Atomic length in Weyl groups

Nathan Chapelier-Laget, Thomas Gerber

To cite this version:

Nathan Chapelier-Laget, Thomas Gerber. Atomic length in Weyl groups. 2022. hal-03866168v1

HAL Id: hal-03866168 https://hal.science/hal-03866168v1

Preprint submitted on 22 Nov 2022 (v1), last revised 15 Dec 2022 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Atomic length in Weyl groups

Nathan Chapelier-Laget*, Thomas Gerber ${ }^{\dagger}$

Abstract

We define a new statistic on Weyl groups called the atomic length and investigate its combinatorial and representationtheoretic properties. In finite types, we show a number of properties of the atomic length which are reminiscent of the properties of the usual length. Moreover, we prove that, with the exception of rank two, this statistic describes an interval. In affine types, our results shed some light on classical enumeration problems, such as the celebrated Granville-Ono theorem on the existence of core partitions, by relating the atomic length to the theory of crystals.

Introduction

Let W be a Coxeter group and S be a finite set of generators called the simple reflections. The length function $\ell: W \rightarrow \mathbb{N}$ is a fundamental tool for studying the combinatorial and algebraic properties of W and of related structures. The number $\ell(w)$ is defined as the minimal number of simple reflections necessary to decompose w (in particular, the length function depends on S). Expressions of w as a product of $\ell(w)$ generators are called reduced, and Matsumoto's theorem ensures that any two reduced expressions of w are related by a sequence of braid moves. It is readily shown that $\ell(w)$ equals the number of inversions of w, that is, the number of positive roots of the corresponding root system that are sent to a negative root by w^{-1}.

The length function naturally induces a partial order on W, which contains a famous ordering on W : the weak (Bruhat) order. The weak order is ubiquitous in the theory of Coxeter groups and their deformations, the (Iwahori-)Hecke algebras [GP00]. Moreover, it is contained in the (strong) Bruhat order, which plays a crucial role in Kazhdan-Lusztig theory and related topics [Lus03], allowing for example to compare the (Zariski) adherence of cells in Schubert varieties. There are also variants of the length function that also play an important role in representation theory and combinatorics.
The twisted length function is a central tool in the theory of certain partial pre-orders on W defined with respect to a subset of reflections, and behaving similarly to the Bruhat order. These partial pre-orders have been used to prove the existence of new Kazhdan-Lusztig polynomials [Dye93]. The twisted length function also helps determine which subsets of reflections induce a partial order [Dye93, Edg07].
In another direction, there is a notion of absolute length or reflection length, which is defined as the minimal number of reflections (not necessarily simple) required to decompose an element of W. It also has many interesting properties, but is less well-understood than the usual length [Car72], [Dye01], [LMPS19].
In this paper, we introduce a different variant of the length function on Weyl groups denoted \mathscr{L}, which we call the atomic length. More precisely, $\mathscr{L}(w)$ is defined similarly to $\ell(w)$ by considering the inversion set of w, but by counting each inversion of w not just once, but as many times as its height (that is, the number of simple roots needed to decompose it). In type A (that is, when the Weyl group is the symmetric group), the atomic length turns out to coincide with half the entropy of permutations, a well-studied statistic (see Section 1). We quickly realise that the atomic length is just a special case of a more general statistic depending on a parameter λ which is a dominant weight, denoted \mathscr{L}_{λ}. More precisely, specialising \mathscr{L}_{λ} at $\lambda=\rho$, the half-sum of positive roots, recovers the statistic \mathscr{L}. In fact, we will see that \mathscr{L}_{λ} can be defined in the more general context of Weyl groups associated to Kac-Moody algebras [Kac84], and we will focus on the affine case (which contains all the finite types by restricting to an appropriate sub-root system).

We will see that \mathscr{L}_{λ} enjoys a number of properties echoing properties of the usual length function ℓ. In particular, in finite types, the longest element $w_{0} \in W$ will play a crucial role. We will prove that w_{0} realises the largest value of the atomic length on W (for any dominant weight λ), and the main theorem of this paper states that

[^0]$$
\mathscr{L}: W \rightarrow \llbracket 0, \mathscr{L}\left(w_{0}\right) \rrbracket \text { is surjective, except for rank } 2 \text { root systems. }
$$

The relevance of this result is two-fold. First, our approach illuminates classic results about the entropy of permutations by using systematic root systems combinatorics. In particular, we recover the surjectivity of the half-entropy on symmetric groups S_{n} for $n \geq 4$ [SU11] as a special case. Second, the affine variant of this problem leads us to a famous result by Granville and Ono [GO96], ensuring that there exists an ($n+1$)-core partition of every size as soon as $n \geq 3$. More precisely, take W to be the affine Weyl group of type $A_{n}^{(1)}$. Then, using a convenient interpretation of the statistic \mathscr{L}_{λ} in the context of crystals, we are able to rephrase the main theorem of [GO96] as follows:

$$
\mathscr{L}_{\Lambda_{0}}: W \rightarrow \mathbb{N} \text { is surjective if and only if } n \geq 3
$$

Therefore, we ask the general question: when is \mathscr{L}_{λ} surjective? Like Granville and Ono's applications in block theory for symmetric and alternating groups, this would enable us to understand defect zero blocks for more complicated structures such as (cyclotomic) Hecke algebras [Fay19, JL21]. But just like the proof of the Granville-Ono theorem requires advanced number-theoretic methods, we expect this problem to be hard in general. We believe that further investigation of the properties of the atomic length will reveal more exciting applications.

The paper is structured as follows. We motivate the study of the atomic length by reviewing a number of eclectic results about the entropy of permutations in Section 1. In Section 2, we introduce the necessary background on Coxeter groups, root systems and reflection subgroups, and we also recall some important features in the Weyl group case. In Section 3, we use the setting of Kac-Moody algebras to introduce Weyl groups of affine type in full generality, and we recall how to recover the untwisted affine Weyl groups in their classical geometric construction. This formalism enables us to introduce the notion of atomic length \mathscr{L} in Section 4, firstly using inversion sets, and secondly using a more general formula involving the parameter λ, giving rise to the statistic \mathscr{L}_{λ}. We prove several important properties of \mathscr{L}_{λ}, reminiscent of classical properties of the usual length function. Section 5 is devoted to the study of special reflections of W which we call Susanfe. In classical types, we introduce particular Susanfe elements, which are subsequently used in Section 6. In fact, we give two independent proofs of Theorem 6.2 which states that \mathscr{L} is surjective (except in rank 2), one of which extensively using the properties of w_{0}, and the other based on Susanfe theory. In Section 7, we explain how the atomic length \mathscr{L}_{λ} can be interpreted in the theory of crystals for Kac-Moody algebras representations, namely by simply looking at the depth of certain W-orbit elements in the corresponding crystal graph. This enables us to rephrase the Granville-Ono theorem in terms of atomic length, and thereby motivates the study of the affine atomic length, which we initiate in Section 8.

1 Entropy of permutations

In this section, we survey some results about several important statistics on the symmetric group, including the notion of entropy. This serves as a motivation for studying the atomic length defined in Section 4, as it will turn out to be simply half the entropy in type A. We denote \mathbb{N} the set of nonnegative integers.

1.1 Entropy and inversion sum

Let S_{n} be the symmetric group and let $w \in S_{n}$. Denote

$$
\cos (w)=\sum_{k=1}^{n} k w(k)
$$

The map $\cos : S_{n} \rightarrow \mathbb{N}$ is called the cosine. In [SU11, Theorem 2.2], it was proved that all nonnegative integer with the exception of 16 can be expressed as the cosine of some permutation. Recently, the cosine map has been studied from a combinatorial point of view in $\left[E L M^{+} 22\right.$, Section 5.2] where the authors show that it is a $\frac{n(n+1)^{2}}{4}$-homomesy. In order to prove [SU11, Theorem 2.2], the authors introduce two statistics on S_{n}, based on the notion of inversion and non-inversion of a permutation. Let $w \in S_{n}$ and write $w=w_{1} w_{2} \ldots w_{n}$ in one-line notation, that is $w(k)=w_{k}$. An inversion of w is a pair (i, j) such that $i<j$ and $w_{i}>w_{j}$, and a non-inversion of w is a pair (i, j) such that $i<j$ and $w_{i}<w_{j}$. The set of all inversions (respectively non-inversions) of w is denoted by $\boldsymbol{N}(w)$ (respectively $\boldsymbol{N}^{\prime}(w)$). We then set

$$
\operatorname{invsum}(w)=\sum_{(i, j) \in \boldsymbol{N}(w)}(j-i) \quad \text { and } \quad \text { ninvsum }(w)=\sum_{(i, j) \in \boldsymbol{N}^{\prime}(w)}(j-i)
$$

We will see that invsum coincides with the type A_{n-1} atomic length of Section 4, see Remark 4.2 (2). Furthermore, we have the following formula [SU11, Eq.(1)] that connects these two statistics

$$
\begin{equation*}
\operatorname{invsum}(w)+\operatorname{ninvsum}(w)=\binom{n+1}{3} \tag{1}
\end{equation*}
$$

Let w_{0} be the permutation $n(n-1)(n-2) \cdots 1^{1}$. An important tool for proving [SU11, Theorem 2.2] is the following theorem.
Theorem 1.1 ([SU11, Theorem 2.5]). For $w \in S_{n}$ we have

$$
\cos (w)=\cos \left(w_{0}\right)+\operatorname{ninvsum}(w) .
$$

We are ready to give the central definition of this section.
Definition 1.2. Let $w \in S_{n}$. The entropy of w the nonnegative integer $E(w)=\sum_{i=1}^{n}(i-w(i))^{2}$.

Remark 1.3.

