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Atomic length in Weyl groups

Nathan Chapelier-Laget∗, Thomas Gerber†

Abstract

We define a new statistic on Weyl groups called the atomic length and investigate its combinatorial and representation-
theoretic properties. In finite types, we show a number of properties of the atomic length which are reminiscent of
the properties of the usual length. Moreover, we prove that, with the exception of rank two, this statistic describes
an interval. In affine types, our results shed some light on classical enumeration problems, such as the celebrated
Granville-Ono theorem on the existence of core partitions, by relating the atomic length to the theory of crystals.

Introduction

Let W be a Coxeter group and S be a finite set of generators called the simple reflections. The length function
` : W → N is a fundamental tool for studying the combinatorial and algebraic properties of W and of related
structures. The number `(w) is defined as the minimal number of simple reflections necessary to decompose w
(in particular, the length function depends on S). Expressions of w as a product of `(w) generators are called
reduced, and Matsumoto’s theorem ensures that any two reduced expressions of w are related by a sequence of
braid moves. It is readily shown that `(w) equals the number of inversions of w, that is, the number of positive
roots of the corresponding root system that are sent to a negative root by w−1.

The length function naturally induces a partial order on W , which contains a famous ordering on W : the
weak (Bruhat) order. The weak order is ubiquitous in the theory of Coxeter groups and their deformations,
the (Iwahori-)Hecke algebras [GP00]. Moreover, it is contained in the (strong) Bruhat order, which plays
a crucial role in Kazhdan-Lusztig theory and related topics [Lus03], allowing for example to compare the
(Zariski) adherence of cells in Schubert varieties. There are also variants of the length function that also play
an important role in representation theory and combinatorics.
The twisted length function is a central tool in the theory of certain partial pre-orders onW defined with respect
to a subset of reflections, and behaving similarly to the Bruhat order. These partial pre-orders have been used
to prove the existence of new Kazhdan-Lusztig polynomials [Dye93]. The twisted length function also helps
determine which subsets of reflections induce a partial order [Dye93, Edg07].
In another direction, there is a notion of absolute length or reflection length, which is defined as the minimal
number of reflections (not necessarily simple) required to decompose an element of W . It also has many
interesting properties, but is less well-understood than the usual length [Car72], [Dye01], [LMPS19].

In this paper, we introduce a different variant of the length function on Weyl groups denoted L , which we call
the atomic length. More precisely, L (w) is defined similarly to `(w) by considering the inversion set of w, but
by counting each inversion of w not just once, but as many times as its height (that is, the number of simple
roots needed to decompose it). In type A (that is, when the Weyl group is the symmetric group), the atomic
length turns out to coincide with half the entropy of permutations, a well-studied statistic (see Section 1). We
quickly realise that the atomic length is just a special case of a more general statistic depending on a parameter
λ which is a dominant weight, denoted Lλ. More precisely, specialising Lλ at λ = ρ, the half-sum of positive
roots, recovers the statistic L . In fact, we will see that Lλ can be defined in the more general context of Weyl
groups associated to Kac-Moody algebras [Kac84], and we will focus on the affine case (which contains all the
finite types by restricting to an appropriate sub-root system).

We will see that Lλ enjoys a number of properties echoing properties of the usual length function `. In particular,
in finite types, the longest element w0 ∈ W will play a crucial role. We will prove that w0 realises the largest
value of the atomic length on W (for any dominant weight λ), and the main theorem of this paper states that
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1 Entropy of permutations 2

L : W → J0,L (w0)K is surjective, except for rank 2 root systems.

The relevance of this result is two-fold. First, our approach illuminates classic results about the entropy of
permutations by using systematic root systems combinatorics. In particular, we recover the surjectivity of the
half-entropy on symmetric groups Sn for n ≥ 4 [SU11] as a special case. Second, the affine variant of this
problem leads us to a famous result by Granville and Ono [GO96], ensuring that there exists an (n + 1)-core
partition of every size as soon as n ≥ 3. More precisely, take W to be the affine Weyl group of type A(1)

n . Then,
using a convenient interpretation of the statistic Lλ in the context of crystals, we are able to rephrase the main
theorem of [GO96] as follows:

LΛ0 : W → N is surjective if and only if n ≥ 3.

Therefore, we ask the general question: when is Lλ surjective? Like Granville and Ono’s applications in
block theory for symmetric and alternating groups, this would enable us to understand defect zero blocks for
more complicated structures such as (cyclotomic) Hecke algebras [Fay19, JL21]. But just like the proof of the
Granville-Ono theorem requires advanced number-theoretic methods, we expect this problem to be hard in
general. We believe that further investigation of the properties of the atomic length will reveal more exciting
applications.

The paper is structured as follows. We motivate the study of the atomic length by reviewing a number of eclectic
results about the entropy of permutations in Section 1. In Section 2, we introduce the necessary background
on Coxeter groups, root systems and reflection subgroups, and we also recall some important features in the
Weyl group case. In Section 3, we use the setting of Kac-Moody algebras to introduce Weyl groups of affine
type in full generality, and we recall how to recover the untwisted affine Weyl groups in their classical geometric
construction. This formalism enables us to introduce the notion of atomic length L in Section 4, firstly
using inversion sets, and secondly using a more general formula involving the parameter λ, giving rise to the
statistic Lλ. We prove several important properties of Lλ, reminiscent of classical properties of the usual
length function. Section 5 is devoted to the study of special reflections of W which we call Susanfe. In classical
types, we introduce particular Susanfe elements, which are subsequently used in Section 6. In fact, we give
two independent proofs of Theorem 6.2 which states that L is surjective (except in rank 2), one of which
extensively using the properties of w0, and the other based on Susanfe theory. In Section 7, we explain how the
atomic length Lλ can be interpreted in the theory of crystals for Kac-Moody algebras representations, namely
by simply looking at the depth of certain W -orbit elements in the corresponding crystal graph. This enables us
to rephrase the Granville-Ono theorem in terms of atomic length, and thereby motivates the study of the affine
atomic length, which we initiate in Section 8.

1 Entropy of permutations

In this section, we survey some results about several important statistics on the symmetric group, including the
notion of entropy. This serves as a motivation for studying the atomic length defined in Section 4, as it will
turn out to be simply half the entropy in type A. We denote N the set of nonnegative integers.

1.1 Entropy and inversion sum

Let Sn be the symmetric group and let w ∈ Sn. Denote

cos(w) =

n∑
k=1

k w(k).

The map cos : Sn → N is called the cosine. In [SU11, Theorem 2.2], it was proved that all nonnegative integers
with the exception of 16 can be expressed as the cosine of some permutation. Recently, the cosine map has
been studied from a combinatorial point of view in [ELM+22, Section 5.2] where the authors show that it is a
n(n+1)2

4 -homomesy. In order to prove [SU11, Theorem 2.2], the authors introduce two statistics on Sn, based on
the notion of inversion and non-inversion of a permutation. Let w ∈ Sn and write w = w1w2 . . . wn in one-line
notation, that is w(k) = wk. An inversion of w is a pair (i, j) such that i < j and wi > wj , and a non-inversion
of w is a pair (i, j) such that i < j and wi < wj . The set of all inversions (respectively non-inversions) of w is
denoted by N(w) (respectively N ′(w)). We then set

invsum(w) =
∑

(i,j)∈N(w)

(j − i) and ninvsum(w) =
∑

(i,j)∈N ′(w)

(j − i).
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We will see that invsum coincides with the type An−1 atomic length of Section 4, see Remark 4.2 (2). Further-
more, we have the following formula [SU11, Eq.(1)] that connects these two statistics

invsum(w) + ninvsum(w) =

(
n+ 1

3

)
. (1)

Let w0 be the permutation n(n − 1)(n − 2) · · · 11. An important tool for proving [SU11, Theorem 2.2] is the
following theorem.

Theorem 1.1 ([SU11, Theorem 2.5]). For w ∈ Sn we have

cos(w) = cos(w0) + ninvsum(w).

We are ready to give the central definition of this section.

Definition 1.2. Let w ∈ Sn. The entropy of w is the nonnegative integer E(w) =
n∑
i=1

(i− w(i))2.

Remark 1.3.

(1) The entropy is a particular case of the metric S introduced in [DG77], showing that it is the “Spearman’s
rho” of a permutation and the identity permutation.

(2) The entropy is related to another important notion: bigrassmannian permutations. A bigrassmannian
permutation is a permutation that has only one left descent and only one right descent (in the Coxeter
sense). The study of these permutations goes way back, beginning with the work of Lascoux and Schützen-
berger [LS96] where they show that w ∈ Sn is bigrassmannian if and only if it is join-irreducible for the
Bruhat order on Sn [LS96, Theorem 4.4]. The notion of join-irreducible elements in Weyl groups appears
more generally in quiver-representation-theoretic context in [IRRT18].
Precise computations and expressions of bigrassmannian permutations can also be found in [GK97]. It
turns out that various aspects of bigrassmannian permutations are useful in a broad range of subjects
and therefore were strongly studied in the past three decades [EL96, LS96, GK97, Rea02, Kob10, Kob11,
RWY11, EH18, IRRT18]. For example, in [RWY11], Reiner uses this notion to describe the cohomology of
Schubert varieties. In another direction, bigrassmannian elements are used to determine the socle of the
cokernel of an inclusion of Verma modules in type A [KMM21, Section 2.2, Corollary 5]. Let ≤B denote
the (strong) Bruhat order on Sn. In [Kob11, Theorem] Kobayashi shows that the cardinality of the set
{v ≤B w | v is bigrassmannian} is equal to E(w)/2.

The entropy is related to the inversion sum by the following formula, announced previously.

Proposition 1.4. Let w ∈ Sn. We have
E(w)

2
= invsum(w).

Proof. Let us denote an =
∑n
i=1 i

2. On the one hand we have

E(w) =

n∑
i=1

(i− w(i))2 =

n∑
i=1

(i2 − 2iw(i) + w(i)2) =

n∑
i=1

i2 − 2

n∑
i=1

iw(i) +

n∑
i=1

w(i)2 = 2an − 2 cos(w).

Hence E(w)/2 = an − cos(w). Moreover by Theorem 1.1, we know that cos(w) = cos(w0) + ninvsum(w), and
by (1), we know that invsum(w) + ninvsum(w) =

(
n+1

3

)
. By definition of the cosine we have

cos(w0) =

n∑
i=1

i w0(i) =

n∑
i=1

i(n+ 1− i) = (n+ 1)

n∑
i=1

i− an.

Therefore we obtain

an − cos(w) = an − cos(w0)− ninvsum(w)

= an −

[
(n+ 1)

n∑
i=1

i− an

]
−
[(
n+ 1

3

)
− invsum(w)

]

= 2an − (n+ 1)

n∑
i=1

i−
(
n+ 1

3

)
+ invsum(w)

=
n(n+ 1)(2n+ 1)

3
− n(n+ 1)2

2
− (n− 1)n(n+ 1)

6
+ invsum(w)

= invsum(w).

1 The permutation w0 is the longest element of Sn in the Coxeter, see Section 2, which justifies the notation.
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1.2 Entropy and the permutohedron

A geometrical interpretation of the entropy is given in terms of the n-dimensional permutohedron Pn (called
the “Voronoi cell” of a certain lattice in [CS13, Theorem 7 page 474]). Let us recall the construction of the
permutohedron in type An−1.

Fix V = Rn with canonical basis {ei | i = 1, . . . , n}. The symmetric group Sn acts transitively on V by
permuting the coordinates, denote Sn × V → V, (w, x) 7→ w(x) this action. The reflection hyperplanes of Sn
are Hij = {x ∈ V | xi − xj = 0} with 1 ≤ i < j ≤ n. Choose now a generic point x ∈ V not located on any
reflection hyperplane of Sn. Then the permutohedron is defined as the convex hull of the orbit under Sn of the
point x, that is

Pn(x) = conv{w(x) | w ∈ Sn}.

We see then that there are as many realizations of Pn as points x in V not located on the reflection hyperplanes.
Some of them are move convenient and sometimes it can be useful to choose one over another. We say that a
point x ∈ V is adequate if it is not located on any reflection hyperplane of Sn and if all its coordinates xi are
in [1, n] ∩ Z.

Remark 1.5. The permutohedron can be defined for any finite Coxeter group, see [PHD20, Section 1.5] for a
good reference on the subject.

We can give the expected formula relating the entropy and the permutohedron. The following proposition states
that the entropy of a permutation w is the square of the distance between two points of Pn(x) permuted by w.
This is illustrated in Figure 1.

Proposition 1.6. Let x ∈ V be adequate, and let w ∈ Sn. Then

E(w) = |w(x)− x|2.

Proof. Write x = (x1, x2, . . . , xn). By definition w(x) = (w(x1), w(x2), . . . , w(xn)). Moreover we have the
following formula |w(x) − x|2 =

∑n
i=1(w(xi) − xi)2. Since x is adequate, we can make the change of variables

xi 7→ i and we obtain |w(x)− x|2 =
∑n
i=1(w(i)− i)2 = E(w), which ends the proof.
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Fig. 1: The permutohedron for S4. The vertices are labelled by reduced expressions of the group elements (i.e.,
in terms of the Coxeter generators). Vertices of the same color are at the same distance to e, therefore
have the same entropy. The values of the half-entropy (which will coincide with the atomic length) for
each color is given by

• : 0 • : 1 • : 2 • : 3 • : 4 • : 5 • : 6 • : 7 • : 8 • : 9 • : 10
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2 Coxeter groups and Weyl groups

2.1 Inversion sets

Let (W,S) be a Coxeter system with S finite. Consider a corresponding root system2 Φ and denote ∆ =
{α1, . . . , αn} the set of simple roots, so that S = {s1, . . . , sn} where si = sαi is the simple reflection associated
to the simple root αi. Throughout this paper, we shall always assume that Φ is irreducible. Let Φ+ ⊆ Φ be
the associated set of positive roots, so that Φ− = −Φ+ is the corresponding set of negative roots. In particular,
Φ = Φ+ tΦ−. We denote by T =

⋃
w∈W wSw−1 the set of all reflections of W . The set Φ+ is in bijection with

T , as any reflection t writes t = sα for a certain α ∈ Φ+.

Let ` : W → N be the length function, that is, `(w) is the smallest number r such that there exists an expression
w = si1 . . . sir with sik ∈ S. By convention, `(e) = 0. An expression of w ∈ W is called a reduced expression if
it is a product of `(w) generators.

Let w ∈W . The inversion set of w is

N(w) = {α ∈ Φ+ | w−1(α) ∈ Φ−},

and an alternative description of the inversion set is given by

N(w) = {α ∈ Φ+ | `(sαw) < `(w)}.

