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Abstract
In this paper, we present the MESSII Dataset (Manipulator Experimental SyStem Identification and Interaction Dataset).
This novel dataset aims at providing numerous sequences of movements of the KUKA iiwa manipulator, in order to
evaluate methods for identification and estimation of the robot’s dynamic parameters and signals, respectively. Different
movements of the manipulator are provided, including trajectories moving one or multiple joints at the same time,
trajectories that are specially designed for parameter identification, and trajectories including a payload attached at
the end-effector of the manipulator. The information obtained from the propioceptive sensors of position and torque is
presented. Furthermore, as physical Human-Robot Interaction (pHRI) is the main application of this robot, sequences
with interaction with a person are provided to estimate the forces applied, where a force-torque sensor acts as the
ground truth. The dataset can also be used in ROS to evaluate real-time methods as information is presented in
rosbags files. Possible applications are given, highlighting the advantage of the dataset to help with state-of-the-art
challenges, without the need of the real robot nor doing new and complex experiments. The dataset, as well as more
information and tools, are publicly available in https://messii-dataset.enit.fr.
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Introduction

Physical human-robot collaboration is a growing area in
robotics, where the robot and the human do not only share
their work-space, but they also share objectives and tasks
(De Santis et al. (2008); Ajoudani et al. (2018)). The fact
that a human can interact in an unpredictable way with
the robot, brings up new challenges in terms of control
and design. These involve not only the analysis of the task
performance and the manipulator’s integrity, but also of the
human safety (De Luca et al. (2006); Haddadin et al. (2009)).
For this, besides a new generation of well-performing robotic
manipulators and rich proprioception sensing (Albu-Schäffer
et al. (2007)), a suitable control has to be designed, which
is usually of the model-based type (Siciliano et al. (2010)).
The more the model approaches reality, the simpler will
be to design the controller to interact with the human in a
compliant and human-friendly way.

Dynamic equations of cobots have been widely studied in
literature (Khalil and Dombre (2002)) which relate signals
as the torque, position, velocity and acceleration of joints
between each other and also with dynamic parameters as the
inertia, mass and center of mass coordinates of the links. The
signals can be measured by choosing a correct set of sensors,
whereas there are three main methods to obtain the numerical
value of the dynamic parameters: physical experiments
carried out on the manipulator’s individual parts, CAD
techniques and dynamic parameter identification methods.
The fact that for carrying physical experiments, each link
needs to be isolated from the others, thus the manipulator

needs to be disassembled, makes this option non-viable
most of the times. Moreover, most available collaborative
robots in the market are usually not intended for research,
and manufacturers do not provide crucial information like
its CAD model and related parameters. Because of these
reasons, in general, the only feasible option is dynamic
parameter identification.

In order to achieve this purpose, there is a large amount
of parameter identification methods available in literature
(see the survey in Leboutet et al. (2021)). Moreover, several
works on dynamic parameter identification of industrial
collaborative manipulators can be found in bibliography as
the ones on the: KUKA iiwa (Stürz et al. (2017)), KUKA
LWR4+ (Jubien et al. (2014)), Franka Panda Emika (Gaz
et al. (2019)), ABB IRB14000 (YuMi) (Taghbalout et al.
(2019)), UR3 and UR5 (Raviola et al. (2021)).

The process of parameter identification consists of several
steps comprising the modeling, the generation and execution
of enough exciting trajectories, the data processing, the
parameter estimation itself and the results evaluation (for
more information about system identification refer to Ljung
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(1998)). This task can be time consuming, being usually a try
and error exercise. In addition to this, the manipulator may be
unavailable, e.g. it is being used to perform other tasks or it is
located in a place where it cannot move freely. One solution
could be to design a simulation in order to test methods
and algorithms. However, simulated data will always be a
simplification of reality, where unmodeled effects both in the
deterministic (dynamic effect) and stochastic (noise) parts
are present.

In other disciplines, the solution to these issues has been
found in shared datasets. They are a positive product of
the advent of big-data and open science. They are a way
to give the research community and society in general the
tools to both: verify publications based on the dataset either
because it may have experiments that are difficult, tedious,
or impossible to replicate, and also give the possibility to
fellow multidisciplinary researchers to continue the research
work and deepen the knowledge on one topic from different
points of views. This is why there are some datasets that have
become quite famous as Geiger et al. (2013) and Sturm et al.
(2012).

