
HAL Id: hal-03866297
https://hal.science/hal-03866297

Submitted on 24 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Security Analysis: From model to system analysis
Drouot Bastien, Valery Monthe, Sylvain Guérin, Joël Champeau

To cite this version:
Drouot Bastien, Valery Monthe, Sylvain Guérin, Joël Champeau. Security Analysis: From model
to system analysis. CRiSiS 2022 : International Conference on Risks and Security of Internet and
Systems, Dec 2022, Sousse, Tunisia. �hal-03866297�

https://hal.science/hal-03866297
https://hal.archives-ouvertes.fr


Security Analysis: From model to system analysis

Bastien Drouot, Valery Monthe, Sylvain Guérin, and Joel Champeau

Lab STICC, ENSTA Bretagne, Brest ,France.
{fistname.lastname}@ensta-bretagne.fr

Abstract. There is a wide range of security solutions on cyber-physical systems,
most aimed at preventing an adversary from gaining access to the system. How-
ever, to make a cyber-physical system more resilient and discover possible attack
scenarios, it is necessary to analyze systems by taking into account their interac-
tions with their environment. Standard formal analysis approaches are based on a
model of the system. From a quantitative and qualitative point of view, the results
of these analyzes depends on the model abstraction relative to the system. Usu-
ally, property verification is performed with formulas expressed in specific logics
such as LTL or CTL. One of the problems is the semantic gap between textual re-
quirements and these formalisms. In a security context, attacker interests are also
necessary to take into account in the properties expression, in addition to system
requirements.
In this article we propose an approach allowing to analyze a real cyber-physical
system while taking into account the interests of an attacker and while reducing
the semantic gap between the textual requirements and logic formulas. The pro-
posed methodology relies on the property specification patterns and the specifi-
cation of an interface related to the state of the deployed embedded software. The
motivating example used in this article comes from an industrial partner included
in a collaborative project.

Keywords: Cyber-Security · Modeling · Formal Methods · Model-Checking ·
Property Specification · Case Study.

1 Introduction

Security of Cyber Physical Systems is a real challenge especially for communicating
ones. To improve the security of these systems at design time, formal methods can be
used to provide analysis support at behavioral level. This technique is based on the use
of formal models which provide system abstraction to mainly focus on the communi-
cating system behavior [3]. To apply efficiently the formal methods, the analyses lead
to verify properties regarding the system models. One of the challenges of the approach
is to formalize properties from requirements expressions which are mainly textual with
a dedicated text structure in the best case.

In a security context, formal properties are not only derived from requirements but
must also integrate the potential interests of attackers. These interests provide objectives
to the analysis on the system, and include the behavior of attackers interacting with the
system. The security property expression is mainly based on temporal logics to take
into account propositions which integrate time. In many cases, the expression of these
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security properties remains an issue for domain experts without experience on formal
methods.

So one of our goal is to bridge the gap between the textual security requirements and
the formal properties to help the domain expert to conduct an analysis on their system.

Another main drawback of formal methods is the use of models for the system
under study. Models are powerful to take into account a dedicated viewpoint of the
system and the abstraction relative to this viewpoint provides an efficient focus for the
issue to address. In a previous step, we have demonstrated that the formal methods
can be applied successfully on our reference system with a full MBSE approach [11].
This previous experiment also allowed us to analyze our results and identify research
opportunities. Indeed for embedded systems, application behavior is often dependent on
the deployment of the software component on the embedded target. Therefore, models
allow analysis but they are not always sufficient to completely guarantee the behavior
of the deployed software, especially to know if the system is resilient to attacks.

To avoid the system model drawback, we suggest a methodology based on the anal-
ysis of the embedded software code. However the models remain relevant to model
the environment. The methodology we propose here is a heterogeneous approach with
models for environment specification and the embedded software itself. The base of our
approach is the OBP model checker which provides the capacity to take into account
heterogeneous formalisms [10],[2].

The rest of the paper is organized as follows. In Section 2, we present the works
on which we base our approach, including the property specification patterns and OBP
model checker. In Section 3, we introduce the Car Reservation System (CRS), the case
study used throughout this paper to illustrate our approach. After that we describe the
shared API between system and environment and used to catch the state of the de-
ployed embedded software in Section 4. In Section 5 we present our implementation
of the property specification patterns taking into account the interests of the attacker in
security properties. In Section 6 we analyse our results and share the lessons learned on
our methodology. And we conclude in Section 8.