It is well-known that `(w) = |N(w)|, and w = w′ if and only if N(w) = N(w′). The following result, which can
be found for example in [HL16, Proposition 2.1], enables us to construct inversion sets starting from reduced
expressions. We will use it several times in the rest of the paper.

Proposition 2.1. Let w ∈ W and write w = uv with u, v ∈ W veriyfing `(w) = `(u) + `(w). Then
N(w) = N(u) t u(N(v)). In particular if w = s1s2 . . . sn−1sn is a reduced expression then N(w) =
{α1, s1(α2), s1s2(α3), . . . , s1s2 . . . sn−1(αn)}.

In fact, inversion sets are well-behaved with respect to the right weak order, defined as follows. For w,w′ ∈W ,
we write w ≤ w′ if there exist reduced expressions w,w′ of w and w′ respectively such that w is a prefix of w′
We have the following characterisation proved in [DH16, Corollary 2.10].

Proposition 2.2. For all w,w′ ∈W , we have N(w) ⊆ N(w′)⇔ w ≤ w′.

In fact, one direction of the above equivalence can be refined as follows, see [HL16, Proposition 1.1].

Proposition 2.3. The map N is a poset monomorphism from (W,≤) to (P(Φ+),⊆).

We now give some properties that will be needed in the following sections. Recall that if A ⊆ T is a subset of
reflections, then the corresponding reflection subgroup of W is the subgroup WA generated by the reflections
in A, that is

WA = 〈sα | sα ∈ A〉.

From [Dye90] we know that the set ΦA = {α ∈ Φ | sα ∈ WA} is a root system of WA, with simple roots
∆A = {α ∈ Φ+ | N(sα) ∩ ΦA = {α}}. Moreover, we have Φ+

A = ΦA ∩ Φ+. Following [Dye10], we denote
SA = {sα | α ∈ ∆A}. Therefore, the pair (WA, SA) is a Coxeter system, and we denote `A its length function.
Let us write

AW = {w ∈W | `(sαw) > `(w) ∀α ∈ ΦA} = {w ∈W | N(w) ∩ ΦA = ∅}. (2)

Note finally that there is an easier characterization of the previous set thanks to the functoriality of the Bruhat
graph (see [DH16, Section 2.5] for more details):

AW = {w ∈W | `(sαw) > `(w) ∀α ∈ ∆A}. (3)

It is also known that for any w ∈ W , there exists a unique wA ∈ WA and a unique Aw ∈ AW such that
w = wA

Aw. The decomposition w = wA
Aw is called the A-decomposition of w.

Remark 2.4.

(1) The A-decomposition defined above is usually called “left A-decomposition”, and accordingly, there is a
notion of right A-decomposition that uses an analogous subset WA. In this article we will only use the
left A-decomposition, which is why we use this simpler terminology.

2 The geometric representation of (W,S) gives a standard way to define root systems for any Coxeter system, see for example
[DH16, Section 2.3].
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(2) In the particular case A ⊆ S, we recover the parabolic decomposition, see [Hum90]. In this case, we have
the formula `(w) = `(wA) + `(Aw) but this does not holds in general if A 6⊆ S, see [Dye91].

If WA is a reflection subgroup of W and w ∈ W , the group wWAw
−1 is also a reflection subgroup of W ,

generated by the reflections wtw−1, t ∈ A. For simplicity, we denote B = {wtw−1 ; t ∈ A}, so that ΦB denotes
the root system corresponding to WB = wWAw

−1. Recall that we have the following proposition.

Proposition 2.5. Let A ⊆ T and w ∈W , and set B = wAw−1. We have ΦB = w(ΦA).

Definition 2.6. Let A ⊆ T and w ∈ W . Define WB = wWAw
−1. We say that w is A-utopic if the following

map is a bijection

Γw : WB −→ WA

x 7−→ (wx)A.

The set of A-utopic elements is denoted by U(A).

Proposition 2.7. Let I ⊆ S. Then T ⊆ U(I).

Proof. Let t ∈ T and WB = tWIt. Let us show that the map Γt is a bijection. To do so, since WB and WI

have the same number of elements it is enough to show that Γt is injective. Let x and y be two elements of
WB . Therefore, there exist u, v ∈ WI such that x = tut and y = tvt. Assume that Γt(x) = Γt(y), that is
(tx)I = (ty)I , which is equivalent to (ut)I = (vt)I and then (utI

It)I = (vtI
It)I . But since u and v belong to

WI , it follows that (utI
It)I = utI and (vtI

It)I = vtI . Thus utI = vtI and it follows that u = v. Hence x = y,
which ends the proof.

For w ∈WA we denote by NA(w) its inversion set, which is a subset of Φ+
A. The relation between N and NA is

discussed in Lemma 3.5. It turns out that inversion sets behave nicely when restricted to reflection subgroups,
as expressed in the following proposition, found in [DH16, Proposition 2.16].

Proposition 2.8. Let WA be a reflection subgroup of W and let w ∈ W . Write w = wA
Aw be the A-

decomposition of w. Then N(w) ∩ ΦA = NA(wA).

2.2 The case of finite Weyl groups

Let V be a Euclidean space with inner product (· | ·). Let Φ be an irreducible crystallographic root system
in V , that is 2 (α|β)

(α|α) ∈ Z for any α, β ∈ Φ. We denote again ∆ = {α1, . . . , αn} a simple system and Φ+ the
corresponding positive roots. The corresponding reflection group is called a Weyl group. These are particularly
important as they are attached to simple Lie algebras over C, for which we have a classification. This is achieved
via the different Dynkin types, namely An for n ≥ 1, Bn, Cn for n ≥ 2, Dn for n ≥ 4 (the classical types),
E6, E7, E8.F4 and G2 (the exceptional types). We refer to the book [Bou68] for details, and we will use its
conventions in this paper. We will sometimes use the convenient notationW (Xn) for the Weyl group associated
to a root system of type Xn. In this paper, we will mostly focus on Weyl groups rather than general Coxeter
groups, since we will make use of several representation-theoretic properties.

Let us fix some notation that will be useful in the rest of this paper. First of all the height of a root α ∈ Φ is
the number of simple roots appearing in the decomposition of α, that is, if α =

∑n
i=1 aiαi with ai ∈ Z, then

ht(α) =

n∑
i=1

ai.

We denote by ei the i-th canonical vector of its corresponding ambient space V . We will use the shorthand
notation eij = ei − ej and eij = ei + ej . In clasical types, the roots are either eij , eij , ei or 2ei and we refer the
reader to read [Bou68, Planches] for more details. Sometimes we will use a comma between the labels i and j
to prevent any ambiguity, for instance we will write ei,n+1 rather than ei(n+1).

Remark 2.9. In the case whereW = W (An), that isW = Sn+1, the inversion set N(w) is in bijection with the
set N(w) introduced in Section 1 via the map eij 7→ (i, j). In this case, the simple roots are ei,i+1 for 1 ≤ i ≤ n,
and one checks that ht(eij) = j − i, which is the quantity that appears in the definition of the statistic invsum.

Finally, we will use two important features of Weyl groups. First, there exists a unique element w0 of maximal
length, see for instance [Bou68, Chapter VI, §1, Corollary 3]. Second, there exists a unique root α̃ verifying, for
all β ∈ Φ, α̃− β =

∑n
i=1 aiαi for some nonnegative integers a1, . . . , an, see [Bou68, Chapter VI, §1, Proposition

25]. It follows from this property that α̃ ∈ Φ+ and that α̃ is in fact the unique element with maximal height.
Thus, α̃ is called the highest root of Φ.
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3 Affine Weyl groups and Shi coefficients

In this section, we recall the construction of affine Weyl groups via the theory of Kac-Moody algebras, following
[Kac84]. The Weyl groups appearing in this context are either of untwisted or twisted type. In the untwisted
cases, we will recall the classical geometric constructions in Section 3.3.

3.1 Kac-Moody algebras and affine Weyl groups

Let A = (aij)0≤i,j≤n be a generalised (symmetrisable) Cartan matrix such that the corresponding Kac-Moody
algebra g is of affine type. In particular, the rank of A is n. Let h∗ be a real vector space of dimension
n + 2 and ∆ = {α0, . . . , αn} ⊆ h∗, ∆∨ = {α∨0 , . . . , α∨n} ⊆ h be a realisation of g (see [Kac84] for details),
so that 〈αj , α∨i 〉 = aij , where 〈., .〉 denotes the natural pairing between h∗ and h. Write V0 =

⊕n
i=1 Rαi and

V = V0 ⊕ Rα0 together with V ∗0 =
⊕n

i=1 Rα∨i and V ∗ = V ∗0 ⊕ Rα∨0 . For 0 ≤ i ≤ n, the reflections si : h∗ → h∗

given by the formula
si(x) = x− 〈x, α∨i 〉αi

generate a subgroupW of GL(h∗) called theWeyl group of g. The subgroup ofW generated by s1, . . . , sn is called
the finite Weyl group of g and we denote it byW0. Finally, we write ∆0 = {α1, . . . , αn} and ∆∨0 = {α∨1 , . . . , α∨n}.

The Weyl group W acts naturally on h∗ by isometry and induces an action on h via the contragredient repre-
sentation, defined by w(f) = f ◦ w−1 f or any f ∈ h. In particular, one can show [Car05, Proposition 16.14]
that this action is determined by the formulas si(f) = f − 〈f, αi〉α∨i for all 0 ≤ i ≤ n. Moreover, the finite
Weyl group W0 acts by restriction on V0 and V ∗0 . We denote by Φ0 (respectively Φ∨0 ) the crystallographic root
system (respectively coroot system) associated to W0, that is Φ0 = W0(∆0) (respectively Φ∨0 = W0(∆∨0 ). For
α = w(αi) ∈ Φ0, where αi ∈ ∆0, we denote α∨ = w(α∨i ) the corresponding coroot. The definition of α∨ is
independent of the choice of w. Denote Φ = W (∆). Then Φ is a root system associated to W with simple
system ∆. The set Q = Z∆0 is called the root lattice and Q∨ = Z∆∨0 is called the coroot lattice. We can extend
the notion of height to any element of Q by setting, for β =

∑n
i=1 biαi ∈ Q, ht(β) =

∑n
i=1 bi.

We now introduce the following two important elements:

δ =

n∑
i=0

aiαi ∈ V and c =

n∑
i=0

a∨i α
∨
i ∈ V ∗

where a0, . . . , an and a∨0 , . . . , a∨n are defined in [Kac84, Theorem 4.8] and are determined by the Dynkin type.
Note that we always have a∨0 = 1, regardless of the type, and a0 = 1 except in type A(2)

2n , in which case a0 = 2.

The space V is equipped with a symmetric bilinear form (. | .) which satisfies:

(αi | αj) = a∨i a
−1
i aij for i, j 6= 0 , (δ | αi) = 0 for i 6= 0 and (δ | δ) = 0.

The space V endowed with (· | ·) is a quadratic space with isotropic cone Rδ. We extend (. | .) to h∗ by
introducing an isotropic element Λ0 ∈ h∗ \ V verifying (Λ0 | αi) = 0 for i 6= 0 and (Λ0 | δ) = 1. In particular,
(Λ0 | α0) = a−1

0 . For x ∈ h∗, we denote |x| = (x | x)1/2. The bilinear form enables us to express easily the
coroots α∨ for any α ∈ Φ0 via the formula [Kac84, Proposition 5.1 (d)]

α∨ = 2
(α | .)
(α | α)

, (4)

and in fact, for 0 ≤ i ≤ n, we have
α∨i =

ai
a∨i

(αi | .). (5)

We introduce now another important element that enables us to give a more explicit description of ∆ and ∆∨.
This element is defined by:

θ = δ − a0α0 =

n∑
i=1

aiαi ∈ V0.

Depending on the type, the element θ is either the highest root of Φ or the the highest short root of Φ, and it
satisfies the equality (θ | θ) = 2a0, see [Car05, Proposition 17.18] for more details on θ. Thus, one can show
that:

∆ = {a−1
0 (δ − θ), α1, . . . , αn} and ∆∨ = {c− a0θ

∨, α∨1 , . . . , α
∨
n}.

Moreover, since θ ∈ V0 and θ∨ ∈ V ∗0 , the sets {δ, α1, . . . , αn} and {c, α∨1 , . . . , α∨n} are respectively some basis of
V and V ∗. In particular one has V = V0 ⊕ Rδ and V ∗ = V ∗0 ⊕ Rc. Since Λ0 ∈ h∗ \ V , it follows that

h∗ = V0 ⊕ Rδ ⊕ RΛ0.
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Let Ω be the W0-orbit of θ∨, andM be the preimage of the lattice ZΩ under the isomorphism V0 → V ∗0 induced
by the scalar product (· | ·), that is,

M = {β ∈ V0 | (β | .) ∈ ZΩ}.
For x ∈ V0 we denote by tx : h∗ → h∗ the linear map defined by:

tx(v) = v + 〈v, c〉x−
(

(v | x) +
1

2
|x|2〈v, c〉

)
δ. (6)

Let T (M) be the subgroup of GL(h∗) generated by the tβ for β ∈ M . This group is called the group of
translations of M and it acts faithfully on h∗ by Formula (6). Moreover, for all x, y ∈ V0, all v ∈ h∗ and all
w ∈W , one has txty(v) = tx+y(v) and wtxw−1 = tw(x). Then one can expressW as follows ([Car05, Proposition
17.22]):

W = T (M) oW0. (7)
Hence, any element w ∈W decomposes uniquely as w = tβw for β ∈M and w ∈W0. We recall the classification
of affine Weyl groups that arise this way in Figure 2.

Type Alt. notation Type of W0 Lattice M

un
tw

is
te
d
ty
pe

s



A
(1)
n n ≥ 1 Ãn An Zα1 + · · ·+ Zαn−1 + Zαn

B
(1)
n n ≥ 3 B̃n Bn Zα1 + · · ·+ Zαn−1 + 2Zαn

C
(1)
n n ≥ 2 C̃n Cn 2Zα1 + · · ·+ 2Zαn−1 + Zαn

D
(1)
n n ≥ 4 D̃n Dn Zα1 + · · ·+ Zαn−1 + Zαn

E
(1)
n n = 6, 7, 8 Ẽn En Zα1 + · · ·+ Zαn

F
(1)
4 F̃4 F4 Zα1 + Zα2 + 2Zα3 + 2Zα4

G
(1)
2 G̃2 G2 Zα1 + 3Zα2

tw
is
te
d
ty
pe

s



A
(2)
2 Ã1

′
A1

1
2Zα1

A
(2)
2n−1 n ≥ 2 B̃n

t
Cn Zα1 + · · ·+ Zαn−1 + Zαn

D
(2)
n+1 n ≥ 2 C̃n

t
Bn Zα1 + · · ·+ Zαn−1 + Zαn

A
(2)
2n n ≥ 2 C̃n

′
Cn Zα1 + · · ·+ Zαn−1 + 1

2Zαn

E
(2)
6 F̃4

t
F4 Zα1 + Zα2 + Zα3 + Zα4

D
(3)
4 G̃2

t
G2 Zα1 + Zα2

Fig. 2: The affine Weyl groups are of the form T (M) oW0 where W0 and M are classified in the above table,
which can be recovered from [Kac84, Formula 6.5.8] or [Car05, Proposition 17.23]. The terminology for
the Dynkin type (first column) is taken from Kac’ book [Kac84, Chapter 4]. In the twisted types, the
superscript coincides with the ratio of the squared lengths of the long and short roots (except in type
A

(2)
2 where this ratio is 4, and in type A(2)

2n where there are three different root lengths, with consecutive
ratios 2). The alternative terminology (second column) is taken from [Car05]. It has the advantage of
making the untwisted counterpart of each twisted type appear (for those with the superscript “t”); the
type of W0 is also more consistent.