The aim of this work is to present a complete and
consistent data-set of the collaborative 7-dof KUKA iiwa 14
R820 manipulator which allows the scientific community to
try state-of-the-art and new algorithms throughout the steps
of the identification process in different scenarios without
the need of a physical robot. Classical and collaborative
scenarios that allow the identification of the manipulator,
load and interaction parameters are considered.

The paper is structured as follows: first, a state-of-the-art
review of other dataset using robotic manipulators is done.
Second, we present the robotic platform used, including the
robot, the payload, the sensor and the computer. Then, the
new MESSII dataset is presented: its structure, the available
data and how it was obtained. After that, some applications
and challenges are shown. Finally, conclusions are made.

Related Work
In the area of robotic manipulators, there are several datasets
dealing with the problem of grasping and manipulation
of objects (for an extensive survey see Huang et al.
(2016)). Most of them are datasets containing information
of activities humans carried out in order to make the robots
learn from them. De la Torre et al. (2009) collects multimodal
data of human behavior in a cooking task using RGB
cameras, accelerometers placed on the human, microphones,
and motion capture system. Mandery et al. (2015) presents
a whole-body human motion database consisting of captured
motion data from the human and objects being manipulated
using a marker-based motion capture system. Maurice et al.
(2019) records persons carrying out industrial activities for
an ergonomic study using optical motion capture, inertial
motion capture (IMUS placed on the body), hand contact
and finger flexion sensors, and video cameras. Pirsiavash and
Ramanan (2012) present a database with first-person camera
views of daily living activities. Roggen et al. (2010) places a
large amount of sensors in an environment in order to carry
out machine recognition on human activities.

These are just some of the huge amount of datasets
available which are mainly focused on the study of the

human movement in order to develop image-recognition and
machine-learning algorithms, which could be subsequently
used to teach a robot how to behave in different situations.
On the other side, there are some datasets that focus on the
behavior of robots. Gao et al. (2014) is a surgical activity
dataset for human motion modeling, captured using the
Da Vinci surgical system and eight surgeons performing
different tasks. Although it is a tele-operated system, it
presents kinematic data from the robot (Cartesian positions,
orientations, velocities and gripper angle) and stereo video
data captured from the endoscopic camera. Dasari et al.
(2019) introduces a huge dataset of videos of different
manipulators carrying out different trajectories. Levine
et al. (2018) introduces a dataset of pushing and grasping
motions for self-supervised learning objectives using the
KUKA IIWA manipulator. To the authors knowledge,
it represents the only dataset where, besides position
measurements and camera’s images, measurements of torque
from propioceptive sensors are also available.

Most of these publications deal with the problem of
behavior learning for robots based on video information.
However, as far as the authors are concerned, there is
no dataset focused on dealing with measurements of
propioceptive sensors of collaborative manipulators and
interaction forces from external sensors, in order to carry
out dynamic parameter identification and to estimate human
contact. These are tasks that are needed in almost every
implementation of a collaborative manipulator, thus its
utilization becomes essential for robotics.

Robotic Platform

The KUKA IIWA manipulator
The MESSII Dataset has been collected using the industrial
robot KUKA LBR iiwa 14 R820* shown in Figure 1.
It is a 7-dof lightweight robotic manipulator intended for
collaborative applications (Albu-Schäffer et al. (2007)).
Similarly to other collaborative robots, it is equipped with
both: encoders to sense the joint/link positions and torque
sensors to measure the link-side torque at a rate of up to 1000
Hz. The robot is also equipped in its tip with the interface
Media Flange Touch Electrical from KUKA.

The collaborative manipulator’s structure is depicted in
Figure 2. There are five signals that the KUKA iiwa
controller makes available for users:

• Commanded Position: After processing the desired
points/trajectory that the user introduced, the con-
troller calculates this signal. It is the position of the
successive points that the robot is asked to follow,
which means the reference trajectory.

• Commanded Torque: It is the torque related to the
commanded position by the internal dynamic model
that is used by the controller.

• Sensed Position: It is the measurement of the link-
side position. It is either a real measurement or an
estimation made by the manufacturer from sensing the
motor position and knowing the gearbox parameters.

∗https://www.kuka.com/

https://www.kuka.com/
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• Sensed Torque: It is the measurement of the
torque sensor placed after the gearbox, typical
of collaborative manipulators (Albu-Schäffer et al.
(2007)).

• External Torque: It is a filtered signal product of
the difference between the commanded torque and
the sensed torque. It accounts for all phenomena
that the model of the controller does not take into
consideration.

Figure 1. IIWA robotic manipulator, payload and force-torque
sensor.