2 Background

2.1 Previous MBSE approach

In an initial phase, we applied a full MBSE approach [11] on our motivating example
based on UPPAAL formal models to perform a methodology on qualitative risk analy-
sis. The goal of our methodology is to identify the risks which are not elicited during the
functional analysis and test phases. Based on this experiment, we have identified sev-
eral key aspects on our methodology: 1) Environment models provide an efficient way
to specify the behavior of external entities constraining system behavior. These models
define an execution context for the system related to use case scenarios identified by
the system designer. 2) Based on models of the system and the environment, we can
define security properties to identify risks on system components or behaviors, i.e an
action sequence. The scenarios violating the security properties are possible attacks on
the system. 3) The gain obtained with LTL properties is to be put in perspective rela-
tively to the difficulty to express these properties. In fact, these LTL expressions are far
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from textual requirements. 4) A full MBSE approach is powerful at specification or de-
sign time but models remain an issue to take into account the embedded system code. In
practice, deployed software is rarely fully derived (generated) from the analyzed model,
and contains a significant amount of manual code.

Lessons learned at the end of these first experiments reveal two major issues : 1) how
to bridge the gap between the requirements or attacker interests which are informally
described and a formal formalism, and 2) how to take into account the real embedded
system software in a formal verification approach for security analysis.

2.2 Property Specification Patterns

The purpose of verification is to make sure that a system meets its requirements. A re-
quirement can be simply defined as an expectation or constraint that a service, product
or system must satisfy. The property is obtained by describing this expectation or con-
straint in a formal language, i.e. in the form of a logical formula to be verified. There
are several temporal logics that can be used to specify properties: LTL, CTL, TCTL,
TLA, TLA+, etc.

Let’s take an example: Consider the following requirement: "the end of task A leads
to the end of task B". To express this requirement in temporal logic, we must first define
atomic propositions, which are predicates whose evaluation result is a boolean. The
corresponding logic formula can be written in the chosen temporal logic, such as:

P : task A is ended. S : task B is ended.; CT L : AG ( P → AF ( S ) ) (1)
We can have even more complex formulas. For example, with the requirement: “After
event Q until the arrival of event R, the end of task A leads to the end of task B.”; we
would have the following formulas in the CTL logic.

CT L : AG(Q → !E[!R U (P & !R & (E[!S U R] | EG(!S & !R)))]) (2)
We may notice on this example that formulas in temporal logics can be very complex
and quickly become incomprehensible to domain experts.

Property specification patterns allow domain specialists to write formal specifica-
tions that can be used for model checking. One of the best-known specification models
are Dwyer’s patterns [6], [7]. Dwyer et al.[8] developed a pattern system for property
specification. These patterns allow people who are not experts in temporal logic to read
and write formal specifications. They are divided in two major groups: order and oc-
currence. Each pattern has an associated scope, which represents the context in which
the property must hold. With Dwyer’s patterns, the formulas of equations 1 and 2 are
written respectively:

Globaly S Responds to P (3) After Q Until R (S Responds to P) (4)
We thus obtain in equations 3 and 4 logical expressions that are much easier to under-
stand by domain specialists.

2.3 OBP model checker

Heim et al.[10] address the state space explosion problem observed in the verification
of industrial asynchronous systems. To meet this challenge, they proposed a new ap-
proach based on the specification of the context (the environment of the system) and an



4 B. Drouot et al.

observation engine called OBP (Observer Based Prover). They start from the idea that,
given a property to verify, one does not need to explore all the possible configurations
of the complete system. Among all the possible behaviors of the system, a tiny part is
sufficiently representative for the property to be verified. Thus, specifying a relevant
environment (a context) makes it possible to restrict the behavior of the system to the
only parts where the property deserves to be checked.

The OBP model checker is also used coupled with a language interpreter to provide
verification and monitoring on embedded models [2]. This capacity is based on a lan-
guage interface definition between the interpreter and the model checker and also the
verification of formal properties on exhaustive exploration of the embedded models. We
intensively use these potentialities in our methodology.

3 Motivating example

This section introduces the case study used throughout this paper to illustrate our ap-
proach. The Car Reservation System (CRS) has been designed for a companies with a
large car fleet. The CRS system presented in this article is an abstraction of a study sys-
tem, coming from a collaborative project between companies and research institutions.