Remark 3.1.

(1) In untwisted Dynkin types, we always have M ' Q∨ (the coroot lattice), which can be checked from
Figure 2. This implies that the group W is isomorphic (as a Coxeter group) to the affine Weyl group Wa

constructed geometrically in [Bou68, Chapter VI, §2]. We will detail this contruction in Section 3.3 below.

(2) The terminology “group of translations” for T (M) is justified by [Car05, Proposition 17.24] or [Kac84,
Formula 6.6.3].
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3.2 Weight lattice and classic formulas

Before proceeding to the further study of W , let us briefly recall some classical constructions related to the
(finite) Weyl group W0. The fundamental weights are defined as the elements ωi ∈ V0, 1 ≤ i ≤ n verifying〈

ωi, α
∨
j

〉
= δij .

The set P0 =
⊕n

i=1 Zωi is the corresponding weight lattice, and P+
0 =

⊕n
i=1 Nωi the set of integral dominant

weights. We set

ρ =

n∑
i=1

ωi =
1

2

∑
α∈Φ+

α.

In turn, there is a dual weight lattice P∨0 with basis consisting of the dual fundamental weights ω∨i ∈ V ∗0 ,
i = 1, . . . , n, defined by

〈αj , ω∨i 〉 = δij .

We define similarly

ρ∨ =

n∑
i=1

ω∨i =
1

2

∑
α∈Φ+

α∨.

We see that 〈αi, ρ∨〉 = 1 for all 1 ≤ i 6= j ≤ n, which implies in particular that, for all β ∈ Q,

〈β, ρ∨〉 = ht(β). (8)

Let us come back to the general affine setting.

Similarly to the finite setting, we let Λi, 1 ≤ i ≤ n be the remaining (affine) fundamental weights, defined by
Λi = a∨i Λ0 + ωi for 1 ≤ i ≤ n, so that 〈Λi, α∨j 〉 = δij . We define similarly Λ∨i ∈ h, 1 ≤ i ≤ n, in particular
〈αj ,Λ∨i 〉 = δij , and we finally set Λ∨0 = a0(Λ0 | ·) ∈ h. In particular, we have 〈αi,Λ∨0 〉 = δ0i for 0 ≤ i ≤ n and
〈Λ0,Λ

∨
0 〉 = 0. We can now set

ρ = Λ0 + . . .+ Λn = h∨Λ0 + ρ ∈ h∗ and ρ∨ = Λ∨0 + . . .+ Λ∨n = hΛ∨0 + ρ∨ ∈ h

where h =
∑n
i=0 ai is the Coxeter number and h∨ =

∑n
i=0 a

∨
i is the Coxeter number corresponding to the

transpose of A.

The affine weight lattice is P =

n⊕
i=1

Zωi ⊕ Zδ ⊕ ZΛ0, and the lattice of affine dominant weights is given by

P+ =
n⊕
i=0

NΛi⊕Zδ. Therefore, any dominant weight λ ∈ P+ writes λ =
∑n
i=0miΛi+zδ for some mi ∈ N, z ∈ Z.

Alternatively, λ decomposes as
λ = λ+ `Λ0 + zδ (9)

where λ = m1ω1 + · · ·+mnωn ∈ P
+
and the level of λ (by using a∨0 = 1) is the nonnegative integer

` = m0 +

n∑
i=1

a∨i mi =

n∑
i=0

a∨i mi = 〈λ, c〉.

We record below the following important formulas of the bilinear form on h∗ and the pairing.

(αi | αj) =
a∨i
ai
aij 0 ≤ i, j ≤ n

(αi | ωj) =
a∨i
ai
δij 0 ≤ i, j ≤ n

(αi | δ) = 0 0 ≤ i ≤ n

(αi | Λ0) = 0 1 ≤ i ≤ n

(α0 | Λ0) = a−1
0

(δ | δ) = 0

(Λ0 | Λ0) = 0

(Λ0 | δ) = 1



〈αj , α∨i 〉 = aij 0 ≤ i, j ≤ n

〈δ, α∨i 〉 = 0 0 ≤ i ≤ n

〈Λ0, α
∨
0 〉 = 1

〈Λ0, α
∨
i 〉 = 0 1 ≤ i ≤ n

〈αi, ρ∨〉 = 1 0 ≤ i ≤ n

〈δ, ρ∨〉 = h.

(10)
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3.3 Untwisted affine Weyl groups and Shi coefficients

We already mentioned in Remark 3.1(1) that the above construction recovers the construction of the affine Weyl
groups of untwisted Dynkin types. Let us recall the direct geometric construction of Wa in this case. Let k ∈ Z
and α ∈ Φ0. We define the affine reflection sα,k ∈ V0 o GL(V0) (the affine group of V0) by

sα,k(x) = x−
(

2
(α | x)

(α | α)
− k
)
α = x− (〈α∨, x〉 − k)α,

where the second equality is a consequence of (4). The group generated by all the affine reflections sα,k with
α ∈ Φ0 and k ∈ Z is called the affine Weyl group associated to Φ0. It is denoted by Wa. The group Wa is a
Coxeter group and we also denote by ` its length function.

We set the hyperplanes
Hα,k = {x ∈ V0 | (α | x) = k},

and the strips
H1
α,k = {x ∈ V0 | k < (α | x) < k + 1}.

An alcove of V0 is a connected component of

V0 \
⋃
α∈Φ+

0
k∈Z

Hα,k.

We denote Ae the fundamental alcove, defined by Ae =
⋂
α∈Φ+

0
H1
α,0. The fundamental chamber ofWa is defined

by
C0 = {x ∈ V0 | (x | β) ≥ 0 ∀β ∈ ∆0}.

The group Wa acts regularly on the set of alcoves. Therefore we have a bijective correspondence between Wa

and the set of alcoves, given by w 7→ Aw where Aw = wAe. Moreover, every alcove of V0 can be written as an
intersection of |Φ+

0 | strips, that is, for all w ∈Wa, we have

Aw =
⋂

α∈Φ+
0

H1
α,k(w,α).

where k(w,α) ∈ Z is called the Shi coefficient of w in position α. This integer indicates the number of hyperplanes
Hα,m with m ∈ Z (also called the α-hyperplanes) between the alcove Aw and the fundamental alcove Ae. More
precisely, if k(w,α) ≥ 0 then the α-hyperplanes between Ae and Aw are Hα,1, Hα,2, . . . ,Hα,k(w,α). If k(w,α) < 0
then the α-hyperplanes between Aw and Ae are Hα,0, Hα,−1, . . . ,Hα,k(w,α)+1.
The vector (k(w,α))α∈Φ+

0
is called the Shi vector of w. Shi vectors are usually arranged in a “pyramidal” shape

as illustrated in Figure 3, Figure 4, Figure 6 and Figure 10. In [Shi87], Shi gave the following characterisation of
the possible integers vectors (kα)α∈Φ+

0
that arise as Shi vectors of elements in Wa (see Figure 3 for an example).

Theorem 3.2 ([Shi87, Theorem 5.2]). Let A =
⋂

α∈Φ+
0

H1
α,kα

with kα ∈ Z. Then A is an alcove if and only if for

all α, β ∈ Φ+
0 satisfying α+ β ∈ Φ+

0 , we have the following inequality

kα + kβ ≤ kα+β ≤ kα + kβ + 1

The following proposition is essential in view of proving Proposition 5.6.

Proposition 3.3 ([CL20, Proposition 3.2]). Let w ∈Wa and let t ∈ T be a reflection. For all α ∈ Φ0, we have

k(tw, α) = k(w, t(α)) + k(t, α).

We will describe in Lemma 3.5 below the inversion set of affine Weyl group elements in terms of their Shi
coefficients. This will be crucial for proving Proposition 5.6 and, in turn, Theorem 6.2.

Lemma 3.4 ([Shi87, Lemma 3.1]). Let w ∈W0 and α ∈ Φ+. Then α ∈ N(w) if and only if k(w,α) = −1.

Taking inversion sets is compatible with restricting to reflection subgroups as is shown in the following lemma3.

3 Point (2) is well-known but we find it useful to give the proof again.
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Fig. 3: Alcoves in Wa = W (A
(1)
2 ). In each alcove, we have written the Shi vector of the corresponding Weyl

group element, where the bottom left (respectively bottom right, respectively top) position corresponds
to the root e12 (respectively e23, respectively e13). The identity element corresponds to the alcove with
3 zeros and the elements of W0 correspond to the alcoves with only zeros or −1’s, forming a hexagon.
The shaded region, consisting of only nonnegative integers, is the fundamental chamber C0.

Lemma 3.5. Let W be a finite Weyl group with simple system S. Let w ∈W .

(1) Let A ⊆ T and consider the reflection subgroup WA ≤W . Then NA(wA) = {α ∈ Φ+
A | k(w,α) = −1}.

(2) Let I ⊆ S and consider the standard parabolic subgroup WI ≤W . Then NI(wI) = N(wI).

Proof.

(1) By Proposition 2.8, we have

NA(wA) = N(w) ∩ ΦA = {α ∈ Φ+ | k(w,α) = −1} ∩ ΦA = {α ∈ Φ+
A | k(w,α) = −1}.

(2) Let wI = si1 . . . sik be a reduced expression of wI ∈ WI . Since `I(wI) = `(wI), this expres-
sion is also reduced in W . By Proposition 2.1 applied in both WI and in W , we get NI(wI) =
{αi1 , si1(αi2), si1si2(αi3), . . . , si1 . . . sik−1

(αik)} = N(wI).

4 Atomic length in finite Weyl groups

We are ready to define the central notion of this paper, namely the atomic length of a Weyl group element. In
this section, we only consider Weyl groups of finite type, except in Definition 4.5, which is given for both finite
and affine Weyl groups. Indeed, we will first investigate the properties of the atomic length in finite types, in
both Section 4 and Section 6. In order to avoid cumbersome notation, we will simply use the notation W , ρ, ...
for the finite Weyl group, the sum of the fundamental weights, and so on (instead of W0, ρ, ... as in Section 3).
The study of the affine atomic length will be delayed to Section 7 and Section 8.

4.1 Inversion sets and atomic length

We use the notation of the previous sections. In particular, Φ+ denotes the chosen set of positive roots, and
N(w) denotes the set of inversions of w ∈W .
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Definition 4.1. Let w ∈W . The atomic length of w is the nonnegative integer

L (w) =
∑

α∈N(w)

ht(α).

Remark 4.2.

(1) Recall from Section 2 that for all w ∈W , we have |N(w)| = `(w), the length of w. Therefore, the atomic
length can be seen as a variant of the usual length function, where each inversion α is counted with
multiplicity ht(α), that is, α is fully decomposed as a sum of simple roots, hence the terminology “atomic”
length.

(2) Assume that W = W (An). Recall the definition of invsum from Section 1.1. We have already seen
in Remark 2.9 that ht(eij) = j − i for all 1 ≤ i < j ≤ n + 1. Therefore, for all w ∈ W , we have
L (w) = invsum(w).

Example 4.3. Let W = W (A2). Denote αi = ei,i+1 ∈ ∆, i = 1, 2 the simple roots and s1, s2 ∈ W the
corresponding simple reflections. The values of both the usual and atomic length are recorded in the following
table.

w N(w) `(w) L (w)

1 ∅ 0 0

s1 {α1} 1 1

s2 {α2} 1 1

s1s2 {α2, α1 + α2} 2 3

s2s1 {α1, α1 + α2} 2 3

s1s2s1 {α1, α2, α1 + α2} 3 4

The following lemma will enable us to extend the definition of the atomic length. Recall that we have defined
ρ in Section 3 to be the half-sum of the positive roots.

Lemma 4.4. For all w ∈W , we have
ρ− w(ρ) =

∑
α∈N(w)

α.

Proof. Fix w ∈W . First, we have

ρ =
1

2

∑
α∈Φ+

α =
1

2

∑
α∈Φ+

α∈N(w)

α+
1

2

∑
α∈Φ+

α/∈N(w)

α.

Second, we have

w(ρ) =
1

2

∑
α∈Φ+

w(α)

=
1

2

∑
α∈Φ+

w(α)∈Φ+

w(α) +
1

2

∑
α∈Φ+

w(α)/∈Φ+

w(α)

=
1

2

∑
w−1(α)∈Φ+

α∈Φ+

α+
1

2

∑
w−1(α)∈Φ+

α/∈Φ+

α by substituting α← w−1(α) in both sums

=
1

2

∑
w−1(α)∈Φ+

α∈Φ+

α− 1

2

∑
w−1(α)/∈Φ+

α∈Φ+

α by substituting α← −α in the second sum

=
1

2

∑
α∈Φ+

α/∈N(w)

α− 1

2

∑
α∈Φ+

α∈N(w)

α.
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Finally, taking the difference yields exactly the desired identity.

For the following definition, we allow W to be either a finite or affine Weyl group (as introduced in Section 3).
Moreover, let λ ∈ P+, that is, λ is a dominant weight. We define a statistic Lλ on W , which will specialise
at L for λ = ρ in finite types. Recall the element ρ∨ introduced in Section 3, equal to the sum of the dual
fundamental weights.

Definition 4.5. Let λ ∈ P+. The λ-atomic length of w is the nonnegative integer

Lλ(w) = 〈λ− w(λ), ρ∨〉 .

Remark 4.6.

(1) Let us quickly explain why Lλ(w) is a nonnegative integer. If g denotes the corresponding Kac-Moody
algebra, we can construct the irreducible g-module V (λ) with highest weight λ ∈ P+, see for instance
[HK02, Section 2.3]. This module is a weight module, that is, it decomposes as the direct sum of its
µ-weight spaces V (λ)µ = {v ∈ V (λ) | xv = 〈µ, x〉v for all x ∈ V ∗}, and where µ runs over P . Those
elements µ ∈ P such that V (λ)µ 6= 0 are called the weights of V (λ), and we know that the Weyl group
W acts on the set of weights of V (λ). Therefore, for all w ∈ W , w(λ) is a weight of V (λ). Since λ is the
highest weight of V (λ), we can write λ− w(λ) =

∑n
i=1 aiαi with ai ∈ N. By (8), Lλ(w) =

∑
i∈I ai ∈ N.

