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Elliptically-contoured distributions (ECD) play a significant role, in computer vision, image processing, radar, and biomedical signal processing. Maximum likelihood estimation (MLE) of ECD leads to a system of non-linear equations, most-often addressed using fixed-point (FP) methods. Unfortunately, the computation time required for these methods is unacceptably long, for large-scale or high-dimensional datasets. To overcome this difficulty, the present work introduces a Riemannian optimisation method, the information stochastic gradient (ISG). The ISG is an online (recursive) method, which achieves the same performance as MLE, for large-scale datasets, while requiring modest memory and time resources. To develop the ISG method, the Riemannian information gradient is derived taking into account the product manifold associated to the underlying parameter space of the ECD. From this information gradient definition, we define also, the information deterministic gradient (IDG), an offline (batch) method, which is an alternative, for moderate-sized datasets. The present work formulates these two methods, and demonstrates their performance through numerical simulations. Two

Introduction

The family of Elliptically-contoured distributions (ECD) was originally introduced in [START_REF] Kelker | Distribution theory of spherical distributions and a locationscale parameter generalization[END_REF], and investigated in [START_REF] Fang | Generalized multivariate analysis[END_REF][START_REF] Fang | Symmetric multivariate and related distributions[END_REF]. It contains many widely-used statistical distributions, such as elliptical Gamma, Pearson type II, and elliptical multivariate logistic distributions. In terms of applications, the most popular classes of ECD are multivariate generalized Gaussian distributions (MGGD), and multivariate Student-T distributions [START_REF] Gómez | A multivariate generalization of the power exponential family of distributions[END_REF][START_REF] Sánchez-Manzano | A matrix variate generalization of the power exponential family of distributions[END_REF][START_REF] Kotz | Multivariate t-distributions and their applications[END_REF]. These are location-scale distributions, and are further parameterised by a shape parameter, or a degrees of freedom parameter.

MGGD are used in image processing, as models for wavelet and curvelet coefficients, and as models for three-channel color vectors, in image denoising, context-based image retrieval, image thresholding, texture classification, and image quality assessment [START_REF] Boubchir | Multivariate statistical modeling of images with the curvelet transform[END_REF][START_REF] Cho | Image denoising based on wavelet shrinkage using neighbor and level dependency[END_REF][START_REF] Verdoolaege | Multiscale colour texture retrieval using the geodesic distance between multivariate generalized gaussian models[END_REF][START_REF] Bazi | Image thresholding based on the em algorithm and the generalized gaussian distribution[END_REF][START_REF] Scharcanski | A wavelet-based approach for analyzing industrial stochastic textures with applications[END_REF][START_REF] Gupta | Generalized gaussian scale mixtures: A model for wavelet coefficients of natural images[END_REF]. MGGD are also used in video coding and denoising, radar signal processing, and biomedical signal processing [START_REF] Desai | Robust gaussian and non-gaussian matched subspace detection[END_REF][START_REF] Elguebaly | Bayesian learning of generalized gaussian mixture models on biomedical images[END_REF]. Some applications of Student-T distributions are presented in [START_REF] Laus | Multivariate myriad filters based on parameter estimation of student-t distributions[END_REF], involving image denoising. In radar imaging, the Student-T distribution, so-called G 0 model within the family of spherically invariant random vectors (SIRVs), is largely exploited in the context of SAR or PolSAR imaging, for tasks such as despeckling, classification, segmentation or detection [START_REF] Bombrun | Hierarchical segmentation of polarimetric sar images using heterogeneous clutter models[END_REF][START_REF] Fernández-Michelli | Unsupervised polarimetric sar image classification using G 0 p mixture model[END_REF][START_REF] Chen | A novel statistical texture feature for sar building damage assessment in different polarization modes[END_REF].

Because ECD have been successful in real-world image and signal processing applications, much attention has been devoted to developing efficient methods for estimating their parameters. The vast majority of works, dedicated to this estimation problem, are focused on estimating the scatter matrix, considering the other parameters, i.e. location and shape parameters, as known.

In terms of maximum-likelihood estimation, two main classes of algorithms have been studied. Fixed-point (FP) algorithms, and gradient descent algorithms have been proposed, based on the geometric properties of the manifold of positive definite matrices [START_REF] Tyler | A distribution-free m-estimator of multivariate scatter[END_REF][START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF][START_REF] Sra | Geometric optimisation on positive definite matrices for elliptically contoured distributions[END_REF][START_REF] Zhang | Multivariate generalized gaussian distribution: Convexity and graphical models[END_REF][START_REF] Sra | Conic geometric optimization on the manifold of positive definite matrices[END_REF]. For MGGD, when the location parameter is equal to zero and the shape parameter is given, the uniqueness of the maximum-likelihood estimator has been shown, under a restriction on the value of the shape parameter [START_REF] Pascal | Parameter estimation for multivariate generalized gaussian distributions[END_REF]. In this case, a method of moments has also been developed [START_REF] Verdoolaege | Geodesics on the manifold of multivariate generalized gaussian distributions with an application to multicomponent texture discrimination[END_REF]. For Student-T distributions, with a known degrees of freedom parameter, a fixed-point method for parameter estimation is given in [START_REF] Laus | Multivariate myriad filters based on parameter estimation of student-t distributions[END_REF], where the existence and uniqueness, of location and scatter maximum-likelihood estimates, is shown for a fixed degrees of freedom parameter, superior to 1.

There is a shared drawback, in all of the maximum-likelihood estimation methods, just mentioned [START_REF] Sra | Geometric optimisation on positive definite matrices for elliptically contoured distributions[END_REF][START_REF] Zhang | Multivariate generalized gaussian distribution: Convexity and graphical models[END_REF][START_REF] Laus | Multivariate myriad filters based on parameter estimation of student-t distributions[END_REF][START_REF] Verdoolaege | Geodesics on the manifold of multivariate generalized gaussian distributions with an application to multicomponent texture discrimination[END_REF][START_REF] Pascal | Parameter estimation for multivariate generalized gaussian distributions[END_REF]. Specifically, these methods work well for datasets of moderate size and dimension, but require excessive resources in memory and time, for large-scale datasets, e.g. with a few millions of samples, an order of magnitude commonly encountered in optical or SAR image processing. This issue can be so severe as to make any of these methods inapplicable.