Figure 2. Industrial collaborative KUKA IIWA manipulator’s
structure.

Figure 3. Framework of communication between the KUKA
IIWA manipulator, the force-torque sensor and the external
computer.

The Force-Torque Sensor
In order to enhance the platform for some set of experiments,
a force-torque sensor was equipped on the tip of the robot.
The capacitive 6-axis force torque sensor, model RFT76-
HA01 from ROBOTOUS† was used. It can provide the
measurements of forces in the three directions (with a limit
of 300 N and a resolution of 200mN for each axis) and the
three components of torque related to each axis (with a limit
of 10 Nm and a resolution of 8 mNm for each axis) at a

rate of up to 1000 Hz. Weighting 200 g, it is powered by an
EtherCAT adapter that uses CAN interface to communicate
with the sensor. It was installed on the tip of the robot via a
3D printed coupling. The whole setup can be seen in Figure
1.

The Load
The load is a steel cylinder of 34 mm of height and 140
mm of diameter. It weights 4.012 kg (4.092 kg when adding
screws), and taking into account its regular shape, its center
of mass is considered to be in the geometrical middle point.
The inertia tensor can be approximated with a diagonal
matrix of inertia 0,01 kg.m2 along the principal axis, and
0,0054 kg.m2 along the other two axis.

When attaching it to the manipulator (see Figure 1),
approximated parameters were indicated by the user to the
controller which will have an influence on the Commanded
and External signals. Therefore, we will have 4.1 kg, 0.01
kg.m2 for all three inertias, and with the center of mass
centered around the z axis and displaced 22 mm in the z
direction.

The Computer
The data of both, the robot and the sensor, were logged at
a rate of 1000 Hz on an external computer. We used a HP
ZBook 15 G2 Mobile Workstation ‡ (Intel Core i7-4710MQ
2.5 GHz, 2.50 GHz, 8 Go DDR3L SDRAM) running Ubuntu
18.04.5 LTS. The communication with both the KUKA
iiwa controller and the sensor is done via C/C++ client
applications communicating in real time. In the case of the
manipulator, it was performed using the Fast Robot Interface
(a version presented in Schreiber et al. (2010)), which is
an open-source library for remote control of some KUKA
robots.

Figure 3 shows a diagram on how all the parts of the
framework interact and exchange information between each
other.

The Dataset

Structure
The dataset is structured as presented in Figure 4. The
three main folders (Standalone, ROS and RAW) contain the
same sub-folder tree. Hence, each of these three folders
contains the four sub-folders corresponding to the possible
application, either for the identification of the robot, the
sensor, the load or for pHRI. The Standalone and ROS
folders present the data gathered and processed (filtered).
The only difference is that Standalone presents data in
several .log files, whilst ROS presents the information in
rosbags. The RAW folder presents the non-processed data.

The sub-folders description for each of the four possible
applications can be seen in Figure 5. For the case of
robot identification, we provide global and individual
(only one joint moves) trajectories. More details about
their applications are provided in Section Application and

†http://www.robotous.com/
‡https://www.hp.com/

http://www.robotous.com/
https://www.hp.com/
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MESSII Dataset

Standalone

Robot_identification

Sensor_identification

Load_identification

pHRI

ROS

RAW

Figure 4. Structure of the MESSII Dataset. The dataset is
provided in a processed version to be used with ROS or not
(Standalone version). Also, the raw data is provided.

Challenges - Parameter Identification. Similarly, for load
identification, we provide global and individual trajectories.
As for the sensor identification, we provide individual
trajectories. Whether the trajectories are global or individual,
we provide several examples with variations of the type
of trajectory or the posture of the robot while performing
the movement. Finally, for the case of pHRI, we provide
two types of interactions with the environment (a person).
First, the interaction appears exclusively at the end-effector
level (i.e. forces captured by the F/T sensor) and the second
case contains interactions at different points of the kinematic
chain of the robot. For both of these cases, we provide
sequences where the interactions happen while the robot is
moving (under Impedance Control) and when the robot is in
a static condition.

Data Collection
Trajectories
The dataset is composed of two types of trajectories. The
so-called global trajectories where all the joints move at
the same time, and the individual or sequential trajectories
where just one joint moves. Design of an exciting enough
trajectories is an area of identification by itself and has
attracted a lot of attention (Pukelsheim (2006)). It can be
summarized in a non-linear optimization problem of the
condition number of the regression matrix of the dynamic
model, with multiple linear and non-linear constraints. This
stage is already provided in the dataset, and in this section a
brief explanation of each of the trajectories will be given.