(2) One could decide to define the atomic length for λ ∈ P using the same formula, but the range of the map
Lλ would no longer be contained in N. For instance, take λ = ω2 in type B(1)

2 (it is a level zero weight
but is not dominant). Then the element w = s1s0s1s2s1s0s2 verifies Lλ(w) = −1. Note that this fails
even though ω2 is particularly nice in type B2 as it is minuscule, see Theorem 7.6.

The terminology of Definition 4.5 is justified by the following proposition, which we will use extensively in the
rest of the article.

Proposition 4.7. Assume that W is of finite type. Then L = Lρ.

Proof. For all w ∈W , we have

Lρ(w) = 〈ρ− w(ρ), ρ∨〉

=

〈 ∑
α∈N(w)

α, ρ∨

〉
by Lemma 4.4

=
∑

α∈N(w)

〈α, ρ∨〉

=
∑

α∈N(w)

ht(α) by (8)

= L (w).

4.2 First properties of the atomic length

We still assume that W is a finite Weyl group. A first consequence of the characterisation of Proposition 4.7 is
a remarkable symmetry property for the atomic length in simply-laced Dynkin types.

Theorem 4.8 (Symmetry). Assume that W is of simply-laced finite type. Then for all w ∈ W , L (w) =
L (w−1).

Proof. Since we are in type A, D or E, all roots α verify (α | α) = 2, which implies that ρ∨ =
1

2

∑
α∈Φ+

(α | .).

Therefore, for all x ∈ V ,

〈x, ρ∨〉 =

〈
x,

1

2

∑
αΦ+

(α | .)

〉
=

1

2

∑
αΦ+

(α | x) =

(
1

2

∑
αΦ+

α

∣∣∣∣∣ x
)

= (ρ | x) .
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Let w ∈W . We have

L (w) = 〈ρ− w(ρ), ρ∨〉 by Proposition 4.7

= (ρ | ρ− w(ρ)) by the previous computation with x = ρ− w(ρ)

=
(
ρ− w−1(ρ) | ρ

)
because w is an isometry

= L (w−1) by Proposition 4.7.

Example 4.9.

(1) Let W be the Weyl group of type D4, with simple roots αi = ei,i+1, 1 ≤ i ≤ 3 and α4 = e34, and let si,
1 ≤ i ≤ 4 be the corresponding simple roots. Take w = s4s1s2s3s1s2s1 (reduced expression). Then

N(w) = {α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3, α1 + 2α2 + α3 + α4}

We have w−1 = s2s3s1s2s4s3s1, so that

N(w−1) = {α1, α3, α4, α2 + α4, α1 + α2 + α4, α2 + α3 + α4, α1 + α2 + α3 + α4} ,

and we see that L (w) = L (w−1) = 15.

(2) Let us give a counterexample in a non simply-laced Dynkin type. Let W be the Weyl group of type G2,
with simple roots α1 = e1 − e2 and α2 = −2e1 + e2 + e3. Let w = s2s1 so that w−1 = s1s2. We have
N(w) = {α1, α1 + α2} so L (w) = 3, but N(w−1) = {α1, 3α1 + α2} so L (w−1) = 5.

Obviously, for the usual length function, regardless of the type, we have `(w) = `(w−1) for all w ∈ W . The
symmetry of the atomic length proved in Theorem 4.8 can thus be seen as an analogue of this property of the
usual length. In fact, we will now see that further properties of the usual length have analogues for the atomic
length.

Recall that we denoted w0 the longest element of W . The map αi 7→ −w0(αi) is an involution of ∆, and we can
write αζ(i) = −w0(αi), where ζ : {1, . . . , n} → {1, . . . , n} is the corresponding Dynkin diagram automorphism.
The following result is an analogue of the well-known fact that `(w0w) = `(w0)− `(w).

Theorem 4.10. Let λ ∈ P+. For all w ∈W , we have Lλ(w0w) = Lλ(w0)−Lλ(w).

Proof. Let us show that the quantities Lλ(w) and Lλ(w0)−Lλ(w0w) are equal. On the one hand, we have

Lλ(w) = 〈λ− w(λ), ρ∨〉 =
∑
i∈I

ai,

where λ− w(λ) =
∑
i∈I aiαi as we have already seen. On the other hand,

Lλ(w0)−Lλ(w0w) = 〈λ− w0(λ)− λ+ w0w(λ), ρ∨〉

= 〈−w0(λ− w(λ)), ρ∨〉

=

〈
−w0

(∑
i∈I

aiαi

)
, ρ∨

〉

=

〈∑
i∈I

ai(−w0(αi)), ρ
∨

〉

=

〈∑
i∈I

aiαζ(i), ρ
∨

〉

=
∑
i∈I

ai
〈
αζ(i), ρ

∨〉
=

∑
i∈I

ai.
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Finally, we are able to give a short representation-theoretic proof of the fact that the longest element w0 is also
the “atomic-longest” element of W .

Theorem 4.11. Let λ ∈ P+. Then Lλ(w) ≤ Lλ(w0) for all w ∈W .

Proof. As in Remark 4.6, consider the highest weight module V (λ) for the corresponding finite-dimensional
simple Lie algebra. Then it is well-known that w0(λ) is the lowest weight of V (λ). In other words, for all weight
µ of V (λ), we can write µ−w0(λ) =

∑n
i=1 aiαi with ai ∈ N. In particular, since the Weyl group W acts on the

set of weights of V (λ), we can write w(λ)− w0(λ) =
∑n
i=1 aiαi with ai ∈ N for all w ∈W . Now, we have

Lλ(w)−Lλ(w0) = 〈λ− w0(λ), ρ∨〉 − 〈λ− w(λ), ρ∨〉

= 〈w(λ)− w(λ), ρ∨〉

=

〈
n∑
i=1

aiαi, ρ
∨

〉

=
∑n
i=1 ai ≥ 0.

4.3 Generalised inversion sets and λ-atomic length

To be complete, we will now give a formula for the λ-atomic length resembling Definition 4.1. This requires to
introduce a notion of λ-inversion set. For this, we use the characterisation of the inversion set N(w) given in
Proposition 2.1. In the rest of this section, let us denote Red(w) the set of all reduced expressions of a given
w ∈W .

Notation 4.12. Let w ∈ W , let sj ∈ S and let w = si1 . . . sb1sj . . . sb2sj . . . sbpj sj . . . sir ∈ Red(w), where pj
is the number of times that the letter sj appears in w. We set wj,k = si1 . . . sb1sj . . . sb2sj . . . sbk . For example

wj,1 = si1 . . . sb1 and wj,2 = si1 . . . sb1sj . . . sb2 . We also define σj(w) =
pj∑
k=1

wj,k(αj).

Remark 4.13. Recal that we gave in Proposition 2.1 the formula, for w ∈W ,

N(w) = {αi1 , si1(αi2), si1si2(αi3), . . . , si1 . . . sir−1(αir )}.

Using the definition of wj,k in Notation 4.12, we see that to compute N(w), it suffices to choose a reduced
expression w ∈ Red(w), then we have N(w) =

⊔n
j=1{wj,k(αj) | k = 1, . . . , pj}. We see in particular that the

inversion set does not depend on the choice of a reduced expression.

Example 4.14. Let w ∈ A4 with reduced expression given by w = s1s2s1s3s4s3. Then we have

N(w) ={w1,k(α1) | k = 1, 2} t {w2,1(α2)} t {w3,k(α3) | k = 1, 2} t {w4,1(α4)}
={α1, s1s2(α1)} t {s1(α2)} t {s1s2s1(α3), s1s2s1s3s4(α3)} t {s1s2s1s3(α4)}
={e12, e23} t {e13} t {e14, e45} t {e15}
={e12, e23, e13, e14, e45, e15}

Definition 4.15. Let w ∈W and w ∈ Red(w). Let λ ∈ P be a weight with λ =
n∑
j=1

mjωj . The set

Nλ(w) =

n⊔
j=1

{mjwj,k(αj) | k = 1, . . . , pj}.

is called a λ-inversion set of w.

Remark 4.16.

(1) By definition, the notion of λ-inversion set depends on the choice of a reduced expression (which was not
the case for the usual inversion set N(w), see Remark 4.13). We illustrate in Example 4.17 how different
reduced expressions yield different λ-inversion sets in general.

(2) However, in the case λ = ρ, we have Nρ(w) = N(w) for all w ∈ Red(w), so the ρ-inversion set of w does
not depend on the choice of a reduced expression.
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Example 4.17. We continue Example 4.14. Let λ =
∑5
j=1mjωj . Then by definition we have

Nλ(w) ={m1w1,k(α1) | k = 1, 2} t {m2w2,1(α2)} t {m3w3,k(α3) | k = 1, 2} t {m4w4,1(α4)}
={m1e12,m1e23} t {m2e13} t {m3e14,m3e45} t {m4e15}
={m1e12,m1e23,m2e13,m3e14,m3e45,m4e15}.

Let us take now another reduced expression of w, say w′ = s2s1s4s2s3s4. The same kind of computations yields

Nλ(w′) = {m1e13,m2e23,m2e12,m3e15,m4e14,m4e45}.

We can easily find coefficients mj such that Nλ(w′) 6= Nλ(w).

The following lemma is key, as the dependency on the choice of a reduced expression vanishes.

Lemma 4.18. Let w ∈W and w ∈ Red(w). Fix 1 ≤ j ≤ n. We have ωj −w(ωj) = σj(w). In particular σj(w)
does not depend on the choice of a reduced expression of w.

Proof. We know that for any generator si ∈ S and for any fundamental weight ωj one has si(ωj) = ωj if j 6= i
and si(ωi) = ωi − αi. Therefore it follows that

w(ωj) = si1 . . . sb1sj . . . sb2sj . . . sbpj sj . . . sir (ωj)

= si1 . . . sb1sj . . . sb2sj . . . sbpj sj(ωj)

= si1 . . . sb1sj . . . sb2sj . . . sbpj (ωj − αj)

= si1 . . . sb1sj . . . sb2sj . . . sbpj (ωj)− wj,pj (αj)

= · · ·

= ωj −
pj∑
k=1

wj,k(αj)

= ωj − σj(w).

However, it is obvious that w(ωj) = w(ωj). The result follows.

Theorem 4.19. Let w ∈W , w ∈ Red(w) and λ ∈ P+. We have

λ− w(λ) =
∑

β∈Nλ(w)

β and Lλ(w) =
∑

β∈Nλ(w)

ht(β).

In particular, in both identities, the right hand side does not depend on the choice of the reduced expression.

Proof. Let us write λ =
n∑
j=1

mjωj . By Lemma 4.18 we know that ωj − w(ωj) = σj(w). It follows then that

λ− w(λ) = λ− w

 n∑
j=1

mjωj

 = λ−
n∑
j=1

mjw(ωj) = λ−
n∑
j=1

mj(ωj − σj(w))

=

n∑
j=1

mjσj(w) =

n∑
j=1

mj

pj∑
k=1

wj,k(αj) =

n∑
j=1

pj∑
k=1

mjwj,k(αj)

=
∑

β∈Nλ(w)

β,

which proves the first identity. By definition, Lλ(w) = 〈λ− w(λ), ρ∨〉, so combining the first identity and (8),
we get the second identity.

Finally, we give analogues of Proposition 2.2 and Proposition 2.3 for λ-inversion sets. Recall that ≤ denotes the
weak order on W , that is, w ≤ w′ if and only if there exist reduced expressions w,w′ such that w is a prefix of
w′.

Proposition 4.20. Let λ =
∑
i∈I miωi ∈ P .

(1) Let w,w′ ∈ Red(W ). Assume that mj 6= 0 for all j. If Nλ(w) ⊆ Nλ(w′), then w ≤ w′.

(2) Let w,w′ ∈W . If w ≤ w′, then Nλ(w) ⊆ Nλ(w′) where w, w′ are chosen such that w is a prefix of w′.
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Proof.

(1) Assume that Nλ(w) ⊆ Nλ(w′) Let us show that ⇔ N(w) ⊆ N(w′). Take wj,k(αj) ∈ N(w). By definition,
mjwj,k(αj) ∈ Nλ(w) ⊆ Nλ(w′). So we can write mjwj,k(αj) = mj′w

′
j′,k′(αj′) for some j′, k′. Since

wj,k(αj), w
′
j′,k′(αj′) ∈ Φ+, we must have mj = mj′ since these are nonzero by assumption. This yields

wj,k(αj) = w′j′,k′(αj′) ∈ N(w′). So we have proved that N(w) ⊆ N(w′). By [DH16, Corollary 2.10],
N(w) ⊆ N(w′)⇔ w ≤ w′, which concludes the proof.

(2) Let w,w′ ∈W such that w ≤ w′, and choose reduced expressions w,w′ such that w is a prefix of w′. This
implies that for all 1 ≤ j ≤ n, 1 ≤ k ≤ pj , wj,k(αj) = w′j,k(αj). Now, let mjwj,k(αj) ∈ Nλ(w). This
gives mjwj,k(αj) = mjw

′
j,k(αj) ∈ Nλ(w′) by definition.

Corollary 4.21. Let λ ∈ P+ and w,w′ ∈W such that w ≤ w′. Then Lλ(w) ≤ Lλ(w′).

Proof. We know by Theorem 4.21 that Lλ(w) =
∑

β∈Nλ(w)

ht(β). Now, using Proposition 4.20 (2), w ≤ w′ implies

Nλ(w) ⊆ Nλ(w′). It follows that Lλ(w) ≤ Lλ(w′).

Remark 4.22. In particular, Proposition 4.20 enables us to recover directly Theorem 4.11, since w0 is the
largest element with respect to the weak order.

5 Susanfe reflections

In this whole section, we use the notation of Section 2. In particular, W is a finite Weyl group, and S denotes
a set of simple reflections. This part is devoted to the study of some particular reflections of W which we call
“Susanfe”, and their properties with respect to the atomic length L . Eventually, this will enable us to give in
Section 6 a proof of Theorem 6.2 which generalises that of [SU11] for type An. In the following, if WA is a
reflection subgroup of W , we will simply denote by LA the restriction to WA of the map L : W → N.

5.1 General Susanfe theory

Proposition 5.1. Let WI be a standard parabolic subgroup of W . Let w ∈ WI . Then L (w) = LI(w). This
fails in general for reflection subgroups that are not standard parabolic subgroups.