3.1 System Presentation

The global context of the system under study is presented by the figure 1. This figure
aims to highlight the key component, the embedded system, deployed in its environ-
ment that includes malicious persons. This critical part of the system is implemented

Embedded
SystemAttacker

Command and Control 

Messages

Attack Goals

RFID Card
(Environment)

Back Office
(Environment)

Smartphone
(Environment)

Fig. 1: System Architecture

in an embedded software on a dedicated hardware in the car. This software controls the
access to the car and takes into account interactions with the user and the IT server part
of the CRS system. The embedded software is the main focus of our attention for a
security evaluation due to a risk analysis conduct previously [11]. During this analysis,
we applied a top-down MBSE methodology based on system specification study. In this
context, we have designed a specification formal model to analyze the behavior of the
system with regard to the security properties obtained after the risk analysis.
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In this system, each user has an ID stored in a RFID card or in a mobile applica-
tion. The server or back office is a web server that is used by users to book a vehicle
on dedicated day and hours. After a validation, this booking is communicated to the
embedded system as a tuple booking ID and user ID. Then, a car session can start. The
user can unlock the car, uses it and if necessary temporarily stops using it. The session
can resume later or stop if a "stop_booking" request is received. Until the session is not
ended, the user can unlock and lock the car again several times to continue the session.

The embedded system interacts with one component at a time, either the server
or the ID badge or mobile application. This communication is supported by messages
and embedded software process messages in a FIFO mode with a run to completion
semantics. A message is dequeued from the FIFO and the effect of this message is
executed before any next message consumption.

The server, the mobile and the badge are connected to the embedded system through
many technologies and protocols. The system then inherits all the vulnerabilities and
weaknesses of these technologies. Our purpose is not target vulnerabilities at this level
but malicious persons can exploit them to access or trick the embedded system and
potentially change the nominal behavior at application level of the system.

When applying the methodology discussed in the next sections, an interesting goal
on our system under study would be, for example, to identify a car unlock situation
after session end. The feared events would be that the attacker might want to keep the
car locked or unlocked according to the desired outcome.

3.2 General approach

In our MBSE approach applied previously, we modeled the system under study and the
environment entities interacting with the system. This approach is particularly relevant
to take into account specific behaviors in the environment notably the attacker one.

One of the issues of this approach is the system model creation. In fact, this model
is obviously an abstraction of the system and this model are usually build manually by
the system designer.

In this context, in order to increase confidence in embedded software, we aim to
consider the real embedded source code. But to preserve flexibility and to formalize
several environment hypothesis, we keep the environment models including relevant the
entities and attacker model. Figure 2 schematizes our approach grouped into 4 parts, to
aim differences with classical MBSE approaches :

1. First part focuses on creating properties to verify. In our cybersecurity context,
the formal properties are necessarily based on the attacker interests, in addition to
the system requirements. To facilitate the property expression, we use a first level,
“Abstract Formalized Properties”, to reduce the gap with textual requirements and
to be adapted to several temporal logic. In this approach, the attacker succeeds in
his attack if a security property is violated (for example by stealing an unlocked
vehicle after the end of a reservation). This part is detailed in section 5.

2. The second part focuses on modeling the environment. Against standard approaches
based on modeling all the external entities, we take into account the attacker’s be-
havior through a malicious model. This model can define several attacker behaviors
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Fig. 2: General Approach
like a man in the middle attack, providing a capacity to perform any actions on the
system. This environment modeling is detailed in section 4.1.

3. The third part focuses on the representation of the system. Unlike the MBSE stan-
dard approach (represented in dotted lines in figure 2), we suggest an alternative
approach having the particularity of directly using the real system code instead of
a model. We illustrate our approach in section 4.3 to detail the unavoidable system
interface to specify and implement interactions with this system.

4. The last part focuses on property verification. In our approach we define security
properties built while taking into account the malicious aspect of the attacker. The
objective, for the attacker, Objective of the attacker is here to violate properties to
make the system less secure. We give feedback on security property verification in
section 6.

So, the main focus of this paper is to define an analysis framework based on several
models, in FIACRE language for the environment and a C program for the embed-
ded source code. The interactions between these two parts are defined and controlled
through a shared interface, described in the figure 3. The contents of this interface and
the link with the model checker OBP are detailed in the next section.
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4 Detailed approach

4.1 Environment modeling

The general view of the link between the environment and the system is illustrated
figure 3. This schema presents the environment on one side (left part of the schema)

System ( C )Environment ( Fiacre )

Shared API

Protected

In

Out

 read protected

 write protected

 write out

 write in 

 read out 

User

Server

Attacker Grey box System
 read protected

 write protected

 read in

Fig. 3: View on the link between environment and system

and the embedded system on the other (right part). The environment is composed of
User, Server and Attacker and interacts with the embedded system through an interface
called Shared API. The embedded system is shown as a gray box system.