Mainly, this is due to the fact that all of these methods are off-line, or batch, estimation methods. They require access to the whole dataset, at once, for each iteration, and therefore consume increasing time and memory resources, in order to converge to a useful estimate, as the dataset grows large.

In order to overcome this drawback, the present work builds on the ideas from Riemannian stochastic optimisation, proposed in [START_REF] Bonnabel | Stochastic gradient descent on riemannian manifolds[END_REF][START_REF] Tripuraneni | Averaging stochastic gradient descent on riemannian manifolds[END_REF]. The problem of estimating the parameters of an ECD is viewed as the problem of minimising the Kullback-Leibler divergence, between the true (unknown) and estimate distributions. When this problem is addressed using Riemannian stochastic optimisation, each iteration of a stochastic optimisation method requires access to only one datapoint (one sample), instead of the whole dataset. In this way, the present work proposes a recursive method, for estimating the parameters of ECD (each time a new sample is processed, this sample is used to update the current estimate).

The proposed method will be called the information stochastic gradient (ISG). In its simplest form, it is an improvement of a previous method, used to estimate the scatter matrix, when the location and shape parameters are known [START_REF] Zhou | Fast, asymptotically efficient, recursive estimation in a riemannian manifold[END_REF]. In this paper, we consider also the general case where the scatter matrix, the location and shape parameters are unknown. The ISG method relies on two main ideas :

• The greatest difficulty, in using recursive methods, is that they may require a careful choice of step-sizes. The standard Riemannian stochastic gradient method (as in [START_REF] Bonnabel | Stochastic gradient descent on riemannian manifolds[END_REF]), is very sensitive to the choice of step-sizes.

However, using the information gradient (also called the natural gradi-ent [START_REF] Amari | Information geometry and its applications[END_REF][START_REF] Amari | Natural gradient works efficiently in learning[END_REF]) leads to an automatic choice of step-sizes, which guarantees optimal performance. The ISG method implements the information gradient, relying on the Fisher information metric (or matrix), of the ECD model.

• The parameter space of an ECD model does not only contain the scatter matrix, but also location and shape parameters. In the case of MGGD or Student-T models, this parameter space is a product space, made up of triplets: (scatter matrix, location parameter, shape/degrees of freedom parameter). Since the geodesic curves of this space do not have a tractable expression [START_REF] Verdoolaege | On the geometry of multivariate generalized gaussian models[END_REF], an intuitive idea is to update each one of the three parameters, in its own turn, in an alternating fashion.

To understand the benefit of combining these two ideas, consider the special case of MGGD. In this case, a method of moments (MM) was used for the joint estimation of all three parameters [START_REF] Verdoolaege | Geodesics on the manifold of multivariate generalized gaussian distributions with an application to multicomponent texture discrimination[END_REF], while their maximum-likelihood esitmation (MLE) was studied in [START_REF] Pascal | Parameter estimation for multivariate generalized gaussian distributions[END_REF]. It is well known that MLE performs better than MM in most scenarios [START_REF] Fuhrer | Estimating the linear-quadratic inventory model maximum likelihood versus generalized method of moments[END_REF]. However, as mentioned above, MLE cannot be applied to large scale datasets, due to its computational requirements. The ISG method strikes a balance between the low complexity of MM, and the stronger performance of MLE. For example, in the case where the scatter matrix and the location parameter are unknown, the complexity of ISG is comparable to that of the MM, while its performance is similar to that of the MLE, when the number of available samples is sufficiently large.

In other words, the size of the dataset is leveraged as a source of information, rather than as a computational burden.

The two ideas which underly the ISG method (discussed above), are also implemented in an offline (batch) method, called the information deterministic gradient (IDG) method. While its complexity (and therefore computation time) is much higher than the ISG method, the IDG method consistently outperforms other methods, even in the case where all three parameters are unknown.

The main results of the present work are given in Section 4. A detailed comparison of various estimation methods (MM, FP, ISG, IDG), based on computer experiments, is carried out in Section 5. Two image processing applications with real datasets are presented in Section 6.

First, Sections 2 and 3 define the general estimation problem for ECD models, and introduce some necessary geometric concepts.

The estimation problem

The ECD family

ECD is a general family of probability distributions that contains many important sub-families. The name ECD comes from the fact that when an ECD has a probability density function, the contours (level surfaces) of this function are ellipsoids.

The location, or expectation, parameter µ of an ECD determines the centre of these ellipsoids, while the axes of these ellipsoids are proportional to the eigenvalues of the inverse of the scatter matrix Σ. The shape parameter β determines the factor for this proportionality (β is the degrees of freedom parameter, for Student-T distributions).

Let X be a m-dimensional random vector that follows a ECD model. Denote θ = (µ, Σ, β) the parameters of this ECD, and Θ = R m × P m × R + its parametric space, where P m is the set of all symmetric positive definite matrices of size m × m. If X has a probability density function, then this takes on the following form

p(x; θ) = c(β) |Σ| -1/2 g [δ x (µ, Σ), β] (1) 
where c(β) is a normalizing factor which depends only on β, and

δ x (µ, Σ) = (x -µ) † Σ -1 (x -µ).
The density generator g depends on the specific subfamily of ECD distributions, for example 

g [δ x (µ, Σ), β] = exp - 1 2 δ β x for MGGD g [δ x (µ, Σ), β] = 1 + 1 β δ x -β+m 2 for Student-T 2 
Recall the definition of the KL divergence

D(θ) = R p p(x; θ * ) ln p(x; θ * ) p(x; θ) dx = E θ * [ (θ * ; x)] -E θ * [ (θ; x)] (3) 
Where (θ; x) = log p(x; θ) is the log-likelihood,

(θ; x) = α(β) - 1 2 log det(Σ) + h(δ x , β) (4) 
with α(β) = log c(β) and h = log g. In the following, the KL divergence

(3) will be minimised using Riemannian information gradient descent. Some

Riemannian Information geometry concepts are recalled in the following section.