On the one hand, there are three types of global trajectories
present in the dataset: PTP, SPL and DS. The first two are
obtained from the PTP (point-to-point) and SPL (spline)
motions that the KUKA controller provides. 50 points
are randomly selected inside the manipulator’s reachable
workspace, and then the corresponding interpolation is done
by the controller. This way of designing trajectories has
proven to be enough for identification in Jubien et al. (2014).
The third way is by means of the DS (DirectServo) option
provided by KUKA. Here, the well-known parameterization

…

Robot_identification

Sequential

Type n

Type 1

… J1

J7

…

Global

Type m

Type 1

Sensor_identification

Load_identification

pHRI

Forces_EE

…

Type n

Type 1

Forces_EE_and_joints

…

Sequential

Type n

Type 1

… J1

J7

…

Global

Type m

Type 1

…

Sequential

Type n

Type 1

… J1

J7

…

Type m

Type 1

Figure 5. Sub-folders description of each of the possible
applications of the MESSII dataset.

based on finite Fourier series presented in Swevers et al.
(1997) was used. A 5th order sum of harmonics was
chosen, and constraints regarding position and velocity
limits, zero initial joint position, velocity and acceleration
were considered in the optimization problem.

On the other hand, three type of sequential trajectories
were carried out. First, a trajectory pretended for friction
identification was designed using PTP motion, in which the
joint in study moves from one point to another at constant
different speeds. In this way, the inertial effects are reduced.
Contrary, another trajectory was designed, also by means of
a PTP motion, for inertial parameters identification in which
the intervals where the joint is accelerating or decelerating
are more significant than those of constant velocity. Finally,
a trajectory from a finite Fourier series, as the one explained
in the previous paragraph, is designed using the DirectServo
motion.

Synchronization
The computer has two parallel processes, as shown in
Figure 3. The main one is in charge of saving the information
coming from the manipulator’s controller at a rate of 1000 Hz
with its respective timestamp. The second process saves the
information of the force-torque sensor on a shared memory
also at 1000 Hz, which the main process then reads and
saves on the corresponding file. This method will ensure
that all the data is time-stamped and well-synchronized by
having a maximum shift between the measurements of the
manipulator and those of the external sensor of 1ms in the
worst-case scenario.

Data Processing
Filtering
Besides the raw measurements, filtered data is available to
facilitate the work for users who want to test directly the
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identification methods avoiding the signal digital processing.
The proposed filtering is a simple 4-steps process inspired
in the work of Gautier et al. (2012). First, the raw data
is filtered via a non causal zero-phase digital Butterworth
filter of order 2 with cut-off frequency at 3.5 Hz, both, in
the forward and reverse direction to avoid lag. Second, a
numerical central differentiation is made to obtain the speed
and acceleration signals from the filtered position. Third, a
downsample of order 20 is made to obtain an overall signal
of 50 Hz and reduce computational burden. Finally, border
effects are deleted, as well as all those points where the
joints in study have a velocity lower than 0.05 rad/s (except
for the trajectories with human interaction). This is done to
avoid problems due to the usually used non-smooth around
0 velocity model of friction including just the Coulomb and
viscous friction effects.

Rosbags
To allow the use of the dataset with ROS, the same
information of the Standalone version is provided by several
rosbags. The main advantage of the rosbag version of the
dataset is that it can be used with other predefined nodes
as well as in real-time applications. For instance, real-time
identification of the robot’s parameters or force observers can
be implemented and tested.

The information presented in the standalone version is
replicated in the rosbags. The structure as mentioned is the
same, but instead of having several files for each experiment,
they are all gathered in a single rosbag. Each rosbag contains
the following topics :

• FT sensor : Containing the three forces and three
torques as a wrench vector of the type geome-
try msgs/WrenchStamped.

• jointCommanded: Containing the commanded states
(position, velocity and torque) for the seven joints as a
sensor msgs/JointState type of message.

• jointMeasured: Containing the measured states
(position, velocity and torque) for the seven joints as
a sensor msgs/JointState type of message.

• jointExternal: Containing the external states (posi-
tion, velocity and torque) for the seven joints as a
sensor msgs/JointState type of message.

Details on how to run the rosbags, listen to the available
topics and create new rosgabs are included as tools in the
dataset web.