This environment written in Fiacre models the behavior of elements interacting with
the embedded system. We identify three entity types:

– User: These model includes all the interactions that user has with the embedded
system, such as: pressing a button, passing an access card, interacting with levers
but also losing of GPS or GSM connection. The user interacts and produces only
inputs to the system. These inputs are integrated in the "In" part of the shared API.

– Server: These models represent interactions with one or more servers communicat-
ing with the embedded system. Servers produce only input data for the system, and
in some cases a server can take control of some system functionalities bypassing
some security rules.

– Attacker: In order to represent an attack on the system as accurately as possible,
we propose a dedicated model to represent the actions of an attacker. We take as
hypothesis that attacker can perform any action on the system and at any time. The
goal is to take into account every behavior, even unknown ones. These interactions
are translated into accesses that can modify input data in the system ("In" part of
the shared API) and also read information from the system ( "Out" part of the
shared API). As shown in the figure 3, we also provide the ability for the attacker
to directly modify the internal data of the embedded system (contained here in the
"Protected" part of the shared API). This behavior represents a direct and strong
attack (rather low level) on the embedded system (memory dump, eavesdropping,
sensor manipulation, etc.).
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The models of the environment offer several interesting capacities relatively to the se-
curity context. First, the power of models provide a quality abstraction to start with a
high level of abstraction and after, iteratively adding details into environment models to
take into account more complex behaviors. This iterative approach is driven by analyzes
that we want to apply on both environment and system, more precisely, according to the
properties that come from requirements or attacker interests.

We can also note that modeling the environment provides the possibility, for ex-
ample, to define several attacker behavior relative to the attacker skills. These skills
modify the attacker behavior and specialize its behavior on some scenarios. Several
attack contexts can be conceived, evaluated and capitalized through the use of models.

Once the environment has been modeled, we must define how it could behave on
the system under study. To act to the system and catch its reaction, we specify a system
state API in order to define the interface between environment and system.

4.2 System state and behavior

The specification of the system state API is based on the definition of variables, encod-
ing the global state of the transition function. This function defines the evolution of the
system at each execution step to take into account change of the interface values.

1 / / S t r u c t u r e IN
2 t y p e d e f s t r u c t {
3 c a r R e q u e s t r e q u e s t ;
4 c a r s h a r i n g S o u r c e o r i g i n O f R e q u e s t ;

. . .

16 / / S t r u c t u r e OUT
17 t y p e d e f s t r u c t {

. . .

22 / / S t r u c t u r e P r o t e c t e d
23 t y p e d e f s t r u c t {
24 boo l isApcON ;
25 boo l i sDoorsLocked ;
26 boo l i s I m m o b i l i z e r E n a b l e d ;
27 u i n t 8 _ t c u r r e n t B o o k i n g ;
28 } s t r u c t _ p r o t e c t e d ;

30 / / Sha red API
31 t y p e d e f s t r u c t {
32 s t r u c t _ i n i n ;
33 s t r u c t _ o u t o u t ;
34 s t r u c t _ p r o t e c t e d p r o t e c t e d ;
35 }

37 / / System f u n c t i o n
38 i n t f c t _ r u n ( s h a r e d _ s t r u c t * ) ;
39

(a) C Source Code

1 / / S t r u c t u r e IN
2 t y p e f s t r u t _ i n i s r e c o r d
3 r e q u e s t _ F : na t ,
4 o r i g i n O f R e q u e s t _ F : na t ,

. . .

15 / / S t r u c t u r e OUT
16 t y p e f s t r u t _ o u t i s r e c o r d

. . .

21 / / S t r u c t u r e P r o t e c t e d
22 t y p e f s t r u t _ p r o t e c t e d i s r e c o r d
23 isApcON_F : bool ,
24 i sDoorsLocked_F : bool ,
25 i s I m m o b i l i z e r E n a b l e d _ F : bool ,
26 c u r r e n t b o o k i n g : n a t
27 end r e c o r d

29 / / Sha red API
30 t y p e f s t r u t i s r e c o r d
31 c _ i n : f s t r u t _ i n ,
32 c _ o u t : f s t r u t _ o u t ,
33 c _ p r o t e c t e d : f s t r u t _ p r o t e c t e d
34 end r e c o r d