Necessary geometric concepts

The gradient descent method on Riemannian manifolds is based on the following update rule [START_REF] Absil | Optimization algorithms on matrix manifolds[END_REF] 

θ n+1 = R θn (α n+1 u(θ n )) (5) 
Here, the smooth mapping R θ from the tangent space T θ Θ to Θ is required to be a retraction, in the sense that it verifies

R θ (0 θ ) = θ (6a) DR θ (0 θ ) = Id T θ Θ (6b)
where 0 θ denotes the zero element in T θ Θ, and Id T θ Θ denotes the identity mapping on T θ Θ. Each vector u(θ n ) belongs to the tangent space T θn Θ, and provides the direction of descent. In the present work, -u(θ n ) is the Riemannian information gradient, derived using the Fisher information metric.

The positive scalar α n is the step-size. The aim of equation ( 5) is to generate a sequence (θ n ) n≥0 ∈ Θ that converges to a stationary point θ * of the cost function (under some restrictions on u and α).

For our estimation problem, the model has three different parameters, which belong to three different Riemannian manifolds. Precisely, the parameter space is the product manifold Θ = R m × P m × R + . Therefore, tractable expressions of the Fisher information metric, and of the intrinsic geodesic map, on this product manifold, are needed. However, Θ does not support any such expressions [START_REF] Verdoolaege | On the geometry of multivariate generalized gaussian models[END_REF]. As the global Fisher information metric has not a closed form, we propose to use the product metric

u, v θ = u µ , v µ µ + u Σ , v Σ Σ + u β , v β β (7) 
where

u = (u µ , u Σ , u β ) and v = (v µ , v Σ , v β ) are tangent vectors at the point θ = (µ, Σ, β). The metrics •, • µ , •, • Σ and •, • β are respectively the in-
trinsic Fisher information metrics of their corresponding sub-spaces. For the location parameter µ in R m , its information metric is expressed in terms of the usual Euclidean metric,

u µ , v µ µ = I µ u † µ Σ -1 v µ (8) 
where •, • denotes the scalar product in Euclidean space. The information constant I µ is

I µ = - 4 m E ∂ 2 h(δ x , β) ∂δ 2 x δ x -2E ∂h(δ x , β) ∂δ x (9) 
with h = log g. As for Σ ∈ P m , the Fisher information metric •, • Σ for the ECD model is defined by the Riemannian geometry of P m [START_REF] Berkane | Geodesic estimation in elliptical distributions[END_REF].

U Σ , V Σ Σ = I 1 tr(Σ -1 U Σ Σ -1 V Σ ) + I 2 tr(Σ -1 U Σ )tr(Σ -1 V Σ ) (10) 
Here the constants I 1 > 0 and I 2 0 depend on the particular model under consideration, as follows

I 1 = 2A m(m + 2) I 2 = A m(m + 2) - 1 4 A = E ∂h(δ x , β) ∂δ x δ x 2 (11) 
The shape factor β belongs to R + , so the Fisher information metric is given by

u β , v β β = I β u β v β (12) 
with the information constant

I β = -E ∂ 2 α(β) ∂β 2 + ∂ 2 h(δ x , β) ∂β 2 (13) 
Now, the information gradient ∇ θ D(θ) with respect to the product metric ( 7) is obtained by solving the following equation,

d D(θ) v = ∇ θ D(θ), v θ (14) 
where the scalar product on the right-hand side is given by ( 7), and d is the differential form of D. Precisely, this product information gradient has the following form

∇ θ D(θ) = (∇ µ D(θ), ∇ Σ D(θ), ∇ β D(θ)) (15) 
The first component ∇ µ D(θ) is expressed as

∇ µ D(θ) = -I -1 µ Σ E [G µ (θ; x)] (16) 
where I µ is given in equation ( 9), and vector G µ (θ; x) is actually the gradient in the classic Euclidean sense

G µ (θ; x) = 2 ∂h(δ x , β) ∂δ x Σ -1 (x -µ) (17) 
The second component ∇ Σ D(θ) is a bit more complicated (see Figure 3, for an illustration of the following computations)

∇ Σ D(θ) = -J -1 1 E [G Σ (Σ; x)] ⊥ -J -1 2 E [G Σ (θ; x)] (18) 10 
where J 1 = I 1 and J 2 = I 1 + mI 2 , in terms of I 1 and I 2 given in [START_REF] Scharcanski | A wavelet-based approach for analyzing industrial stochastic textures with applications[END_REF], and where ⊥ and denote the following decomposition of G Σ (θ; x),

[G Σ (θ; x)] = 1 m tr Σ -1 G Σ (θ; x) Σ (19) [G Σ (θ; x)] ⊥ = G Σ (θ; x) -[G Σ (θ; x)] ( 20 
)
in terms of

G Σ (θ; x) = - 1 2 Σ - ∂h(δ x , β) ∂δ x S x with S x = (x -µ)(x -µ) † (21) 
Finally, for the third component,

∇ β D(θ) = -I -1 β E [G β (β; x)] (22) 
where I β was given in [START_REF] Desai | Robust gaussian and non-gaussian matched subspace detection[END_REF], and

G β (θ; x) = ∂α(β) ∂β - ∂h(δ x , β) ∂β (23) 
With regard to the retraction R θ , it will be defined as the product Riemannian exponential map,

R θ : T θ Θ -→ Θ u =      u µ u Σ u β      -→      Exp µ (u µ ) Exp Σ (u Σ ) Exp β (u β )      ( 24 
)
where u is the direction of descent. The exponential map on R p (a Euclidean space) reduces to vector addition

Exp µ (u µ ) = µ + u µ (25) 
The exponential map on P m is defined as follows [START_REF] Pennec | A riemannian framework for tensor computing[END_REF]:

Exp Σ (u Σ ) = Σ exp Σ -1 u Σ (26) 
As for β, since it belongs to R + , the corresponding exponential map is a 1-dimensional version of ( 26)