Proof. By definition we know that L (w) =
∑

α∈N(w)

ht(α) and LI(w) =
∑

α∈NI(w)

ht(α). Since w ∈ WI , we know

by the first point of Lemma 3.5, that NI(w) = N(w). Then the result follows. The reason that we don’t
necessary have this equality for a reflection subgroup WA comes from the fact that the equality NA(w) = N(w)
isn’t true any more for w ∈ WA. The deep reason for this phenomenon is something well known: a reduced
expression of w in WA is a priori not a reduced expression of w in W , and then the first concept used in the
proof of Lemma 3.5 (1) cannot be used in WA.

Example 5.2. Let us illustrate the fact that, in general, L (w) 6= LA(w) for w ∈ WA. Take W of type A3,
A = {s1s2s1, s3} and w = s1s2s1s3. By Proposition 2.1 we get easily that N(w) = {e12, e13, e23, e14}. Therefore

L (w) = ht(e12) + ht(e13) + ht(e23) + ht(e14) = 1 + 2 + 1 + 3 = 7.

Now, the group WA = 〈s1s2s1, s3〉 is a Coxeter group of type A2 with simple system SA = {s1s2s1, s3}, with
set of simple roots ∆A = {e13, e34} and set of positive roots Φ+

A = {e13, e34, e14}. The expression s1s2s1s3 is
a reduced expression of w in WA of length 2, i.e., `A(w) = 2, but it is a reduced expression of length 4 in W .
Moreover, since w ∈WA, it follows by Proposition 2.8 that NA(w) = N(w) ∩ ΦA = {e13, e14}. Therefore

LA(w) = ht(e13) + ht(e14) = 2 + 3 = 5,

and we see that L (w) 6= LA(w).

For w ∈W , we denote Fixw = {α ∈ Φ+ | w(α) = α}, the set of positive roots fixed by w, and Fixw = Φ+\Fixw
its complement.

Definition 5.3. An element w ∈W is called Susanfe if N(w) = Fixw.

Proposition 5.4. There exists a Susanfe reflection in W . In particular, the reflection associated to the highest
root α̃ is a Susanfe reflection.
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Proof. Let t be the reflection associated to the highest root, so that t(α) = α−2
(α | α̃)

(α̃ | α̃)
α̃ for all α ∈ Φ+. Since

Φ is crystallographic, we have 2
(α | α̃)

(α̃ | α̃)
∈ Z. It is known (see [Bou68, Ch. VI, §1, Sec. 8 ]) that α̃ belongs to

the fundamental chamber C0 = {x ∈ V | (x | β) ≥ 0 ∀β ∈ ∆}. Therefore it follows that 2
(α | α̃)

(α̃ | α̃)
∈ N. We must

show that N(t) = Fixt. The inclusion N(t) ⊆ Fixt is obvious, because if there were a root α ∈ N(t) such that
α ∈ Fixt, then we would have t(α) = α and thus t−1(α) = t(α) ∈ Φ+, which condraticts α ∈ N(t). Let us now
show the reverse inclusion. Let α ∈ Fixt. There are two cases.

(1) If (α | α̃) = 0 then t(α) = α, which shows that α ∈ Fixt. Just as above, this is a contradiction and
therefore this situation cannot occur.

(2) If (α | α̃) > 0 then 2
(α | α̃)

(α̃ | α̃)
> 0 and then α − 2

(α | α̃)

(α̃ | α̃)
α̃ belongs to Φ− since α̃ is the highest root. It

follows that t(α) ∈ Φ− and thus α ∈ N(t). Hence Fixt ⊆ N(t).

Remark 5.5. In type Bn, computer experiments in SageMath suggest that the number of Susanfe elements
should be given by Fn − 1, where Fn is the n-th Fibonacci number.

Proposition 5.6. Let B ⊆ T , so that WB is a reflection subgroup of W , let w ∈WB and let t ∈ T be a Susanfe
reflection. Consider the reflection subgroup WA = tWBt. Then we have N(tw) = NA((tw)A) t

(
N(t) ∩ ΦA

)
.

Proof. One has N(tw) = [N(tw) ∩ ΦA] t [N(tw) ∩ ΦA]. Using Proposition 2.8 we know that N(tw) ∩ ΦA =
NA((tw)A). Thus N(tw) = NA((tw)A) t [N(tw) ∩ ΦA]. We consider now the following decomposition:

N(tw) ∩ ΦA = N(tw) ∩ ΦA ∩ Fixt tN(tw) ∩ ΦA ∩ Fixt

Let us look at both terms of the right-hand side separately.

• We claim that N(tw) ∩ ΦA ∩ Fixt = ∅. Let us first show that

ΦA ∩ Fixt ⊆ ΦB . (11)

Let α ∈ ΦA∩Fixt such that α ∈ ΦB . Then t(α) ∈ t(ΦB) and we know by Proposition 2.5 that t(ΦB) = ΦA.
Thus t(α) ∈ ΦA, and since α ∈ Fixt we have t(α) = α, which implies that α ∈ ΦA. This is a contradiction
and we indeed obtain (11). Now, assume there exists α ∈ N(tw) ∩ ΦA ∩ Fixt. In particular, we have
k(tw, α) = −1, and k(t, α) = 0 because t−1(α) = t(α) = α ∈ Φ+, that is α /∈ N(t). Thus, by the formula
of Proposition 3.3 we obtain that −1 = k(tw, α) = k(w,α) + k(t, α) = k(w,α) + 0, that is k(w,α) = −1.
But now by (11), we have α ∈ ΦB . Thus, since w ∈WB , we can apply Lemma 3.5 and obtain k(w,α) = 0,
which is a contradiction.

• Consider nowN(tw)∩ΦA∩Fixt. Since t is Susanfe, we have Fixt = N(t), and thereforeN(tw)∩ΦA∩Fixt =
N(tw) ∩ ΦA ∩N(t). Now, we claim that

N(t) ∩ ΦA ⊆ N(tw). (12)

So let α ∈ N(t) ∩ ΦA, and let us show that k(tw, α) = −1. Since k(tw, α) = k(w, t(α)) + k(t, α) (by
Proposition 3.3) and k(t, α) = −1 because α ∈ N(t), it suffices to show that k(w, t(α)) = 0. Since α ∈ ΦA,
we have t(α) ∈ t(ΦA) and thus t(α) ∈ ΦB by Proposition 2.5. Finally, we can use Lemma 3.5 since w ∈WB ,
which yields k(w, t(α)) = 0. This proves (12), and we therefore obtain N(tw) ∩ ΦA ∩ Fixt = N(t) ∩ ΦA.

In the end, we obtain the desired identity N(tw) = NA((tw)A) t
(
N(t) ∩ ΦA

)
.

From Proposition 5.6 we obtain the following crucial corollary, which will be used in Section 6. For A ⊆ T and
w ∈W , we denote

L (w,A) =
∑

α∈N(w)∩ΦA

ht(α),

which corresponds to restraining the computation of the atomic length to roots outside ΦA.

Corollary 5.7. We keep the assumptions of Proposition 5.6. Then

L (tw) = LA((tw)A) + L (t, A).
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5.2 Some particular Susanfe reflections

In the following, we use the convenient notation introduced in Section 2.2. We still use the conventions of
[Bou68] for the labelling of the Dynkin diagrams.

Lemma 5.8 (Type An). Let t be the reflection corresponding to the highest root α̃ and let I = {s2, . . . , sn}.
Then one has the following reduced expressions and properties.

(1) t = s1s2 . . . sn−1snsn−1 . . . s2s1.

(2) tI = snsn−1 . . . s2 and It = s1s2 . . . sn−1sn.

(3) N(t) = {e12, e13, . . . , e1,n+1} ∪ {e2,n+1, e3,n+1, . . . , en,n+1}.

(4) N(It) = {e12, e13, . . . , e1,n+1}, in particular N(t) ∩ ΦI = N(It).

(5) L (t, I) = L (It) =
(
n+1

2

)
.

Proof. Recall that in type An, all roots α verify (α | α) = 2, so in particular 〈x, α∨〉 = (α | x) for all x ∈ V .
This implies that sα(x) = x− (α | x)α. In particular, we have α̃ = e1,n+1, and t(x) = x− (e1,n+1 | x)e1,n+1.

(1) We know that for any k, the simple root corresponding to sk is ek,k+1. Moreover, In type An, we know
that α̃ = e1,n+1, so t = se1,n+1

. On the other hand, s1s2 . . . sn−1snsn−1 . . . s2s1 = ss1s2...sn−1(en,n+1), so it
suffices to show that s1s2 . . . sn−1(en,n+1) = e1,n+1. This equality follows directly by iterating from right
to left, since sj(ej+1,n+1) = ej,n+1. The fact that this expression of t is reduced will be proved in (2) just
below.

(2) We need to show that

(a) t = (snsn−1 . . . s2)(s1s2 . . . sn−1sn),

(b) snsn−1 . . . s2 ∈WI and is a reduced expression,

(c) s1s2 . . . sn−1sn ∈ IW and is a reduced expression.

Using the braid relations of type An, we have

s1s2 . . . sn−1snsn−1 . . . s2s1 = s1s2 . . . snsn−1sn . . . s2s1

= sns1s2 . . . sn−2sn−1sn−2 . . . s2s1sn

= sns1s2 . . . sn−1sn−2sn−1 . . . s2s1sn

= snsn−1s1s2 . . . sn−3sn−2sn−3 . . . s2s1sn−1sn

= . . .

= snsn−1sn−2 . . . s2 · s1s2 . . . sn−2sn−1sn,

which proves (a). Moreover, by definition of I, snsn−1 . . . s2 ∈WI and it is also clear that this expression
is reduced, so we have (b). Finally, it is clear that the expression s1s2 . . . sn−1sn is already reduced and has
no reduced expression beginning by a letter in I, implying that `(ss1s2 . . . sn−1sn) > `(s1s2 . . . sn−1sn)
for any s ∈ I. This means precisely that s1s2 . . . sn−1sn ∈ IW . Therefore, we have found the I-
decomposition of t where the two factors are expressed in a reduced form. By Remark 2.4, we are ensured
that `(t) = `(tI) + `(It) = 2n − 1. Therefore the expression t = s1s2 . . . sn−1snsn−1 . . . s2s1, which also
uses 2n− 1 generators, is also reduced.

(3) From the formula t(eij) = eij − (eij | e1,n+1)e1,n+1, we see that the set of positive roots that are fixed
under t is Fixt = {eij | 2 ≤ i < j ≤ n}, so that Fixt = {e1j | 2 ≤ j ≤ n + 1} ∪ {ei,n+1 | 2 ≤ i ≤ n}. We
conclude by using Proposition 5.4.

(4) Since It = s1s2 . . . sn−1sn is a reduced expression, we know by Proposition 2.1 that

N(It) = {α1, s1(α2), s1s2(α3), . . . , s1s2 . . . sn−1(αn)},

that is

N(It) = {e12, s1(e23), s1s2(e34), . . . , s1s2 . . . sn−1(en,n+1)}
= {e12, e13, e14, . . . , e1,n+1}.
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(5) The height of the root eij is j − i. Therefore, using Point (4) above, we obtain

L (It) =
∑

α∈N(It)

ht(α) =

n+1∑
j=2

ht(e1j) =

n+1∑
j=2

(j − 1) =

n∑
j=1

j =

(
n+ 1

2

)
.

Example 5.9. Take n = 4. The highest root is α̃ = e15 and its corresponding reflection t has the following
reduced expression

t = s1s2s3s4s3s2s1 = s4s3s2s1s2s3s4

where the red part is inWI = 〈s2, s3, s4〉 and the blue part is in IW . A convenient way to see this decomposition
is via the Shi vectors. The Shi vector corresponding to t is given in Figure 4 and the I-decomposition of t is
given in Figure 5.

−1 0 0 −1

−1 0 −1

−1 −1

−1

e12 e23 e34 e45

e13 e24 e35

e14 e25

e16

Fig. 4: The Shi vector of t in A4. The right triangle gives the coordinates of the Shi vector.

−1 0 0 −1

−1 0 −1

−1 −1

−1

=

0 0 0 −1

0 0 −1

0 −1

0

•

−1 0 0 0

−1 0 0

−1 0

−1

Fig. 5: The I-decomposition of t in terms of Shi vectors in A4.

Lemma 5.10 (Type Bn). Let t be the reflection of the highest root α̃ and let I = {s2, . . . , sn}. Then one has
the following reduced expressions and properties.

(1) t = s2s3 . . . sn−1snsn−1 . . . s3s2 · s1 · s2s3 . . . sn−1snsn−1 . . . s3s2.

(2) tI = s2s3 . . . sn−1snsn−1 . . . s3s2 and It = s1s2 . . . sn−1snsn−1 . . . s3s2.

(3) N(t) = {e13, e14, . . . , e1n, e1, e
1n, e1,n−1, . . . , e12} ∪ {e23, e24, . . . , e2n, e2, e

2n, e2,n−1, . . . , e23}.

(4) N(It) = {e12, e13, . . . , e1n} t {e1} t {e1n, e1,n−1, . . . , e13}.

(5) Let t′ = Its1. Then t′ is a Susanfe reflection that satisfies N(t′) ∩ ΦI = N(t′).

(6) L (t′, I) = L (t′) = 2n2 − n.
Proof. In type Bn the highest root is given by α̃ = e12, and we have t(x) = x− (e12 | x)e12.

(1) As in type An, it suffices to show that s2s3 . . . sn−1snsn−1 . . . s3s2(α1) = e12. First of all we have sn(e1n) =
e1 − en − 2 (e1 − en | en) en = e1 + en = e1n. Moreover, the same kind of computations as above shows
that sk(e1,k+1) = e1k for any 1 ≤ k ≤ n− 1. Therefore we obtain that

s2s3 . . . sn−1snsn−1 . . . s3s2(α1) = s2s3 . . . sn−1snsn−1 . . . s3s2(e12)

= s2s3 . . . sn−1snsn−1 . . . s3(e13)

= · · ·
= s2s3 . . . sn−2sn−1sn(e1n)

= s2s3 . . . sn−2sn−1(e1n)

= s2s3 . . . sn−2(e1,n−1)

= · · ·
= s2(e13)

= e12.

The fact that this expression of t is reduced is again proved in (2) below.
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(2) It is clear that s2s3 . . . sn−1snsn−1 . . . s3s2 ∈ WI . Further, since s1s2 . . . sn−1snsn−1 . . . s3s2 starts with
s1 and since s1 appears only once, there is no reduced expression of this word beginning with a letter in
I, which implies that `(ss1s2 . . . sn−1snsn−1 . . . s3s2) > `(s1s2 . . . sn−1snsn−1 . . . s3s2) for any s ∈ I, so
s1s2 . . . sn−1snsn−1 . . . s3s2 ∈ IW . Since we obviously have

t = (s2s3 . . . sn−1snsn−1 . . . s3s2)(s1s2 . . . sn−1snsn−1 . . . s3s2),

by uniqueness of the I-decomposition it follows that we have tI = s2s3 . . . sn−1snsn−1 . . . s3s2 and It =
s1s2 . . . sn−1snsn−1 . . . s3s2. Finally, it is also clear that these two expressions are reduced and therefore
the expression given for t is also reduced (by Remark 2.4 again).

