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INFERENCE FOR ERGODIC MCKEAN-VLASOV STOCHASTIC
DIFFERENTIAL EQUATIONS WITH POLYNOMIAL INTERACTIONS.

V. GENON-CATALOT(1), C. LARÉDO2

Abstract. We consider a specific family of one-dimensional McKean-Vlasov stochastic differ-
ential equations with no potential term and with interaction term modeled by an odd increasing
polynomial. We assume that the observed process is in stationary regime and that the sample
path is continuously observed on a time interval [0, 2T ]. Due to the McKean-Vlasov structure,
the drift function depends on the unknown marginal law of the process in addition to the un-
known parameters present in the interaction function. This is why the exact likelihood function
does not lead to computable estimators. We overcome this difficulty by a two-step approach
leading to an approximate likelihood function. We then derive explicit estimators of the coeffi-
cients of the interaction term and prove their consistency and asymptotic normality with rate√
T as T grows to infinity. Examples illustrating the theory are proposed. March 24, 2022
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1. Introduction

McKean-Vlasov stochastic differential equations (SDE) are a class of processes which have
aroused lots of recent contributions due to the wide field of potential applications. These SDEs
with coefficients depending both on the state of the process and on its current distribution
were first described by McKean (1966) to model plasma dynamics. They appear as limits of
systems of interacting particles and arise in a wide variety of disciplines, where particles may
represent atoms, cells, animals, neurons, people, rational agents, opinions, financial assets: see
e.g. Benedetto et al. (1997) for the modeling of granular media, Baladron et al. (2012))
for neurosciences, Molginer and Edelstein-Keshet (1999), Carrillo et al. (2014) for population
dynamics and ecology, Ball and Sirl (2020), Forien and Pardoux (2022) for epidemics dynamics,
Giesecke et al. (2020) and references therein for finance.

A wide research field is devoted to develop probabilistic tools for the study of interacting
particles and their limits (propagation of chaos) (see e.g. among many references Funaki (1984),
Gärtner (1988), Méléard (1996), Benachour et al. (1998a, 1998b), Malrieu (2003), Cattiaux et
al. (2008), Sznitman (1991) and Kolokoltsov (2010) for books). Herrmann et al. (2008) were
concerned with small noise properties and large deviations results for these processes.

Therefore, the statistical inference of such models is an important issue. It started with Ka-
songa (1990) who studied parametric inference from the observation of systems of N interacting
particles for a model with linear dependence on the parameters in the drift term. It was later
extended by Bishwal (2011) and Chen (2021). Giesecke et al. (2020) studied inference based
on the empirical distributions of the particle system. Della Maestra and Hoffmann (2021) were
concerned with nonparametric inference for the drift term. Belomestny et al. (2021) studied
the semiparametric estimation for a drift term containing both a parametric and a nonpara-
metric part, Li et al. (2021) the identifiability of the interaction function in a model with only
interaction between particles.

Another direction is to investigate the inference based on the limiting process of the interacting
particle systems. This yields a McKean-Vlasov stochastic differential equation which describes
the typical behavior of one isolated particle among others. It satisfies:

(1) dXt = b(t,Xt)dt+ σdWt, X0 = η

where

(2) b(t, x) = V (x)−
∫
R

Φ(x− y)ut(dy) = V (x)− Φ ? ut(x), ut = L(Xt),

Φ : R → R, (Wt) is a standard Brownian motion, η a random variable independent of (Wt).
The potential term V describes the geometry of the state space. The term Φ derives from the
interaction between particles in the original system of particles. These equations differ from
classical SDEs because of this interaction term which contains the current distribution of the
state variable. Parametric inference for this model has been already studied. Genon-Catalot and
Larédo (2021a) consider the parametric inference for model (1) from a continuous observation
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on a fixed time interval [0, T ] of a single path and of n i.i.d paths in the asymptotic framework σ
tends to 0. In Genon-Catalot and Larédo (2021b), the parametric inference is studied from the
continuous observation of a single path in the double asymptotic σ → 0 and T → +∞. Sharrock
et al. (2021) study i.i.d. observations of (1) and build an approximation of the likelihood to
obtain offline and online estimations.

We consider here a specific family of one-dimensional McKean-Vlasov SDEs, with no poten-
tial term and with interaction term modeled by an odd increasing polynomial. We moreover
restrict our study to McKean -Vlasov equations where existence, uniqueness of a solution, ex-
istence of a stationary measure and convergence towards this stationary measure are satisfied.
Classical assumptions for existence and uniqueness of solutions to (1) are linear growth and Lip-
schitz continuity for the coefficients. Nevertheless, in order to prove results under mild growth
conditions, several authors assume monotonicity and coercitivity assumptions instead (see e.g.
Gärtner (1988), Benachour et al. (1998a), Malrieu (2003), Hermann et al. (2008), Cattiaux et al
(2008). They generally assume that the interaction function Φ is increasing and odd. Moreover,
considering odd increasing polynomials ensures existence and uniqueness of an invariant distri-
bution (see e.g. Benachour et al. (1998a-b), Veretennikov (2006), Hermann and Tugaut (2010),
Cattiaux et al (2008), Eberle et al. (2019)).

In the present work, our aim is to estimate the parameters present in the interaction (or
self-stabilizing) term from the continuous observation of one sample path on the time interval
[0, 2T ] as T grows to infinity. The potential term is set to 0 and we assume that the process is
in stationary regime.
Statistical inference for ergodic diffusion processes has a longstanding history. Among many
references, we can quote the books by Kutoyants (2004), Iacus (2010), Kessler et al. (2012),
Höpfner (2014). There are also lots of papers concerning parametric or nonparametric inference
for ergodic diffusions based on continuous or discrete observations: for one dimensional diffusions,
e.g. Bibby and Sørensen (1995), Kessler (1997), Hoffmann (1999), Dalalyan (2005), Comte et al.
(2007), Comte and Genon-Catalot (2021); for multi-dimensional diffusions, e.g. Dalalyan and
Reiss (2007), Nickl and Ray (2020). Ergodic diffusions with jumps are considered in Masuda
(2007, 2019), Schmisser (2014), Amorino and Gloter (2020).
In contrast, to our knowledge, the inference for ergodic McKean-Vlasov SDEs has not been
investigated. The statistical problem is very different from the case of usual stochastic differential
equations. Let us consider the one-dimensional process defined by (1) with V ≡ 0, i.e.

(3) dXt = b(t,Xt)dt+ σdWt, where

(4) b(t, x) = −
∫
R

Φ(x− y)ut(dy) = −Φ ? ut(x), ut = L(Xt),

(5) Φ(x) = Φ(f , x) =

k−1∑
j=0

f2j+1x
2j+1, f1 > 0, f2j+1 ≥ 0, j = 1, . . . , k − 1,

(Wt) is a standard Brownian motion, σ is known and f = (f1, . . . , fk−1) is an unknown parame-
ter. A solution of (3) is a couple ((Xt, ut), t ≥ 0) composed with a process (Xt) and a family of
distribution (ut) satisfying (3)-(4). When defined, (Xt) is a time-inhomogeneous Markov process.
Under appropriate conditions, the process (Xt) admits a stationary distribution. We assume here
that (Xt) is in stationary regime.
As Φ is odd, whatever the initial distribution, the process (Xt) solving (3) has a constant expec-
tation m (see Section 2). Contrary to classical stochastic differential equations, stationary distri-
butions of model (3) are not uniquely determined except if the expectation of (Xt) is specified.
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This is due to the fact that (Xt) and (Xt −EXt) follow the same equation (3). If E(Xt) = 0,(3)
admits a unique invariant distribution with symmetric density u(f , x). If E(Xt) = m, (3) admits
a unique invariant distribution with density u(f , x−m). Therefore, we first study the estimation
of f when (Xt) is in centered stationary regime (X0 ∼ u(f , x)dx). Then, we study the joint
estimation of (m, f) when the process is in non centered stationary regime (X0 ∼ u(f , x−m)dx).
When (Xt) is in stationary regime, L(Xt) does no longer depend on t and is equal to the station-
ary distribution u(f , x)dx in centered stationary regime and to u(f , x−m)dx in stationary regime
with expectation m. Because of the specific form of the interaction function Φ (polynomial), the
convolution product Φ ? u(f , .) (resp. Φ ? u(f , .−m)) is explicitely given as a function of f and
the moments of the invariant distribution. However, these moments have no explicit expression
as functions of f and m. Therefore, the exact log-likelihood can be studied theoretically but does
not lead to computable estimators.
This is why we first build estimators of the stationary distribution moments based on the sample
path (Xt, t ∈ [0, T ]). Then, to build an explicit contrast, we plug these moment estimators into
the exact conditional log-likelihood given XT of (3), based on the sample (Xt, t ∈ [T, 2T ]). We
prove that these estimators are consistent and asymptotically Gaussian with rate

√
T .

The paper is organized as follows. In Section 2, we detail the assumptions for existence and
uniqueness of solutions and existence of invariant distributions. In particular, we describe these
invariant distributions (Proposition 1). When the observed process is in stationary regime, it is
identical to a classical ergodic diffusion process (Proposition 2). In Section 3, we estimate f when
the observed process is in centered stationary regime. We first study the exact likelihood and
prove that the maximum likelihood estimator is consistent and asymptotically Gaussian with
rate

√
T (Proposition 4) . However, this remains completely theoretical and the estimators are

numerically intractable. Next, we study computable estimators of f for the centered process.
Two kinds of estimators are proposed. First , estimators are built using an approximation of
the likelihood on [T, 2T ] (Theorem 1). Second, we also build emprical estimators based on some
specific properties of model (3). Examples are given. Next, we study the inference of (m, f)
when the process is no longer centered (Theorem 2). In Section 5, we recall some known results
to compute or approximate the invariant distribution. Section 6 contains concluding remarks.
Proofs are gathered in Section 7. In the Appendix (Section 8), a central limit theorem for ergodic
diffusions is recalled.