Calibration
As the recorded measurements from the KUKA iiwa
manipulator are from propioceptive sensors and in the joint-
space, no external calibration needs to be done. However, the
robot comes with a load determination tool, which will have
a direct effect on the calculation of the commanded signals
and external torque. In this work, the load in the controller
was set to zero for the trajectories without load, with the
sensor and with human interaction. For the trajectories
where the load is placed, the estimated values were already
described. This means that, in some experiments, the
external torque will have just the contribution of friction and
uncertainties of the model that is used by KUKA to control
the robot, while in others, it will also include the effect of

the sensor’s weight, paylod’s uncertainties and the possible
human-robot interaction.

Furthermore, the sensor is well-aligned to the axis of the
Media Flange thanks to the ”location pins” and the way
the coupling was designed (see CAD model present in the
dataset web). As for the sensor calibration, each trajectory
done in the pHRI part begins with a few seconds of the robot
in static condition and with no interactions. This, combined
with the identification of the after-sensor dynamic, should
allow to recover the forces coming exclusively from the
interactions.

Finally, camera recordings are also included to visually
depict the interactions with the person in the respective pHRI
tests.

Application and Challenges

Parameter Identification
The parameter identification procedure can be summarized
in the seven steps shown in Figure 6. It is an iterative
procedure which will ultimately depend on the application
of the obtained model and its expected performance. These
tasks can be time consuming, thus, being able to test
the whole procedure before executing it on a specific
manipulator can be of advantage to users. This is the reason
why this dataset facilitates steps 3, 4 and 5 of the procedure,
allowing users to test their own overall solution on real data
without the need to own and code a manipulator.

Each of the steps can be solved in several ways, presenting
interesting issues and challenges, and some of them will be
briefly mentioned. First, in collaborative robotics there are
still some questions regarding which is the best way to model
the joint flexibility, payloads and friction (De Luca (2000);
Van Geffen (2009); Raviola et al. (2021)). This dataset allows
the user to test and compare different models. For instance,
the explicit dynamics, the energy or the power methods can
be used to derive the model, and analytical closed-form rules
or numerical tools as the QR and SVD decomposition can be
used to obtain the reduced model.

Furthermore, although we propose filtered data, ready
to be used on identification methods, we also provide
the raw information, to let users apply their own filtering
stages. Digital signal processing textbooks address this issue
extensively (Anderson and Moore (2012)), and even though
this stage will usually strongly depend on the application,
being able to test the whole data processing step on real data
can be useful.

In addition, the proposed dataset allows the user to
test different parameter identification methods (step 6
in Figure 6). The selected method can range from a
simple en-bloc method of a system linear with respect
to the parameters, such as the Least-Squares solution,
to neural networks and complex recursive solutions that
could be applied online. This last topic is of much
interest, as manipulators working on unpredictably changing
environments require an online evaluation in order to
estimate interactions and detect faults and collisions.
The identification can be done in a global form,
meaning that all parameters are estimated at the same
time, or sequentially, where parameters are excited at
different moments. Furthermore, the identification methods
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can include physically feasibility constraints to obtain
parameters which are congruent with reality, which is a topic
that brings a lot of attention lately (Sousa and Cortesao
(2014); Janot and Wensing (2021)). Moreover, the provided
signals also allow the identification of the model that is
included in the controller, and by means of black-box
identification methods, the structure of the controller. This
enlarges widely the application and utility of the dataset, as
many aspects of system identification can be addressed.

Finally, different techniques of model validation can be
tested and new ones can be proposed depending on the
desired application, e.g. tools can be used as analysis of
residuals, analysis of estimates and analysis of model fit
(Ljung (1998)).

Figure 6. Parameter identification procedure.

Application example. In order to show the utility of
the dataset and emphasize one of the mentioned chal-
lenges, we have carried out a simple Least-Squares iden-
tification of the parameters of joint 4 using the Sequen-
tial Joint 4 Inertia Filtered trajectory, and knowing already
the parameters from joints 5, 6 and 7. The essential estimated
parameters and their respective standard deviation are shown
in Table 1, the position, velocity and acceleration of joint 4
are shown in Figure 7 and the validation of the estimated
model is done in Figure 8.

The identified essential parameters are five: ZZR4 and
MYR4 are regrouped inertial parameters, and FS4, FV4

and τoff4 are three friction parameters corresponding to a
simple model including Coulomb friction, viscous friction
and a torque offset due to the asymmetrical Coulomb friction
and other offsets introduced by measurement equipment,
respectively. It can be seen that the torque reconstruction is
excellent, being the percent error less than 0.5%. However,
when analyzing the numerical value of the two parameters
corresponding to the Coulomb friction, it can be noticed that
it is theoretically impossible to have τoff4 > FS4, as it will
lead to having the force of friction in the same direction as the
velocity for a specific range. There are many alternatives to
try to solve this issue. Two of them are: either the model does
not explain the reality in a good way, for example, not being
able to explain the Stribeck effect, thus another model has to

be chosen, or constraints can be included in the optimization
process of identification to ensure physical feasibility.