36 / / E x t e r n a l f u n c t i o n
37 e x t e r n runSys tem ( r e a d w r i t e f s t r u t )

: i n t i s " f c t _ r u n "

(b) Fiacre Code

Fig. 4: Code of the shared API in C (a) and Fiacre (b)

So, the definition of the system is based on two parts:

– The interface state definition : This interface includes all the variables representing
the global state of the system program. This interface is shared between the system
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implementation and the environment models. The interface is implemented on both
sides through a C structure including standard C types (figure 4a), and a Fiacre
representation (figure 4b). For example, for each external request the car receives
a message implemented as an enumeration name "carRequest" in listing 4a line 3,
and as a natural in listing 4b line 3. Even internal system variables are included in
the interface. Indeed they are necessary to represent the global state of the system
and can, in some cases, be modified outside the system. For example, the variable
currentBooking, line 27 in the listing 4a and line 26 in the listing 4b, encodes the
ID of the current reservation. If the value of the currentBooking variable is zero, it
means that no booking is currently running in the vehicle. An attacker could, during
an attack, modify this variable in order to harm the system (vehicle theft, cancel the
reservation in progress, etc.) This two representations (listing 4a and listing 4b)
implement the share interface between the environment and the embedded system.

– The system function : The system is viewed as a function with side effects on the
shared API and the environment. This function is like a thread function implemen-
tation to execute the behavior of the system, see the declaration of the function line
38 of listing 4a. The environment calls this function as external function, see the
declaration line 37 of listing 4b. The function interprets messages from the environ-
ment, processes the result relative to the current message through the completion
of the resulting action, and finally gives back the result to the environment.

With these two software components, the shared API and the system function, we de-
fine an abstract transition system with its transition function which processes the sys-
tem state. This system state is observable and updated from the environment to provide
communication facilities and property evaluation. The properties which come from re-
quirements and attacker interests are evaluated on the system state, based on variable
values, and also through several transitions to obtain evaluation of temporal properties.

4.3 The OBP model checker

In our framework, the key component to explore all the behavior on the composition of
the real system code and environment models, is the OBP model checker. In a standard
model checking approach, the system and the environment are modeled like we did
in a first step of our methodology [11]. Some approaches emphasize the use of model
checking on real software code to help the emergence of errors during sequence of
events occurrence [13]. In our approach, we want to highlight two salient points:

– We explore heterogeneous execution states constituted from states of environment
models including the attacker, and states of the software system, see the left part of
the figure 5

– The model checking algorithms are decoupled from the language(s) used, which
provides a language independent exploration capability. In our case, we built the
Label Transition System (LTS) using exchanges between the model checker and
the interpreters via the runtime controller as depicted in the figure 5. This controller
queries interpreters on the model checker request.

To verify properties on these heterogeneous execution states, we apply a synchronous
composition between these states and the interpretation of the properties that is defined
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Fig. 5: Architecture of model checking

as observer automata on the execution states. At each execution step, the automata
observer progresses in its behavior if the requested event is observed.

Based on this approach, properties are evaluated on the heterogeneous LTS com-
posed of the embedded software part and environment model state. So properties take
into account the software behavior dived in a malicious environment context. The ex-
haustive exploration providing by the model checking algorithms gives all the possible
scenarios relative to a no limit attacker behavior, defined in the models.

Now the problem remains to define the properties relative to the objectives that we
want to obtain during our analyses. Particularly regarding if we are able to translate
the attacker interests in relevant property definitions. The goal of the next section is to
present our approach relative to property definition and formalisation.

5 Security Property Modelling

In our approach, system requirements and attacker interests are formalized to ensure
a formal verification with OBP model checker. The verification is achieved with LTL
formulas which are composed with the heterogeneous state from system and environ-
ment. One of the problem is the semantic distance between textual requirements and
LTL formulas. Many approaches are based on structured text expressions to minimize
this distance. One of the main problems is to enforce a strict and constrained format by
requirement engineer.

5.1 Raising abstraction level of formal security properties

In many cases, the need to formulate the requirements and attacker interests in a purely
mathematical expressions creates a pragmatic barrier for requirement engineers to use
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these techniques. One way to reduce the impact of this barrier would be to bridge the gap
between the unstructured textual requirements and mathematical formulas of properties.

Requirements and
attacker interests 

Abstract formalized
properties

Temporal logic
formulas

Temporal logique
formulas

Requirements and
attacker interests 

Fig. 6: Abstraction of formal properties from requirements and attacker interests.