2. Probability preliminaries.

In this section, we give sufficient conditions for existence and uniqueness of a solution to (3)-
(4) and existence and uniqueness of a stationary distribution. We explain how the stationary
distribution with specified expectation may be computed by an implicit fixed point equation.
This is different from the case of classical SDEs. We describe the properties of (3) when the
initial variable follows the stationary distribution.

2.1. Assumptions. The following assumptions may be found in Benachour et al. (1998a),
Malrieu (2003) or Cattiaux et al. (2008).

• [H1] Φ is odd and increasing.
• [H2] Φ is locally Lipschitz with polynomial growth, i.e. there exist c > 0, ` ∈ N∗ such
that ∀x, y ∈ R, |Φ(x)− Φ(y)| ≤ c|x− y|(1 + |x|` + |y|`).
• [H3] Φ is C1 and strictly convex on R+: there exists a constant λ > 0 such that
∀x ≥ 0, Φ′(x) ≥ λ.
• [H4] Φ′ has ` polynomial growth: ∃C > 0, ` ∈ N, ∀x ∈ R, |Φ′(x)| ≤ C(1 + |x|`).
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Note that, under [H2], for all x, |Φ(x)| ≤ c|x|(1 + |x|`). Therefore, there exists c1 > 0 such that
|Φ(x)| ≤ c1(1 + |x|`+1) and this implies∫

|Φ(x− y)|ut(dy) ≤ c1(1 + 2`|x|`+1 + 2`
∫
|y|`+1ut(dy)).

So Φ ? ut is well defined as soon as ut has a `+ 1-th order moment.
Under [H1]-[H2], if EX2(`+1)2

0 < +∞, equation (3) admits a unique strong solution. If EX2n
0 <

+∞, then supt≥0 EX2n
t < +∞ (see Theorem 3.1 and Proposition 3.10 in Benachour et al., 1998a,

Theorem 2.13 in Hermann et al., 2008).
Note that, by (3)-(4),

E(Xt) = E(X0) +

∫ t

0
dsE

∫
Φ(Xs − y)us(dy).

Since Φ is odd, taking (Xt) an i.i.d. copy of (Xt), E
∫

Φ(Xt − y)ut(dy) = EΦ(Xt − Xt) = 0.
Thus,

(6) E(Xt) = E(X0).

This holds whatever the initial variable.
Note also that Xt − E(X0) is also solution of (3). Indeed,

Xt − E(X0) = X0 − E(X0)−
∫ t

0
ds

∫
Φ(Xs − E(X0)− (y − E(X0)))us(y)dy

= X0 − E(X0)−
∫ t

0
ds

∫
Φ(Xs − E(X0)− z)us(z + E(X0))dz

= X0 − E(X0)−
∫ t

0
ds

∫
Φ(Xs − E(X0)− z)vs(z)dz

where vs is the distribution of Xs − E(X0).
This is why the specification of the expectation of the process is important especially for invariant
distributions (see below).
Finally, let us state another useful property associated with this equation.

Lemma 1. Assume [H1]-[H3]. Consider an even probability density u such that
∫∞

0 y`+1u(y)dy <
+∞. Then, Φ ? u is well-defined and

• Φ ? u is odd.
• For all x ≥ 0, λx ≤ Φ(x) ≤ Φ ? u(x) ≤ c`x[1 + x` +

∫∞
0 y`u(y)dy] for some constant c`.

2.2. Stationary distributions.

2.2.1. Existence and uniqueness. By Lemma 2.2 in Hermann and Tugaut (2010), if there exists
an invariant density whose (8(`+ 1)2)-moment is finite, then it satisfies the implicit fixed point
equation

(7) u(x) =
exp (−2σ−2

∫ x
0 Φ ? u(y))dy)

ν(u)

where, by Lemma 1, ν(u) below is well defined and finite,

(8) ν(u) =

∫
R

exp (−2σ−2

∫ x

0
Φ ? u(y))dy)dx < +∞.

Equation (7) does not possess a unique solution unless its expectation is specified. In other
words, it has a unique solution with a given expectation.
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As an example, consider the simple case Φ(x) = x, then Φ ? u(x) =
∫

(x − y)u(y)dy = x −m
with m =

∫
yu(y)dy. Thus,

u(x) = um(x) ∝ exp [− 1

σ2
(x2 − 2mx)] =

1

σ
√
π

exp [− 1

σ2
(x−m)2].

Hence, the stationary distribution depends on the parameter m. This is consistent with the fact
that equation (3) with Φ(x) = x writes

Xt = X0 −
∫ t

0
(Xs − EXs)ds+ σWt = X0 −

∫ t

0
(Xs −m)ds+ σWt

where m = EX0 = EXt for all t.
For this reason, many authors (Cattiaux et al., 2008, Benachour et al., 1998a, Malrieu, 2003)
consider equation (3) assuming that EXt = 0 and prove the following result.

Proposition 1. (see Cattiaux et al., 2008, Benachour et al., 1998a or Malrieu 2003).
(i) Under [H1]-[H4], there exists a unique even density function u(x) implicitely defined by

(9) u(x) =
1

ν(u)
exp (−2σ−2

∫ x

0
Φ ? u(y))dy)

which satisfies (see [H3] for λ and Lemma 1):

(10) u(x) ≤ 1

ν(u)
exp [−σ−2λx2].

(ii) Moreover, if u(.) is the density of X0 and (Xt) is the unique solution of (3), then u(.) is the
density of Xt for all t ≥ 0.
(iii )For any initial law satisfying the moment condition of order 8(` + 1)2, L(Xt) converges to
the invariant symmetric law u as t tends to infinity.
(iv) The convergence of L(Xt) to the stationary density u is exponential with respect to the
Wasserstein distance W2: W2(L(Xt), u) ≤ Ce−λtW2(L(X0), u) (λ is defined in [H3]).

Consequently, the general equation (3) admits a unique invariant density um(x) such that∫
yum(y)dy = m. This density is equal to um(x) = u(x−m) and is thus symmetric around m.

By (10), u admits moments of any order.

2.2.2. Ergodicity. Let us now point out the following properties of the process (Xt) in stationary
regime. The process defined in (3) is a time-inhomogeneous Markov process. However, when (Xt)
is in stationary regime (with expectation m), (Xt) is identical to a time-homogeneous diffusion
process.
Indeed, assume that the initial variable η has distribution um(x)dx then, the density ut(dy) of
Xt defined in (3) satisfies

∀t ≥ 0, ut(dy) = um(y)dy,

so that the following holds.

Proposition 2. Consider the stochastic differential equation

(11) dYt = b(Yt)dt+ σdWt, b = −Φ ? um,

where um(.) = u(.−m) and u0 = u is the unique symmetric solution of (9).
Then, (Yt) is a positive recurrent diffusion whose stationary distribution has density um(x).
If Y0 ∼ um(x)dx, it is ergodic. Moreover,
- If Y0 6= X0, (Yt) 6≡ (Xt).
- If Y0 = X0 = η ∼ um(x)dx, then Xt = Yt for all t ≥ 0.



INFERENCE FOR ERGODIC MCKEAN VLASOV STOCHASTIC DIFFERENTIAL EQUATIONS 7

Thus, when X0 ∼ um(x)dx, (Xt) is equal to the solution of a classical stochastic differential
equation in stationary regime and is ergodic.Therefore, a law of large numbers holds for (Xt).
If f satisfies

∫
|f(x)|um(x)dx < +∞, applying the ergodic theorem yields

(12)
1

T

∫ T

0
f(Xs)ds→a.s.

∫
f(x)um(x)dx.

The central limit theorem associated with this result is stated and detailed in the Appendix.

3. Parametric inference in centered stationary regime.

From now on, we consider (Xt) defined by (3),(4),(5). Therefore, assumptions [H1]-[H4] are
satisfied and equation (3) admits an invariant distribution which is unique when its expectation
is specified. In this section, we assume that (Xt) is in centered stationary regime and consider the
estimation of f ′ = (f1, f3, . . . , f2k−1), with f1 > 0, f2j+1 ≥ 0, j = . . . , k − 1, which is an un-
known parameter of (0,+∞)× [0,+∞)k−1, based on the continuous observation of (Xt, t ≤ 2T ).
According to Proposition 1, Equation (9) has a unique symmetric density solution u(f , .) which
depends on parameter f . Note that u(f , .) depends on f and σ. As σ is known, in what follows,
we omit the dependence w.r.t. σ in the notations. Therefore, we make here the assumptions:

• [H5] Φ(x) = Φ(f , x) =
∑k−1

j=0 f2j+1x
2j+1, f1 > 0, f2j+1 ≥ 0, j = 1, . . . , k − 1,

• [H6] X0 = η ∼ u(f , x)dx.
Define, for j ≥ 0,

(13) γ2j(f) = γ2j =

∫
R
x2ju(f , x)dx.