(1) The entropy is a particular case of the metric S introduced in [DG77], showing that it is the "Spearman's rho" of a permutation and the identity permutation.
(2) The entropy is related to another important notion: bigrassmannian permutations. A bigrassmannian permutation is a permutation that has only one left descent and only one right descent (in the Coxeter sense). The study of these permutations goes way back, beginning with the work of Lascoux and Schützenberger [LS96] where they show that $w \in S_{n}$ is bigrassmannian if and only if it is join-irreducible for the Bruhat order on S_{n} [LS96, Theorem 4.4]. The notion of join-irreducible elements in Weyl groups appears more generally in quiver-representation-theoretic context in [IRRT18].
Precise computations and expressions of bigrassmannian permutations can also be found in [GK97]. It turns out that various aspects of bigrassmannian permutations are useful in a broad range of subjects and therefore were strongly studied in the past three decades [Kob10, Kob11, LS96, GK97, IRRT18, EH18, EL96, Rea02, RWY11]. For example, in [RWY11], Reiner uses this notion to describe the cohomology of Schubert varieties. In another direction, bigrassmannian elements are used to determine the socle of the cokernel of an inclusion of Verma modules in type A [KMM21, Section 2.2, Corollary 5]. Let \leq_{B} denote the (strong) Bruhat order on S_{n}. In [Kob11, Theorem] Kobayashi shows that the cardinality of the set $\left\{v \leq_{B} w \mid v\right.$ is bigrassmannian $\}$ is equal to $E(w) / 2$.
The entropy is related to the inversion sum by the following formula, announced previously.
Proposition 1.4. Let $w \in S_{n}$. We have

$$
\frac{E(w)}{2}=\operatorname{invsum}(w)
$$

Proof. Let us denote $a_{n}=\sum_{i=1}^{n} i^{2}$. On the one hand we have

$$
E(w)=\sum_{i=1}^{n}(i-w(i))^{2}=\sum_{i=1}^{n}\left(i^{2}-2 i w(i)+w(i)^{2}\right)=\sum_{i=1}^{n} i^{2}-2 \sum_{i=1}^{n} i w(i)+\sum_{i=1}^{n} w(i)^{2}=2 a_{n}-2 \cos (w) .
$$

Hence $E(w) / 2=a_{n}-\cos (w)$. Moreover by Theorem 1.1, we know that $\cos (w)=\cos \left(w_{0}\right)+\operatorname{ninvsum}(w)$, and by (1), we know that $\operatorname{invsum}(w)+\operatorname{ninvsum}(w)=\binom{n+1}{3}$. By definition of the cosine we have

$$
\cos \left(w_{0}\right)=\sum_{i=1}^{n} i w_{0}(i)=\sum_{i=1}^{n} i(n+1-i)=(n+1) \sum_{i=1}^{n} i-a_{n} .
$$

Therefore we obtain

$$
\begin{aligned}
a_{n}-\cos (w) & =a_{n}-\cos \left(w_{0}\right)-\operatorname{ninvsum}(w) \\
& =a_{n}-\left[(n+1) \sum_{i=1}^{n} i-a_{n}\right]-\left[\binom{n+1}{3}-\operatorname{invsum}(w)\right] \\
& =2 a_{n}-(n+1) \sum_{i=1}^{n} i-\binom{n+1}{3}+\operatorname{invsum}(w) \\
& =\frac{n(n+1)(2 n+1)}{3}-\frac{n(n+1)^{2}}{2}-\frac{(n-1) n(n+1)}{6}+\operatorname{invsum}(w) \\
& =\operatorname{invsum}(w) .
\end{aligned}
$$

[^1]
1.2 Entropy and the permutohedron

A geometrical interpretation of the entropy is given in terms of the n-dimensional permutohedron \mathcal{P}_{n} (called the "Voronoi cell" of a certain lattice in [CS13, Theorem 7 page 474]). Let us recall the construction of the permutohedron in type A_{n-1}.

Fix $V=\mathbb{R}^{n}$ with canonical basis $\left\{e_{i} \mid i=1, \ldots, n\right\}$. The symmetric group S_{n} acts transitively on V by permuting the coordinates, denote $S_{n} \times V \rightarrow V,(w, x) \mapsto w(x)$ this action. The reflection hyperplanes of S_{n} are $H_{i j}=\left\{x \in V \mid x_{i}-x_{j}=0\right\}$ with $1 \leq i<j \leq n$. Choose now a generic point $x \in V$ not located on any reflection hyperplane of S_{n}. Then the permutohedron is defined as the convex hull of the orbit under S_{n} of the point x, that is

$$
\mathcal{P}_{n}(x)=\operatorname{conv}\left\{w(x) \mid w \in S_{n}\right\} .
$$

We see then that there are as many realizations of \mathcal{P}_{n} as points x in V not located on the reflection hyperplanes. Some of them are move convenient and sometimes it can be useful to choose one over another. We say that a point $x \in V$ is adequate if it is not located on any reflection hyperplane of S_{n}, if all its coordinates x_{i} are in $[1, n] \cap \mathbb{Z}$ and if $x_{i} \neq x_{j}$ for $i \neq j$.

Remark 1.5. The permutohedron can be defined for any finite Coxeter group, see [PHD20, Section 1.5] for a good reference on the subject.

We can give the expected formula relating the entropy and the permutohedron. The following proposition states that the entropy of a permutation w is the square of the distance between two points of $\mathcal{P}_{n}(x)$ permuted by w. This is illustrated in Figure 1.

Proposition 1.6. Let $x \in V$ be adequate, and let $w \in S_{n}$. Then

$$
E(w)=|w(x)-x|^{2}
$$

Proof. Write $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. By definition $w(x)=\left(w\left(x_{1}\right), w\left(x_{2}\right), \ldots, w\left(x_{n}\right)\right)$. Moreover we have the following formula $|w(x)-x|^{2}=\sum_{i=1}^{n}\left(w\left(x_{i}\right)-x_{i}\right)^{2}$. Since x is adequate, we can make the change of variables $x_{i} \mapsto i$ and we obtain $|w(x)-x|^{2}=\sum_{i=1}^{n}(w(i)-i)^{2}=E(w)$, which ends the proof.

Fig. 1: The permutohedron for S_{4}. Vertices of the same color are at the same distance to e, therefore have the same entropy. The values of the half-entropy (which will coincide with the atomic length) for each color is given by:

2 Coxeter groups and Weyl groups

2.1 Inversion sets

Let (W, S) be a Coxeter system with S finite. Consider a corresponding root system ${ }^{2} \Phi$ and denote $\Delta=$ $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ the set of simple roots, so that $S=\left\{s_{1}, \ldots, s_{n}\right\}$ where $s_{i}=s_{\alpha_{i}}$ is the simple reflection associated to the simple root α_{i}. Throughout this paper, we shall always assume that Φ is irreducible. Let $\Phi^{+} \subseteq \Phi$ be the associated set of positive roots, so that $\Phi^{-}=-\Phi^{+}$is the corresponding set of negative roots. In particular, $\Phi=\Phi^{+} \sqcup \Phi^{-}$. We denote by $T=\bigcup_{w \in W} w S w^{-1}$ the set of all reflections of W. The set Φ^{+}is in bijection with T, as any reflection t writes $t=s_{\alpha}$ for a certain $\alpha \in \Phi^{+}$.
Let $\ell: W \rightarrow \mathbb{N}$ be the length function, that is, $\ell(w)$ is the smallest number r such that there exists an expression $w=s_{i_{1}} \ldots s_{i_{r}}$ with $s_{i_{k}} \in S$. By convention, $\ell(e)=0$. An expression of $w \in W$ is called a reduced expression if it is a product of $\ell(w)$ generators.
Let $w \in W$. The inversion set of w is

$$
N(w)=\left\{\alpha \in \Phi^{+} \mid w^{-1}(\alpha) \in \Phi^{-}\right\}
$$

and an alternative description of the inversion set is given by

$$
N(w)=\left\{\alpha \in \Phi^{+} \mid \ell\left(s_{\alpha} w\right)<\ell(w)\right\}
$$

It is well-known that $\ell(w)=|N(w)|$, and $w=w^{\prime}$ if and only if $N(w)=N\left(w^{\prime}\right)$. The following result, which can be found for example in [HL16, Proposition 2.1], enables us to construct inversion sets starting from reduced expressions. We will use it several times in the rest of the paper.

Proposition 2.1. Let $w \in W$ and write $w=u v$ with $u, v \in W$ veriyfing $\ell(w)=\ell(u)+\ell(w)$. Then $N(w)=N(u) \sqcup u(N(v))$. In particular if $w=s_{1} s_{2} \ldots s_{n-1} s_{n}$ is a reduced expression then $N(w)=$ $\left\{\alpha_{1}, s_{1}\left(\alpha_{2}\right), s_{1} s_{2}\left(\alpha_{3}\right), \ldots, s_{1} s_{2} \ldots s_{n-1}\left(\alpha_{n}\right)\right\}$.
In fact, inversion sets are well-behaved with respect to the right weak order, defined as follows. For $w, w^{\prime} \in W$, we write $w \leq w^{\prime}$ if there exist reduced expressions $\underline{w}, \underline{w^{\prime}}$ of w and w^{\prime} respectively such that \underline{w} is a prefix of \underline{w}^{\prime} We have the following characterisation proved in [DH16, Corollary 2.10].
Proposition 2.2. For all $w, w^{\prime} \in W$, we have $N(w) \subseteq N\left(w^{\prime}\right) \Leftrightarrow w \leq w^{\prime}$.
In fact, one direction of the above equivalence can be refined as follows, see [HL16, Proposition 1.1].
Proposition 2.3. The map N is a poset monomorphism from (W, \leq) to $\left(\mathcal{P}\left(\Phi^{+}\right), \subseteq\right)$.
We now give some properties that will be needed in the following sections. Recall that if $A \subseteq T$ is a subset of reflections, then the corresponding reflection subgroup of W is the subgroup W_{A} generated by the reflections in A, that is

$$
W_{A}=\left\langle s_{\alpha} \mid s_{\alpha} \in A\right\rangle
$$

From [Dye90] we know that the set $\Phi_{A}=\left\{\alpha \in \Phi \mid s_{\alpha} \in W_{A}\right\}$ is a root system of W_{A}, with simple roots $\Delta_{A}=\left\{\alpha \in \Phi^{+} \mid N\left(s_{\alpha}\right) \cap \Phi_{A}=\{\alpha\}\right\}$. Moreover, we have $\Phi_{A}^{+}=\Phi_{A} \cap \Phi^{+}$. Following [Dye10], we denote $S_{A}=\left\{s_{\alpha} \mid \alpha \in \Delta_{A}\right\}$. Therefore, the pair $\left(W_{A}, S_{A}\right)$ is a Coxeter system, and we denote ℓ_{A} its length function. Let us write

$$
\begin{equation*}
{ }^{A} W=\left\{w \in W \mid \ell\left(s_{\alpha} w\right)>\ell(w) \quad \forall \alpha \in \Phi_{A}\right\}=\left\{w \in W \mid N(w) \cap \Phi_{A}=\emptyset\right\} \tag{2}
\end{equation*}
$$

Note finally that there is an easier characterization of the previous set thanks to the functoriality of the Bruhat graph (see [DH16, Section 2.5] for more details):

$$
\begin{equation*}
{ }^{A} W=\left\{w \in W \mid \ell\left(s_{\alpha} w\right)>\ell(w) \quad \forall \alpha \in \Delta_{A}\right\} \tag{3}
\end{equation*}
$$

It is also known that for any $w \in W$, there exists a unique $w_{A} \in W_{A}$ and a unique ${ }^{A} w \in{ }^{A} W$ such that $w=w_{A}{ }^{A} w$. The decomposition $w=w_{A}{ }^{A} w$ is called the A-decomposition of w.