Exp β (v β ) = β exp(β -1 v β ) (27) 
All these three exponential map Exp verify the properties ( 6), therefore the their direct product (24) also verifies these properties, and is a well-defined retraction. Finally, the Riemannian distance associated to the metric ( 7) is given by

d 2 (θ 1 , θ 2 ) = d 2 R m (µ 1 , µ 2 ) + d 2 Pm (Σ 1 , Σ 2 ) + d 2 R + (β 1 , β 2 ) ( 28 
)
For µ, the information distance is proportional to the Euclidean distance in

R p d 2 R m (µ 1 , µ 2 ) = I µ (µ 1 -µ 2 ) † (µ 1 -µ 2 ) (29a)
for µ 1 , µ 2 ∈ R m , with the constant I µ given by [START_REF] Verdoolaege | Multiscale colour texture retrieval using the geodesic distance between multivariate generalized gaussian models[END_REF]. For Σ, the information distance is defined as in [START_REF] Mostajeran | Ordering positive definite matrices[END_REF] 

d 2 Pm (Σ 1 , Σ 2 ) = I 1 tr log(Σ -1 1 Σ 2 ) 2 + I 2 tr 2 log(Σ -1 1 Σ 2 ) (29b)
for Σ 1 , Σ 2 ∈ P m , where the constants I 1 and I 2 are given by [START_REF] Scharcanski | A wavelet-based approach for analyzing industrial stochastic textures with applications[END_REF], and the function log denotes the symmetric matrix logarithm. Finally, for β, the information distance is given by

d 2 R + (β 1 , β 2 ) = I β log 2 β -1 1 β 2 (29c)
for β 1 , β 2 ∈ R + , where I β is given in [START_REF] Desai | Robust gaussian and non-gaussian matched subspace detection[END_REF]. With the necessary geometric concepts now in place, the next section will introduce our estimation algorithms.

The IDG and ISG methods

This section will describe the IDG and ISG methods, and discuss their main properties. The IDG method (information deterministic gradient) is a deterministic gradient method, and the ISG method (information stochastic gradient) is a stochastic gradient method.

When the direction of descent is chosen according to [START_REF] Laus | Multivariate myriad filters based on parameter estimation of student-t distributions[END_REF], the updated es-

timates θ k+1 = (µ k+1 , Σ k+1 , β k+1 ) rely on the current estimates θ k = (µ k , Σ k , β k ),
through the following alternating optimisation scheme step 1 :

µ k+1 ← (µ k , Σ k , β k ) step 2 : Σ k+1 ← (µ k+1 , Σ k , β k ) step 3 : β k+1 ← (µ k+1 , Σ k+1 , β k ) (30)

Deterministic gradient

The IDG method is a second-order offline method, somewhat similar to a Newton method. In the Newton method, the direction of descent is found by solving the Newton equation [START_REF] Absil | Optimization algorithms on matrix manifolds[END_REF]. In the IDG method, the Hessian in the Newton equation is approximated by the Fisher information metric (or matrix) I(θ).

Since IDG is an offline method, it choses a direction of descent which depends on the complete dataset. The cost function ( 2) is reformulated, by replacing the KL divergence, with the empirical average of -(θ, x n ). This empirical average is denoted by D(θ),

D(θ) = - 1 N N n=1 (θ n ; x n ) (31)
If the current estimate is θ k , the direction of descent is given by its three components

∇ µ D(θ k ) = -I -1 µ Σ 1 N N n=1 G µ (θ k ; x n ) (32a) ∇ Σ D(θ k ) = -J -1 1 1 N N n=1 [G Σ (θ k ; x n )] ⊥ -J -1 2 1 N N n=1 [G Σ (θ k ; x n )] (32b) ∇ β D(θ k ) = -I -1 β 1 N N n=1 G β (θ k ; x n ) (32c)
which are the same as ( 16), ( 18), ( 22), but with expectations replaced by empirical averages. Using the expressions (32a), (32b), (32c), the IDG algorithm can now be stated as follows.

Algorithm 1 Information Deterministic Gradient (IDG) algorithm

Input: A dataset X = (x 1 , • • • , x N ), an initialization θ 0 ∈ S 0 ⊂ Θ;
Output: The estimate θ;

1: for k = 0, 1, 2 • • • , K do 2: µ k+1 ← µ k -α µ ∇ µ D(µ k , Σ k , β k ); 3: Σ k+1 ← Σ k exp -Σ -1 k α Σ ∇ Σ D(µ k+1 , Σ k , β k ) ; 4:
β k+1 ← β k exp -β -1 k α β ∇ β D(µ k+1 , Σ k+1 , β k ) ; 5: end for 6: θ ← (µ K+1 , Σ K+1 , β K+1 )
In this algorithm, α denotes the step-size, which is selected according to the Armijo-Goldstein rule, and S 0 denotes a neighborhood of the true parameter value θ * . The following Proposition 1 states the convergence of Algorithm 1. is approximated by the Fisher information metric. Therefore, one should expect the θ k converge to θ * with a superlinear rate of convergence, just like the Newton method dose. Precisely, if θ = (Σ) or θ = (µ, Σ), with a fixed shape parameter β * , then, under the assumptions of Proposition 1, one should expect Algorithm 1 to generate a sequence (θ k ) k≥0 converging superlinearly to θ * . This is essentially due to Theorem 6.3.2 in [START_REF] Absil | Optimization algorithms on matrix manifolds[END_REF], and will be observed experimentally in Section 5 (see Figure 1).

Stochastic gradient

The ISG method is an online quasi-Newton method. For each update, only one sample or one mini-batch is used. Here, the cost function remains the same as in equation [START_REF] Fang | Symmetric multivariate and related distributions[END_REF]. For the current estimate θ k = (µ k , Σ k , β k ) the stochastic information gradients are

∇ µ (θ; x n ) = I -1 µ Σ G µ (x n ; θ) (33a) ∇ Σ (θ; x n ) =J -1 1 [G Σ (x n ; θ)] ⊥ + J -1 2 [G Σ (x n ; θ)] (33b) ∇ β (θ; x n ) = I -1 β G β (x n ; θ) (33c) 
Accordingly, the expected direction of descent is E θ * [∇ θ (θ; x)], which is equal to 0 at the global minimum θ * . As in the classic stochastic gradient descent method, the step-size α n = a n is strictly positive, decreasing, and verifies the usual conditions

α n = ∞ α 2 n < ∞
Using the expressions (33a), (33b), (33c), the ISG algorithm can now be stated as follows.