Proposition 3. Under [H5]-[H6], the drift b(t, x) = b(x) = −Φ(f , .)?u(f , x) is an odd polynomial
such that

b(x) = b(f , x) =
k−1∑
i=0

b2i+1x
2i+1, b2i+1 = b2i+1(f) = −

k−1∑
j=i

(
2j + 1

2(j − i)

)
γ2(j−i)(f)f2j+1, 0 ≤ i ≤ k−1,

where for p ≤ n,
(
n
p

)
is the binomial coefficient. Thus

(14) b = (b2i+1, i = 0, . . . , k − 1)′ = Mk(f)f ,

where Mk(f) = (Mk(i, j))0≤i,j≤k−1) is the k × k upper triangular matrix given by

(15) Mk(i, j) = 0 for i > j,Mk(i, j) = −
(

2j + 1

2(j − i)

)
γ2(j−i)(f) for i ≤ j.

Note that γ0(f) = γ0 = 1 so that Mk(i, i) = −1.
The coefficients of b(f , x) are explicit functions of f and of the moments of u(f , .). Note that the
matrix Mk(f) depends on f only through the moments (γ0, γ2(f), . . . , γ2(k−1)(f)).
We define for v = (v0, v1, . . . , vk−1)′ a vector of Rk, M (v)

k = (M
(v)
k (i, j))0≤i,j≤k−1 with

(16) M
(v)
k (i, j) = 0 for i > j,M

(v)
k (i, j) = −

(
2j + 1

2(j − i)

)
vj−i for i ≤ j.

Note that Mk(f) defined in (15) satisfies Mk(f) = M
(γ)
k where γ = (γ0, γ2(f), . . . , γ2(k−1)(f)).
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Examples:. For k = 1, b(f , x) = −f1x, M1 = −[1].

For k = 2, b(f , x) = −[(f1 + 3γ2f3)x+ f3x
3], M2(f) = −

(
1 3γ2(f)
0 1

)
.

For k = 3, b(f , x) = −[(f1 + 3γ2f3 + 5γ4)f5)x+ (f3 + 10γ2f5)x3 + x5],

M3(f) = −

1
(

3
2

)
γ2(f)

(
5
4

)
γ4(f)

0 1
(

5
2

)
γ2(f)

0 0 1

 .

Proof of Proposition 3. First, since u(f , .) is symmetric, odd moments of u(f , .) are nul.
Therefore,

Φ(f , .) ? u(f , x) =

k−1∑
j=0

f2j+1

∫
(x− y)2j+1u(f , y)dy =

k−1∑
j=0

f2j+1

i∑
`=0

(
2j + 1

2`

)
x2j+1−2`γ2`(f)

=
k−1∑
j=0

f2j+1

j∑
i=0

(
2j + 1

2(j − i)

)
x2i+1γ2(j−i)(f) =

k−1∑
i=0

x2i+1
k−1∑
j=i

(
2j + 1

2(j − i)

)
γ2(j−i)(f)f2j+1.

2

3.1. Theoretical likelihood inference. Here, we look at maximum likelihood estimation based
on (Xt, t ∈ [0, T ]). The Girsanov formula holds and the conditional log-likelihood of (Xt, t ∈
[0, T ]) given X0 is given by:

(17) `T (f) = σ−2[

∫ T

0
b(f , Xs)dXs −

1

2

∫ T

0
b2(f , Xs)ds].

Define the estimator

(18) ̂̂
fT = arg max

f∈Rk
`T (f).

This estimator is purely theoretical as it is not given by explicit equations due to the presence
of the moments of u(f , .) in the drift b(f , x) (see Proposition 3).

Proposition 4. Assume [H5]-[H6]. The following holds:

1

T
(`T (f)− `T (f0))→ − 1

2σ2

∫
(b(f , x)− b(f0, x))2u(f0, y)dy := − 1

2σ2
K(f0, f),

Assume moreover that the parameter set for f is a compact subset of (0,+∞)× [0,+∞)k−1 and

that b(f , x) = b(f0, x) for all x implies f = f0. Then, the maximum likelihood estimator ̂̂fT is
consistent.
The matrix If = (

∫
R[ ∂b∂fi (f , x)] ∂b∂fi′

(f , x)]u(f , x)dx)0≤i,i′≤k is invertible and

√
T (
̂̂
fT − f)→L N (0, σ2I−1

f ).

According to Proposition 2, when (Xt) is in stationary regime, Xt ≡ Yt defined in (11) which
is a classical ergodic diffusion. Therefore, the proof is classical. The difficulty here lies in the
fact that the drift has a complex dependence with respect to the unknown parameters so that
the estimator ̂̂fT is numerically intractable (see e.g. Example 2).
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3.2. Explicit estimators using empirical moments. We assume here that the sample path
(Xt) is continuously observed throughout the time interval [0, 2T ]. We use the first half of the
sample path, (Xt, t ∈ [0, T ]) to build empirical estimators of the moments of u(f , .), and the
second half, (Xt, t ∈ [T, 2T ]), to define a contrast in order to estimate the coefficients b2i+1 in
the drift b(f , x). Finally, we deduce estimators for the parameter f .
Using Proposition 3, let us consider the contrast function which is the log-likelihood given XT

of the process (Xt, t ∈ [T, 2T ]) with polynomial drift
∑k−1

i=0 b2i+1x
2i+1 and diffusion term σ:

(19) UT (b) =
1

σ2

(∫ 2T

T

k−1∑
i=0

b2i+1X
2i+1
s dXs −

1

2

∫ 2T

T
[
k−1∑
i=0

b2i+1X
2i+1
s ]2ds

)
.

The associated estimator is obtained maximizing UT with respect to b = (b2i+1, i = 0, . . . , k−1)′.
For this, define

(20) zk(x) =


x
x3

...
x2k−1

 , ZT =

∫ 2T

T
zk(Xs)dXs.

Then, the estimator b̂T is defined by the equation

(21) ZT = ΨT b̂T ,

where

(22) ΨT =

(∫ 2T

T
zk(Xs)[zk(Xs)]

′ds = (

∫ 2T

T
X2i+2j+2
s ds

)
0≤i,j≤k−1

.

Let us define, using (13),

(23) Ψ(f) = (γ2(i+j+1)(f))0≤i,j≤k−1.

Proposition 5. Assume [H5]-[H6]. The matrix ΨT /T converges a.s. to Ψ(f). The matrix Ψ(f)

is invertible, b̂T converges a.s. to b and
√
T (b̂T − b) converges in distribution to the Gaussian

law Nk(0, σ2Ψ(f)−1).

In a second step, we consider the consistent estimators of the moments of u(f , .)) built using the
sample path (Xt, t ∈ [0, T ]), defined by

(24) γ̂2j(T ) =
1

T

∫ T

0
X2j
s ds, j ≥ 1 (we set γ̂0(T ) = γ0 = 1).

By the ergodic theorem, the estimator γ̂2j(T ) converges almost surely to the moment γ2j(f) of
u(f , .). Moreover, let us define, g′0(x) = 0 and, for 1 ≤ ` ≤ k − 1,

(25) g′`(f , x) = −2σ−2[u(f , x)]−1

∫ x

−∞
(y2` − γ2`(f))u(f , y)dy.

Then, according to Genon-Catalot et al. (2000) (recalled in Section 8), the empirical moments
of an ergodic diffusion (Xt) with invariant distribution u(f , .) satisfy,

(26)
√
T (γ̂2`(T )− γ2`(f)) =

σ√
T

∫ T

0
g′`(f , Xs)dWs + oP (1).
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Hence, setting V (f) = (Vl,m(f))0≤`,m≤k−1 with Vl,m(f) =
∫
g′`(f , x)g′m(f , x)u(f , x)dx,

(27)
√
T


γ̂0(T )− γ0

γ̂2(T )− γ2(f)
. . .

γ̂2(k−1)(T )− γ2(k−1)(f)

→ Nk(0, σ2V (f)).

Let us come back to the estimation of f . Relation (14), b = Mk(f)f , of Proposition 3 suggests to
consider the matrix M̂k using (16) where the unknown moments of u(f , .) are replaced by their
consistent estimators built on the observation of (Xt) on [0, T ] given above:

(28) M̂k = M
(γ̂0(T ),γ̂2(T ),...,γ̂2(k−1)(T ))

k = (M̂k(i, j))0≤i,j≤k−1, with

(29) M̂k(i, j) = −
(

2j + 1

2(j − i)

)
γ̂2(j−i)(T )1i≤j .

It follows from (26) that M̂k converges a.s. to Mk(f).
This justifies the definition of f̂T by (see (21)):

(30) f̂T = M̂k
−1

b̂T = M̂k
−1

Ψ−1
T ZT = (ΨT M̂k)

−1ZT .

Let us stress that as for the theoretical maximum likelihood estimator (18), this new estimator
does not depend on σ.

Theorem 1. Under the assumptions [H5]-[H6], the estimator f̂T is consistent and satisfies

(31)
√
T (f̂T − f)→L Nk(0, σ2Σ(f)) with Σ(f) = Σ1(f) + Σ2(f)

(32) Σ1(f) = M−1
k (f)Ψ−1(f)(M−1

k (f))′; Σ2(f) =

∫
β(f , x)β′(f , x)u(f , x)dx

with, using definitions (15), (16),and (23),

(33) β(f , x) = Mk(f)
−1M

(v(x))
k f ,

with v(x) =
(
0, g′1(f , x), . . . , g′k−1(f , x)

)
.

By Proposition 5, b̂T converges a.s. to b and, by (26), M̂k to Mk so that f̂T is consistent.
For the asymptotic normality, two terms appear. Heuristically, the first term Σ1(f) derives from
the change of variable b → f and the second one Σ2(f) from the estimation of the moments of
u(f , .) and the plug-in device in the estimation. The proof, detailed in the appendix, relies on
the decomposition in the two main terms

Ψ(f)Mk(f)
√
T (f̂T − f) =

σ√
T

∫ 2T

T
zk(Xs)dWs −Ψ(f)

√
T (M̂k −Mk(f))f + oP (1).

