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A Simplified Method to Assay Protein Carbonylation
by Spectrophotometry

Corentin Moreau and Emmanuelle Issakidis-Bourguet

Abstract

Protein carbonylation is an irreversible oxidation process leading to a loss of function of carbonylated
proteins. Carbonylation is largely considered as a hallmark of oxidative stress, the level of protein carbonyl-
ation being an indicator of the oxidative cellular status. The method described herein represents an
adaptation to the commonly used 2,4-dinitrophenylhydrazine (DNPH)-based spectrophotometric method
to monitor protein carbonylation level. The classical final sample precipitation was replaced by a gel
filtration step avoiding the tedious and repetitive washings of the protein pellet to remove free DNPH
while allowing optimal protein recovery.
This improved protocol here implemented to assay protein carbonylation in plant leaves can potentially

be used with any cellular extract.
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1 Introduction

Carbonylation is the most common protein modification induced
by Reactive Oxygen Species (ROS) [1], and carbonylated proteins
have been identified in many plant species at different stages of
growth and development (reviewed in Ref. [2]).

Carbonylation is induced by direct ROS attack of exposed side
chains of amino acid residues such as Pro, Arg, Lys, and Thr, but
protein carbonylation can also be indirectly induced by ROS
through lipid peroxides (for Cys, His, and Lys) and even by glyca-
tion/glycoxidation (for Lys) [3].

Because the formation of carbonylated proteins is a major
product of protein oxidation and protein carbonylation is consid-
ered to be a stable and irreversible modification, it is often used as a
marker to evaluate cellular oxidation.

In plants, oxidative stress (carbonylation) was shown to accom-
pany senescence/aging in plant leaves as well as in seeds where it is
associated to loss of seed viability [2, 4–6]. Extensive carbonyl
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formation has been also shown in protein extracts from leaves
exposed to abiotic stresses such as low and high temperatures,
salinity, or drought [7–11]. It is postulated that carbonylation of
proteins induces a loss of their functional properties and/or may
serve as a signal for degradation by increasing their susceptibility
towards proteolysis by the proteasome and organellar proteolytic
systems [12]. Also, it was shown that carbonylated proteins can
escape degradation and form high-molecular-weight aggregates
that accumulate with age [3].

Protein carbonylation can be detected and quantified at the
global level in proteins and protein mixtures using derivatization
of carbonyl groups by 2,4-dinitrophenylhydrazine (DNPH) which
reacts with the ketone and aldehyde functional groups and pro-
duces a stable 2,4-dinitrophenyl (DNP) hydrazone product. The
specific UVabsorption of DNP-hydrazone at 370 nm allows detec-
tion and quantification of carbonyls with a spectrophotometer.

Here, we have adapted the DNPH-based spectrophotometric
method [13]. It classically includes a final precipitation step of the
sample yielding a protein pellet that needs to be carefully washed to
ensure reliable and reproducible data. Complete removal of free
DNPH is conditional to optimal pellet dispersion. This is achieved
by vigorous vortexing (sonication of the pellet is often recom-
mended in commercial kits) to dislodge the pellet and by repeating
washing/centrifugation cycles several times (usually 3–5). To over-
come this problem, Xia et al. [14] soundly proposed to perform the
final step centrifugation at slow speed to form a loose easily dispers-
ible pellet facilitating re-dissolving/washing. But protein loss at
washing steps is a major drawback of the DNPH-based method as
it results in a relatively low reproducibility and in high standard
deviation of the data [15] .

We have conveniently modified this commonly used method by
replacing the final precipitation by a gel filtration allowing a simple,
fast, and efficient removal of free DNPH in a single step combined
with optimal protein recovery.

Herein, this improved protocol was used to measure protein
oxidation in plant extracts, but it can potentially be used with any
cellular extract.

2 Materials

Prepare all buffers using ultrapure water (double distilled or MilliQ
grade).

1. Extraction buffer: 100 mM Tris-HCl pH 6.8.

2. 10% (w/v) streptomycin sulfate prepared in water.

3. Mini clarification spin columns (see Note 1).
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4. Carbonyl labelling solution: 30 mM DNPH prepared in
DMSO (see Note 2).