Algorithm 2 ISG algorithm

Input: A dataset X = (x 1 , • • • , x N ), an initialization θ 0 ∈ S 0 ⊂ Θ, the coefficient a > 0;
Output: The estimate θ;

1: for n = 0, 1, 2 • • • , N do 2:
α n+1 ← a n+1 ;

3:

µ n+1 ← µ k + α n+1 ∇ µ (µ n , Σ n , β n , x n ); 4: Σ n+1 ← Σ n exp (Σ -1 n α n+1 ∇ Σ (µ n+1 , Σ n , β n , x n ));
5:

β n+1 ← β n exp (β -1 n α n+1 ∇ β (µ n+1 , Σ n+1 , β n , x n )); 6: end for 7: θ ← (µ N +1 , Σ N +1 , β N +1 );
Remark that, the descending direction is -∇ θ (θ; x), and the double negative Since D(θ) has an isolated stationary point at θ = θ * , the Hessian at point θ = θ * can be expressed in normal coordinates

H ij = ∂ 2 D ∂θ i ∂θ j θ i =0 (34) 
The matrix H = (H ij ) is positive definite [START_REF] Absil | Optimization algorithms on matrix manifolds[END_REF]. With these notations, the rate of convergence is given by the following proposition.

Proposition 3. Under the assumptions of Proposition 2, if a > 1 2λ , where λ > 0 is the smallest eigenvalue of H,

E[d 2 (θ * , θ n )] = O(n -1 ) (35) 
Here, d(•, •) stands for the product distance in [START_REF] Zhou | Fast, asymptotically efficient, recursive estimation in a riemannian manifold[END_REF], and the "big O" notation means that there exist K > 0 and n 0 > 0 such that

∀n n 0 E[d 2 (θ * , θ n )] K n
In terms of the normal coordinates (θ i ), let the direction of descent ∇ θ (θ * ; x)

at the point θ = θ * have components (u i (θ * )). Let G * = (G * ij ), be the matrix G * ij = E θ * u i (θ * )u j (θ * ) (36) 
Then, the following proposition gives the asymptotic normality of the ISG algorithm.

Proposition 4 (asymptotic normality). Under the assumptions of Propositions 2 and 3, the distribution of the re-scaled coordinates (n

1 2 θ i ) i∈{1,••• ,d}
converges to a centred d-variate normal distribution, where d is the dimension of Θ, with covariance matrix G given by the following Lyabunov equation

AG + GA = -a 2 G * (37) 
Here

, A = (A ij ) with A ij = 1 2 δ ij -aH ij (δ denotes Kronecker's delta).
The proofs of Propositions 4 and 3 are discussed in Appendix C. For the case θ = (Σ) or θ = (µ, Σ), the product metric ( 7) coincides with the information metric of the ECD model. Then, the assumptions of Proposition 5 in [START_REF] Zhou | Fast, asymptotically efficient, recursive estimation in a riemannian manifold[END_REF] are satisfied, and the following corollary may be obtained.

Corollary 1. For the ECD model, parameterised by θ = (Σ) or θ = (µ, Σ), with a fixed β * , the product metric [START_REF] Boubchir | Multivariate statistical modeling of images with the curvelet transform[END_REF] coincides with the information metric.

1. the rate in equation ( 35) holds, whenever a > 1/2.

2. if a = 1 the distribution of the re-scaled coordinates (n 1/2 θ i ) converges to a centred d-variate normal distribution, with covariance matrix equal to the identity G * = I d , and the recursive estimates θ n are asymptotically efficient.

Note that, Item 2) of Corollary 1 implies that the distribution of nd 2 (θ * , θ n ) converges to a χ 2 -distribution with d degrees of freedom.

nd 2 (θ * , θ n ) ⇒ χ 2 m(m + 1) 2 for θ = (Σ) (38a) nd 2 (θ * , θ n ) ⇒ χ 2 m(m + 1) 2 + m for θ = (µ, Σ) (38b) 
This provides a practical means of confirming the asymptotic normality of the estimators θ n . The function d 2 (•, •) denotes the square information distance, here the same as (28).

Global convergence analysis

This section studies the global convergence of the IDG and ISG algorithms, for two specific families of distributions, MGGD and Student-T. The main results are stated in the following two tables. For the cases indicated 1 and2, the cost function D(θ) (or D(θ)) has a unique stationary point, at θ * , which is the global minimizer. This will be obtained from the following development.

First, for the case of θ = (Σ) with known µ * and β * , let

f (δ x , β) = 1 g(δ x , β) (39) 
then, for the MGGD model

f (δ x , β) = exp 1 2 δ β x β > 0 (40a)
and for the Student-T model,

f (δ x , β) = 1 + δ x β β+m 2 β > -m (40b) 
The following proposition introduces a sufficient condition for the KL divergence D(Σ) and its empirical approximation D(Σ) to be geodesically strictly convex.

Proposition 5. assume that the function f : R + → R + in (39) verifies the following condition : for any ϕ :

R → R + ϕ strictly log-convex ⇒ f • ϕ strictly log-convex (41) 
Then, the KL divergence D(Σ) (and its approximation D) is geodesically strictly convex.

In particular, the unique global minimum, and the unique stationary point, of D(Σ) is at the true Σ * . This proposition 5 directly yields the following corollary, for the specific MGGD model and Student-T model, by plugging (40a) and (40b) into (41).

Corollary 2. the KL divergence D(Σ) and its empirical approximation D(θ)

are geodesically strictly convex, with unique global minimum (and unique stationary point), in both of the following cases.

1. X is distributed according to an MGGD model, with scatter matrix Σ * and with shape parameter β > 0.

2. X is distributed according to a Student-T model, with scatter matrix Σ * and degree of freedom β > -m.

Thus, when Σ is unknown and β satisfies the conditions of Corollary 2, this corollary implies the global convergence of Algorithms 1 and 2. Precisely, these algorithms will always converge to the true value θ * of the parameter θ.