Noting that M̂k(i, j) − Mk(i, j) = −σ
( 2j+1

2(j−i)
) ∫ T

0 g′2(j−i)(f , Xs)dWs + oP (1), the second term
depends on (Xt, t ≤ T ) while the first term depends on (Xt, T ≤ t ≤ 2T ). These two terms are
conditionally independent and lead to the two quantities appearing in Σ(f).
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3.3. Another inference method. We assume that the observation is (Xt, t ∈ [0, T ]). This
method is based on a special property of model (3)-(4)-(5). There is an explicit relation linking
the vector f and the vector (γ2i(f), i = 0, . . . , k − 1)′. Indeed, writing the Ito formula yields

X2`
t = X2`

0 + 2`

∫ t

0
X2`−1
s

− k−1∑
j=0

f2j+1(

j∑
m=0

(
2j + 1

2m

)
X2j+1−2m
s γ2m(f))ds+ σdWs


+ σ2`(2`− 1)

∫ t

0
X2`−2
s ds.

Taking expectations and using that the process is in centered stationary regime yields

∀t ≥ 0, 0 = −2`t

k−1∑
j=0

(
j∑

m=0

(
2j + 1

2m

)
γ2m(f)γ2(j+`−m)(f)

)
f2j+1 + σ2`(2`− 1)tγ2`−2(f).

We set:

(34) B(f) := (σ2(2`− 1)γ2`−2(f), ` = 1, . . . , k)′, and

(35) Γ(f) = (Γ`j(f))1≤`≤k,0≤j≤k−1 with Γ`,j(f) = 2

j∑
m=0

(
2j + 1

2m

)
γ2m(f)γ2(j+`−m)(f)

Then, B(f) = Γ(f)f . The matrix Γ(f) is necessarily invertible.
Substituting in (34) each moment by its empirical estimator (24) yields the two estimators B̃T , Γ̃T
and the relation defining the moment estimator of f :

(36) f̃T = (Γ̃T )−1B̃T

which is by construction consistent and asymptotically Gaussian. We only need to compute the
asymptotic covariance matrix. Contrary to the previous estimators, the estimator f̃T explicitely
depends on σ and thus requires its precise knowledge.

Proposition 6. Assume [H5]-[H6]. The estimator defined by (36) is consistent and such that√
T (f̃T − f) converges in distribution to N (0,Γ−1(f)KΓ−1(f)′) where K is given in the proof (see

(60)).

3.4. Examples. We illustrate the previous theory on several examples.

• Example 1: Φ(f , x) = fx, f > 0.
The centered stationary distribution is the Gaussian law u(f, x)dx = N (0, σ2/2f). Equation (3)
writes dXt = −f

∫
(Xt − y)u(f, y)dydt+ σdWt = −fXtdt+ σdWt. The estimator f̂T is equal to

the maximum likelihood estimator:

f̂T = −
∫ T

0 XsdXs∫ T
0 X2

sds
=
̂̂
fT .

As T−1
∫ T

0 X2
sds converges a.s. to σ2/2f , we obtain the classical result that

√
T (f̂T−f) converges

in distribution to N (0, 2f). With the notations of Theorem 1, Σ1(f) = 2f/σ2,Σ2(f) = 0.
The second method estimator, based on the relation γ2(f) = σ2/2f , is given by:

f̃T =
σ2T

2
∫ T

0 X2
sds

.
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The equation Lg2(x) = (σ2/2f)−x2 admits an explicit solution g2 such that g′2(x) = −x/f . Thus,
T−1/2

∫ T
0 (X2

s − (σ2/2f))ds converges in distributon to N (0, σ2V ) with V =
∫

(x/f)2u(f, x)dx =

σ4/2f3. This yields that
√
T (f̃T −f) converges in distribution to N (0, 2f). In this special exam-

ple, f̂T and f̃T have the same asymptotic distribution. Note that f̂T can be computed without
knowing σ2 which is preferable.

• Example 2: Φ(f, x) = fx3, f > 0.
The function Φ(f, x) = fx3 does not satisfy all our (sufficient) assumptions but the existence and
uniqueness of an invariant density can be checked directly. The stationary distribution u(f, .) is
unique and defined by the implicit equation (9). As u(f, .) is symmetric,

∫
(x − y)3u(f, y)dy =

x3 + 3xγ2(f). Therefore, equation (3) starting with X0 ∼ u(f, x)dx, writes:

(37) dXt = −f(X3
t + 3Xt γ2(f))dt+ σdWt, X0 ∼ u(f, x)dx.

where

u(f, x) = exp

[
−σ−2f(

x4

2
+ 3x2γ2(f))

]
/ν(u(f, .))

and γ2(f) is implicitly given as the unique solution (see Benachour et al. (1998a)) of

(38)
∫
R
x2 exp

[
−σ−2f(

x4

2
+ 3x2γ2(f))

]
dx = γ2(f)

∫
R

exp

[
−σ−2f(

x4

2
+ 3x2γ2(f))

]
dx.

Let us start with the exact maximum likelihood estimator. It is defined as the solution of
`′T (
̂̂
fT )) = 0, i.e. ∫ T

0
[X3

t + 3Xt(γ2(
̂̂
fT )− ̂̂fTγ′2(

̂̂
fT )]dXt

= −
∫ T

0
[2
̂̂
fT (X3

t + 3Xt(γ2(
̂̂
fT )) + (

̂̂
fT )23Xtγ

′
2(
̂̂
fT )dt.

Differentiating this identity w.r.t. f , equation (38) allows to obtain an expression of γ′2(f) as a

function of (f, γ2(f), γ4(f), γ6(f). But this does not help in obtaining an explicit equation ̂̂fT .
This illustrates the fact that the exact MLE is intractable.
Let us now look at the maximum contrast estimator of f based on (Xt, t ∈ [0, 2T ]. We are not
in the framework of Theorem 1 since f1 = 0. But we can compute explicitly the estimator of f
and get using (24)

f̂T = −
∫ 2T
T (X3

t + 3Xtγ̂2(T ))dXt∫ 2T
T (X3

t + 3Xtγ̂2(T ))2dt
:= −NT

DT
,

Define

(39) a(f) = γ6(f) + 9γ3
2(f) + 6γ2(f)γ4(f); c(f) = 3(γ4(f) + 3γ2

2(f)).

As T →∞, DT
T →

∫
R(x3 + 3xγ2(f))2u(f, x)dx = a(f). We write:

√
T (f̂T − f) = − σ

DT /T
T−1/2

∫ 2T

T
(X3

t + 3Xtγ̂2(T ))dWt

+ f
√
T (γ2(f)− γ̂2(T ))

∫ 2T
T 3Xt(X

3
t + 3Xtγ̂2(T ))dt/T

DT /T
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We have that 1
T

∫ 2T
T 3Xt(X

3
t + 3Xtγ̂2(T ))dt→ c(f) and,

1√
T

∫ 2T
T (X3

t + 3Xtγ̂2(T ))dWt = 1√
T

∫ 2T
T (X3

t + 3Xtγ2(f))dWt + oP (1). Thus,

√
T (f̂T − f) = − σ

a(f)

1√
T

∫ 2T

T
(X3

t + 3Xtγ2(f))dWt

+
√
T (γ2(f)− γ̂2(T ))

c(f)

a(f)
f + oP (1).

Now, using (25) and (26)
√
T (f̂T − f) =

σ
√

2√
2T

∫ 2T

0

(
1

a(f)
(X3

t + 3Xtγ2(f))1[T,2T ](s) + f
c(f)

a(f)
g′1(Xs)1[0,T ](s)

)
dWs

+ oP (1).

Using the notations of Theorem 1, Σ1(f) =
1

a(f)
, Σ2(f) = f2 c2(f)

a2(f)

∫
(g′1(x))2u(f, x)dx,

√
T (f̂T − f)→L N

(
0, σ2(Σ1(f) + Σ2(f))

)
.

Let us now look at the second method for f . The Ito formula yields:

EX2
t = EX2

0 − 2f

∫ t

0
E(Xs(X

3
s + 3Xsγ2(f))ds+ σ2t.

By the strict stationarity, we get: f(2γ4(f) + 6γ2
2(f)) = σ2. Thus, we can define an estimator of

f by

f̃T =
σ2

2γ̂4(T ) + 6(γ̂2(T ))2
.

We obtain the limiting distribution of
√
T (f̃T − f) by the delta method using that

√
T (γ̂2(T )−

γ2(f), γ̂4(T )− γ4(f)) is asymptotically Gaussian with covariance given in (27).

• Example 3: Φ(f , x) = f1x+ f3x
3, f1 > 0, f3 ≥ 0 (k = 2).

We have that b(f , x) = −(f1x+ f3(x3 + 3xγ2(f))) = −((f1 + 3γ2(f)f3)x+ f3x
3), and(

b1
b3

)
= M2(f)

(
f1

f3

)
, M2(f) = −

(
1 3γ2(f)
0 1

)
.

This yields(
f̂T,1
f̂T,3

)
= −

(
1 −3γ̂2(T )
0 1

)
Ψ−1
T

(∫ 2T
T XsdXs∫ 2T
T X3

sdXs

)
where ΨT =

(∫ 2T
T X2

sds
∫ 2T
T X4

sds∫ 2T
T X4

sds
∫ 2T
T X6

sds

)
.