Remark 2.4.

(1) The A-decomposition defined above is usually called "left A-decomposition", and accordingly, there is a notion of right A-decomposition that uses an analogous subset W^{A}. In this article we will only use the left A-decomposition, which is why we use this simpler terminology.

[^2](2) In the particular case $A \subseteq S$, we recover the parabolic decomposition, see [Hum90]. In this case, we have the formula $\ell(w)=\ell\left(w_{A}\right)+\ell\left({ }^{A} w\right)$ but this does not holds in general if $A \nsubseteq S$, see [Dye91].

If W_{A} is a reflection subgroup of W and $w \in W$, the group $w W_{A} w^{-1}$ is also a reflection subgroup of W, generated by the reflections $w t w^{-1}, t \in A$. For simplicity, we denote $B=\left\{w t w^{-1} ; t \in A\right\}$, so that Φ_{B} denotes the root system corresponding to $W_{B}=w W_{A} w^{-1}$. Recall that we have the following proposition.

Proposition 2.5. Let $A \subseteq T$ and $w \in W$, and set $B=w A w^{-1}$. We have $\Phi_{B}=w\left(\Phi_{A}\right)$.
Definition 2.6. Let $A \subseteq T$ and $w \in W$. Define $W_{B}=w W_{A} w^{-1}$. We say that w is A-utopic if the following map is a bijection

$$
\begin{aligned}
\Gamma_{w}: W_{B} & \longrightarrow W_{A} \\
x & \longmapsto(w x)_{A} .
\end{aligned}
$$

The set of A-utopic elements is denoted by $\mathcal{U}(A)$.
Proposition 2.7. Let $I \subseteq S$. Then $T \subseteq \mathcal{U}(I)$.
Proof. Let $t \in T$ and $W_{B}=t W_{I} t$. Let us show that the map Γ_{t} is a bijection. To do so, since W_{B} and W_{I} have the same number of elements it is enough to show that Γ_{t} is injective. Let x and y be two elements of W_{B}. Therefore, there exist $u, v \in W_{I}$ such that $x=t u t$ and $y=t v t$. Assume that $\Gamma_{t}(x)=\Gamma_{t}(y)$, that is $(t x)_{I}=(t y)_{I}$, which is equivalent to $(u t)_{I}=(v t)_{I}$ and then $\left(u t_{I}{ }^{I} t\right)_{I}=\left(v t_{I} I_{I}\right)_{I}$. But since u and v belong to W_{I}, it follows that $\left(u t_{I}{ }^{I} t\right)_{I}=u t_{I}$ and $\left(v t_{I}{ }^{I} t\right)_{I}=v t_{I}$. Thus $u t_{I}=v t_{I}$ and it follows that $u=v$. Hence $x=y$, which ends the proof.

Remark 2.8. In type B_{n} and for $I=\left\{s_{2}, \ldots, s_{n}\right\}$, computational experiments in SageMath suggest that the number of I-utopic elements should be given by $F_{n}-1$ where F_{n} is the n-th Fibonacci number.

For $w \in W_{A}$ we denote by $N_{A}(w)$ its inversion set, which is a subset of Φ_{A}^{+}. The relation between N and N_{A} is discussed in Lemma 3.5. It turns out that inversion sets behave nicely when restricted to reflection subgroups, as expressed in the following proposition, found in [DH16, Proposition 2.16].

Proposition 2.9. Let W_{A} be a reflection subgroup of W and let $w \in W$. Write $w=w_{A}{ }^{A} w$ be the A decomposition of w. Then $N(w) \cap \Phi_{A}=N_{A}\left(w_{A}\right)$.

2.2 The case of finite Weyl groups

Let V be a Euclidean space with inner product $(\cdot \mid \cdot)$. Let Φ be an irreducible crystallographic root system in V, that is $2 \frac{(\alpha \mid \beta)}{(\alpha \mid \alpha)} \in \mathbb{Z}$ for any $\alpha, \beta \in \Phi$. We denote again $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ a simple system and Φ^{+}the corresponding positive roots. The corresponding reflection group is called a Weyl group. These are particularly important as they are attached to simple Lie algebras over \mathbb{C}, for which we have a classification. This is achieved via the different Dynkin types, namely A_{n} for $n \geq 1, B_{n}, C_{n}$ for $n \geq 2, D_{n}$ for $n \geq 4$ (the classical types), $E_{6}, E_{7}, E_{8} . F_{4}$ and G_{2} (the exceptional types). We refer to the book [Bou68] for details, and we will use its conventions in this paper. We will sometimes use the convenient notation $W\left(X_{n}\right)$ for the Weyl group associated to a root system of type X_{n}. In this paper, we will mostly focus on Weyl groups rather than general Coxeter groups, since we will make use of several representation-theoretic properties.

Let us fix some notation that will be useful in the rest of this paper. First of all the height of a root $\alpha \in \Phi$ is the number of simple roots appearing in the decomposition of α, that is, if $\alpha=\sum_{i=1}^{n} a_{i} \alpha_{i}$ with $a_{i} \in \mathbb{Z}$, then

$$
\operatorname{ht}(\alpha)=\sum_{i=1}^{n} a_{i} .
$$

We denote by e_{i} the i-th canonical vector of its corresponding ambient space V. We will use the shorthand notation $e_{i j}=e_{i}-e_{j}$ and $e^{i j}=e_{i}+e_{j}$. In clasical types, the roots are either $e_{i j}, e^{i j}, e_{i}$ or $2 e_{i}$ and we refer the reader to read [Bou68, Planches] for more details. Sometimes we will use a comma between the labels i and j to prevent any ambiguity, for instance we will write $e^{i, n+1}$ rather than $e^{i(n+1)}$.

Remark 2.10. In the case where $W=W\left(A_{n}\right)$, that is $W=S_{n+1}$, the inversion set $N(w)$ is in bijection with the set $\boldsymbol{N}(w)$ introduced in Section 1 via the map $e_{i j} \mapsto(i, j)$. In this case, the simple roots are $e_{i, i+1}$ for $1 \leq i \leq n$, and one checks that $\operatorname{ht}\left(e_{i j}\right)=j-i$, which is the quantity that appears in the definition of the statistic invsum.

Finally, we will use two important features of Weyl groups. First, there exists a unique element w_{0} of maximal length, see for instance [Bou68, Chapter VI, $\S 1$, Corollary 3]. Second, there exists a unique root $\widetilde{\alpha}$ verifying, for all $\beta \in \Phi, \widetilde{\alpha}-\beta=\sum_{i=1}^{n} a_{i} \alpha_{i}$ for some nonnegative integers a_{1}, \ldots, a_{n}, see [Bou68, Chapter VI, §1, Proposition 25]. It follows from this property that $\widetilde{\alpha} \in \Phi^{+}$and that $\widetilde{\alpha}$ is in fact the unique element with maximal height. Thus, $\widetilde{\alpha}$ is called the highest root of Φ.

3 Affine Weyl groups and Shi coefficients

In this section, we recall the construction of affine Weyl groups via the theory of Kac-Moody algebras, following [Kac84]. The Weyl groups appearing in this context are either of untwisted or twisted type. In the untwisted cases, we will recall the classical geometric constructions in Section 3.2.

3.1 Kac-Moody algebras and affine Weyl groups

Let $C=\left(a_{i j}\right)_{0 \leq i, j \leq n}$ be a generalised (symmetrisable) Cartan matrix with zero determinant, so that the corresponding Kac-Moody algebra \mathfrak{g} is of affine type. In particular, the rank of C is n. Let V be a real vector space of dimension $n+2$ and $\Delta_{a}=\left\{\alpha_{0}, \ldots, \alpha_{n}\right\} \subseteq V,\left\{\alpha_{0}^{\vee}, \ldots, \alpha_{n}^{\vee}\right\} \subseteq V^{*}$ be a realisation of \mathfrak{g} (see [Kac84] for details), so that $\left\langle\alpha_{j}, \alpha_{i}^{\vee}\right\rangle=a_{i j}$, where $\langle.,$.$\rangle denotes the natural pairing between V$ and V^{*}. Write $\bar{V}=\bigoplus_{i=1}^{n} \mathbb{R} \alpha_{i}$ and $V_{a}=\bar{V} \oplus \mathbb{R} \alpha_{0}$. The reflections $s_{i}, 0 \leq i \leq n: V_{a} \rightarrow V_{a}$ given by the formula $s_{i}(x)=x-\left\langle x, \alpha_{i}^{\vee}\right\rangle \alpha_{i}$ generate a subgroup of GL $\left(V_{a}\right)$ called the Weyl group W of \mathfrak{g}. The Weyl group acts on Δ_{a} and its orbit Φ_{a} is a root system with simple system Δ_{a}.