For the more complicated situation θ = (µ, Σ), global convergence does not always hold. The cost function D(θ) is not geodesically convex, but may be reformulated, using a new matrix argument [START_REF] Laus | Multivariate myriad filters based on parameter estimation of student-t distributions[END_REF] 

S =   Σ + µµ † µ µ † 1   (42) 
If the new random vector y is given by

y = x † , 1 † (43) 
then the cost function can be reformulated as

D(θ) = - 1 2 log det(S) -log f (δ y ) (44) 
where

δ y = y † S -1 y = (x -µ) † Σ -1 (x -µ) + 1 (45) and f (δ y ) = exp 1 2 (δ y -1) β for MGGD (46a) Then for Student-T is f (δ y ) = 1 - 1 β + δ y β β+m 2
for Student-T (46b)

In [START_REF] Laus | Multivariate myriad filters based on parameter estimation of student-t distributions[END_REF], the minimization of D(θ) was proven to be equivalent to the minimization of D(θ). Replacing the new function f into (41), the following corollary is obtained. 1. X is distributed according to an MGGD model, with expectation and scatter matrix (µ * , Σ * ) and with fixed shape parameter β > 0.

2. X is distributed according to a Student-T model, with expectation and scatter matrix (µ * , Σ * ) and with the fixed degree of freedom β > 0.

For these two cases, global convergence is then guaranteed.

Finally, for the most complicated case, θ = (µ, Σ, β), the cost function is always non-convex. Moreover, we have verified experimentally that it has multiple stationary points in Θ = R m × P m × R + . Therefore, the correct estimation can only be guaranteed when the initial value θ 0 is close enough to the global minimum θ * .

Computer experiments

This section presents a set of computer experiments, which confirm the theoretical results of Section 4, and provide a detailed comparison of the ISG and IDG estimation methods, with the already existing MM and FP. For every experiment, 1000 Monte Carlo trials were carried out. For each trial, the dataset X = {x 1 , • • • , x N } is independent and identically distributed, according to true parameters (µ * , Σ * , β * ). The dimension m of x n is taken equal to 10. The true µ * is randomly chosen from a multivariate normal distribution. The scatter Σ * is defined as Σ(i, j) = ρ |i-j| for i, j ∈ {1, m}, and ρ ∼ U(0.2, 0.8). The shape parameter β * is uniformly selected from the intervals [0.2, 5] for MGGD and for Student-T.

The first experiment confirms the super-linear rate of convergence of IDG, for a dataset, distributed according to the MGGD model, which contains N = 10 4 samples. The initial value θ 0 is defined as the MM estimate, using 10% of the entire dataset. Figure 1(a) presents the case of θ = (Σ) with known (µ * , β * ). The IDG method converges after only two iterations, and if the same accuracy needs to be achieved, the deterministic gradient method (not using the information gradient) requires at least 88 iterations. For the case of θ = (µ, Σ) with known (β * ), things are similar. and 2(b) (that is to say, when β * is fixed), the step-size coefficient a always equals 1, which satisfies the condition in 1. For the case of unknown β , the step-size coefficient a is taken much larger, in order to meet the conditions of proposition 3. In fact, here, a = 100.

For the case of θ = (Σ) and θ = (µ, Σ), Figures 3(a In the third experiment, we compare the efficiency of the IDG and ISG For MGGD, the MM was given in [START_REF] Verdoolaege | Geodesics on the manifold of multivariate generalized gaussian distributions with an application to multicomponent texture discrimination[END_REF], and the FP method in [START_REF] Pascal | Parameter estimation for multivariate generalized gaussian distributions[END_REF].

In Figures 4(a However, the experimental results show that the mini-batch has no significant effect on the accuracy of ISG.

As for computational time, information gradient methods have a significant advantage. The computational time of the ISG algorithm is similar to 

d 2 (θ * , θ n ) 0 d 2 (θ * , θ n ) → c 0 and ∇ θ D(θ n ) 0 and ∇ θ D(θ n ) 0 θ = (µ, Σ, β) 73% 27%
that of MM, and is significantly less than that of FP. Meanwhile, its accuracy is significantly better than that of MM. In most experiments, the accuracy of ISG is similar to, or even better than, FP. Although the computational time of IDG is greater than that of ISG, it is comparable to that of FP, while, in most cases, IDG can achieve the best accuracy, among the four estimation methods considered.

Application with real dataset

In addition to experimental simulations, we also applied our methods to real datasets.

Color transformation

The first application is to color transformation for image editing with MGGD models, which was investigated in [START_REF] Hristova | Transformation of the multivariate generalized gaussian distribution for image editing[END_REF]. Its goal is to replace the color distribution of the input image by that one of a target image. The main idea is to fit the input and the target distributions, with two different MGGD models. Then, the transformation between these two MGGDs is implemented by a linear Monge-Kantorovich transformation for Σ, and a stochastic transformation for β. Specifically, this conversion can be threedimensional (3D), for RGB images, or five-dimensional (5D), when spatial gradient-field information is included.

Starting with the 3D rgb case, Figure 7 presents the transformed images and some of their details. The detail (a1) clearly shows that the cloud 'drawn' by MM appears too green. Similarly, FP also presents a green appearance, in detail (a2). On the contrary, the two gradient methods, i.e. IDG and ISG methods, show pure white cloud color in (a3) and (a4). Note also the difference in the amount of blue in the shadows on the grass. Too much blue is mixed with the shadow, in MM's output detail (b1). In details (b2),(b3),(b4), the results of MLE methods lead to a more natural appearance.

From the point of view of the present work, the most interesting aspect of this application is in term of computational time. The recursive (online)

ISG method takes about 10 seconds for two images (input and output). In contrast, FP and IDG each require more than two hours. In other words, ISG has a decisive advantage, in terms of time consumption.

Then, gradient-field information was included, so the transformation came to involve 5D, which consist in three color components (of CIELAB) and two components of the image spatial gradient field (dx and dy). For this application, the shape parameter of the MGGD model was supposed to fixed. Figure 8 presents the four different implementations. It can be observed that the output of the three MLE methods is significantly better than that of MM. In the transformed result of MM, the hue is darker and greener. MLE results are better, since the frost on the grass is whiter and appears more natural, and the forest on the mountain in the image also appears darker. The two images in Figure 8 have more than 1.2 × 10 6 pixels (i.e. 1.2 × 10 6 samples).

