ∑
(`1,...,`k−1)

nk−1∑
`k=1

Vn,|`(k)|+1

K |`(k)|

k∏
i=1

C(ni, `i;σ)

σ`i

−1

≤ B

 ∑
(`1,...,`k−1)

nk−1∑
`k=1

Vn,|`(k)|

K |`(k)|

k∏
i=1

C(ni, `i;σ)

σ`i

 ∑
(`1,...,`k−1)

nk−1∑
`k=1

Vn,|`(k)|

K |`(k)|

k∏
i=1

C(ni, `i;σ)

σ`i

−1

≤ B.

Combining
V
n,|`(k−1)|+nk

K|`
(k−1)|+nk

≤
∑nk−1

`k=1

V
n,|`(k)|+1

K|`
(k)|

with similar arguments to the bounding of R2 term

in pym (b) above yield R2 ≤ 1
σ

Finally, we obtain

1

n

p(A)

p(B)
≤ K(k + 1)(σB + 1)

nσ(K − k)
,

so Condition 1 is satisfied for the normalized generalized gamma multinomial processes.
Hence, there is inconsistency in the sense of Theorem 1 for the Pitman–Yor multinomial

process, the Dirichlet multinomial process, and the ngg multinomial process.

B Proofs of the results of Section 4

Proof of Proposition 3. In the Dirichlet multinomial case, the prior on the weights w =
(w1, . . . , wK) is a finite-dimensional Dirichlet distribution which is of the form

π(w) =
Γ(α)

Γ(α/K)K
w
α/K−1
1 w

α/K−1
2 · · ·wα/K−1

K I(w ∈ ∆K),
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where ∆K denotes the K-dimensional simplex. So, the prior is of the same form as in
Condition 3 with C(w) = Γ(α)/Γ(α/K)K I(w ∈ ∆K) which is a constant on the simplex.
Condition 2 is verified using Theorem 4.1 from Rousseau et al. (2019) which can also be
applied to overfitted mixtures. Hence, the result Rousseau and Mengersen (2011) applies in
this case.

In the Pitman–Yor multinomial case, the prior on the weights is a ratio-stable distribution
defined in Carlton (2002) and denoted by w ∼ RS(σ, α̃; 1/K, . . . , 1/K). This distribution
has a closed-form only for σ = 1/2. We consider only this case, where the density is

π(w) =
(1/K)K

π
K−1

2

Γ(α̃ +K/2)

Γ(α̃ + 1/2)

w
−3/2
1 · · ·w−3/2

K(
1

w1K2 + · · ·+ 1
wKK2

)α̃+K/2
I(w ∈ ∆K).

This density can be written in the same form as in Condition 3 with α1 = · · · = αK = α̃+K−1
2

and C(w) = c
w
−(α̃+K/2)
1 ···w−(α̃+K/2)

K(
1

w1K
2 +···+ 1

wKK
2

)α̃+K/2 I(w ∈ ∆K), where c = (1/K)K

π
K−1

2

Γ(α̃+K/2)
Γ(α̃+1/2)

> 0.

C(w) ∝ w
−(α̃+K/2)
1 · · ·w−(α̃+K/2)

K(
1

w1K2 + · · ·+ 1
wKK2

)α̃+K/2
I(w ∈ ∆K)

=
K2α̃+K

(w1 · · ·wK)α̃+K/2
× 1(∑K

i=1
1
wi

)α̃+K/2

∝ 1

(w1 · · ·wK)α̃+K/2
×
(

w1 · · ·wK
w2 · · ·wK + w1w3 · · ·wK + · · ·+ w1 · · ·wK−1

)α̃+K/2

=

(
1

w2 · · ·wK + w1w3 · · ·wK + · · ·+ w1 · · ·wK−1

)α̃+K/2

> 0.

Hence Condition 3 holds in the Pitman–Yor multinomial case for σ = 1/2. On the other
hand, Condition 2 is verified using Theorem 4.1 from Rousseau et al. (2019) which can be
applied also to overfitted mixtures. Thus, the result of Rousseau and Mengersen (2011)
applies in this case.

Proof of Lemma 1. This is a direct application of Corollary 1 from Scricciolo (2014). To
apply this corollary, we must check that the kernel f(· | θ) associated with the mixing
measure G is a symmetric probability density such that, for some constants 0 < ρ <∞ and
0 < η ≤ 2, the Fourier transform f̂ of f(· | θ) satisfies:

|f̂(t)| ∼ e−(ρ|t|)η as |t| → ∞.

This is satisfied by assumption. In assumption (A1), the kernel f(· | θ) is assumed to be
symmetric, monotone decreasing in |x| and to satisfy a tail condition. The kernel f(· | θ)
also belongs to the set Aρ,L,η :=

{
f : R→ R+ | ‖f‖1 = 1,

∫
e2(ρ|t|)η |f̂(t)|2dt ≤ 2πL2

}
, where

f̂ denotes the Fourier transform of f and ρ, L, η are some positive constants.
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We also need to check that for a sequence ε̃n > 0 such that ε̃n → 0 as n → ∞ and
nε̃2

n & (log n)1/η, we have

Π(BKL(fX0 ; ε̃2
n)) & exp(−Cnε̃2

n) for some constant 0 < C <∞,

where BKL(fX0 ; ε2) :=
{
f :

∫
fX0 log(fX0 /f) ≤ ε2,

∫
fX0 (log(fX0 /f))2 ≤ ε2

}
denotes the

Kullback–Leibler type neighbourhoods of fX0 the true density. This condition is verified in
the second part of the proof of Theorem 1 in Scricciolo (2014).

C Details on the simulation study of Section 5

We consider the mixture model:

f(x) =

K0∑
k=1

wkfk(x | µk,Σk).

Parameters have the following prior distributions:

w ∼ Dirk(ᾱ, . . . , ᾱ), ᾱ = α/K,

µk ∼ N (b0, B0), k = 1, . . . , K,

Σ−1
k ∼ W(c0, C0), C0 ∼ W(g0, G0).

Parameters for Wishart distribution are defined as in Malsiner-Walli et al. (2016): c0 =
2.5+ r−1

2
, g0 = 0.5+ r−1

2
, G0 = 100g0

c0
diag(1/R2

1, . . . , 1/R
2
r), and B0 = diag(R2

1, . . . , R
2
r), where

r is dimension of Σ matrix, and Rj is the range of the data in each dimension. Parameter
b0 is set to the median of the data.

We run two MCMC chains of 20 000 iterations each, with 2 000 burn-in iterations.
Convergence assessment was done through the calculation of Gelman–Rubin diagnostics
(Gelman and Rubin, 1992) and visual inspection of the trace plots.
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