Remark 3.1.

(1) In untwisted Dynkin types, the group W is isomorphic (as a Coxeter group) to the affine Weyl group W_{a} constructed geometrically in [Bou68, Chapter VI, §2]. We will give more details about W_{a} in Section 3.2 below.
(2) The reflections s_{1}, \ldots, s_{n} generate a Weyl group \bar{W} of corresponding finite type.

Before proceeding to the further study of W, let us briefly recall some classical constructions related to the finite Weyl group \bar{W}. We denote Φ the corresponding crystallographic root system, and we consider the set of simple roots $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. The set $Q=\mathbb{Z} \Phi=\mathbb{Z} \Delta$ is called the root lattice. We can extend the notion of height to any element of Q by setting, for $\beta=\sum_{i=1}^{n} b_{i} \alpha_{i} \in Q, \operatorname{ht}(\beta)=\sum_{i=1}^{n} b_{i}$. The fundamental weights are defined as the elements $\omega_{i} \in \bar{V}, 1 \leq i \leq n$ verifying

$$
\left\langle\omega_{i}, \alpha_{j}^{\vee}\right\rangle=\delta_{i j} .
$$

The set $\bar{P}=\bigoplus_{i=1}^{n} \mathbb{Z} \omega_{i}$ is the corresponding weight lattice, and $\bar{P}^{+}=\bigoplus_{i=1}^{n} \mathbb{N} \omega_{i}$ the set of integral dominant weights. We set

$$
\bar{\rho}=\sum_{i=1}^{n} \omega_{i}=\frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha
$$

In turn, there is a dual weight lattice \bar{P}^{\vee} with basis consisting of the dual fundamental weights $\omega_{i}^{\vee} \in \bar{V}^{*}$, $i=1, \ldots, n$, defined by

$$
\left\langle\alpha_{j}, \omega_{i}^{\vee}\right\rangle=\delta_{i j}
$$

We define similarly

$$
\bar{\rho}^{\vee}=\sum_{i=1}^{n} \omega_{i}^{\vee}=\frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha^{\vee}
$$

We see that $\left\langle\alpha_{i}, \bar{\rho}^{\vee}\right\rangle=1$ for all $1 \leq i \neq j \leq n$, which implies in particular that, for all $\beta \in Q$,

$$
\begin{equation*}
\left\langle\beta, \bar{\rho}^{\vee}\right\rangle=\operatorname{ht}(\beta) . \tag{4}
\end{equation*}
$$

Let us come back to the general affine setting. We will need the following two important elements

$$
\delta=\sum_{i=0}^{n} a_{i} \alpha_{i} \in V \quad \text { and } \quad c=\sum_{i=0}^{n} a_{i}^{\vee} \alpha_{i}^{\vee} \in V^{*}
$$

where a_{0}, \ldots, a_{n} and $a_{0}^{\vee}, \ldots, a_{n}^{\vee}$ are defined in [Kac84, Theorem 4.8] and depend on the Dynkin type. Note that we always have $a_{0}^{\vee}=1$, regardless of the type. The space V_{a} is equipped with a symmetric bilinear form (.|.) which satisfies

$$
\left(\alpha_{i} \mid \alpha_{j}\right)=a_{i}^{\vee} a_{i}^{-1} a_{i j} \text { for } i, j \neq 0, \quad\left(\delta \mid \alpha_{i}\right)=0 \text { for } i \neq 0 \quad \text { and } \quad(\delta \mid \delta)=0
$$

The space V_{a} endowed with $(\cdot \mid \cdot)$ is a quadratic space with isotropic cone $\mathbb{R} \delta$. We extend (. | .) to V by introducing an isotropic element $\Lambda_{0} \in V \backslash V_{a}$ verifying $\left(\Lambda_{0} \mid \alpha_{i}\right)=0$ for $i \neq 0$ and $\left(\Lambda_{0} \mid \delta\right)=1$. In particular, $\left(\Lambda_{0} \mid \alpha_{0}\right)=a_{0}^{-1}$.
Similarly to the finite setting, we let $\Lambda_{i}, 1 \leq i \leq n$ be the remaining (affine) fundamental weights, defined by the condition $\left\langle\Lambda_{i}, \alpha_{j}^{\vee}\right\rangle=\delta_{i j}$. Note that we have $\Lambda_{i}=a_{i}^{\vee} \Lambda_{0}+\omega_{i}$ for $1 \leq i \leq n$. We define $\Lambda_{i}^{\vee} \in V^{*}, 1 \leq i \leq n$ by the dual formulas $\left\langle\alpha_{j}, \Lambda_{i}^{\vee}\right\rangle=\delta_{i j}$, and we finally set $\Lambda_{0}^{\vee}=a_{0}\left(\Lambda_{0} \mid \cdot\right) \in V^{*}$. In particular, we have $\left\langle\alpha_{i}, \Lambda_{0}^{\vee}\right\rangle=\delta_{0 i}$ for $0 \leq i \leq n$ and $\left\langle\Lambda_{0}, \Lambda_{0}^{\vee}\right\rangle=0$. We can now set

$$
\rho=\Lambda_{0}+\ldots+\Lambda_{n}=h \Lambda_{0}+\bar{\rho} \in V \quad \text { and } \quad \rho^{\vee}=\Lambda_{0}^{\vee}+\ldots+\Lambda_{n}^{\vee}=h^{\vee} \Lambda_{0}^{\vee}+\bar{\rho}^{\vee} \in V^{*}
$$

where $h=\sum_{i=0}^{n} a_{i}$ is the Coxeter number and $h^{\vee}=\sum_{i=0}^{n} a_{i}^{\vee}$ is the dual Coxeter number.
The affine weight lattice is $P=\bigoplus_{i=1}^{n} \mathbb{Z} \omega_{i} \oplus \mathbb{Z} \delta \oplus \mathbb{Z} \Lambda_{0}$, and the lattice of affine dominant weights is given by $P^{+}=\bigoplus_{i=0}^{n} \mathbb{N} \Lambda_{i} \oplus \mathbb{Z} \delta$. Therefore, any dominant weight $\lambda \in P^{+}$writes $\lambda=\sum_{i=0}^{n} m_{i} \Lambda_{i}+z \delta$ for some $m_{i} \in \mathbb{N}, z \in \mathbb{Z}$. Alternatively, λ decomposes as

$$
\begin{equation*}
\lambda=\bar{\lambda}+\ell \Lambda_{0}+z \delta \tag{5}
\end{equation*}
$$

where $\bar{\lambda}=m_{1} \omega_{1}+\cdots+m_{n} \omega_{n} \in \bar{P}^{+}$and the nonnegative integer

$$
\ell=m_{0}+\sum_{i=1}^{n} a_{i}^{\vee} m_{i}=\sum_{i=0}^{n} a_{i}^{\vee} m_{i}=\langle\lambda, c\rangle
$$

is the level of λ (where we have used that $a_{0}^{\vee}=1$). For all $0 \leq i \leq n$, the elements $\alpha_{i} \alpha_{i}^{\vee}$ are related by the formula

$$
\begin{equation*}
\alpha_{i}^{\vee}=\frac{a_{i}}{a_{i}^{\vee}}\left(\alpha_{i} \mid .\right) \tag{6}
\end{equation*}
$$

We record the following important formulas of the inner product on V.

$$
\begin{cases}\left(\alpha_{i} \mid \alpha_{j}\right)=\frac{a_{i}^{\vee}}{a_{i}} a_{i j} & 0 \leq i, j \leq n \tag{7}\\ \left(\alpha_{i} \mid \omega_{j}\right)=\frac{a_{i}^{\vee}}{a_{i}} \delta_{i j} & 0 \leq i, j \leq n \\ \left(\alpha_{i} \mid \delta\right)=0 & 0 \leq i \leq n \\ \left(\alpha_{i} \mid \Lambda_{0}\right)=0 & 1 \leq i \leq n \\ \left(\alpha_{0} \mid \Lambda_{0}\right)=a_{0}^{-1} \\ (\delta \mid \delta)=0 \\ \left(\Lambda_{0} \mid \Lambda_{0}\right)=0 & \begin{cases}\left\langle\alpha_{j}, \alpha_{i}^{\vee}\right\rangle=a_{i j} & 0 \leq i, j \leq n \\ \left\langle\delta, \alpha_{i}^{\vee}\right\rangle=0 & 0 \leq i \leq n \\ \left\langle\Lambda_{0}, \alpha_{0}^{\vee}\right\rangle=1 \\ \left\langle\Lambda_{0}, \alpha_{i}^{\vee}\right\rangle=0 & 1 \leq i \leq n \\ \left\langle\alpha_{i}, \rho^{\vee}\right\rangle=1 & 0 \leq i \leq n \\ \left\langle\delta, \rho^{\vee}\right\rangle=h^{\vee}\end{cases} \\ \end{cases}
$$

3.2 Untwisted affine Weyl groups and Shi coefficients

We already mentioned in Remark 3.1(1) that the above construction recovers the construction of the affine Weyl groups of untwisted Dynkin types. Let us recall the direct geometric construction of W_{a} in this case. In this case we have by [Kac84, Proposition 5.1 (d)], for all $\alpha \in \Phi$,

$$
\alpha^{\vee}=2 \frac{(\alpha \mid .)}{(\alpha \mid \alpha)}
$$

Let $k \in \mathbb{Z}$ and $\alpha \in \Phi$. We define the affine reflection $s_{\alpha, k} \in V \rtimes \mathrm{GL}(V)$ (the affine group of V) by

$$
s_{\alpha, k}(x)=x-\left(2 \frac{(\alpha \mid x)}{(\alpha \mid \alpha)}-k\right) \alpha=x-\left(\left\langle\alpha^{\vee}, x\right\rangle-k\right) \alpha
$$