Bridging this gap is an objective but the chosen approach must guarantee to obtain
formal properties. We have therefore created an intermediate abstraction level using Dy-
wer’s patterns (the "Abstract formalized properties" in right part of the figure 6). This
level facilitates requirement expression because no constrains are applied on the textual
requirements. And also ensures the independence from mathematical formalism of for-
mal properties. In our case, the bridge between the textual form of the requirements and
Dywer’s pattern is achieved manually, to avoid constrains for requirement engineer.

The next section presents in details the security requirements next to attacker in-
terests and their translation into LTL formal logic, through the intermediate step of the
Dywer’s patterns.

5.2 From attacker interests to formal security properties

The risk analysis provides critical elements or potential attacker goals that we must take
into account in the security analysis. One of the challenges is therefore to obtain formal
properties regarding these attacker interests. As mentioned above, to support this step
we use Dywer’s patterns to create a link between the conceptual attacker goals and the
LTL formulas that are evaluated on the system.

In the following, for each security requirements to be checked we write a sentence
closed to the property goal to give the property intention, after we have identified the
logic predicates derived from it and we use these predicates to specify the security
property using Dwyer’s patterns. Finally the LTL properties are derived. The security
constraints having been formalized into expressions using Dwyer’s patterns, the second
step involves translating these expressions into formal properties in a temporal logic.
Table 1 summarizes the specifications of the properties expressed using Dwyer’s pat-
terns and gives the corresponding Temporal Logic formulas in LTL.
Each block of the table has 4 elements:

1. Ri: describes the intention of the business security requirements to be respected and
therefore to be verified on the system code;
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R1 ::When ending a session in the Back Office the car should be locked
proposition ::P : (BackOffice.booking.isEnding) ∧ (System.car.unlocked)
Dwyer ::Globaly Absence (P)
CTL property ::A [] not (BackOffice.booking.isEnding and System.car.unlocked)
R2 ::If the user is driving the car, the state of the booking should not be consider as locked

in the BackOffice.
proposition ::P : (System.session.isRunning) ∧ (BackOffice.car.isLocked)
Dwyer ::Globaly Absence (P)
CTL property ::A[] not ((System.start_session or System.continue_session) and BackOf-

fice.car_locked
R3 ::Once the car is unlocked, at some point in the future, the car should be unbooked and

the car can be booked again with correct parameters.
proposition ::P : !System.car.isLocked ⇒ System.isIdle
Dwyer ::Globaly Universality (P)
CTL property ::A[] (System.car.unlocked ⇒ System.idle)

Table 1: mapping between analysed security requirements, properties specification in
Dwyer patterns and their corresponding CTL formulas.

2. Proposition (P): specifies the requirement Ri in an atomic proposition, i.e. whose
value is either true or false. This proposition is formulated using predicates;

3. Dwyer: the specification of the property P to check using Dwyer patterns;

4. CTL property: the translation of this property P into an CTL formula.

Considering line 1 of table 1, the need as expressed by the domain expert is as follows:
“A session that ends on the backoffice management application requires the vehicle to
be locked.”. An analysis of this need makes it possible to formulate the security re-
quirement as follows: "R1: When ending a session in the Back Office the car should
be locked". From this requirement, it is necessary to specify the property to verify and
the way to verify it. This requires using a more formal notation, so we use Dwyer’s
patterns. To do this, a constraint to be checked must be defined. This is expressed
in the form of an atomic proposition, that is to say a sentence with a Boolean value
(true or false), and is written using predicates. From R1, we therefore define 2 predi-
cates: S: System.car.unlocked (the system detects that the car is locked) and B: BackOf-
fice.booking.isEnding (the state of the reservation is at “ isEnding" in the Back Office).
We would not like to have the situation in which the car is unlocked and the reservation
in the Back Office is over. So the situation to avoid during the execution of the system is
S AND B, hence the proposition P: S AND B. Then we choose the right Dwyer pattern
that corresponds to this situation: it is the "Absence" pattern. This allows us to write
Globaly Absence (P). Globaly is the scope and means that the Absence pattern must
apply on P during the entire execution of the system. Finally we can deduce the prop-
erty expressed in the temporal logic CTL. In this formula, "A" means for all execution
paths and "[]" means during the whole execution. So the property A [] P with P= not
(BackOffice.booking.isEnding and System.car.unlocked), evaluates to true if and only if
any reachable state satisfies P.
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6 Property verification results analysis

In this paper, we present and test a methodology based on formal property description
applied on the real embedded system. In this section, we present the lessons learned
after adapting the MBSE formal verification methodology by integrating the real em-
bedded system.