(3) Since t is Susanfe by Proposition 5.4, N(t) = Fixt, so it suffices to determine the set of positive roots fixed
by t. For any α ∈ Φ+, we have t(α) = α − (e12 | α)e12, so α ∈ Fixt if and only if (e12 | α) = 0, which
happends exactly when there are no 1 or 2 appearing in the labels of the roots, except for α = e12 (since
(e12 | e12) = 0). Therefore Fixt = N(t) is the set of positive roots that have a label 1 or a label 2 with
the exception of e12, which is precisely the desired description.

(4) Let us fix u = s1s2 . . . sn−1sn and v = snsn−1 . . . s3s2. Since s1s2 . . . sn−1snsn−1 . . . s3s2 is a reduced
expression of It by Point (2), it follows that u and v are also reduced. Therefore by Proposition 2.1, we
have N(It) = N(u) t uN(v). Let us compute at first N(u). Since the expression of u is reduced we have
again by Proposition 2.1

N(u) = {e12, s1(e23), . . . , s1s2 . . . sn−1(en)}.

Moreover the generators s1, . . . , sn−1 are of the same form, and the computation of the first n− 1 terms
straightforward. The only thing to be cautious about is the last element s1s2 . . . sn−1(en). An easy calcu-
lation shows that sk−1(ek) = ek−1 for any k = 2, 3, . . . , n. Iterating therefore yields s1s2 . . . sn−1(en) = e1.
Hence

N(u) = {e12, e13, . . . , e1n, e1}.

We now compute uN(v). Using Proposition 2.1 again, we obtain N(v) = {en−1,n, en−2,n, . . . , e2n}. A
direct inductive computation yields

uN(v) = {e1n, e1,n−1, . . . , e13}.

Finally we get

N(It) = N(u) t uN(v) = {e12, e13, . . . , e1n, e1} t {e1n, e1,n−1, . . . , e13}.

(5) The expression Its1 = s1s2 . . . sn−1snsn−1 . . . s3s2s1 is clearly reduced, since there is no relation in the
Coxeter group of type Bn that can be applied. Note that this means that this is actually the only reduced
expression of Its1. Therefore, we can apply Proposition 2.1 and we get

N(t′) = N(Its1) = N(It) t ItN(s1) = N(It) t It(α1)

Moreover we have

It(α1) = s1s2 . . . sn−1snsn−1 . . . s3s2(e12)

= s1s2 . . . sn−1snsn−1 . . . s3(e13)

= · · ·
= s1s2 . . . sn−1sn(e1n)

= s1s2 . . . sn−1(e1n)

= s1s2 . . . sn−2(e1,n−1)

= · · ·
= s1(e12)

= e12.

Finally we obtain
N(t′) = {e12, e13, . . . , e1n, e1} t {e1n, e1,n−1, . . . , e13, e12}.

Since ΦI is the set of roots with a label 1 and since all the roots with a label 1 are the ones given in N(t′),
it follows that N(t′) = Φ+

I and thus N(t′)∩ΦI = N(t′). It remains to show that t′ is a Susanfe reflection.
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Clearly, t′ is a reflection, since wsnw−1 is a reflection for all w ∈W . Let us prove that Fixt′(Φ+) = N(t′).
For all k = 1, 2, . . . , n we have

sk−1(ek) = ek − (ek | ek−1 − ek) (ek−1 − ek)

= ek−1.

This implies that sk−1seksk−1 = sek−1
for any k = 1, 2, . . . , n. Therefore, it follows by induction that

t′ = s1s2 . . . sn−2sn−1sensn−1sn−2 . . . s2s1

= s1s2 . . . sn−2sen−1
sn−2 . . . s2s1

= . . .

= se1 .

Thus the roots α ∈ ΦI such that t(α) = α are exactly the roots satisfying (e1 | α) = 0, that is to say, the
roots with no label 1. We already know that this is ΦI . Therefore Fixt′ = Φ+

I and then Fixt′ = Φ+
I = N(t′).

(6) We have
L (t′) =

∑
α∈N(t′)

ht(α) =
∑

α∈N(t′)∩ΦI

α = L (t′, I).

since N(t′) ∩ ΦI = N(t′) by (5). Now, we know (see [Bou68]) that ht(eij) = j − i, ht(ei) = n− i+ 1 and
ht(eij) = 2(n+ 1)− (i+ j) in type Bn. Therefore it follows that

L (t′) =

n∑
j=2

ht(e1j) + ht(e1) +

n∑
j=2

ht(e1j) =

n∑
j=2

(j − 1) + n+

n∑
j=2

[2(n+ 1)− (1 + j)]

=

n−1∑
j=1

j + n+

n∑
j=2

[2n+ 1− j] =

n−1∑
j=1

j + n+ (n− 1)(2n+ 1)−
n∑
j=2

j

=

n−1∑
j=1

j + n+ (n− 1)(2n+ 1)− [(

n−1∑
j=1

j)− 1 + n] = n+ (n− 1)(2n+ 1) + 1− n

= (n− 1)(2n+ 1) + 1

= 2n2 − n.

Example 5.11. Take n = 4. The highest root is α̃ = e12 and its corresponding reflection t has the following
reduced expression

t = s2s3s4s3s2s1s2s3s4s3s2

where the red part is in WI = 〈s2, s3, s4〉 and the blue part is in IW . The corresponding Shi vector of t is given
in Figure 6. and the I-decomposition of t is given in Figure 7.

0 −1 0 0

−1 −1 0

−1 −1 0

−1 −1

−1 −1

−1

−1

e12 e23 e34 e4

e13 e24 e3

e14 e2 e34

e1 e24

e14 e23

e13

e12

Fig. 6: The Shi vector of t in B4. The right part gives the coordinates of the Shi vector.

Finally, the Shi vector of the Susanfe reflection t′ considered in Lemma 5.10 is given in Figure 8.
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0 −1 0 0

−1 −1 0

−1 −1 0

−1 −1

−1 −1

−1

−1

=

0 −1 0 0

0 −1 0

0 −1 0

0 −1

0 −1

0

0

•

−1 0 0 0

−1 0 0

−1 0 0

−1 0

−1 0

−1

0

Fig. 7: The I-decomposition of t in terms of Shi vectors in B4.

−1 0 0 0

−1 0 0

−1 0 0

−1 0

−1 0

−1

−1

Fig. 8: The Shi vector of t′ in B4.

Lemma 5.12 (Type Cn). Let t be the reflection of the highest root α̃ and let I = {s2, . . . , sn}. Then one has
the following reduced expressions and properties.

(1) t = s1s2 . . . sn−1snsn−1 . . . s2s1.

(2) tI = e and It = t. In particular It is a Susanfe reflection.

(3) N(It) = Fixt = Φ+
I . In particular N(t) ∩ ΦI = N(It).

(4) L (t, I) = L (It) = 2n2 − n.

Proof. In type Cn the highest root is α̃ = 2e1.

(1) The strategy is again the same as in type An and Bn, namely showing that s1s2 . . . sn−1(αn) = 2e1 with
αn = 2en. The only thing to take care of in this computation is how the reflections in type Cn act on the
roots. We leave the details to the reader since there is no difficulty. Note that t has the same reduced
expression as the element t′ in Lemma 5.10. By the exact same argument as in that proof, we are ensured
that the expression t = s1s2 . . . sn−1snsn−1 . . . s2s1 is reduced (and is in fact the only reduced expression
of t).

(2) We have just seen in (1) that t = s1s2 . . . sn−1snsn−1 . . . s2s1 is the unique reduced expression of t.
Therefore, for any s ∈ I, we have `(st) > `(t), that is to say t ∈ IW .

(3) The first equality comes from Proposition 5.4 and from the equality It = t. With respect to the second
equality we first need to see that since ΦI = Z〈e23, e34, . . . , en−1,n, 2en〉∩Φ, each root of ΦI does not have
a label i = 1 or j = 1. Moreover, any root α = eij or 2ei or eij that doesn’t have a label 1 (i.e. any root
in ΦI) satisfies (α | α̃) = 0 and then t(α) = α, that is α ∈ Fixt and then ΦI = Fixt.

(4) In type Cn we know (see [Bou68]) that ht(eij) = j−i and ht(2ei) = 2(n−i)+1 and ht(eij) = 2n+1−(i+j).
Therefore it follows that

L (J t) =

n∑
j=2

ht(e1j) +

n∑
j=2

ht(e1j) + ht(2e1) =

n∑
j=2

(j − 1) +

n∑
j=2

[2n+ 1− (1 + j)] + 2n− 1

=

n−1∑
j=1

j +

n∑
j=2

(2n− j) + 2n− 1 =

n−1∑
j=1

j + 2n(n− 1)−
n∑
j=2

j + 2n− 1

=

n∑
j=1

j − n+ 2n(n− 1)−
n∑
j=1

j + 1 + 2n− 1 = 2n(n− 1) + n

= 2n2 − n.
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Example 5.13. Take n = 4. The highest root is α̃ = 2e1 and its corresponding reflection t has the following
reduced expression

t = es1s2s3s4s3s2s1

where the red part is in WI = 〈s2, s3, s4〉 and the blue part is in IW . The corresponding Shi vector of t is given
by and the I-decomposition of t is given by

−1 0 0 0

−1 0 0

−1 0 0

−1 0

−1 0

−1

−1

e12 e23 e34 2e4

e13 e24 e34

e14 e24 2e3

e14 e23

e13 2e2

e12

2e1

Fig. 9: The Shi vector of t in C4. The right part gives the coordinates of the Shi vector.

−1 0 0 0

−1 0 0

−1 0 0

−1 0

−1 0

−1

−1

=

0 0 0 0

0 0 0

0 0 0

0 0

0 0

0

0

•

−1 0 0 0

−1 0 0

−1 0 0

−1 0

−1 0

−1

−1

Fig. 10: The I-decomposition of t in terms of Shi vectors in C4.

Lemma 5.14 (Type Dn). Let t be the reflection of the highest root α̃ and let I = {s2, . . . , sn}. Then one has
the following reduced expressions and properties.

(1) t = s2s3 . . . sn−2snsn−1sn−2 . . . s3s2 · s1 · s2s3 . . . sn−2sn−1snsn−2 . . . s3s2.

(2) tI = s2s3 . . . sn−2snsn−1sn−2 . . . s3s2 and It = s1tI .

(3) N(t) = {e13, e14, . . . , e1n, e23, e24 . . . , e2n} ∪ {e12, e13 . . . , e1n, e23, e24, . . . , e2n}.

(4) L (t, I) = 2n2 − 4n+ 1.

Proof. In type Dn the highest root is α̃ = e12.

(1) Once again, we need to show that s2s3 . . . sn−2snsn−1 . . . s3s2(α1) = α̃ with α̃ = e12 and α1 = e12.
Roughly, s2(e12) = e13 and by induction sn−1 . . . s3s2(e12) = e1n. Then, since αn = en−1,n, it follows that
sn(e1n) = e1,n−1 and sn−2(e1,n−1) = e1,n−2. By induction it follows that s2s3 . . . sn−3(e1,n−2) = e12.

(2) The fact that tI ∈WI is clear. Concerning It, it is easy to see that s2s3 . . . sn−1snsn−2 . . . s3s2 = tI since
sn−2sn−1snsn−2 = sn−2snsn−1sn−2 (the generators sn−1 and sn commute). Therefore we have t = tIs1tI .
The way to show that s1tI belongs to IW is exactly the same as in types A,B,C and the details are left
to the reader. Hence It = s1tI . It is also clear that these two expressions are reduced. Thus the given
expression of t is reduced.

(3) Since t = s12, the set of its fixed roots is exactly the set of roots having no label 1 and 2 and the special root
e12 since we have already seen that

(
e12 | e12

)
= 0 and thus s12(e12) = e12. Therefore, by Proposition 5.4

one has

N(t) = Fixt = {e13, e14, . . . , e1n, e23, e24 . . . , e2n} ∪ {e12, e13 . . . , e1n, e23, e24, . . . , e2n},
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(4) From Point (2) it follows that N(t) ∩ ΦI = {e13, e14, . . . , e1n} ∪ {e12, e13 . . . , e1n}. In type Dn the height
of the roots is given by ht(eij) = j − i, ht(ein) = n− i and ht(eij) = 2n− (i + j) for any 1 ≤ i < j < n.
Therefore we have

LΦI
(t) =

∑
α∈N(t)∩ΦI

ht(α) =

n∑
j=3

ht(e1j) +

n−1∑
j=2

ht(e1j) + ht(e1n)

=

n∑
j=3

(j − 1) +

n−1∑
j=2

(2n− (1 + j)) + n− 1

=

n−1∑
j=2

j + (n− 2)(2n− 1)−
n−1∑
j=2

j + n− 1

= (n− 2)(2n− 1) + n− 1

= 2n2 − 4n+ 1.

6 Surjectivity of the atomic length

In this section, we consider again only finite Weyl groups, which we will again simply denote by W . We prove
that the atomic length is surjective by two independent methods, providing different insights. Recall that we
have proved in Theorem 4.11 that the element ofW realising the largest atomic length is w0, the longest element
of W .

Lemma 6.1. The integer L (w0) is given by the following formulas.

(1) For the classical types Xn, we have

L (w0) =



1
6n(n+ 1)(n+ 2) =

(
n+2

3

)
if X = A

1
6n(n+ 1)(4n− 1) if X ∈ {B,C}

1
3n(n− 1)(2n− 1) if X = D.

(2) For the exceptional types, we have the following values.

Type L (w0)

E6 156

E7 399

E8 1240

F4 110

G2 16

Proof. By Lemma 4.4, we have ρ − w0(ρ) =
∑
α∈N(w0) α =

∑
α∈Φ+ α = 2ρ. Therefore, L (w0) = 〈2ρ, ρ∨〉 =

2〈ρ, ρ∨〉. We can compute this inner product by expressing ρ and ρ∨ as a vector in the canonical basis, and then
doing componentwise multiplication. We give these vectors in the following table, which we have recovered from
[Bou68], and the reader can check that one gets the desired values of L (w0). Recall that ρ∨ = ρ in simply-laced
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type.