5. 1 mL G-25 spin column prepared in TE (Tris-HCl 100 mM
pH7.9, 1mMEDTA) buffer at 20% (w/v) (seeNotes 3 and 4).

6. Qubit protein assay kit from Invitrogen (protein dye reagent
and dedicated fluorometer) (see Note 5).

3 Methods

3.1 Sample

Extraction and

Clarification

1. Grind around 100 mg of tissue per sample in liquid nitrogen
(see Note 6).

2. Add 400 μL of extraction buffer supplemented with a cocktail
of protease inhibitors, and homogenize by vigorously vortex-
ing the sample for 5 s (2 times with a 1–2 min stand on ice in
the interval) (see Note 7).

3. Centrifuge for 15 min at 4 �C and 18,000 � g.

4. Further clarify the extract by filtrating the supernatant (380 μL)
through a clarification unit (see Note 1).

5. Centrifuge at RT for 2 min at 12,000 � g (see Note 8).

3.2 Removal of

Nucleic Acids

1. Transfer 360 μL of clarified extract to a new tube, and add
40 μL of 10% streptomycin sulfate to precipitate nucleic acids
(see Note 9).

2. Mix by a brief vortexing.

3. Incubate at RT for 20 min with mixing (see Note 10).

4. Centrifuge at RT for 10 min at 12,000 � g.

3.3 Derivatization

with DNPH

1. Transfer 380 μL of supernatant to a new tube, and add 90 μL of
30 mM DNPH (see Note 11).

2. Mix by a brief vortexing.

3. Incubate at RT, in the dark, for 20 min with mixing (see
Note 10).

3.4 Removal of

Unincorporated DNPH

by Gel Filtration

1. Build up gel filtration column (all steps performed at RT) by
adding 1.5 mL of swollen G-25 slurry to a 2 mL centrifuge
empty column (see Note 3).

2. Remove twist-off bottom closure and let the column set for
10 min. Place column onto a 15 mL collection tube and
centrifuge at 800 x g for 30 s. Check that the resin has packed
to a 1 mL volume (graduation on the centrifuge column tube)
(see Note 4).

3. Load 210 μL of the sample onto a 1 mL G-25 spin column
placed on a new 15 mL collection tube.
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4. Centrifuge at RT for 15 s at 800 � g (see Note 12).

5. Transfer the 210 μL eluate into a new tube. Keep the sample
on ice.

3.5 Quantification of

Carbonyls

1. Determine carbonyl concentration by reading the sample
absorbance at 370 nm using TE buffer or the related control
sample (without DNPH) as blank (see Note 13).

2. Determine protein concentration using 2–5 μL sample using a
protein assay (see Note 5).

3. Calculate carbonyl content using a molar absorption coefficient
for aliphatic hydrazones of 22,000 M�1 cm�1 and expressed in
nmol carbonyl mg�1 protein, using the following equation:

Carbonyl Mð Þ ¼ A370

22, 000

Carbonyl nmol=mg proteinð Þ ¼ A370

22, 000

� 106 nmol=mLð Þ=protein concentration mg=mLð Þ
Using the present method, we quantified carbonyls in Arabi-

dopsis and wheat leaves and found an overall variation of 2–8% of
results within experiments. We measured a carbonyl content of
26.46 nmol/mg protein in the leaves of 3-week-old Arabidopsis
plants grown on MS medium under short day conditions. We also
measured protein oxidation in wheat in the context of heat stress.
The results obtained are presented in Fig. 1. Upon heat stress, a
marked increase (+ 42–62% in 3 independent experiments) in the
carbonyl content of the flag leaf was found, signifying that protein
oxidation has massively occurred. An increase in the protein car-
bonylation level was also found in dehydrated wheat seedlings [10]
suggesting a possible link between protein carbonylation and wheat
sensitivity to unfavorable environmental conditions. Thus, experi-
mental work points to the idea that protein oxidation level assessed
as protein carbonylation may be taken as a biochemical marker for
screening stress-tolerant wheat germplasms in breeding programs.