6.1 Model checking embedded system code

While integrating the embedded software code in our methodology, we have identified
two main advantages relative to the use of the formal model checking techniques.

– First of all, the use of an agnostic model checker provides the possibility to ana-
lyze a composition of heterogeneous languages. In our case we have environment
models in FIACRE language and system state of the embedded code. For the com-
munication between these two languages, we must specify a shared API to take into
account the system state accessible by the environment. So the entities like sensors
or actuators are modeled through environment entities and interact with the system
via the shared API. This shared API is also the base for security property proposi-
tion evaluations. And again, due the use of this model checker, these properties are
based on heterogeneous entities (system and environment) and are applied on the
composition of heterogeneous languages. One of the advantages for the security
properties is to explore extended behavior for the attacker entity.

– Secondly, the major drawback of the previous MBSE approach is the semantic dis-
tance between the embedded code and the system model. In our case, the model
was created manually so this distance could be reduced if we had a generation step
from model to source code. But in embedded context, the source code necessarily
integrates specific platform features like OS, or devices API. And in a security per-
spective, many vulnerabilities are coming out while on this platform deployment.
So identifying the vulnerabilities at code level is more relevant instead of model
level. This experiment implementing approach where the real source code is inte-
grated in the formal verification demonstrates that the debugging phase is improved
and the confidence in the developed software is increased. In our case, due to the
exhaustive exploration we found that a man in middle attack leads to the system in
a case where the door’s car remains open after the end of a session. The attacker
reaches its goal, the car can be robbed without any obstacle. Our approach based
on formal exhaustive exploration provides a one step beyond on debugging phase
for embedded software.

Our experiment uses industrial embedded code with all the application functionalities.
In order to focus our approach on the application behavior, we have withdrew commu-
nication protocols to avoid platform complexity that has no impact on the application
behavior. Indeed, all the communications are interpreted as messages received and sent
by the application device communication.
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6.2 Security property verification

Just before focusing on the property verification results, we analyze the semantics of
these properties regarding the security perspectives. Indeed, the formulas obtained from
the Dwyer’s expressions have different meanings relative to the adopted viewpoint.

System Perspective (+) Attacker Perspective (-)
Property Successful (+) Threat causes no risk (+) Threat causes risk(-)

Property Failed (-) Threat causes risk(-) Threat causes no risk (+)
Table 2: Security Property Modeling.

As previously described, the formulas are based on predicates which contain expres-
sions including the system states, in the sense that variable values translating the mem-
ory state of the program. A variable can also represent an attractive resource for an
attacker like an open door to rob the car, for example.

In this context, two viewpoints are considered to analyze property results, like
shown in the table 2. From the designer or system perspective, a successful property
means that no risk leads to it. So the system is resilient to the risk expressed by the
property. However, if the property verification fails, the system is faulty, or the attack
issued was successful in changing the original behavior of the system and thus reached
its goal.

Another way to consider the properties is to assume the attacker’s perspective. From
this point of view, properties ensure that the goals of the attack or risks are reached. So
in contrary to the system perspective, a successful verification shows that the system
is faulty in the sense that the attack has successfully reached its goals of altering the
system’s behavior. This means that the system is sensitive to the considered risk, in-
troduced by the attack. In contrast, the failed verification implies that the attack was
unsuccessful, and the system is resilient to the attack goal described by the property.
Thus, there is no risk caused by this threat. Indeed if the expression of the predicate
contains a state of the system favorable to the attacker like for example "the car remains
open at the end of a session", the evaluation of this property to true confirms the at-
tacker in these possibilities but does not provide to him an attack scenario. On the other
hand, if the negation of this property fails, a counter example is provided by the model
checker and represents an attack scenario for the threat.

Therefore, in a context of system security analysis, the expression of properties and
their evaluation are elements to put in perspective according to the adopted viewpoints
and also according to the objective of the user of verification formalism, designer or
attacker. For example, the property R1 "When ending a session in the Back Office the
car should be locked" of the previous section illustrates this viewpoint perspective in
the sense that we adopt the attacker viewpoint and try to find an attack scenario on
our system. The proposition "P : BackOffice.booking.isEnding ∧ System.car.unlocked"
defines the stable state of the system, but the negation of this proposition expresses that
we are looking for a system vulnerability and we hope to find a scenario to reach the
attacker goal. Note that the Dwyer expression "Globaly Absence (P)" is readable and
enough expressive to consider the absence of the predicate in all the futures for all the
execution paths.
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The evaluation of this property provides a counter example by the model checker
based on a transition system with 73 870 states and a path with 2 178 transitions, for
the first reached counter example. This scenario is reduced to a 4 steps scenario after
manual analysis. This scenario is really an attack scenario because in this case, the
attacker has the capacity via a man in middle attack to send a "The car is closed"
message to the back office, and so the back office will send a "End session" to the car
although the car is really open.