Type ρ ρ∨

An (n2 ,
n
2 − 1, . . . ,−n2 + 1,−n2 ) same as ρ

Bn (n− 1
2 , n−

3
2 , . . . ,

1
2 ) (n, n− 1, . . . , 1)

Cn (n, n− 1, . . . , 1) (n− 1
2 , n−

3
2 , . . . ,

1
2 )

Dn (n− 1, n− 2, . . . , 0) same as ρ

E6 (0, 1, 2, 3, 4,−4,−4, 4) same as ρ

E7 (0, 1, 2, 3, 4, 5,− 17
2 ,

17
2 ) same as ρ

E8 (0, 1, 2, 3, 4, 5, 6, 23) same as ρ

F4 ( 11
2 ,

5
2 ,

3
2 ,

1
2 ) (8, 3, 2, 1)

G2 (−1,−2, 3) (− 1
3 ,−

4
3 ,

5
3 )

Theorem 6.2. Let W be a finite Weyl group of rank n. The map L : W → J0,L (w0)K is surjective if and
only if n 6= 2.

Proof. This is achieved in several steps.

(1) Consider first the small rank cases. In type A1, we have L (W ) = {0, 1}, and for n = 2 we get the
following images by direct computation.

Type L (W )

A2 {0, 1, 3, 4}

B2 or C2 {0, 1, 3, 4, 6, 7}

G2 {0, 1, 3, 5, 8, 11, 13, 15, 16}

(2) Consider now the remaining exceptional types E6, E7, E8 and F4. One can use the computer algebra
softwares SageMath and GAP to obtain L (W ). In all cases, we have obtained L (W ) = J0,L (w0)K.

(3) Finally, assume that we are in classical type Xn, X ∈ {A,B,C,D}. We will prove the result by induction
on n. To this end, it will be convenient to make the dependence on n appear clearly by using the notation
W = W (Xn), bn = L (w0) and Ln = L : W (Xn)→ J0, bnK.
One checks by a direct computation that Ln is surjective for n = 3 if X = A, for n ∈ {3, 4} if X = B,C
and for n ∈ {4, 5} for X = D.
Assume now that Ln is surjective for a fixed n, where n ≥ 3 if X = A, respectively n ≥ 4 if X = B,C,
respectively n ≥ 5 for X = D. By Theorem 4.10, it suffices to show that for all N ∈ J0, bn+1/2K, there
exists w ∈ W (Xn+1) such that Ln+1(w) = N to ensure that Ln+1 : W (Xn+1) → J0, bn+1K is surjective.
In order to do that, let I = {s2, . . . , sn} and consider the standard parabolic subgroup WI ≤ W (Xn+1).
By Proposition 5.1, we are ensured that

L (WI) = LI(WI) = J0, bnK

where the second identity is the induction hypothesis. Thus, to conclude, it suffices to prove that

bn+1

2
≤ bn.

We show this by considering the different cases of Lemma 6.1.
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• If X = A, then bn = 1
6n(n+ 1)(n+ 2). Therefore

bn − bn+1

2 = 1
12 (2n(n+ 1)(n+ 2)− (n+ 1)(n+ 2)(n+ 3))

= 1
12 (n+ 1)(n+ 2)(n− 3)

≥ 0

since we have assumed n ≥ 3.

• If X ∈ {B,C}, then bn = 1
6n(n+ 1)(4n− 1). Therefore

bn − bn+1

2 = 1
12 (2n(n+ 1)(4n− 1)− (n+ 1)(n+ 2)(4n+ 3))

= 1
12 (n+ 1)(4n2 − 13n− 6)

≥ 0

since the largest root of this polynomial is 1
8 (13 +

√
265) ∈ (3, 4), and we have assumed n ≥ 4.

• If X = D, then bn = 1
3n(n− 1)(2n− 1). Therefore

bn − bn+1

2 = 1
6 (2n(n− 1)(2n− 1)− (n+ 1)n(2n+ 1))

= 1
6n(2n2 − 9n+ 1)

≥ 0

since the largest root of this polynomial is 1
4 (9 +

√
73) ∈ (4, 5), and we have assumed n ≥ 5.

We now give an alternative proof of Theorem 6.2 based on Susanfe theory.

Proof of Theorem 6.2. We have already explained in the previous proof how to treat the exceptional cases using
computer algebra. For the classical cases, we will again proceed by induction on the rank n.

Fix X ∈ {A,B,C,D}. The small rank cases n ≤ 3 if X = A, n ≤ 4 if X ∈ {B,C} and n ≤ 5 if X = D can
be checked individually. Assume the following induction hypothesis: L (W (Xn)) = J0, bnK where n+ 1 is fixed,
different from the values above. Here, bn denotes again the image of w0 (the longest element of W (Xn)) by the
function L : W (Xn) → N. Recall that we know that w0 indeed realises the maximum by Theorem 4.11, and
that we gave the formula for bn in Lemma 6.1.
Take now W = W (Xn+1). We will use the same notation as in Section 5, namely I = {s2, s3, . . . , sn+1}.
Moreover, we denote by t the reflection corresponding the highest root α̃ (and t′ = Its1 if X = B). Finally,
we let J = tIt so that tWJ = WIt. The idea of the inductive step is to consider the union L (WI) ∪L (WIt)
(respectively L (WI) ∪L (WIt

′) if X = B). Let us look at these two image sets separately first.

• By definition of I, the subgroup WI verifies WI ' W (Xn), so we have LI(WI) = J0, bnK by induction
hypothesis. Moreover, since WI is a standard parabolic subgroup of W , by Proposition 5.1 we have
LI(WI) = L (WI) and thus

L (WI) = J0, bnK . (13)

• For the second set L (WIt), let us use Corollary 5.7 with B = J . This yields, for all w ∈WJ ,

L (tw) = LI((tw)I) + L (t, I). (14)

Let us analyse the right-hand side. First, by Proposition 2.7, we know that {(tw)I | w ∈WJ} = WI , and by
induction hypothesis, LI(WI) = J0, bnK. Second, the term L (t, I) is a non-negative integer depending only
on Xn+1, which we denote by Kn+1. The formulas for Kn+1 for the different types are given in the lemmas
of Section 5. Therefore, (14) implies L (tWJ) = LI(WI)+L (t, I) = J0, bnK+Kn+1 = JKn+1, bn +Kn+1K,
which we can rewrite, since tWJ = WIt, as

L (WIt) = JKn+1, bn +Kn+1K . (15)



6 Surjectivity of the atomic length 28

Therefore, combining (13) and (15), we have proved that

L (WI) ∪L (WIt) = J0, bnK ∪ JKn+1, bn +Kn+1K . (16)

Obviously, L (WI) ∪L (WIt) ⊆ L (W ). In order to show that L (W ) = J0, bn+1K, we will prove that

(1) L (WI) ∪L (WIt) is in fact an interval, by showing for each Dynkin type that Kn+1 ≤ bn,

(2) the maximum of this inverval, that is bn+Kn+1, equals bn+1 (respectively bn+Kn+1 = bn+1−1 if X = D,
which will actually suffice).

Note that in type Bn, we need to replace t by t′ in the above reasoning.

• Assume X = A. We have bn =
(
n+1

3

)
= (n+1)n(n−1)

2 and Kn+1 =
(
n+1

2

)
. Since n+ 1 ≥ 4 by assumption,

we have
(
n+1

2

)
<
(
n+1

3

)
, hence Kn+1 < bn, proving (1).

Finally, we have the well-known formula
(
n+1

3

)
+
(
n+1

2

)
=
(
n+1

3

)
, that is, bn +Kn+1 = bn+1, proving (2).

• Assume X ∈ {B,C}. We have bn = n(n+1)(4n−1)
6 and Kn+1 = 2(n+ 1)2 − (n+ 1) = 2n2 + 3n+ 1.

We compute

n(n+ 1)(4n− 1)

6
− (2n2 + 3n+ 1) =

1

6
(n+ 1)(4n2 − 13n− 6).

We recover twice the polynomial of the previous proof, and we have seen that its largest root y verifies
3 < y < 4. Since we have assumed that n ≥ 4, we are ensured that Kn+1 < bn, proving (1).

Finally, we compute

bn +Kn+1 =
n(n+ 1)(4n− 1)

6
+ 2(n+ 1)2 − (n+ 1) =

(n+ 1)(n+ 2)(4n+ 3)

6
= bn+1,

proving (2).

• Assume X = D. We have bn = n(n−1)(2n−1)
3 and Kn+1 = 2(n+ 1)2 − 4(n+ 1) + 1 = 2n2 − 1.

We compute

n(n− 1)(2n− 1)

3
− (2n2 − 1) =

1

3
(2n+ 1)(n2 − 5n+ 3).

The largest root of this polynomial is 1
2 (5 +

√
13) ∈ (4, 5). Since we have assumed that n ≥ 5, we are

ensured that Kn+1 < bn, proving (1).

Finally, we compute

bn +Kn+1 =
n(n− 1)(2n− 1)

3
+ 2n2 − 1 =

(n+ 1)n(2n+ 1)

3
− 1 = bn+1 − 1.

We are missing the value bn+1 by this method, but fortunately, we know that bn+1 = L (w0) ∈ L (W ),
proving (2).

Remark 6.3. In the case of type An, recall that the atomic length coincides with the statistic invsum, see
Remark 2.9. In fact, the previous proof is analogous to the proof of [SU11, Section 2] recalled in Section 1. We
see that the results on the entropy of permutations are just a particular case of a more general phenomenon.
Moreover, in [SU11, Sections 3 and 4], the authors are able to obtain several interesting properties of the
generating function of ninvsum (including product formulas), involving the q-analogues of binomial coefficients.
On the other hand, it is well-known that the generating function of the Coxeter length can be described by
certain q-binomial coefficients. It would be interesting to study the generating function for the atomic length
and look for product formulas.

It is natural to look for a generalisation of Theorem 6.2 by asking, for a fixed λ ∈ P+, whether Lλ : W →
J0,Lλ(w0)K is surjective. Even more ambitious would be the classification of weights λ ∈ P+ such that Lλ is
surjective. This motivates the following definition.

Definition 6.4. Let W be an affine (respectively finite) Weyl group. An element λ ∈ P+ is called W -ideal if
Lλ : W → N (respectively Lλ : W → J0,Lλ(w0)K) is surjective.
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If there is no ambiguity about the group W , we will simply say that λ ∈ P+ is ideal. We can reformulate
Theorem 6.2 by saying that ρ is always ideal except in rank 2. We will see in the next section two further
examples of ideal weights:

• in finite types, the minuscule weights, this will be Theorem 7.6,

• in untwisted affine type A, the weight λ = Λ0, this will be Theorem 7.9, a (very much non trivial) theorem
by Granville and Ono.

In fact, in finite types, it is not hard to see that we have the following necessary condition.

Proposition 6.5. Let W be a finite Weyl group and let λ =
∑n
i=1miωi ∈ P+. If λ is ideal, then there exists

1 ≤ i ≤ n such that mi = 1.

Proof. By contradiction, assume that mi ≥ 2 for all 1 ≤ i ≤ n. We can use Theorem 4.19 to express the
λ-atomic length in terms of the λ-inversion set. Let w ∈ W and w ∈ Red(w). Since the elements appearing in
Nλ(w) are of the form β = miwi,k(αi) for some wi,k(αi) ∈ Q, the condition mi ≥ 2 implies that ht(β) ≥ 2. In
particular, it is impossible to find w ∈W verifying Lλ(w) = 1, so Lλ : W → J0,Lλ(w0)K is not surjective.

In the search for ideal weights, the previous proposition rules out many possibilities. However, among the
remaining weights, it seems complicated to classify those that are ideal, as illustrated in the following example.

Example 6.6. Let W be the Weyl group of type C3. Consider dominants weights λ = m1ω1 +m2ω2 +m3ω3.

• If (m1,m2,m3) = (2, 1, 1) then Lλ(W ) = J0, 27K and λ is ideal.

• If (m1,m2,m3) = (1, 2, 1) then

Lλ(W ) = {0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30}

and λ is not ideal.

• If (m1,m2,m3) = (1, 1, 2) then

Lλ(W ) = {0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31}

and λ is not ideal.

7 Links with crystal theory

7.1 Atomic length and crystal depth

Consider the affine Kac-Moody algebra g introduced in Section 3. For each λ ∈ P+, one can construct the
corresponding irreducible highest weight module V (λ) of g already introduced in Remark 4.6. Since this repre-
sentation is integrable, it comes equipped with a crystal, denoted B(λ), see [HK02]. This is an oriented colored
graph whose structure mirrors the algebraic structure of V (λ). For finite classical types, there are explicit con-
structions of B(λ) relying on tableau combinatorics, see [HK02, Chapters 7 and 8] for details. For affine type
A, there are explicit constructions of B(λ) given in terms of multipartitions/abaci combinatorics, see [GJ11,
Chapter 6]. The crystal B(λ) is connected and has a unique source vertex bλ called its highest weight vertex.
Moreover, there is a weight function wt : B(λ) → P defined on the vertices of B(λ) and determined by the
properties

wt(bλ) = λ, (17)

wt(b) = wt(b′)− αi if there is an arrow b′
i−→ b in B(λ). (18)

Indeed, each vertex b ∈ B(λ) can be obtained from bλ by following a sequence of arrows, so the above formulas
suffice to determine wt on the entire B(λ). Moreover, one can check that for all 1 ≤ i ≤ n and for all b ∈ B(λ),

〈wt(b), α∨i 〉 = ϕi(b)− εi(b), (19)

where ϕi(b) (respectively εi(b)) is the length of the string of i-arrows outgoing (respectively incoming) at vertex
b. One recovers for instance the dimensions of the weight spaces of V (λ) by counting the number of vertices
with the same weight in B(λ). Clearly, these all appear at the same depth in B(λ).

Now, the Weyl group W acts on B(λ) in a particularly simple way. For 0 ≤ i ≤ n fixed, removing all j-arrows
with j 6= i as well as all vertices without incoming or outgoing i-arrows yields a disjoint union of i-strings. Then
the generator si ∈ W acts on vertices by reflecting with respect to the middle of the i-string [BS17, Theorem
11.14]. In the rest of this section, we will be particularly interested in the orbit of the highest weight vertex bλ,
which we will denote O(λ).
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Example 7.1. The crystal B(λ) in type A2 for λ = ρ = ω1 + ω2 can be constructed using all semistandard
tableaux of shape (2, 1). This gives the following graph.

1 1
2

1 2
2

1 1
3

1 3
2

1 2
3

1 3
3

2 2
3

2 3
3

depth 0

depth 1

depth 2

depth 3

depth 4

1 2

2 1

2 1

1 2

In this picture, we have highlighted in gray the elements of O(λ). They are obtained by starting from the
highest weight vertex and reflecting along i-strings.