According to Theorem 1, the asymptotic variance of
√
T (f̂T − f) is σ2(Σ1(f) + Σ2(f)) where

Σ1(f) = M−1
2 (f)Ψ−1(f)(M−1

2 (f))′ and Σ2(f) =
∫
β(f , x)β′(f , x)u(f , x)dx, with

Ψ(f) =

(
γ2(f) γ4(f)
γ4(f) γ6(f)

)
, β(x) = β(f , x) = M2(f)−1M2(0, g′1(x))f .

Therefore we get that Σ1(f) = (γ2(f)γ6(f)− γ2
4(f))−1

(
γ6 + 6γ2γ4 + 9γ3

2 −γ4 − 3γ2
2

−γ4 − 3γ2
2 γ2

)
.

Now, for v(x) = (0, g′1(x)), M (v(x))
2 = −

(
0 3g′1(x)
0 0

)
, so that

β(f , x) =

(
3f3g

′
1(x)

0

)
, and Σ2(f) = 9f2

3

(∫
(g′1(x))2u(f , x)dx 0

0 0

)
.
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4. Parametric inference in noncentered stationary regime.

In this section, we assume that the process (3) is in noncentered stationary regime. Thus, we
assume

• [H7] X0 ∼ um(f , .) = u(f , .−m),
i.e. we observe the process such that:

(40) dXt = −
∫

Φ ? L(Xt)(Xt − y)dy dt+ σdWt, X0 = η ∼ um(x)dx,

where um(.) = u(. −m) and u = u(f , .) is the unique symmetric solution of (9). Hence, for all
t ≥ 0, L(Xt) = um(x)dx, so that

dXt = b(f ,m,Xt) dt+ σdWt, X0 = η ∼ um(x)dx, b(f ,m, x) = −Φ ? um(Xt)

In this case, E(Xt) = m for all t and m must be estimated in addition to f . Now, we have:

(41) b(f ,m, x) = −
∫

Φ(x−m− (y −m))um(y)dy = −Φ ? u(x−m) = b(f , x−m).

As m is unknown, we set m̂ = T−1
∫ T

0 Xsds and consider the contrast

(42) ΛT (f) =

∫ 2T

T
b(f , Xs − m̂)dXs −

1

2

∫ 2T

T
b2(f , Xs − m̂)ds.

As previously, we proceed in two steps. First we define b̃T by

(43) Ψ̃T b̃T = Z̃T

with (see (30))

(44) Z̃T =

∫ 2T

T
z(Xs − m̂)dXs, Ψ̃T = (

∫ 2T

T
(Xs − m̂)2i+2j+2ds)0≤i,j≤k−1.

Now, we set γ̃2`(T ) = T−1
∫ T

0 (Xs − m̂)2`ds, ` ≥ 0 and define the estimator f̃T by

(45) b̃T = M̃k f̃T , M̃k = M
(γ̃2`(T ),`=0,...,k−1)
k .

Proposition 7. Assume [H5] and [H7]. As T tends to infinity, m̂ →a.s. m and for ` ≥ 1,
γ̃2`(T )→a.s. γ2`(f) =

∫
x2`u(f , x)dx. Moreover,
√
T (m̂−m) =

σ√
T

∫ T

0
h′0(Xs −m)dWs + oP (1),(46)

√
T (γ̃2`(T )− γ2`(f)) =

σ√
T

∫ T

0
h′`(Xs −m)dWs + oP (1),(47)

where h′0(x) = − 2
σ2u(f ,x)

∫ x
−∞ vu(f , v)dv and h′`(x) = g′`(x) = − 2

σ2u(f ,x)

∫ x
−∞(v2`−γ2`(f))u(f , v)dv

(see (25)).
Consequently, for all k, the vector (

√
T (m̂−m),

√
T (γ̃2`(T )− γ2`(f)), ` = 1, . . . , k) converges in

distribution to Nk+1(0, σ2(
∫
h′i(v)h′j(v)u(f , v)dv))0≤i,j≤k)

Theorem 2. Assume [H5] and [H7].
• The estimator f̃T is consistent and

√
T (f̃T −f) converges in distribution to Nk(0, σ2Σ(f)) where

Σ(f) is defined in (31).
• The joint asymptotic distribution of (m̂, f̃T ) is as follows

(
√
T (m̂−m),

√
T (f̃T − f))→L N1+k

(
0, σ2

( ∫
[h′0(x)]2u(x)dx

∫
h′0(x)[β(x)]′u(x)dx∫

h′0(x)β(x)u(x)dx Σ(f)

))
,
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where h′0 is defined in Proposition 7, β = β(f , .) is defined in (33) and Σ(f) is defined in (31).

Note that f̃T and f̂T have the same asymptotic distribution.

Example 1. Consider the Ornstein-Uhlenbeck process in non centered stationary regime: dXt =
−f(Xt−m)dt+σdWt with stationary distribution equal to um(x)dx = N (m,σ2/2f). The MLE
based on (Xt, t ∈ [0, T ] can be computed in this model:

̂̂
fT = −

∫ T
0 (Xt − ̂̂mT )dXt∫ T
0 (Xt − ̂̂mT )2dt

, ̂̂mT =
XT −X0

T
̂̂
fT

+
1

T

∫ T

0
Xsds, I(f) =

(
f2 0
0 σ2/(2f)

)
.

The asymptotic distribution of
√
T ( ̂̂mT −m),

̂̂
fT − f) is the Gaussian law N2(0, σ2I−1(f)). The

maximum contrast estimator is given by:

f̃T = −
∫ 2T
T (Xt − m̂)dXt∫ 2T
T (Xt − m̂)2dt

, m̂ =
1

T

∫ T

0
Xsds.

We have M1 = −1, Ψ(f) = σ2/2f , Σ1(f) = 2f/σ2, Σ2(f) = 0. The contrast estimator has the
same asymptotic distribution as the exact MLE.

5. Numerical considerations

5.1. Computation of the stationary distribution. The symmetric stationary distribution
u of (3) can be computed numerically (see e.g. Benachour et al., 1998a). Indeed,

u(x) =
1

ν(u)
exp [− 2

σ2
F (x)]dx, ν(u) =

∫
exp [− 2

σ2
F (x)]dx

F (x) =

k−1∑
`=0

x2`+2

2`+ 2

k−1∑
i=`

f2i+1

(
2i+ 1)

2(i− `)

)
γ2(i−`) = Fγ(x), γ2` =

∫
x2`u(x)dx,

and γ = (γ2j , j = 1, . . . , k − 1)′. For each f , the vector γ is the unique solution of the system:

γ2j

∫
exp [− 2

σ2
Fγ(x)]dx =

∫
x2j exp [− 2

σ2
Fγ(x)]dx, j = 1, . . . , k − 1,

and can therefore be numerically computed. Once Fγ is obtained, u may also be numerically
obtained.

5.2. Approximation of the stationary distribution. Here is another way of approximating
the stationary distribution u (see Malrieu (2003)). Consider the system of N interacting particles
given by:

(48) dξi,Nt = − 1

N

N∑
j=1

Φ(ξi,Nt − ξj,Nt )dt+ σdBi
t, ξi,N0 = ξi0, i = 1, . . . , N,

where (Bi, i = 1, . . . , N) are independent Brownian motions, (ξi0, i = 1, . . . , N) are i.i.d. random
variables independent of (Bi, i = 1, . . . , N) and Φ satisfies [H1]-[H4]. Set

Xi,N
t = ξi,Nt − 1

N

N∑
j=1

ξj,Nt , Xi
t = Xi

0 −
∫ t

0

∫
Φ(Xi

s − y)us(dy)dt+ σBi
t, X

i
0 = ξi0 − Eξi0

where us is the distribution of Xi
s. Then, for any fixed p, the vector of process ((Xi,N

t ), i =
1, . . . , p) converges to the vector of process ((Xi

t), i = 1 . . . , p) which are i.i.d. with distribution
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equal to the distribution of (3).
Moreover, the N -dimensional process (Xi,N

t , i = 1 . . . , N) admits an invariant distribution νN
whose first marginal ν1

N converges to the invariant distribution u of (X1
t ) (in theW2 Wasserstein

distance).
The distribution νN is given by the density:

νN (x1, . . . , xN ) =
1

ZN
1M(x1, . . . , xN ) exp [− 1

Nσ2

N∑
i,j=1

W (xi − xj)], W (x) =

∫ x

0
Φ(y)dy,

whereM = {(x1, . . . , xN ),
∑N

i=1 xi = 0} and ZN is the norming constant. Thus, for large N , ν1
N

approximates u(x)dx.

6. Concluding remarks

In this paper, we study the estimation of an unknown parameter f = (f2j+1, j = 0, . . . , k− 1)′

in the interaction term Φ(f , x) from the continuous observation of the McKean-Vlasov process

(49) dXt = −Φ(f , .) ? L(Xt)(Xt) dt+ σdWt

with Φ(f , x) =
∑k−1

j=0 f2j+1x
2j+1, f1 > 0, f2j+1 ≥ 0, j = 1, . . . , k−1, throughout the time interval

[0, 2T ]. Here L(Xt) represents the law of Xt. The interaction term Φ(f , x) is an odd increasing
polynomial with known degree 2k− 1. Under appropriate conditions, the process (Xt) admits a
stationary distribution. We assume here that (Xt) is in stationary regime. The statistical prob-
lem is completely different from the case of usual stochastic differential equations. It follows from
equation (49) that, whatever the initial distribution, the process (Xt) has a constant expectation
m. Contrary to classical stochastic differential equations, stationary distributions of model (49)
are uniquely determined only if the expectation of (Xt) is specified. Equation (49) is not precise
enough for this. If E(Xt) = 0,(49) admits a unique invariant distribution with symmetric density
u(f , x) recalled in Proposition 1. If E(Xt) = m, (49) admits a unique invariant distribution
with density u(f , x−m). Therefore, we first study the estimation of f when (Xt) is in centered
stationary regime (X0 ∼ u(f , x)dx). Then, we study the joint estimation of (m, f) when the
process is in non centered stationary regime (X0 ∼ u(f , x−m)dx).
When (Xt) is in stationary regime, L(Xt) does no longer depend on t and is equal to the station-
ary distribution u(f , x)dx in centered stationary regime and to u(f , x−m)dx in stationary regime
with expectation m. Due to the polynomial form of the interaction function Φ, the convolution
product Φ ? u(f , .) (resp. Φ ? u(f , .−m)) is explicitely given as a function of f and the moments
of the invariant distribution. These moments have no explicit expression as functions of f and
m. Therefore, the exact log-likelihood can be studied theoretically (Proposition 4) but does not
lead to computable estimators.
This is why we first build estimators of the stationary distribution moments based on the sample
path (Xt, t ∈ [0, T ]). Then, to build an explicit contrast, we plug these moment estimators into
the exact conditional log-likelihood given XT of (49), based on the sample (Xt, t ∈ [T, 2T ]). We
prove that these estimators are consistent and asymptotically Gaussian with rate

√
T .