The FP and IDG need more than 4 hours to run, on the these two images.

The ISG method needs only 21 seconds.

We also considered an application to full HD images. In this case, as demonstrated in Figure 9, the advantages of the ISG algorithm were signif- was not feasible to run FP and IDG, with the entire dataset. Rather, the estimation was done on subsets of the complete dataset. These two subsets have 4 × 10 5 samples, that are randomly taken from the original images. In the autumn leaves obtained using FP and IDG, the yellow color has obviously been smeared. ISG is more natural, in which the yellow color is more uniform, and it is closer to the style of the target image.

Classification

MGGD are also used for texture modeling [START_REF] Kwitt | Testing a multivariate model for wavelet coefficients[END_REF][START_REF] Verdoolaege | Geodesics on the manifold of multivariate generalized gaussian distributions with an application to multicomponent texture discrimination[END_REF]. Without going into the details of presently existing classification methods, we attempted to use an MGGD representation, in order to distinguish between different groups of textures. Three groups of textures are selected from the VisTex database [START_REF]Mit vision and modeling group, vision texture[END_REF], We have reason to believe that, in this scenario, ISG has achieved the same performance as FP and simultaneously it used less time.

E u(θ 1 , x), ∇ θ D(θ 1 ) = -∇ Σ D(µ 1 , Σ 0 , β 0 ) 2 E u(θ 2 , x), ∇ θ D(θ 2 ) = -∇ β D(µ 1 , Σ 1 , β 0 ) 2 and so on, for k ≥ 3. This shows that (B.1) is verified.

Appendix C. Proof of propositions 3 and 4

As for Proposition 2, this is an application of Remark 2 in [START_REF] Zhou | Fast, asymptotically efficient, recursive estimation in a riemannian manifold[END_REF]. According to this remark, in order to obtain the mean-square rate and the asymptotic normality, it is enough to show the mean vector field X(θ) = E θ * [u(θ, x)] has an attractive stationary point at θ = θ * . Since u(θ, x) = ∇ θ (θ, x)

E θ * [u(θ; x)] =      ∇ µ D(θ) ∇ Σ D(θ) ∇ β D(θ)      (C.1)
The covariant derivative of this vector field at the point θ = θ * is equal to the Hessian H(θ * ), which is positive definite. Therefore, the results of Propositions 3 and 4 follow by Remark 2 in [START_REF] Zhou | Fast, asymptotically efficient, recursive estimation in a riemannian manifold[END_REF].

Plugging p+1 i=1 w 2 i e -q i t + 1 into the reformulated f

f • δ y (t) = exp    1 2 p+1 i=1 w 2 i e -q i t β    (E.6)
This function is proved to be log-convex in equation (D.3). Therefore, condition (41) is verified since β > 0 for MGGD model.

2) For Student-T, plugging (46b) into (41),

log f • ϕ (t) = β + m 2 1 - 1 β + 1 β exp(ψ(t)) (E.7)
Therefore, condition (41) is verified since β > 0.

. 2 .

 2 Problem formulation Parameter estimation will be formulated as the problem of minimising the Kullback-Leibler divergence D(θ * ||θ), denoted D(θ) for short. That is to say, the estimator θ is sought which is the solution of the following minimisation problem θ = arg min θ∈Θ D(θ)

Proposition 1 .

 1 Assume the cost function[START_REF] Verdoolaege | On the geometry of multivariate generalized gaussian models[END_REF] has an isolated stationary point θ = θ * in some neighborhood S 0 ⊂ Θ, and that the estimates (θ k ) k≥0 remain within S 0 . Then, for the sequence (θ k ) k≥0 generated by Algorithm 1,lim k→∞ θ k = θ *Appendix A sketches a proof of this convergence. For the case θ = (Σ) or θ = (µ, Σ), near the true value θ * , the Hessian of the function D(θ)

2 . 2 . 2 +

 222 sign is simplified as positive in the algorithm. The compact and convex set S 0 is a neighborhood of θ * , in which the cost function D(θ) has an isolated stationary point θ = θ * . The following proposition 2 states the convergence of Algorithm Proposition Assume the function D(θ) has an isolated stationary point at θ = θ * in S 0 , and that the estimates (θ n ) n≥0 remain within S 0 . Then, lim θ n = θ * almost surely. The proof of this convergence is discussed in Appendix B. Note that S 0 admits a system of normal coordinates (θ i ; i = 1, • • • , d) with origin at θ * , where d is the dimension of the parameter space Θ, d = m(m+1) m + 1.

Table 2 :

 2 Convergence analysis: Student-T Student θ = (Σ) Globally for β > -m θ = (µ, Σ) Globally for β > 0 in Tables

Corollary 3 .

 3 the KL divergence D(µ, Σ) (and D(µ, Σ)) has a unique global minimum (and unique stationary point) at (µ * , Σ * ), in both of the following cases.
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 11 Figure 1: The superlinear convergence rate for IDG

  )

  ) and 3(b) confirm the chi-squared limit distribution in corollary[START_REF] Kelker | Distribution theory of spherical distributions and a locationscale parameter generalization[END_REF]. The samples x n being matrices of size m × m with m = 10, the dashed blue curve is the probability density of a chi-squared distribution with 55 and 65 degrees of freedom, for Figures3(a) and 3(b) respectively. The solid lines are the smoothed histograms of N d 2 (θ * , θN ) where N = 10 5 . These "estimated p.d.f." coincide very closely with the theoretical chi-squared probability density.