Remark 7.2. In type An and for any λ ∈ P+, there is a simple rule for computing O(λ) recursively: si acts
on a tableau b ∈ O(λ) by changing all possible entries i to i + 1 (that is, so that the resulting tableau is still
semistandard). From there, one can deduce an explicit description of O(λ), namely O(λ) consists of those
tableaux such that each column contains the one to its right, see [LS90]. For results in other classical types, see
[San21] and [JL20].

This enables us to interpret the atomic length Lλ in the context of crystals.

Proposition 7.3. Let b ∈ O(λ), so that b = w(bλ) for some w ∈W . Then Lλ(w) is the depth of b in B(λ).

Proof. By (18), the depth of b in B(λ) is the number of simple roots substracted to wt(bλ) to get wt(b), that
is, it is the number of simple roots that appear in the decomposition of wt(bλ) − wt(b). On the other hand,
Lλ(w) = 〈λ − w(λ), ρ∨〉, that is, Lλ(w) is the number of simple roots that appear in the decomposition of
λ − w(λ). To conclude, we first use (17) which ensures that λ = wt(bλ). Finally, for all i ∈ I and for all
a ∈ B(λ),

wt(si(a)) = wt(a)− (ϕi(a)− εi(a))αi by definition of the action of si

= wt(a)− 〈wt(a), α∨i 〉αi by (19)

= si(wt(a)).

Therefore w(λ) = w(wt(bλ)) = wt(w(bλ)) = wt(b).

Example 7.4. Proposition 7.3 enables us to compare Example 4.3 and Example 7.1: we recover the values
0, 1, 3, 4 as depths in the crystal B(ρ).

Remark 7.5. In finite types, the action of −w0 on the simple roots αi induces an involution of the crystal
B(λ), known as the Schützenberger-Lusztig involution and denoted by ηλ. More precisely, recall the involution
of the Dynkin diagram ζ induced from −w0 in Section 4. Then for each path

bλ
i1−→ · · · ir−→ b

in B(λ), there exists a path

ηλ(bλ)
ζ(i1)−→ · · · ζ(ir)−→ ηλ(b)
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in B(λ), where ηλ(bλ) is the lowest weight vertex of B(λ), see [Len05] for more details. In particular, combining
this with Proposition 7.3 enables us to recover Theorem 4.10.

With this intepretation at hand, we are now able to show the surjectivity of Lλ for a whole family of dominant
weights in finite types. Recall that a weight λ ∈ P+ is called minuscule if the Weyl group W acts transitively
on the set of weights of the module V (λ). Equivalently, λ is minuscule if and only if, for all α ∈ Φ, 〈λ, α∨〉 ∈
{−1, 0, 1}, see for instance [Bou68, Chapter VI, Exercices, §1, 24]. Recall Definition 6.4 introducing the notion
of ideal weights.

Theorem 7.6. Let λ ∈ P+ be minuscule. Then λ is ideal.

Proof. Since λ is minuscule, the set of weights of V (λ) equals Wλ, the orbit of λ under the action of W . By
general crystal theory, this implies that B(λ) = O(λ), that is, every vertex in the crystal graph is in O(λ).
In particular, there is an element of O(λ) at every given depth in B(λ). By Proposition 7.3, this means that
Lλ : W → J0,Lλ(w0)K is surjective, that is, λ is ideal.

We recall the classification of minuscule weights in the table below, found in [Bou68, Chapter VI, Exercices, §4,
15]. There is no minuscule weight for types E8, F4, and G2.

Type Minuscule weights

An ωi , 1 ≤ i ≤ n

Bn ωn

Cn ω1

Dn ω1, ωn−1, ωn

E6 ω1, ω6

E7 ω7

7.2 Affine crystals of type A and the Granville-Ono theorem

We now mention a fundamental particular case, namely that of λ = Λ0 in type A(1)
n . There is a classical

realisation of the corresponding crystal B(Λ0) that dates back to [MM90] and uses the (n+1)-regular partitions,
that is, partitions where each part is repeated at most n times. More precisely, there is an arrow b

i→ b′ in
B(Λ0) if and only if b′ is obtained from b by adding its good i-box, see [LLT96] for a definition. This yields the
whole crystal graph B(Λ0) by starting from the highest weight vertex ∅ (the only partition of 0) and adding
good boxes recursively, thereby yielding all (n + 1)-regular partitions. In turn, similarly to the finite case, the
elements of O(Λ0) are obtained recursively from ∅ by adding all i-boxes at once (for each fixed 0 ≤ i ≤ n), which
corresponds to the action of si. The following result is well-known [LLT96], [Las01]. Recall that a partition is
called a (n+ 1)-core if it has no removable rim (n+ 1)-hook.

Proposition 7.7. Let W = W (A
(1)
n ) and b ∈ B(Λ0). Then b ∈ O(Λ0) if and only if b is an (n + 1)-core.

Moreover, the depth of b in B(Λ0) is the size of b (that is, the number of boxes of b).

Note that the second part of the statement is obvious since each arrow in B(Λ0) corresponds to adding a
particular box.

Example 7.8. Let n = 2. The crystal B(Λ0) is realised by 3-regular partitions as shown in Figure 11, and the
orbit O(Λ0) consists precisely of the 3-cores, which we have highlighted in gray. Looking at depth (or counting
boxes), we see that the first values of LΛ0 are 0, 1, 2, 4, 5 and that there is no 3-core of size 3.

The question of the surjectivity of Lλ has been solved in this case by Granville and Ono [GO96, Theorem
1]. Indeed, they have proved that there exists an (n + 1)-core of every given size provided n ≥ 3. Using the
interpretation of Proposition 7.3 and using Proposition 7.7, we can rephrase their result as follows.
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∅

...

0

1 2

2 1

0 2 1 0

1 2 0 1 2 0 1 2

Fig. 11: The beginning of the crystal B(Λ0) in type A(1)
2 . The shaded vertices correspond to O(Λ0), which

consists of the 3-core partitions.

Theorem 7.9. Let W be the Weyl group of type A(1)
n . The map LΛ0 : W → N is surjective if and only if n ≥ 3.

Remark 7.10. There are generalisations of this crystal realisation for higher level dominant weights λ, achieved
by certain `-partitions generalising the (n+ 1)-regular partitions. These are due to [JMMO91], [FLO+99], see
also [GJ11, Chapter 6]. In turn, Jacon and Lecouvey gave in [JL20] a description of the orbit O(λ) resembling
that of Remark 7.2 and generalising Proposition 7.7. In particular, the depth of an `-partition b in the crystal
B(λ) is again given by the number of boxes of b, and it would be very interesting to understand for which
weights we can generalise Theorem 7.9.

8 Atomic length in affine Weyl groups

Let g be a Kac-Moody algebra of affine type, see Section 3, so that the Weyl group W writes W = T (M)oW0

where W0 is the corresponding finite Weyl group. Let λ = λ + `Λ0 + zδ ∈ P+ as in (9). Recall the Coxeter
number h =

∑n
i=0 a

∨
i .

Lemma 8.1. Let β ∈M , w ∈W0 and set w = tβw. We have

Lλ(w) = Lλ(w)− ` ht(β) + h

(
(λ | w−1(β)) +

1

2
|β|2`

)
.

Proof. We write
Lλ(w) = 〈λ− w(λ), ρ∨〉 = 〈λ, ρ∨〉 − 〈w(λ), ρ∨〉

and compute both terms. On the one hand, we have

〈λ, ρ∨〉 =
〈
λ+ `Λ0 + zδ, ρ∨

〉
=
〈
λ, ρ∨

〉
+ ` 〈Λ0, ρ

∨〉+ z 〈δ, ρ∨〉
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On the other hand, we have

〈w(λ), ρ∨〉 = 〈tβw(λ), ρ∨〉
=
〈
tβ
(
w(λ+ `Λ0 + zδ)

)
, ρ∨
〉

=
〈
tβ
(
w(λ) + `Λ0 + zδ

)
, ρ∨
〉

=

〈
w(λ) + `Λ0 + zδ + `β −

(
(w(λ) | β) +

1

2
|β|2`

)
δ, ρ∨

〉
by (6)

=
〈
w(λ), ρ∨

〉
+ ` 〈Λ0, ρ

∨〉+ z 〈δ, ρ∨〉+ ` 〈β, ρ∨〉 −
〈((

λ | w−1(β)
)

+
1

2
|β|2`

)
δ, ρ∨

〉
Taking the difference yields

Lλ(w) = Lλ(w)− ` 〈β, ρ∨〉+

〈(
(λ | w−1(β)) +

1

2
|β|2`

)
δ, ρ∨

〉
= Lλ(w)− ` ht(β) + h

(
(λ | w−1(β)) +

1

2
|β|2`

)
by (10).

Corollary 8.2. For all w = tβw ∈W , we have

LΛ0(w) =
h

2
|β|2 − ht(β).

In particular, LΛ0
only depends on β.

Proof. We have taken λ = Λ0, so that ` = 1 and λ = 0. Since (Λ0 | β) = 0 (see (10)), Lemma 8.1 yields precisely
the expected formula.

Remark 8.3. One could have chosen to write w = wtγ instead of w = tβw. Clearly, γ and β are related by
the formula γ = w−1(β), and since w is an isometry, we have |γ| = |β|.

Remark 8.4. Let W = W (A
(1)
n ), so that W0 = W (An). The affine Grassmannian W/W0 is in bijection

with the fundamental chamber C0. Following [Las01], there is a bijection between the (n + 1)-cores and the
alcoves in C0, namely the core w(∅) corresponds to the alcove Aw−1 . In particular, if w = sir · · · si1 is the
reduced expression corresponding to the path i1 → · · · → ir in O(λ) starting at ∅, then w−1 = si1 · · · sir is the
corresponding reduced path in C0.

Example 8.5. TakeW = W (A
(1)
2 ), so that h = 3. Let us compute the first value of LΛ0

(w) using Corollary 8.2.
These are recorded in the table in Figure 12, and we also indicate the decomposition w = tβw = wtγ , where we
start with elements w with reduced decomposition described in Remark 8.4. The reader interested in working
out this example might find it helpful to use the formula s0 = τα̃sα̃, where α̃ = α1 +α2 is the highest root. We
can compare this table with Example 7.8, where we computed the first values of LΛ0

using crystals.

Remark 8.6. In [TW17] and [STW21], the authors introduce a generalised notion of size of a core partition
in their study of expected sizes of simultaneous core partitions. This statistic turns out to coincide with LΛ0

,
compare for instance [STW21, Section 1.4] with the formula of Corollary 8.2 (up to the change of variables
w 7→ w−1). Moreover, a formula involving the inversion set (and requiring a distinction between long and short
roots) is given. We have been informed [Wil22] that this approach with inversion sets can be adapted for finite
types, yielding the finite atomic length (and, alternatively, an analogous statistic where the squared length of
the simple roots is taken into account). This should also give interesting expectation and variance formulas
[Wil22].

Combining Lemma 8.1 and Corollary 8.2 yields the following theorem. Recall the relationship β = w(γ)
explained in Remark 8.3.

Theorem 8.7. For all w = wtγ ∈W , we have

Lλ(w) = Lλ(w) + `LΛ0(w) + h(λ | γ).

Theorem 8.7 is interesting because it expresses the affine atomic length in terms of

• its finite counterpart Lλ, which depends only on w, and which we can control in some cases by Theorem 6.2,
Theorem 7.6 and Proposition 6.5,
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reduced expression of w reduced expression of w β γ LΛ0
(w)

e e 0 0 0

s0 s2s1s2 α1 + α2 −α1 − α2 1

s1s0 s2s1 α2 −α1 − α2 2

s2s0 s1s2 α1 −α1 − α2 2

s2s1s0 s1 −α2 −α1 − α2 4

s1s2s0 s2 −α1 −α1 − α2 4

s2s1s2s0 e −α1 − α2 −α1 − α2 5

s0s2s1s0 s1s2 2α1 + α2 −α1 − 2α2 6

s0s1s2s0 s2s1 2α2 + α1 −α2 − 2α1 6

s0s2s1s2s0 s1s2s1 2α1 + 2α2 −2α1 − 2α2 8

s1s0s2s1s0 s2 α2 − α1 −α1 − 2α2 9

s2s0s1s2s0 s1 α1 − α2 −2α1 − α2 9

Fig. 12: The first values of LΛ0 in type A(1)
2 , computed by determining β ∈M and using Corollary 8.2.

• the Λ0-atomic length, which depends only on β, and which we understand by Theorem 7.9,

• the map w → h(λ | γ), which depends only on γ. Write γ =
∑n
i=1 ciαi and λ =

∑n
i=1miλi. Then using

the formulas of Section 3, one checks that the linear form

ϕ : (c1, . . . , cn) 7→
n∑
i=1

a∨i
ai
mici

in the variables ci verifies ϕ(c1, . . . , cn) = (λ | γ). Understanding which integers are representable by the
linear form ϕ seems reasonable. For instance, solutions to the “coin problem” give some control over ϕ in
the case where the ci’s are nonnegative.

We believe that the decomposition of Theorem 8.7 will help in the search for affine ideal weights.
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Math. Phys., 134:79–88, 1990. 31

[PHD20] Vincent Pilaud, Christophe Hohlweg, and Aram Dermenjian. The facial weak order in finite Coxeter
groups. Discrete Mathematics & Theoretical Computer Science, 2020. 4

[Rea02] Nathan Reading. Order dimension, strong Bruhat order and lattice properties for posets. Order,
19(1):73–100, 2002. 3

[RWY11] Victor Reiner, Alexander Woo, and Alexander Yong. Presenting the cohomology of a Schubert
variety. Transactions of the American Mathematical Society, 363(1):521–543, 2011. 3

[San21] João Miguel Santos. Symplectic Keys and Demazure Atoms in Type C. Electronic. J. Comb., 28(2),
2021. Article #P2.29. 30

[Shi87] Jian Yi Shi. Alcoves corresponding to an affine Weyl group. J. London Math. Soc. (2), 35(1):42–55,
1987. 10

[STW21] Eric Nathan Stucky, Marko Thiel, and Nathan Williams. Strange Expectations in Affine Weyl
Groups. Séminaire Lotharingien de Combinatoire, 85B, 2021. # 36. 33

[SU11] Joshua Sack and Henning Úlfarsson. Refined inversion statistics on permutations . Elec. Journal
Comb., 19(1), 2011. 2, 3, 17, 28, 34



8 Atomic length in affine Weyl groups 37

[TW17] Marko Thiel and Nathan Williams. Strange expectations and simultaneous cores. J. Algebr. Comb.,
46:219–261, 2017. 33

[Wil22] Nathan Williams. Private communication. 2022. 33


	Introduction
	Entropy of permutations
	Coxeter groups and Weyl groups
	Affine Weyl groups and Shi coefficients
	Atomic length in finite Weyl groups
	Susanfe reflections
	Surjectivity of the atomic length
	Links with crystal theory
	Atomic length in affine Weyl groups