Extensions of this work naturally comprise the introduction of an additional potential term
V (α, x) in the drift of equation (49).
In practice, only discretizations of the sample path are generally available. This study could be
extended to take into account discrete observations.
In here, we assume that the degree of the interaction function Φ is known. When it is unknown,
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the question of estimating this degree is of interest but beyond the scope of this paper.

7. Proofs

Proof of Lemma 1. Since u admits a `+ 1-th order moment, Φ ? u is well-defined. As u is
even, we have:

Φ ? u(−x) =

∫
Φ(−x− y)u(y)dy = −

∫
Φ(x+ y)u(y)dy

= −
∫

Φ(x− y)u(−y)dy = −
∫

Φ(x− y)u(y)dy = −Φ ? u(x).

Let x ≥ 0, as Φ is convex on R+ by [H3] and u is even,

Φ ? u(x) = Φ(x) +

∫
(Φ(x− y)− Φ(x)u(y)dy

= Φ(x) +
1

2

∫
(Φ(x− y) + Φ(x+ y)− 2Φ(x))u(y)dy

≥ Φ(x).

Using that Φ is odd, we have:

Φ ? u(x) = Φ(x) +
1

2

∫
(Φ(x+ y)−Φ(y−x)− 2Φ(x))u(y)dy =

1

2

∫
(Φ(x+ y)−Φ(y−x))u(y)dy.

By [H2], we deduce:

Φ ? u(x) ≤ cx
∫

(2 + |x+ y|` + |x− y|`)dy ≤ c`x(1 + x` +

∫ ∞
0

y`u(y)dy].

2

Proof of Proposition 2. The result for (Yt) is standard. By computing the scale and the
speed density, we obtain that (Yt) is positive recurrent and admits um as invariant density (see
e.g. Kutoyants, 2004). When Y0 = ξ0 = η ∼ um, by the uniqueness of solution, we obtain that
Yt ≡ ξt for all t ≥ 0. 2

Proof of Proposition 4. Recall that Xt ≡ Yt (see Proposition 2). We have, applying the
ergodic theorem, as u has moments of any order by (10),

1

T
(`T (f)− `T (f0))→Pf0

−1

2

∫
(b(f , x)− b(f0, x))2uf0(y)dy = − 1

2σ2
K(f0, f).

Now, K(f0, f) = 0 is equivalent to ”for all x, b(f , x) = b(f0, x)”, as uf0 is positive and continuous
on R. This in turn implies that u(f , .) ≡ u(f0, .) and Mk(f)f = Mk(f0)f0 (see Proposition 3). As
uf ≡ uf0 , their moments are identical, i.e. γ2`(f) = γ2`(f0) for all `. Thus, Mk(f) = Mk(f0). As
Mk(f0) is invertible, we conclude f = f0.
Now, the proof of consistency of the maximum likelihood estimator standardly follows.
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Next,

σ2 ∂`T
∂f2i+1

(f) =

∫ T

0

∂b

∂f2i+1
(f , Xs)dXs −

∫ T

0

∂b

∂f2i+1
(f , Xs)b(f , Xs)ds

= σ

∫ T

0

∂b

∂f2i+1
(f , Xs)dWs

σ2 ∂2`T
∂f2i+1∂f2i′+1

(f) =

∫ T

0

∂2b

∂f2i+1∂f2i′+1
(f , Xs)(dXs − b(f , Xs)ds)

−
∫ T

0
(

∂b

∂f2i+1
(f , Xs)

∂b

∂f2i′+1
(f , Xs))ds

= σ

∫ T

0

∂2b

∂f2i+1∂f2i′+1
(f , Xs)dWs −

∫ T

0
(

∂b

∂f2i+1
(f , Xs)

∂b

∂f2i′+1
(f , Xs))ds.

The functions ∂b
∂f2i+1

(f , x), ∂2b
∂f2i+1∂f2i′+1

(f , x) are polynomial and thus integrable with respect to
uf . Under Pf , by the ergodic theorem and the central limit theorem for stochastic integrals, for
all i, i′,

σ2

√
T

(
∂`T
∂f2i+1

(f), i = 0, . . . k − 1)′ →L N (0, σ2If ),

(
1

T

∫ T

0

∂2b

∂f2i+1∂f2i′+1
(f , Xs)dWs)i,i′ → 0, (

σ2

T

∂2`T
∂f2i+1∂f2i′+1

(f))i,i′ → −If ,

where If = (
∫

[ ∂b
∂f2i+1

(f , x)] ∂b
∂f2i′+1

(f , x)]u(f , x)dx).

For any vector a = (a1 . . . ak)
′, a′Ifa =

∫
[
∑k−1

i=0 ai
∂b

∂f2i+1
(f , x)]2u(f , x)dx > 0 as the function

under the integral is a polynomial and u(f , x) is positive for all x. By standard method, we can

prove that the maximum likelihood ̂̂fT associated with (17) satisfies
√
T (
̂̂
fT − f)→L N (0, σ2I−1

f ).

2

Proof of Proposition 5. This result is classical. By the ergodic theorem applied to (Xt ≡ Yt),
we have that ΨT /T converges a.s. to Ψ(f). For any vector a′ = (a0, . . . , ak−1),

a′Ψ(f)a =

∫
R

(
k−1∑
`=0

a`x
2`+1)2u(f , x)dx > 0

as the integrand is a polynomial and u is R-supported. Thus, Ψ(f) is positive definite.
We write: ∫ 2T

T
X2i+1
s dXs =

∫ 2T

T
X2i+1
s

k−1∑
j=0

b2j+1X
2j+1
s ds+ σ

∫ 2T

T
X2i+1
s dWs.

Thus, for large enough T ,

(
1

T
ΨT )−1 1

T
ZT = b̂T = b + (

1

T
ΨT )−1 σ

T


...∫ 2T

T X2i+1
s dWs
...


0≤i≤k−1

.



INFERENCE FOR ERGODIC MCKEAN VLASOV STOCHASTIC DIFFERENTIAL EQUATIONS 19

As ΨT /T converges a.s. to Ψ(f), the vector of stochastic integrals σ
T

∫ 2T
T z(Xs)dWs converges a.s.

to 0. Moreover, σ√
T

∫ 2T
T z(Xs)dWs converges in distribution to Nk(0, σ2Ψ(f)). Consequently, b̂T

converges to b and
√
T (b̂T−b) converges in distribution to the Gaussian law Nk(0, σ2Ψ−1(f)). 2

Proof of Theorem 1. For the proof, we set Ψ(f) = Ψ, Mk(f) = Mk, u(f , .) = u(.) and
γ2`(f) = γ2. The relation b̂T = M̂k f̂T implies ZT = ΨT M̂k f̂T (see (21)). We have

ZT = ΨTb + σ

∫ 2T

T
z(Xs)dWs

ΨT M̂k f̂T = ΨTMkf + ΨTMk(f̂T − f) + ΨT (M̂k −Mk)f + ΨT (M̂k −Mk)(f̂T − f).

Therefore, noting that ΨTMkf = ΨTb, we obtain:

1

T
ΨTMk

√
T (f̂T − f) =

σ√
T

∫ 2T

T
z(Xs)dWs −Ψ

√
T (M̂k −Mk)f −RT(50)

= ΨMk

√
T (f̂T − f) + ST(51)

with

RT = (
1

T
ΨT −Ψ)

√
T (M̂k −Mk)f +

1

T
ΨT

√
T (M̂k −Mk)(f̂T − f)(52)

ST =
√
T (

1

T
ΨT −Ψ)Mk(f̂T − f).(53)

Finally,

ΨMk

√
T (f̂T − f) =

σ√
T

∫ 2T

T
z(Xs)dWs −Ψ

√
T (M̂k −Mk)f −RT − ST .

It is the sum of two main terms and two remainders. The second term (
√
T (M̂k−Mk) depends on

the observation (Xt, t ∈ [0, T ]) while the first one depends on the sample path (Xt, t ∈ [T, 2T ]).
To study (

√
T (M̂k −Mk), we have to precise the limiting distribution of the vector of centered

and normalized moments T 1/2((γ̂2`(T ) − γ2`)
′
`=1,...,k. For g an element of D (see (69)-(70)), we

have

−
∫ T

0
Lg(Xs)ds = g(XT )− g(X0) + σ

∫ T

0
g′(Xs)dWs,

where Lg(x) = b(f , x)g′(x)+ σ2

2 g
′′(x). Let g` be any element of D such that Lg`(x) = −(x2`−γ2`).