The group generated by all the affine reflections $s_{\alpha, k}$ with $\alpha \in \Phi$ and $k \in \mathbb{Z}$ is called the affine Weyl group associated to Φ. It is denoted by W_{a}. The group W_{a} is a Coxeter group and we also denote by ℓ its length function.
We set the hyperplanes

$$
H_{\alpha, k}=\{x \in V \mid(\alpha \mid x)=k\}
$$

and the strips

$$
H_{\alpha, k}^{1}=\{x \in V \mid k<(\alpha \mid x)<k+1\} .
$$

An alcove of V is a connected component of

$$
V \backslash \bigcup_{\substack{\alpha \in \Phi^{+} \\ k \in \mathbb{Z}}} H_{\alpha, k}
$$

We denote A_{e} the fundamental alcove, defined by $A_{e}=\bigcap_{\alpha \in \Phi^{+}} H_{\alpha, 0}^{1}$. The fundamental chamber of W_{a} is defined by

$$
C_{0}=\{x \in V \mid(x \mid \beta) \geq 0 \forall \beta \in \Delta\} .
$$

The group W_{a} acts regularly on the set of alcoves. Therefore we have a bijective correspondence between W_{a} and the set of alcoves, given by $w \mapsto A_{w}$ where $A_{w}=w A_{e}$. Moreover, every alcove of V can be written as an intersection of $\left|\Phi^{+}\right|$strips, that is, for all $w \in W$, we have

$$
A_{w}=\bigcap_{\alpha \in \Phi^{+}} H_{\alpha, k(w, \alpha)}^{1}
$$

where $k(w, \alpha) \in \mathbb{Z}$ is called the Shi coefficient of w in position α. This integer indicates the number of hyperplanes $H_{\alpha, m}$ with $m \in \mathbb{Z}$ (also called the α-hyperplanes) between the alcove A_{w} and the fundamental alcove A_{e}. More precisely, if $k(w, \alpha) \geq 0$ then the α-hyperplanes between A_{e} and A_{w} are $H_{\alpha, 1}, H_{\alpha, 2}, \ldots, H_{\alpha, k(w, \alpha)}$. If $k(w, \alpha)<0$ then the α-hyperplanes between A_{w} and A_{e} are $H_{\alpha, 0}, H_{\alpha,-1}, \ldots, H_{\alpha, k(w, \alpha)+1}$.
The vector $(k(w, \alpha))_{\alpha \in \Phi^{+}}$is called the Shi vector of w. In [Shi87], Shi gave the following characterisation of the possible integers vectors $\left(k_{\alpha}\right)_{\alpha \in \Phi^{+}}$that arise as Shi vectors of elements in W_{a} (see Figure 2 for an example). For $x \in V$, we denote $|x|=(x \mid x)^{1 / 2}$. Shi vectors are usually arranged in a "pyramidal" shape as illustrated in Figure 2, Figure 3, Figure 5 and Figure 9.

Theorem 3.2 ([Shi87, Theorem 5.2]). Let $A=\bigcap_{\alpha \in \Phi^{+}} H_{\alpha, k_{\alpha}}^{1}$ with $k_{\alpha} \in \mathbb{Z}$. Then A is an alcove if and only if for all $\alpha, \beta \in \Phi^{+}$satisfying $\alpha+\beta \in \Phi^{+}$, we have the following inequality

$$
k_{\alpha}+k_{\beta} \leq k_{\alpha+\beta} \leq k_{\alpha}+k_{\beta}+1
$$

The following proposition is essential in view of proving Proposition 5.5.
Proposition 3.3 ([CL20, Proposition 3.2]). Let $w \in W_{a}$ and let $t \in T$ be a reflection. For all $\alpha \in \Phi$, we have

$$
k(t w, \alpha)=k(w, t(\alpha))+k(t, \alpha)
$$

We will describe in Lemma 3.5 below the inversion set of affine Weyl group elements in terms of their Shi coefficients. This will be crucial for proving Proposition 5.5 and, in turn, Theorem 6.2.

Lemma 3.4 ([Shi87, Lemma 3.1]). Let $w \in \bar{W}$ and $\alpha \in \Phi^{+}$. Then $\alpha \in N(w)$ if and only if $k(w, \alpha)=-1$.
Taking inversion sets is compatible with restricting to reflection subgroups as is shown in the following lemma ${ }^{3}$.
Lemma 3.5. Let \bar{W} be a finite Weyl group with simple system S. Let $w \in \bar{W}$.
(1) Let $A \subseteq T$ and consider the reflection subgroup $\bar{W}_{A} \leq \bar{W}$. Then $N_{A}\left(w_{A}\right)=\left\{\alpha \in \Phi_{A}^{+} \mid k(w, \alpha)=-1\right\}$.
(2) Let $I \subseteq S$ and consider the standard parabolic subgroup $\bar{W}_{I} \leq \bar{W}$. Then $N_{I}\left(w_{I}\right)=N\left(w_{I}\right)$.

Proof.

[^3]

Fig. 2: Alcoves in $W_{a}=W\left(A_{2}^{(1)}\right)$. In each alcove, we have written the Shi vector of the corresponding Weyl group element, where the bottom left (respectively bottom right, respectively top) position corresponds to the root e_{12} (respectively e_{23}, respectively e_{13}). The identity element corresponds to the alcove with 3 zeros and the elements of \bar{W} correspond to the alcoves with only zeros or -1 's, forming a hexagon. The shaded region, consisting of only nonnegative integers, is the fundamental chamber C_{0}.
(1) By Proposition 2.9, we have

$$
N_{A}\left(w_{A}\right)=N(w) \cap \Phi_{A}=\left\{\alpha \in \Phi^{+} \mid k(w, \alpha)=-1\right\} \cap \Phi_{A}=\left\{\alpha \in \Phi_{A}^{+} \mid k(w, \alpha)=-1\right\} .
$$

(2) Let $w_{I}=s_{i_{1}} \ldots s_{i_{k}}$ be a reduced expression of $w_{I} \in \bar{W}_{I}$. Since $\ell_{I}\left(w_{I}\right)=\ell\left(w_{I}\right)$, this expression is also reduced in \bar{W}. By Proposition 2.1 applied in both \bar{W}_{I} and in \bar{W}, we get $N_{I}\left(w_{I}\right)=$ $\left\{\alpha_{i_{1}}, s_{i_{1}}\left(\alpha_{i_{2}}\right), s_{i_{1}} s_{i_{2}}\left(\alpha_{i_{3}}\right), \ldots, s_{i_{1}} \ldots s_{i_{k-1}}\left(\alpha_{i_{k}}\right)\right\}=N\left(w_{I}\right)$.

4 Atomic length

We are ready to define the central notion of this paper, namely the atomic length of a Weyl group element. In this section, we only consider Weyl groups of finite type, except in Definition 4.5, which is given for both finite and affine Weyl groups. Indeed, we will first investigate the properties of the atomic length in finite types, in both Section 4 and Section 6. In order to avoid cumbersome notation, we will simply use the notation W, ρ, \ldots for the finite Weyl group, the sum of the fundamental weights, and so on (instead of $\bar{W}, \bar{\rho}, \ldots$ as in Section 3). The study of the affine atomic length will be delayed to Section 7 and Section 8 .

4.1 Inversion sets and atomic length

We use the notation of the previous sections. In particular, Φ^{+}denotes the chosen set of positive roots, and $N(w)$ denotes the set of inversions of $w \in W$.

Definition 4.1. Let $w \in W$. The atomic length of w is the nonnegative integer

$$
\mathscr{L}(w)=\sum_{\alpha \in N(w)} \operatorname{ht}(\alpha)
$$

Remark 4.2.

(1) Recall from Section 2 that for all $w \in W$, we have $|N(w)|=\ell(w)$, the length of w. Therefore, the atomic length can be seen as a variant of the usual length function, where each inversion α is counted with multiplicity $\mathrm{ht}(\alpha)$, that is, α is fully decomposed as a sum of simple roots, hence the terminology "atomic" length.
(2) Assume that $W=W\left(A_{n}\right)$. Recall the definition of invsum from Section 1.1. We have already seen in Remark 2.10 that $\operatorname{ht}\left(e_{i j}\right)=j-i$ for all $1 \leq i<j \leq n+1$. Therefore, for all $w \in W$, we have $\mathscr{L}(w)=\operatorname{invsum}(w)$.

Example 4.3. Let $W=W\left(A_{2}\right)$. Denote $\alpha_{i}=e_{i, i+1} \in \Delta, i=1,2$ the simple roots and $s_{1}, s_{2} \in W$ the corresponding simple reflections. The values of both the usual and atomic length are recorded in the following table.

w	$N(w)$	$\ell(w)$	$\mathscr{L}(w)$
1	\emptyset	0	0
s_{1}	$\left\{\alpha_{1}\right\}$	1	1
s_{2}	$\left\{\alpha_{2}\right\}$	1	1
$s_{1} s_{2}$	$\left\{\alpha_{2}, \alpha_{1}+\alpha_{2}\right\}$	2	3
$s_{2} s_{1}$	$\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}\right\}$	2	3
$s_{1} s_{2} s_{1}$	$\left\{\alpha_{1}, \alpha_{2}, \alpha_{1}+\alpha_{2}\right\}$	3	4

The following lemma will enable us to extend the definition of the atomic length. Recall that we have defined ρ in Section 3 to be the half-sum of the positive roots.