Table 1. Identified essential inertial parameters and their
respective relative standard deviation

Param. Value %σ

ZZR4 0.8600 0.06
MYR4 2.3283 0.05

FS4 0.0388 7.29
FV4 0.1154 2.63
τoff4 0.4584 1.66

Figure 7. Position, speed and acceleration of joint 4 in the
trajectory Sequential Joint 4 Inertia Filtered.

Figure 8. Comparison between actual and reconstructed
torque of the trajectory Sequential Joint 4 Inertia Filtered with
the identified parameters.

Although the identification methods to be used with this
dataset can be generalized to different robots, the identified
parameters obtained using the information provided can
be compared with previous works in Stürz et al. (2017);
Hennersperger et al. (2017); Xu et al. (2020).

Human Interaction
In the context of pHRI, the safety of the person is the
first and most important layer that has to be addressed. In
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order to accomplish that, the physical contact has to be
recognized to react accordingly (either to detect collisions
and react De Luca et al. (2006), or to collaborate based on the
forces applied Mujica et al. (2023)). Recent manipulators,
such as the KUKA iiwa, provide joint torque sensors that
can be used for those purposes. Based on these sensors,
torques on the joints can be used to detect and recognize
collisions. Furthermore, in quasi-static condition, forces at
different levels of the kinematic chain can be reconstructed
through the virtual work principle. Therefore, the need
of a Force/Torque sensor at the tip of the robot can be
avoided, reducing the costs associated. This can be done by
considering:

Fe = J−T τe, (1)

where Fe is the external wrench (forces and torques) at the
end effector level, τe are the external joint torques, and J is
the Jacobian matrix of the robot.

Applying this method in the Sequence static 1 of the
dataset, the forces applied at the end effector can be
reconstructed as seen in Figure 9, using the external joint
torque provided by the robot. However, in the figure, it can
be noticed that the reconstructed force and the one of the
F/T sensor (considered as the ground truth) present important
differences. These differences can be linked to (1) where
a quasi-static condition is considered and this may not be
the case. Also, the presence of non-modeled dynamics in
the model used by KUKA for the external torques can
produce important differences (e.g., in the first 5 seconds,
when no external forces or torques appear). Furthermore, in
the proximity of a singularity, the inverse of the Jacobian
is ill-defined, producing errors in this estimation. In recent

Figure 9. Reconstructed forces using Sequence static 1 and
the real ones obtained with the F/T sensor.

years, improved methods to estimate forces at different
levels of the kinematic chain have been considered De Luca
et al. (2006). They presented advantages, like being able
to estimate forces even without the need of the joint
torques, but also some complexities like requiring a good
model of the robot (e.g. non-modeled friction would easily
degrade the results). For these reasons, this remains an open
challenge. Different methods consisting of observers, filters
or frequency analysis, can be used to identify, reconstruct
and classify the interaction forces applied to the robot. In

summary, this part of the dataset provides several sequences
that allow testing and evaluating these methods on a real
robot.

Conclusions and Future Work

This work presented the main features of the novel MESSII
dataset, for the collaborative robot KUKA iiwa. The dataset
contains an important number of sequences with different
movements of the manipulator, with measurements of the
propioceptive sensors and a F/T sensor attached to the end
effector. This information allows the community to test and
evaluate methods for identification of the robot, the sensor,
and the load included, without the need to have the real
robot or design and code the trajectories. Furthermore, as
the dataset can be used in ROS to replay the sequences in
real-time, online identification methods can be assessed. As
the robot is used, in general, for human-robot interaction, the
dataset also provides sequences where a person interacts with
the robot. The goal is to allow the use of novel observers,
filters and estimation to reconstruct the forces that appear at
different levels of the kinematic chain, and compare them
with the measurements of the Force/Torque sensor (ground
truth). Beyond the structure and elements of the dataset,
this paper presents examples of applications along with the
main challenges that might motivate other researchers to use
the MESSII dataset. In future works, this dataset will be
enhanced with data from other robots as well as the use of
different visual sensors to provide 3D information of the
scene as well.
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