We have (see (73))

(54) g′`(f, x) = g′`(x) = −2σ−2u−1(x)

∫ x

−∞
(y2` − γ2`)u(y)dy.

As g` belongs to L2(u(x)dx), and (Xt) is stationary with marginal distribution u(x)dx,

(55) Eβ(g`(XT )− g`(X0))2 ≤ 2

∫
g2
` (x)u(x)dx.
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Thus,
√
T (γ̂2`(T )− γ2`) = − 1√

T

∫ T

0
Lg`(Xs)ds

=
σ√
T

∫ T

0
g′`(Xs)dWs +

1√
T

(g`(XT )− g`(X0))

=
σ√
T

∫ 2T

0
1[0,T ](s)g

′
`(Xs)dWs + oP (1),(56)

by (55). So the vector T 1/2(γ̂2`(T ) − γ2`)
′
`=1,...,k converges in distribution to Nk(0, σ2V ) with

V = (Vij)0≤i,j≤k−1 and Vij =
∫
g′i(x)g′j(x)u(x)dx.

Consequently, as we have
√
T (M̂k −Mk) = OP (1), (ΨT /T ) − Ψ = oP (1), f̂ − f = oP (1), we

concude that the remainder term RT = oP (1).
We can treat analogously each term of

√
T ((ΨT /T ) − Ψ) and prove that

√
T ((ΨT /T ) − Ψ) =

OP (1). Consequently, ST = oP (1).
Therefore, from (50) and (51),

√
T (f̂T − f) =

σ√
T

∫ 2T

T
M−1
k Ψ−1z(Xs)dWs −M−1

k

√
T (M̂k −Mk)f + oP (1)

=
σ√
T

∫ 2T

0

(
1[T,2T ](s)α(f , Xs)− 1[0,T ](s)β(f , Xs)

)
dWs + oP (1),(57)

where

(58) α`(f , x) =
k−1∑
u=0

[M−1
k ]`u

k−1∑
j=0

[Ψ−1]ujx
2j+1 = [M−1

k Ψ−1


x
x3

...
x2k−1

]`

(59) β`(f , x) =
k−1∑
j=0

[M−1
k ]`j

k−1∑
v=j

(
2v + 1

v − j

)
g′v−j(x)f2v+11j≤v = [M−1

k M
g′.
k f ]`,

where Mg′.
k is the matrix Mk where all γ2j are replaced by g′j(x) (with g′0 = 0). Finally, we apply

the ergodic theorem for stochastic integrals to obtain:
√
T (f̂ − f)→L Nk(0, σ2Σ(f)) where Σ(f) = Σ1(f) + Σ2(f)

with
Σ1(f) =

∫
(α(f , x)[α(f , x)]′u(x)dx = M−1

k Ψ−1(M−1
k )′

and Σ2(f) =
∫
β(f , x))[β(f , x)]′)u(x)dx.

2

Proof of Proposition 6. Define Dk = diag((2` − 1), ` = 1, . . . , k) the diagonal matrix
with diagonal element `(2` − 1). We have B(f) = σ2Dk(1 γ2(f) . . . γ2(k−1)(f))

′. The vector√
T (1 γ̂2(T ) . . . , γ̂2(k−1)(T ))′−(1 γ2(f) . . . γ2(k−1)(f))

′ converges in distribution toNk(0, σ2V (f))

where V (f) is defined in (27). Consequently, the vector
√
T (B̃T −B(f)) converges in distribution

to N (0,K) with

(60) K = σ4DkV (f)Dk.

The result of Proposition 6 follows.
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2

Proof of Proposition 7. By the ergodic theorem m̂ = T−1
∫ T

0 Xsds→
∫
xum(x)dx = m. For

γ̃2`(T ), we write:

γ̃2`(T ) =
1

T

∫ T

0
(Xs −m+m− m̂)2`ds =

1

T

∫ T

0
(Xs −m)2`ds

+ (m− m̂)
2∑̀
k=1

(
2`

k

)
1

T

∫ T

0
(Xs −m)2`−kds(m− m̂)k−1.

The first term of the sum converges to
∫

(x − m)2`um(x)dx =
∫

(x − m)2`u(x − m)dx =∫
x2`u(x)dx = γ2`. The second term tends to 0 as m̂ − m tends to 0 and is multiplied by a

factor tending to a limit.
The infinitesimal generator L−m of (40) is given by

Lmg(x) =
σ2

2u(x−m)
(g′u(.−m))′(x).

Thus, the equality

g(XT )− g(X0) =

∫ T

0
Lmg(Xs)ds+ σ

∫ T

0
g′(Xs)dWs

implies, as (Xt) is stationary,

− 1√
T

∫ T

0
Lmg(Xs)ds = σ

∫ T

0
g′(Xs)dWs + oP (1).

For f a um square integrable function, the solution of Lmg = −(f −
∫
f(x)um(x)dx) is

g′(x) = − 2

σ2u(x−m)

∫ x−m

−∞
u(v)

(
f(m+ v)−

∫
f(m+ y)u(y)dy

)
dv.

For f(x) = x, we get g′(x) = − 2
σ2u(x−m)

∫ x−m
−∞ vu(v)dv := h′0(x−m). Thus,

(61)
√
T (m̂−m) =

σ√
T

∫ T

0
h′0(Xs −m)dWs + oP (1).

For f(x) = (x−m)2`, we get g′(x) = − 2
σ2u(x−m)

∫ x−m
−∞ (v2`−γ2`)u(v)dv = g′`(x−m) := h′`(x−m)

(see (54)).
Therefore,

(62)
1√
T

∫ T

0

(
(Xs −m)2` − γ2`

)
=

σ√
T

∫ T

0
h′`(Xs −m)dWs + oP (1).

Now, splitting Xs − m̂ = Xs −m+m− m̂ yields,
√
T (γ̃2`(T )− γ2`) =

1√
T

∫ T

0

(
(Xs −m)2` − γ2`

)
+
√
T (m− m̂)

(
2`

1

)
1

T

∫ T

0
(Xs −m)2`−1ds

+
√
T (m− m̂)2

2∑̀
k=2

(
2`

k

)
(m− m̂)k−2 1

T

∫ T

0
(Xs −m)2`−kds

For the second term, note that 1
T

∫ T
0 (Xs−m)2`−1ds→

∫
(x−m)2`−1um(x)dx =

∫
x2`−1u(x)dx =

0 as u is symmetric and 2` − 1 is odd. Therefore, the second term is oP (1) as well as the third
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term. Therefore, we have obtained (46) and (47). The convergence in distribution result follows.
2

Proof of Theorem 2 . Here again, we set Ψ(f) = Ψ, Mk(f) = Mk. We proceed as in
Proposition 5 and Theorem 1. First, we prove, using (44),

(63)
Ψ̃T

T
→a.s. Ψ and

√
T (

Ψ̃T

T
−Ψ) = OP (1) and

(64) VT =
√
T

(
Z̃T
T
− Ψ̃T

T
b

)
→L N (0, σ2Ψ).

From these two results, as b̃T = ( Ψ̃T
T )−1 Z̃T

T (see (43)), we deduce:

(65)
√
T (b̃T − b) = (

Ψ̃T

T
)−1VT →L N (0, σ2Ψ−1).

Proof of (63): We have:

[
Ψ̃T

T
]ij =

1

T

∫ 2T

T
(Xs −m+m− m̂)2(i+j)+2ds =

1

T

∫ 2T

T
(Xs −m)2(i+j)+2ds

+(m− m̂)

2(i+j)+2∑
r=1

(
2(i+ j) + 2

r

)
(m− m̂)r−1 1

T

∫ 2T

T
(Xs −m)2(i+j)+2−rds,

where 1
T

∫ 2T
T (Xs − m)2(i+j)+2−rds →

∫
(x − m)2(i+j)+2−rum(x)dx =

∫
x2(i+j)+2−ru(x)dx and

m− m̂ = oP (1). Thus,

[
Ψ̃T

T
]ij =

1

T

∫ 2T

T
(Xs −m)2(i+j)+2ds+ oP (1)→a.s.

∫
(x−m)2(i+j)+2um(x)dx = γ2(i+j)+2 = Ψij .

Next,
√
T ([

Ψ̃T

T
]ij − γ2(i+j)+2) =

√
T (

1

T

∫ 2T

T
(Xs −m)2(i+j)+2ds− γ2(i+j)+2)

+
√
T (m− m̂)

(
2(i+ j) + 2

1

)
1

T

∫ 2T

T
(Xs −m)2(i+j)+1ds

+
√
T (m− m̂)2

2(i+j)+2∑
r=2

(
2(i+ j) + 2

r

)
(m− m̂)r−1 1

T

∫ 2T

T
(Xs −m)2(i+j)+2−rds,

As 2(i+ j) + 1 is odd, 1
T

∫ 2T
T (Xs −m)2(i+j)+1ds→a.s.

∫
(x−m)2(i+j)+1um(x)dx = 0. Thus, the

second term above is
√
T (m−m̂)×oa.s.(1) = OP (1). The third term is 1√

T
T (m−m̂)2×OP (1) =

oP (1).
For the first term, we prove as in Proposition 7 that
√
T (

1

T

∫ 2T

T
(Xs −m)2(i+j)+2ds− γ2(i+j)+2) =

σ√
T

∫ 2T

T
h′i+j+1(Xs −m)dWs + oP (1)

→L N (0, σ2

∫
[h′i+j+1(x)]2u(x)dx).