Lemma 4.4. For all $w \in W$, we have

$$
\rho-w(\rho)=\sum_{\alpha \in N(w)} \alpha
$$

Proof. Fix $w \in W$. First, we have

$$
\begin{aligned}
\rho & =\frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha \\
& =\frac{1}{2} \sum_{\substack{\alpha \in \Phi^{+} \\
\alpha \in N(w)}} \alpha+\frac{1}{2} \sum_{\substack{\alpha \in \Phi^{+} \\
\alpha \notin N(w)}} \alpha .
\end{aligned}
$$

Second, we have

$$
\begin{aligned}
w(\rho) & =\frac{1}{2} \sum_{\alpha \in \Phi^{+}} w(\alpha) \\
& =\frac{1}{2} \sum_{\substack{\alpha \in \Phi^{+} \\
w(\alpha) \in \Phi^{+}}} w(\alpha)+\frac{1}{2} \sum_{\substack{\alpha \in \Phi^{+} \\
w(\alpha) \notin \Phi^{+}}} w(\alpha) \\
& =\frac{1}{2} \sum_{\substack{w^{-1}(\alpha) \in \Phi^{+} \\
\alpha \in \Phi^{+}}} \alpha+\frac{1}{2} \sum_{\substack{w^{-1}(\alpha) \in \Phi^{+} \\
\alpha \notin \Phi^{+}}} \alpha \quad \text { by substituting } \alpha \leftarrow w^{-1}(\alpha) \text { in both sums } \\
& =\frac{1}{2} \sum_{w^{-1}(\alpha) \in \Phi^{+}}^{\alpha \in \Phi^{+}} \\
& \alpha-\frac{1}{2} \sum_{w^{-1}(\alpha) \notin \Phi^{+}}^{\alpha \in \Phi^{+}} \\
& =\frac{1}{2} \sum_{\substack{\alpha \in \Phi^{+} \\
\alpha \notin N(w)}} \alpha-\frac{1}{2} \sum_{\substack{\alpha \in \Phi^{+} \\
\alpha \in N(w)}} \alpha .
\end{aligned}
$$

Finally, taking the difference yields exactly the desired identity.

For the following definition, we allow W to be either a finite or affine Weyl group (as introduced in Section 3). Moreover, let $\lambda \in P^{+}$, that is, λ is a dominant weight. We define a statistic \mathscr{L}_{λ} on W, which will specialise at \mathscr{L} for $\lambda=\rho$ in finite types. Recall the element ρ^{\vee} introduced in Section 3, equal to the sum of the dual fundamental weights.

Definition 4.5. Let $\lambda \in P^{+}$. The λ-atomic length of w is the nonnegative integer

$$
\mathscr{L}_{\lambda}(w)=\left\langle\lambda-w(\lambda), \rho^{\vee}\right\rangle
$$

Remark 4.6.

(1) Let us quickly explain why $\mathscr{L}_{\lambda}(w)$ is a nonnegative integer. If \mathfrak{g} denotes the corresponding Kac-Moody algebra, we can construct the irreducible \mathfrak{g}-module $V(\lambda)$ with highest weight $\lambda \in P^{+}$, see for instance [HK02, Section 2.3]. This module is a weight module, that is, it decomposes as the direct sum of its μ-weight spaces $V(\lambda)_{\mu}=\left\{v \in V(\lambda) \mid x v=\langle\mu, x\rangle v\right.$ for all $\left.x \in V^{*}\right\}$, and where μ runs over P. Those elements $\mu \in P$ such that $V(\lambda)_{\mu} \neq 0$ are called the weights of $V(\lambda)$, and we know that the Weyl group W acts on the set of weights of $V(\lambda)$. Therefore, for all $w \in W, w(\lambda)$ is a weight of $V(\lambda)$. Since λ is the highest weight of $V(\lambda)$, we can write $\lambda-w(\lambda)=\sum_{i=1}^{n} a_{i} \alpha_{i}$ with $a_{i} \in \mathbb{N}$. By (4), $\mathscr{L}_{\lambda}(w)=\sum_{i \in I} a_{i} \in \mathbb{N}$.
(2) One could decide to define the atomic length for $\lambda \in P$ using the same formula, but the range of the map \mathscr{L}_{λ} would no longer be contained in \mathbb{N}. For instance, take $\lambda=\omega_{2}$ in type $B_{2}^{(1)}$ (it is a level zero weight but is not dominant). Then the element $w=s_{1} s_{0} s_{1} s_{2} s_{1} s_{0} s_{2}$ verifies $\mathscr{L}_{\lambda}(w)=-1$. Note that this fails even though ω_{2} is particularly nice in type B_{2} as it is minuscule, see Theorem 7.6.

The terminology of Definition 4.5 is justified by the following proposition, which we will use extensively in the rest of the article.

Proposition 4.7. Assume that W is of finite type. Then $\mathscr{L}=\mathscr{L}_{\rho}$.
Proof. For all $w \in W$, we have

$$
\begin{array}{rlr}
\mathscr{L}_{\rho}(w) & =\left\langle\rho-w(\rho), \rho^{\vee}\right\rangle \\
& =\left\langle\sum_{\alpha \in N(w)} \alpha, \rho^{\vee}\right\rangle \quad \text { by Lemma } 4.4 \\
& =\sum_{\alpha \in N(w)}\left\langle\alpha, \rho^{\vee}\right\rangle \\
& =\sum_{\alpha \in N(w)} h t(\alpha) \quad \text { by (4) } \\
& =\mathscr{L}(w) .
\end{array}
$$

4.2 First properties of the atomic length

We still assume that W is a finite Weyl group. A first consequence of the characterisation of Proposition 4.7 is a remarkable symmetry property for the atomic length in simply-laced Dynkin types.

Theorem 4.8 (Symmetry). Assume that W is of simply-laced finite type. Then for all $w \in W, \mathscr{L}(w)=$ $\mathscr{L}\left(w^{-1}\right)$.

Proof. Since we are in type A, D or E, all roots α verify $(\alpha \mid \alpha)=2$, which implies that $\rho^{\vee}=\frac{1}{2} \sum_{\alpha \in \Phi^{+}}(\alpha \mid$.). Therefore, for all $x \in V$,

$$
\left\langle x, \rho^{\vee}\right\rangle=\left\langle x, \frac{1}{2} \sum_{\alpha \Phi^{+}}(\alpha \mid .)\right\rangle=\frac{1}{2} \sum_{\alpha \Phi^{+}}(\alpha \mid x)=\left(\left.\frac{1}{2} \sum_{\alpha \Phi^{+}} \alpha \right\rvert\, x\right)=(\rho \mid x) .
$$

Let $w \in W$. We have

$$
\begin{aligned}
\mathscr{L}(w) & =\left\langle\rho-w(\rho), \rho^{\vee}\right\rangle & & \text { by Proposition 4.7 } \\
& =(\rho \mid \rho-w(\rho)) & & \text { by the previous computation with } x=\rho-w(\rho) \\
& =\left(\rho-w^{-1}(\rho) \mid \rho\right) & & \text { because } w \text { is an isometry } \\
& =\mathscr{L}\left(w^{-1}\right) & & \text { by Proposition 4.7. }
\end{aligned}
$$

Example 4.9.

(1) Let W be the Weyl group of type D_{4}, with simple roots $\alpha_{i}=e_{i, i+1}, 1 \leq i \leq 3$ and $\alpha_{4}=e^{34}$, and let s_{i}, $1 \leq i \leq 4$ be the corresponding simple roots. Take $w=s_{4} s_{1} s_{2} s_{3} s_{1} s_{2} s_{1}$ (reduced expression). Then

$$
N(w)=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3}, \alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}\right\}
$$

We have $w^{-1}=s_{2} s_{3} s_{1} s_{2} s_{4} s_{3} s_{1}$, so that

$$
N\left(w^{-1}\right)=\left\{\alpha_{1}, \alpha_{3}, \alpha_{4}, \alpha_{2}+\alpha_{4}, \alpha_{1}+\alpha_{2}+\alpha_{4}, \alpha_{2}+\alpha_{3}+\alpha_{4}, \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right\}
$$

and we see that $\mathscr{L}(w)=\mathscr{L}\left(w^{-1}\right)=15$.
(2) Let us give a counterexample in a non simply-laced Dynkin type. Let W be the Weyl group of type G_{2}, with simple roots $\alpha_{1}=e_{1}-e_{2}$ and $\alpha_{2}=-2 e_{1}+e_{2}+e_{3}$. Let $w=s_{2} s_{1}$ so that $w^{-1}=s_{1} s_{2}$. We have $N(w)=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}\right\}$ so $\mathscr{L}(w)=3$, but $N\left(w^{-1}\right)=\left\{\alpha_{1}, 3 \alpha_{1}+\alpha_{2}\right\}$ so $\mathscr{L}\left(w^{-1}\right)=5$.

Obviously, for the usual length function, regardless of the type, we have $\ell(w)=\ell\left(w^{-1}\right)$ for all $w \in W$. The symmetry of the atomic length proved in Theorem 4.8 can thus be seen as an analogue of this property of the usual length. In fact, we will now see that further properties of the usual length have analogues for the atomic length.
Recall that we denoted w_{0} the longest element of W. The map $\alpha_{i} \mapsto-w_{0}\left(\alpha_{i}\right)$ is an involution of Δ, and we can write $\alpha_{\theta(i)}=-w_{0}\left(\alpha_{i}\right)$, where $\theta:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ is the corresponding Dynkin diagram automorphism. The following result is an analogue of the well-known fact that $\ell\left(w_{0} w\right)=\ell\left(w_{0}\right)-\ell(w)$.