4 Notes

1. We used Proteus Mini Clarification Spin Columns from GEN-
ERON. These filter units (hydrophilic PVDF) are designed to
remove microorganisms, particles, and precipitates larger than
0.2 μm in size from aqueous solutions. Any equivalent filters
may be potentially used. Alternatively, the homogenate can be
filtered through Miracloth (cellulosic filtration medium).
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2. When preparing the DNPH solution, the actual content of
DNPH in the reagent (the powder contains > 30% water)
should be taken into account. The DNPH stock solution (pro-
tected from light) is stable at RT for several days.

3. We used G-25 gel filtration resin to remove free DNPH from
labelled protein samples. Proteins and peptides larger than Mr
5000 are separated from molecules with Mr of less than 1000
(DNPH MW 198.14 g/mol). We found optimal DNPH
removal and protein recovery with a minimum sample dilution
using Sephadex G-25 superfine resin. We used 2 mL centrifuge
empty column tubes from Pierce.

4. The G-25 resin may be cleaned and re-used according to the
supplier’s recommendations. Alternatively, pre-packed com-
mercially available columns may be used with protocol
adaptation.

5. We used the Qubit protein assay kit from Invitrogen, but
alternatively, protein quantitation can be performed using the
bicinchoninic acid (BCA) assay [16], or any other protein assay
with a suitable range of sensitivity, and a standard
spectrophotometer.

6. Freshly harvested tissues or tissues stored at �80 �C are suit-
able. Extraction can be performed using a bead mill or

Fig. 1 Effect of heat stress on protein oxidation in wheat. Winter wheat (Triticum aestivum L.) was cultivated
under a 16 h photoperiod (120–250 μE/m2/s) at 24 �C/18 �C day/night temperatures with fertilized watering
supplied 3 times per week. Heat stress (30–32 �C, under a light of 650–700 μE/m2/s, for 4 h at midday) was
conducted during grain filling at the kernel milk stage corresponding to 250–300 degree days after anthesis.
Flag leaf samples (2/3 median part of the leaf) were taken at the end of the heat treatment and immediately
frozen in liquid N2 and stored at �80 �C until analysis. Bars represent the mean � SD (n ¼ 8–12) for
3 independent experiments
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manually using a mortar and a pestle. Preliminary cooling is
needed to avoid protein degradation.

7. Protease inhibitor cocktails are commercially available and usu-
ally provided as ready-to-use 100 times concentrated. We used
a protease inhibitor cocktail optimized for plant cell extracts.

8. Filters can be re-used after a careful washing and storage in 20%
ethanol. Drain (centrifuge at RT for 2 min at 12,000 � g) and
rinse the unit with 400 μL water (centrifuge in the same
conditions).

9. Nucleic acids also contain carbonyl groups and will react with
DNPH. To avoid an erroneously high estimate of
protein-bound carbonyls, cellular extracts are treated with 1%
streptomycin sulfate to decrease nucleic acid contamination.
1% streptomycin sulfate is usually effective in minimizing inter-
ference, but this should be confirmed for specific samples for
which higher concentrations of streptomycin sulfate may be
required. Interference by nucleic acids can be checked by the
ratio of absorbance at 280 nm to that at 260 nm that must be
greater than 1.

10. Samples were continuously mixed using a Thermomixer set at
1100 rpm, or alternatively a brief vortex of the samples was
performed occasionally during incubation.

11. At this step, a reagent blank can be prepared for each sample by
mixing 190 μL of clarified extract with 45 μL DMSO. The
carbonyl labelling sample is prepared by mixing 190 μL of
clarified extract with 45 μL 30 mM DNPH. We have found
that absorbance of reagent blank samples at 370 nm was null
using the method described here forArabidopsis and wheat leaf
extracts.

12. We used an Eppendorf 5810R centrifuge equipped with a
swinging-bucket rotor for 15 mL conical tubes.

13. Sample preparation (see Note 11) allows performing, for each
sample, either a blank or a technical duplicate of the protein
carbonyl assay. We used plastic UV-compatible micro cuvettes
allowing reads in triplicate with 70 μL of assay samples and a
standard spectrophotometer compatible with micro cuvettes.
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