The proof of (63) is complete.
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Proof of (64): We write:

1

T
Z̃T,i =

1

T

∫ 2T

T
(Xs − m̂)2i+1dXs =

1

T

∫ 2T

T
(Xs − m̂)2i+1b(Xs − m̂, f)ds+ T2,i + T3,i

=

k−1∑
j=0

b2j+1
1

T

∫ 2T

T
(Xs − m̂)2i+2j+1ds+ T2,i + T3,i = [

ψ̃T
T

b]i + T2,i + T3,i

where

T2,i =
1

T

∫ 2T

T
(Xs − m̂)2i+1(b(f , Xs −m)− b(f , Xs − m̂))ds(66)

T3,i =
σ

T

∫ 2T

T
(Xs − m̂)2i+1dWs(67)

We have:

T2,i = (m̂−m)
k−1∑
j=0

b2j+1

2j∑
`=0

T2,i,j,`, T2,i,j,` =
1

T

∫ 2T

T
(Xs − m̂)2i+1+`(Xs −m)2j−`ds.

Now,

T2,i,j,` =
1

T

∫ 2T

T
(Xs −m+m− m̂)2i+1+`(Xs −m)2j−`ds

=
1

T

∫ 2T

T

2i+1+`∑
r=0

(
2i+ 1 + `

r

)
(m− m̂)r(Xs −m)2i+1+2j−rds

=
1

T

∫ 2T

T
(Xs −m)2i+1+2jds

+ (m− m̂)
2i+1+`∑
r=1

(
2i+ 1 + `

r

)
(m− m̂)r−1 1

T

∫ 2T

T
(Xs −m)2i+1+2j−rds

= oP (1).

Indeed, 1
T

∫ 2T
T (Xs −m)2i+1+2jds→ 0 since 2i+ 2j + 1 is odd. And the second term tends to 0.

Thus, for i = 0, 1, . . . , k − 1

(68)
√
T T2,i =

√
T (m̂−m)× oP (1) = oP (1).

Now,
√
T T3 is a martingale such that <

√
T T3 >T= σ2Ψ̃T /T → σ2Ψ. Therefore,

√
T T3

converges in distribution to N (0, σ2Ψ).
Finally, we have obtained

√
T
(
Z̃T
T −

Ψ̃T
T b

)
=
√
T T3 + oP (1). The proof of (64) is achieved and

(65) follows.

Now, we can complete the proof of Theorem 2. On one hand, we have the relation (see
(67)-(68)):

√
T
Z̃T
T

=
Ψ̃T

T
b +
√
T T3 + oP (1).

On the other hand, we have:

Ψ̃T M̃k f̃T = Ψ̃TMkf + Ψ̃TMk(f̃T − f) + Ψ̃T (M̃k −Mk)f + Ψ̃T (M̃k −Mk)(f̃T − f).
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Note that b = Mkf and Z̃T = Ψ̃T b̃T = Ψ̃T M̃k f̃T . Therefore, we obtain the relation:

Ψ̃T

T
Mk

√
T (f̃T − f) =

σ√
T

(∫ 2T

T
(Xs − m̂)2i+1dWs

)
i=0,...,k−1

+ oP (1)

− Ψ̃T

T

√
T (M̃k −Mk)f −

Ψ̃T

T

√
T (M̃k −Mk)(f̃T − f).

This yields:

ΨMk

√
T (f̃T − f) =

σ√
T

∫ 2T

T
z(Xs −m)dWs −Ψ

√
T (M̃k −Mk)f

− R̃T − S̃T +KT + oP (1),

where

R̃T = (
Ψ̃T

T
−Ψ)

√
T (M̃k −Mk)f +

Ψ̃T

T

√
T (M̃k −Mk)(f̃T − f),

S̃T =
√
T (

Ψ̃T

T
−Ψ)Mk(f̃T − f),

KT =
σ√
T

∫ 2T

T
[z(Xs − m̂)− z(Xs −m)]dWs.

As previously, we prove that R̃T = oP (1), S̃T = oP (1) using Proposition 7. We have to look at
KT . We have:

KT,i = σ(m− m̂)
1√
T

∫ 2T

T

2i∑
`=0

(Xs −m+m− m̂)2i−`(Xs −m)`dWs

= σ(m− m̂)
2i∑
`=0

2i−∑̀
j=0

(m− m̂)j
(

2i− `
j

)
1√
T

∫ 2T

T
(Xs −m)2i−jdWs.

Each term 1√
T

∫ 2T
T (Xs − m)2i−jdWs converges in distribution while m − m̂ tends to 0. So

KT,i = oP (1) for i = 0, . . . , k − 1. Now, the term
√
T (M̃k −Mk)f can be treated as previously

in Theorem 30 and we can write:

√
T (f̃T − f) =

σ√
T

(ΨMk)
−1

∫ 2T

T
z(Xs −m)dWs −

√
TM−1

k (M̃k −Mk)f + oP (1)

=
σ√
T

∫ 2T

0

(
ΨMk)

−1z(Xs −m)1[T,2T ](s) + 1[0,T ](s)β(Xs −m)
)
dWs + oP (1)

=
σ√
T

∫ 2T

0

(
1[T,2T ](s)α(Xs −m)− 1[0,T ](s)β(Xs −m)

)
dWs + oP (1),

with α(x) = α(f , x), β(x) = β(f , x) defined in (58) and (59). Therefore,
√
T (f̃T − f) converges in

distribution to N (0, σ2Σ(f)) with Σ(f) defined in (31).
The result concerning the joint distribution follows from (46) and (50).2
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8. Appendix

We now state the central limit theorem associated with (12) (see e.g. Genon-Catalot et. al,
2000 and references therein). Let L denote the infinitesimal generator of the SDE (11),

(69) Lg = (σ2/2)g′′ − Φ ? um(.)g′ =
σ2

2um

(
g′um

)′
.

The operator L acting on L2(um(x)dx) has domain D given by

(70) D = {g ∈ L2(um(x)dx), g′ absolutely continuous, Lg ∈ L2(u(x)dx), lim
|x|→∞

g′(x)/s(x) = 0}.

For all g ∈ D,
∫
Lg(x)um(x)dx = 0.

Proposition 8. Let f ∈ L2(um(x)dx), set fc = f −
∫
R f(x)um(x)dx and denote by 〈., .〉um the

scalar product of L2(um(x)dx). If fc ∈ Range(D), then, as T tends to infinity,

(71)
1√
T

∫ T

0
fc(Ys)ds→L N (0, σ2(fc))

where σ2(fc) = −2〈fc, g〉um and g is any element of D satisfying Lg = fc. Moreover,

(72) Var
(

1√
T

∫ T

0
fc(Ys)ds

)
→ σ2(fc).

The following relation holds:

σ2(fc) = −2〈fc, g〉um = −2〈Lg, g〉um = σ2

∫
R

(g′(x))2uM (x)dx

Moreover, in model (11), Range(D) = {h ∈ L2(um(x)dx),
∫
h(x)um(x)dx = 0}. Therefore,

(71)-(72) hold for all f ∈ L2(um(x)dx).

Proposition 8 requires some comments. Its first part ((71)-(72) ) is classical. However, the
last part, i.e. that (71)-(72) hold for all f ∈ L2(u(x)dx), is less known and not obvious.

Using (69), equation Lg = fc = f −
∫
R f(y)um(y)dy can be solved. Only g′ is needed for

σ2(fc). Using (69), as
∫ +∞
−∞ fc(y)um(y)dy = 0, we have

(73) g′fc(x) = g′(x) = 2σ−2u−1
m (x)

∫ x

−∞
fc(y)um(y)dy = −2σ−2u−1

m (x)

∫ +∞

x
fc(y)um(y)dy.

By Proposition 8, the integral

(74) σ2(fc) = σ2

∫
R

(g′(x))2um(x)dx = 4σ−2

∫
R
u−1
m (x)

(∫ x

−∞
fc(y)um(y)dy

)2

dx

is finite for all f ∈ L2(um(x)dx).
Note that the fact that (74) is finite is not obvious as

∫
u−1
m (x)dx = +∞. However, as∫ +∞

−∞ fc(y)um(y)dy = 0, the convergence of (74) is possible but the exact proof is not imme-
diate.

Corollary 1. Let h1, . . . , hp be functions belonging to Range(D) and such that
∫
hj(x)um(x)dx =

0, for j = 1, . . . , p. Define

V (hi, hj) = σ2

∫
R
g′hi(x)g′hj (x)um(x)dx
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so that σ2(hi) = V (hi, hi). The vector 1√
T

(
∫ T

0 hi(Ys)ds, i = 1, . . . , p)′ →L Np(0, V ) with V =

(V (hi, hj), 1 ≤ i, j ≤ p).

Proof of Proposition 8. The result is given in Theorem 2.2 in Genon-Catalot et al., 2000. We
know that Range(D) ⊂ {h ∈ L2(um(x)dx),

∫
h(x)um(x)dx = 0}.

This inclusion is an equality if and only if the process is ρ-mixing. Let γ(x) = −2σ−1(Φ?um)′(x).
We can check that

(75) lim
x→+∞

γ−1(x) = 0, lim
x→−∞

γ−1(x) = 0.

Thus, by Proposition 2.8 of the latter paper, as the limits above exist and are finite, (Xt) is
ρ-mixing. The ρ-mixing property is equivalent to the fact that 0 is a simple eigenvalue and an iso-
lated point of the spectrum of L. This implies that Range(D) = {h ∈ L2(um(x)dx),

∫
h(x)um(x)dx =

0}. Therefore, (71)-(72) hold for all f ∈ L2(um(x)dx). 2

Proof of Corollary 1. The proof follows by application of the Cramér-Wold device. 2
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