Theorem 4.10. Let $\lambda \in P^{+}$. For all $w \in W$, we have $\mathscr{L}_{\lambda}\left(w_{0} w\right)=\mathscr{L}_{\lambda}\left(w_{0}\right)-\mathscr{L}_{\lambda}(w)$.
Proof. Let us show that the quantities $\mathscr{L}_{\lambda}(w)$ and $\mathscr{L}_{\lambda}\left(w_{0}\right)-\mathscr{L}_{\lambda}\left(w_{0} w\right)$ are equal. On the one hand, we have

$$
\mathscr{L}_{\lambda}(w)=\left\langle\lambda-w(\lambda), \rho^{\vee}\right\rangle=\sum_{i \in I} a_{i}
$$

where $\lambda-w(\lambda)=\sum_{i \in I} a_{i} \alpha_{i}$ as we have already seen. On the other hand,

$$
\begin{aligned}
\mathscr{L}_{\lambda}\left(w_{0}\right)-\mathscr{L}_{\lambda}\left(w_{0} w\right) & =\left\langle\lambda-w_{0}(\lambda)-\lambda+w_{0} w(\lambda), \rho^{\vee}\right\rangle \\
& =\left\langle-w_{0}(\lambda-w(\lambda)), \rho^{\vee}\right\rangle \\
& =\left\langle-w_{0}\left(\sum_{i \in I} a_{i} \alpha_{i}\right), \rho^{\vee}\right\rangle \\
& =\left\langle\sum_{i \in I} a_{i}\left(-w_{0}\left(\alpha_{i}\right)\right), \rho^{\vee}\right\rangle \\
& =\left\langle\sum_{i \in I} a_{i} \alpha_{\theta(i)}, \rho^{\vee}\right\rangle \\
& =\sum_{i \in I} a_{i}\left\langle\alpha_{\theta(i)}, \rho^{\vee}\right\rangle \\
& =\sum_{i \in I} a_{i} .
\end{aligned}
$$

Finally, we are able to give a short representation-theoretic proof of the fact that the longest element w_{0} is also the "atomic-longest" element of W.
Theorem 4.11. Let $\lambda \in P^{+}$. Then $\mathscr{L}_{\lambda}(w) \leq \mathscr{L}_{\lambda}\left(w_{0}\right)$ for all $w \in W$.
Proof. As in Remark 4.6, consider the highest weight module $V(\lambda)$ for the corresponding finite-dimensional simple Lie algebra. Then it is well-known that $w_{0}(\lambda)$ is the lowest weight of $V(\lambda)$. In other words, for all weight μ of $V(\lambda)$, we can write $\mu-w_{0}(\lambda)=\sum_{i=1}^{n} a_{i} \alpha_{i}$ with $a_{i} \in \mathbb{N}$. In particular, since the Weyl group W acts on the set of weights of $V(\lambda)$, we can write $w(\lambda)-w_{0}(\lambda)=\sum_{i=1}^{n} a_{i} \alpha_{i}$ with $a_{i} \in \mathbb{N}$ for all $w \in W$. Now, we have

$$
\begin{aligned}
\mathscr{L}_{\lambda}(w)-\mathscr{L}_{\lambda}\left(w_{0}\right) & =\left\langle\lambda-w_{0}(\lambda), \rho^{\vee}\right\rangle-\left\langle\lambda-w(\lambda), \rho^{\vee}\right\rangle \\
& =\left\langle w(\lambda)-w(\lambda), \rho^{\vee}\right\rangle \\
& =\left\langle\sum_{i=1}^{n} a_{i} \alpha_{i}, \rho^{\vee}\right\rangle \\
& =\sum_{i=1}^{n} a_{i} \geq 0 .
\end{aligned}
$$

4.3 Generalised inversion sets and λ-atomic length

To be complete, we will now give a formula for the λ-atomic length resembling Definition 4.1. This requires to introduce a notion of λ-inversion set. For this, we use the characterisation of the inversion set $N(w)$ given in Proposition 2.1. In the rest of this section, let us denote $\operatorname{Red}(w)$ the set of all reduced expressions of a given $w \in W$.

Notation 4.12. Let $w \in W$, let $s_{j} \in S$ and let $\underline{w}=s_{i_{1}} \ldots s_{b_{1}} s_{j} \ldots s_{b_{2}} s_{j} \ldots s_{b_{p_{j}}} s_{j} \ldots s_{i_{r}} \in \operatorname{Red}(w)$, where p_{j} is the number of times that the letter s_{j} appears in \underline{w}. We set $\underline{w}_{j, k}=s_{i_{1}} \ldots s_{b_{1}} s_{j} \ldots s_{b_{2}} s_{j} \ldots s_{b_{k}}$. For example $\underline{w}_{j, 1}=s_{i_{1}} \ldots s_{b_{1}}$ and $\underline{w}_{j, 2}=s_{i_{1}} \ldots s_{b_{1}} s_{j} \ldots s_{b_{2}}$. We also define $\sigma_{j}(\underline{w})=\sum_{k=1}^{p_{j}} \underline{w}_{j, k}\left(\alpha_{j}\right)$.
Remark 4.13. Recal that we gave in Proposition 2.1 the formula, for $w \in W$,

$$
N(w)=\left\{\alpha_{i_{1}}, s_{i_{1}}\left(\alpha_{i_{2}}\right), s_{i_{1}} s_{i_{2}}\left(\alpha_{i_{3}}\right), \ldots, s_{i_{1}} \ldots s_{i_{r-1}}\left(\alpha_{i_{r}}\right)\right\}
$$

Using the definition of $\underline{w}_{j, k}$ in Notation 4.12, we see that to compute $N(w)$, it suffices to choose a reduced expression $\underline{w} \in \operatorname{Red}(w)$, then we have $N(w)=\bigsqcup_{j=1}^{n}\left\{\underline{w}_{j, k}\left(\alpha_{j}\right) \mid k=1, \ldots, p_{j}\right\}$. We see in particular that the inversion set does not depend on the choice of a reduced expression.

Example 4.14. Let $w \in A_{4}$ with reduced expression given by $\underline{w}=s_{1} s_{2} s_{1} s_{3} s_{4} s_{3}$. Then we have

$$
\begin{aligned}
N(w) & =\left\{\underline{w}_{1, k}\left(\alpha_{1}\right) \mid k=1,2\right\} \sqcup\left\{\underline{w}_{2,1}\left(\alpha_{2}\right)\right\} \sqcup\left\{\underline{w}_{3, k}\left(\alpha_{3}\right) \mid k=1,2\right\} \sqcup\left\{\underline{w}_{4,1}\left(\alpha_{4}\right)\right\} \\
& =\left\{\alpha_{1}, s_{1} s_{2}\left(\alpha_{1}\right)\right\} \sqcup\left\{s_{1}\left(\alpha_{2}\right)\right\} \sqcup\left\{s_{1} s_{2} s_{1}\left(\alpha_{3}\right), s_{1} s_{2} s_{1} s_{3} s_{4}\left(\alpha_{3}\right)\right\} \sqcup\left\{s_{1} s_{2} s_{1} s_{3}\left(\alpha_{4}\right)\right\} \\
& =\left\{e_{12}, e_{23}\right\} \sqcup\left\{e_{13}\right\} \sqcup\left\{e_{14}, e_{45}\right\} \sqcup\left\{e_{15}\right\} \\
& =\left\{e_{12}, e_{23}, e_{13}, e_{14}, e_{45}, e_{15}\right\}
\end{aligned}
$$

Definition 4.15. Let $w \in W$ and $\underline{w} \in \operatorname{Red}(w)$. Let $\lambda \in P$ be a weight with $\lambda=\sum_{j=1}^{n} m_{j} \omega_{j}$. The set

$$
N_{\lambda}(\underline{w})=\bigsqcup_{j=1}^{n}\left\{m_{j} \underline{w}_{j, k}\left(\alpha_{j}\right) \mid k=1, \ldots, p_{j}\right\} .
$$

is called a λ-inversion set of w.

Remark 4.16.

(1) By definition, the notion of λ-inversion set depends on the choice of a reduced expression (which was not the case for the usual inversion set $N(w)$, see Remark 4.13). We illustrate in Example 4.17 how different reduced expressions yield different λ-inversion sets in general.
(2) However, in the case $\lambda=\rho$, we have $N_{\rho}(\underline{w})=N(w)$ for all $\underline{w} \in \operatorname{Red}(w)$, so the ρ-inversion set of w does not depend on the choice of a reduced expression.

Example 4.17. We continue Example 4.14. Let $\lambda=\sum_{j=1}^{5} m_{j} \omega_{j}$. Then by definition we have

$$
\begin{aligned}
N_{\lambda}(\underline{w}) & =\left\{m_{1} \underline{w}_{1, k}\left(\alpha_{1}\right) \mid k=1,2\right\} \sqcup\left\{m_{2} \underline{w}_{2,1}\left(\alpha_{2}\right)\right\} \sqcup\left\{m_{3} \underline{w}_{3, k}\left(\alpha_{3}\right) \mid k=1,2\right\} \sqcup\left\{m_{4} \underline{w}_{4,1}\left(\alpha_{4}\right)\right\} \\
& =\left\{m_{1} e_{12}, m_{1} e_{23}\right\} \sqcup\left\{m_{2} e_{13}\right\} \sqcup\left\{m_{3} e_{14}, m_{3} e_{45}\right\} \sqcup\left\{m_{4} e_{15}\right\} \\
& =\left\{m_{1} e_{12}, m_{1} e_{23}, m_{2} e_{13}, m_{3} e_{14}, m_{3} e_{45}, m_{4} e_{15}\right\} .
\end{aligned}
$$

Let us take now another reduced expression of w, say $\underline{w}^{\prime}=s_{2} s_{1} s_{4} s_{2} s_{3} s_{4}$. The same kind of computations yields

$$
N_{\lambda}\left(\underline{w}^{\prime}\right)=\left\{m_{1} e_{13}, m_{2} e_{23}, m_{2} e_{12}, m_{3} e_{15}, m_{4} e_{14}, m_{4} e_{45}\right\} .
$$