With this example we can notice a limitation of our approach which is the interpre-
tation of the model checker results. For now, this analysis is manually accomplished
with the know how on the system and the possible threats. But in case of very long
scenario, we should provide a dedicated tooling to support the human interpretation.

7 Related works

Konrad et al. [12] propose a security model that can meet the development needs of
secure systems. To maximize understandability, they use well-known notations such as
Unified Modeling Language to represent structural and behavioral information. They
modified several fields in the design template to convey more security-related infor-
mation than the original template. Among these fields is the constraint field which
was added in the spirit of the Dwyer pattern specification. Lamsweerde [14] offers a
constructive approach to modelling, specifying and analyzing application-specific se-
curity requirements. His method is based on a goal-oriented framework to generate
and resolve obstacles to goal satisfaction. The extended framework tackles malicious
obstacles (called anti-objectives) put in place by attackers to threaten security objec-
tives. Threat trees are built systematically by anti-objective refinement until leaf nodes
are derived that are either software vulnerabilities observable by the attacker or anti-
requirements implementable by that attacker.

Wong et al. [15] propose a model-based approach to express behavioral properties.
They describe a PL property specification language for capturing a generalization of
Dwyer’s property specification models, and translating them into linear temporal logic.
Corradini et al [4] offer a complete chain of web tools that allows modeling, verification
and exploitation of the results of BPMN processes. They rely on Dwyer patterns and
implement some of these patterns (like the Response pattern) in their tools. Dadeau et
al. [5] proposes a property and model-based testing approach using UML/OCL models,
driven by temporal property models and a tool to help formalize temporal properties.
The models are expressed in the TOCL language, an adaptation of Dwyer’s property
models to OCL and therefore independent of the underlying temporal logic.

AUtili et al.[1] proposes a comprehensive framework, combining qualitative, real-
time and probabilistic property specification models. They rely on Dwyer’s patterns to
systematically discover new property specification models, which would be absent to
cover the three aspects mentioned above. They also offer a natural language interface
to map models to chosen temporal logic (LTL, CTL, MTL, TCTL, PLTL, etc.). Gruhn
et al. [9] extend Dwyer’s pattern system by time-related patterns, to take into account
real-time aspects in properties.
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Some of the work presented ( [15], [14]) has deal with the specification of security
properties on systems. Others like [1] and [9], have proposed extensions of Dwyer’s
patterns for real time. The rest ([15], [4], [5]) provide approaches for using Dwyer
patterns on BPMN and UML models.

8 Conclusion

The complexity of cyber-physical systems in general and embedded systems in particu-
lar, makes their verification less obvious than other software systems. This verification
can be done by using formal methods and specifying properties from security require-
ments, generally defined in natural language. One of the challenges for the community
is to correctly translate the security requirements into formal properties to be verified.
This need can be satisfied by giving an extended and expressive formalism to the do-
main experts to bridge the gap between textual requirements and the formal properties.

To address this issue, we have proposed an approach to raise the abstraction level
of the formal description of security properties. The methodology consists in using
the Dwyer’s patterns to create an intermediate level of abstraction between security
requirements and logic formulas to be verified. This formalism is closer to requirement
expression and provides a level-independent of temporal logics.

On the other hand, we improve the system debugging by diving the embedded soft-
ware code in the environment models. The global state is obtained by composing the
system state and all environment entity states. The environment includes an attacker en-
tity which provides the possibility to define several attacker behaviors, if needed. The
heterogeneity with models and embedded code is supported by the specification of a
shared API between the two parts. This shared API exposes the system state descrip-
tion for the model checker and is the input for the synchronous composition with the
property observer automaton.

This approach was evaluated on a industrial system for controlling booking and use
of vehicles in large car fleet. Security properties have been defined and a vulnerability
has been identified at system behavioral level.

In the future, we plan to experiment our approach on other industrial systems and
we will study additional tooling to help the interpretation the analysis results.
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