( a )Figure 2 :

 a2 Figure 2: Linearly convergence rate for ISG

Figure 3 :

 3 Figure 3: Validation by fitting a Chi-2

3

 3 ), 4(b) and 4(c), the x-axis denotes the size of the dataset, and the y-axis denotes the expectation of the square distance between θ * and the estimated θ. This expectation is approximated by the average of 10 Monte Carlo trials. For the cases θ = (Σ) and θ = (µ, Σ), the IDG and ISG algorithms show a better accuracy. When θ = (µ, Σ, β), the accuracy of the MLE method is still significantly better than MM, and the accuracies of IDG and FP coincide. However, the accuracy of ISG is not as good as as FP or IDG. This phenomenon may be explained theoretically. Indeed, when θ = (µ, Σ, β), the product metric does not coincide with the information metric of the ECD model, and this leads to a less efficient estimation. The fluctuations of the curves in Figure4(c) are quite significant. This means the variance of the final estimate θ is significant.
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 a4 Figure 4: Efficiency comparison
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 5 Figure 5: Additional experiments

  icant. The result of MM failed to achieve the color of the autumn leaves in the target image, showing cyan instead of yellow. Since the input image and the target image have more than 4 × 10 6 pixels (that is 4 × 10 6 samples)
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11 paintings, 18

 18 fabrics, and 11 terrains. Each texture is considered as an RGB 3-dimensional image, modeled by an MGGD, whose parameters θ = (µ, Σ, β) are estimated by two MLE methods, i.e. FP and ISG. Then, the scatter matrices Σ are normalized by their trace, i.e. M = p tr(Σ) Σ (in order to
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Table 1 :

 1 Convergence analysis: MGGD

Table 3 :

 3 Percentage of 'correct' estimates

	correct estimates incorrect estimates

Acknowledgement

At the end, we thank the support from the ANR MAR-GARITA under Grant ANR-17-ASTR-0015 for our works.

Let (θ k ) k≥0 be an infinite sequence generated by Algorithm 1. Recall the retraction R θ defined in [START_REF] Pascal | Parameter estimation for multivariate generalized gaussian distributions[END_REF]. Consider the sequence of tangent vectors (η k ) k≥0 where η k belongs to T θ k Θ, and

, and so on.

Then, the sequence (θ k ) is given as in Algorithm 1 of [START_REF] Absil | Optimization algorithms on matrix manifolds[END_REF],

with step-size t k chosen according to Armijo-Goldstein rule (note that t 0 = α µ , t 1 = α Σ , and t 2 = α β , etc.).

The sequence (θ k ) remains within the neighborhood S 0 of θ * . Without loss of generality, assume this neighborhood is compact. According to Corollary 4.3.2 in [START_REF] Absil | Optimization algorithms on matrix manifolds[END_REF], if the sequence (η k ) k≥0 is gradient-related,

Then, since θ * is the only stationary point of the cost function [START_REF] Verdoolaege | On the geometry of multivariate generalized gaussian models[END_REF] in S 0 , it follows that lim k→∞ θ k = θ * , as required. To show that the sequence (η k ) k≥0 is gradient-related, note that

and so on, for k ≥ 3. In other words, the scalar product between η k and ∇ θ D(θ k ) is always strictly negative. Therefore, the sequence (η k ) k≥0 is gradient-related.

Appendix B. Proof of proposition 2

The proof is a direct application of Remark 2, concerning Proposition 1, in [START_REF] Zhou | Fast, asymptotically efficient, recursive estimation in a riemannian manifold[END_REF]. According to this remark, if u(θ n , x) denotes the direction of descent, and if

then lim θ n = θ * almost surely. Here (compare to the proof of Proposition 1), the direction of descent is given by u(θ

) and so on. Therefore, the expectation in (B.1) is equal to

Appendix D. Proof of proposition 5

For the case of θ = (Σ), the geodesic convexity of the cost function D(θ)

(or of D(θ)) follows by proving -(θ; x) is geodesically strictly convex in θ = (Σ) for any x.

To do this, for any fixed x, denote g(θ) = -(θ; x). Recall that, geodesic curves on P m are of the form [START_REF] Pennec | A riemannian framework for tensor computing[END_REF] γ :R → P m t →A exp(tr)A † (D.1)

where exp denotes the matrix exponential map, A is an invertible matrix, and r is a diagonal matrix, both of same size as Σ. Then, g(θ) is geodesically convex if and only if the composition (g • γ)(t) is always a convex function with respect to t. Moreover, geodesic strict convexity is defined in exactly the same way. The composition (g • γ)(t) can be expressed

where

x has components u i , and r i are the diagonal elements of r. The function ϕ : R → R + is strictly log-convex, because it is the Laplace transform of a positive measure [START_REF] Shiryayev | Probability[END_REF] 

where µ = m i=1 u 2 i δ r i , and δ r i is the Dirac measure concentrated at r i . Assume that the function f verifies Condition (41). Then, since ϕ is strictly log-convex, f •ϕ is strictly log-convex. Thus, the term log [(f • ϕ)(t)] of (D.2) is a strictly convex function of the real variable t. Since the term tr(r) t 2 of (D.2) amounts to an affine function of t, it is now clear that (g •γ)(t) is a strictly convex function of the real variable t, for any geodesic curve γ : R → P m . Finally, since x was chosen arbitrarily, -(θ; x) is geodesically strictly convex in θ = (Σ) for each x. Therefore, D(θ) and D(θ) are both geodesically strictly convex.

Appendix E. Proof of corollary 2 and 3

For the case of θ = (Σ), note that ϕ : R → R + is strictly log-convex if and only if ϕ(t) = exp(ψ(t)) where ψ : R → R is strictly convex. 1) plugging (40a) into (41),

Therefore, condition (41) is verified since β > 0.

2) plugging (40b) into (41),

Therefore, condition (41) is verified since β + m > 0.

For the case of θ = (µ, Σ), as mentioned above, the function f is reformulated. Then, the same strategy is applied for this reformulated f . 1) For MGGD, recall the geodesic curve for reformulated matrix S(t),

where exp denotes the matrix exponential map, B is an invertible matrix, and s is a diagonal matrix, both of same size as S.

δ y (t) = y † S -1 y = p+1 i=1 v 2 i e -s i t with v = B -1 y (E.4)

According to equation (45), we have δ y > 1. Therefore, ∃w ∈ R p+1 and ∃q ∈ (0, +∞) p+1 (e.g. w = (u, 0) and q = (r, 1) ) such that p+1 i=1 v 2 i e -s i t = p+1 i=1 w 2 i e -q i t + 1 (E.5)