We can easily find coefficients m_{j} such that $N_{\lambda}\left(\underline{w}^{\prime}\right) \neq N_{\lambda}(\underline{w})$.
The following lemma is key, as the dependency on the choice of a reduced expression vanishes.
Lemma 4.18. Let $w \in W$ and $\underline{w} \in \operatorname{Red}(w)$. Fix $1 \leq j \leq n$. We have $\omega_{j}-w\left(\omega_{j}\right)=\sigma_{j}(\underline{w})$. In particular $\sigma_{j}(\underline{w})$ does not depend on the choice of a reduced expression of w.
Proof. We know that for any generator $s_{i} \in S$ and for any fundamental weight ω_{j} one has $s_{i}\left(\omega_{j}\right)=\omega_{j}$ if $j \neq i$ and $s_{i}\left(\omega_{i}\right)=\omega_{i}-\alpha_{i}$. Therefore it follows that

$$
\begin{aligned}
\underline{w}\left(\omega_{j}\right) & =s_{i_{1}} \ldots s_{b_{1}} s_{j} \ldots s_{b_{2}} s_{j} \ldots s_{b_{p_{j}}} s_{j} \ldots s_{i_{r}}\left(\omega_{j}\right) \\
& =s_{i_{1}} \ldots s_{b_{1}} s_{j} \ldots s_{b_{2}} s_{j} \ldots s_{b_{p_{j}}} s_{j}\left(\omega_{j}\right) \\
& =s_{i_{1}} \ldots s_{b_{1}} s_{j} \ldots s_{b_{2}} s_{j} \ldots s_{b_{p_{j}}}\left(\omega_{j}-\alpha_{j}\right) \\
& =s_{i_{1}} \ldots s_{b_{1}} s_{j} \ldots s_{b_{2}} s_{j} \ldots s_{b_{p_{j}}}\left(\omega_{j}\right)-\underline{w}_{j, p_{j}}\left(\alpha_{j}\right) \\
& =\cdots \\
& =\omega_{j}-\sum_{k=1}^{p_{j}} \underline{w}_{j, k}\left(\alpha_{j}\right) \\
& =\omega_{j}-\sigma_{j}(\underline{w}) .
\end{aligned}
$$

However, it is obvious that $\underline{w}\left(\omega_{j}\right)=w\left(\omega_{j}\right)$. The result follows.
Theorem 4.19. Let $w \in W, \underline{w} \in \operatorname{Red}(w)$ and $\lambda \in P^{+}$. We have

$$
\lambda-w(\lambda)=\sum_{\beta \in N_{\lambda}(\underline{w})} \beta \quad \text { and } \quad \mathscr{L}_{\lambda}(w)=\sum_{\beta \in N_{\lambda}(\underline{w})} \operatorname{ht}(\beta) .
$$

In particular, in both identities, the right hand side does not depend on the choice of the reduced expression.
Proof. Let us write $\lambda=\sum_{j=1}^{n} m_{j} \omega_{j}$. By Lemma 4.18 we know that $\omega_{j}-w\left(\omega_{j}\right)=\sigma_{j}(\underline{w})$. It follows then that

$$
\begin{aligned}
\lambda-w(\lambda) & =\lambda-w\left(\sum_{j=1}^{n} m_{j} \omega_{j}\right)=\lambda-\sum_{j=1}^{n} m_{j} w\left(\omega_{j}\right)=\lambda-\sum_{j=1}^{n} m_{j}\left(\omega_{j}-\sigma_{j}(\underline{w})\right) \\
& =\sum_{j=1}^{n} m_{j} \sigma_{j}(\underline{w})=\sum_{j=1}^{n} m_{j} \sum_{k=1}^{p_{j}} \underline{w}_{j, k}\left(\alpha_{j}\right)=\sum_{j=1}^{n} \sum_{k=1}^{p_{j}} m_{j} \underline{w}_{j, k}\left(\alpha_{j}\right) \\
& =\sum_{\beta \in N_{\lambda}(\underline{w})} \beta,
\end{aligned}
$$

which proves the first identity. By definition, $\mathscr{L}_{\lambda}(w)=\left\langle\lambda-w(\lambda), \rho^{\vee}\right\rangle$, so combining the first identity and (4), we get the second identity.

Finally, we give analogues of Proposition 2.2 and Proposition 2.3 for λ-inversion sets. Recall that \leq denotes the weak order on W, that is, $w \leq w^{\prime}$ if and only if there exist reduced expressions $\underline{w}, \underline{w^{\prime}}$ such that \underline{w} is a prefix of \underline{w}^{\prime}.

Proposition 4.20. Let $\lambda=\sum_{i \in I} m_{i} \omega_{i} \in P$.
(1) Let $\underline{w}, \underline{w^{\prime}} \in \operatorname{Red}(W)$. Assume that $m_{j} \neq 0$ for all j. If $N_{\lambda}(\underline{w}) \subseteq N_{\lambda}\left(\underline{w^{\prime}}\right)$, then $w \leq w^{\prime}$.
(2) Let $w, w^{\prime} \in W$. If $w \leq w^{\prime}$, then $N_{\lambda}(\underline{w}) \subseteq N_{\lambda}\left(\underline{w}^{\prime}\right)$ where \underline{w}, \underline{w}^{\prime} are chosen such that \underline{w} is a prefix of \underline{w}^{\prime}.

Proof.

(1) Assume that $N_{\lambda}(\underline{w}) \subseteq N_{\lambda}\left(\underline{w^{\prime}}\right)$ Let us show that $\Leftrightarrow N(w) \subseteq N\left(w^{\prime}\right)$. Take $\underline{w}_{j, k}\left(\alpha_{j}\right) \in N(w)$. By definition, $m_{j} \underline{w}_{j, k}\left(\alpha_{j}\right) \in N_{\lambda}(\underline{w}) \subseteq N_{\lambda}\left(\underline{w^{\prime}}\right)$. So we can write $m_{j} \underline{w}_{j, k}\left(\alpha_{j}\right)=m_{j^{\prime}} \underline{w}_{j^{\prime}, k^{\prime}}^{\prime}\left(\alpha_{j^{\prime}}\right)$ for some j^{\prime}, k^{\prime}. Since $\underline{w}_{j, k}\left(\alpha_{j}\right), \underline{w}_{j^{\prime}, k^{\prime}}^{\prime}\left(\alpha_{j^{\prime}}\right) \in \Phi^{+}$, we must have $m_{j}=m_{j^{\prime}}$ since these are nonzero by assumption. This yields $\underline{w}_{j, k}\left(\alpha_{j}\right)=\frac{w^{\prime}}{j^{\prime}, k^{\prime}}\left(\alpha_{j^{\prime}}\right) \in N\left(w^{\prime}\right)$. So we have proved that $N(w) \subseteq N\left(w^{\prime}\right)$. By [DH16, Corollary 2.10], $N(w) \subseteq N\left(w^{\prime}\right) \Leftrightarrow w \leq w^{\prime}$, which concludes the proof.
(2) Let $w, w^{\prime} \in W$ such that $w \leq w^{\prime}$, and choose reduced expressions $\underline{w}, \underline{w}^{\prime}$ such that \underline{w} is a prefix of \underline{w}^{\prime}. This implies that for all $1 \leq j \leq n, 1 \leq k \leq p_{j}, \underline{w}_{j, k}\left(\alpha_{j}\right)=\underline{w}_{j, k}^{\prime}\left(\alpha_{j}\right)$. Now, let $m_{j} \underline{w}_{j, k}\left(\alpha_{j}\right) \in N_{\lambda}(\underline{w})$. This gives $m_{j} \underline{w}_{j, k}\left(\alpha_{j}\right)=m_{j} \underline{w}_{j, k}\left(\alpha_{j}\right) \in N_{\lambda}\left(\underline{w}^{\prime}\right)$ by definition.

Corollary 4.21. Let $\lambda \in P^{+}$and $w, w^{\prime} \in W$ such that $w \leq w^{\prime}$. Then $\mathscr{L}_{\lambda}(w) \leq \mathscr{L}_{\lambda}\left(w^{\prime}\right)$.
Proof. We know by Theorem 4.21 that $\mathscr{L}_{\lambda}(w)=\sum_{\beta \in N_{\lambda}(\underline{w})} h t(\beta)$. Now, using Proposition $4.20(2), w \leq w^{\prime}$ implies $N_{\lambda}(\underline{w}) \subseteq N_{\lambda}\left(\underline{w^{\prime}}\right)$. It follows that $\mathscr{L}_{\lambda}(w) \leq \mathscr{L}_{\lambda}\left(w^{\prime}\right)$.

Remark 4.22. In particular, Proposition 4.20 enables us to recover directly Theorem 4.11 , since w_{0} is the largest element with respect to the weak order.

5 Susanfe reflections

In this whole section, we use the notation of Section 2. In particular, W is a finite Weyl group, and S denotes a set of simple reflections. This part is devoted to the study of some particular reflections of W which we call "Susanfe", and their properties with respect to the atomic length \mathscr{L}. Eventually, this will enable us to give in Section 6 a proof of Theorem 6.2 which generalises that of [SU11] for type A_{n}. In the following, if W_{A} is a reflection subgroup of W, we will simply denote by \mathscr{L}_{A} the restriction to W_{A} of the map $\mathscr{L}: W \rightarrow \mathbb{N}$.

5.1 General Susanfe theory

Proposition 5.1. Let W_{I} be a standard parabolic subgroup of W. Let $w \in W_{I}$. Then $\mathscr{L}(w)=\mathscr{L}_{I}(w)$. This fails in general for reflection subgroups that are not standard parabolic subgroups.
Proof. By definition we know that $\mathscr{L}(w)=\sum_{\alpha \in N(w)} \mathrm{ht}(\alpha)$ and $\mathscr{L}_{I}(w)=\sum_{\alpha \in N_{I}(w)} \mathrm{ht}(\alpha)$. Since $w \in W_{I}$, we know by the first point of Lemma 3.5, that $N_{I}(w)=N(w)$. Then the result follows. The reason that we don't necessary have this equality for a reflection subgroup W_{A} comes from the fact that the equality $N_{A}(w)=N(w)$ isn't true any more for $w \in W_{A}$. The deep reason for this phenomenon is something well known: a reduced expression of w in W_{A} is a priori not a reduced expression of w in W, and then the first concept used in the proof of Lemma 3.5 (1) cannot be used in W_{A}.

Example 5.2. Let us illustrate the fact that, in general, $\mathscr{L}(w) \neq \mathscr{L}_{A}(w)$ for $w \in W_{A}$. Take W of type A_{3}, $A=\left\{s_{1} s_{2} s_{1}, s_{3}\right\}$ and $w=s_{1} s_{2} s_{1} s_{3}$. By Proposition 2.1 we get easily that $N(w)=\left\{e_{12}, e_{13}, e_{23}, e_{14}\right\}$. Therefore

$$
\mathscr{L}(w)=\operatorname{ht}\left(e_{12}\right)+\operatorname{ht}\left(e_{13}\right)+\operatorname{ht}\left(e_{23}\right)+\operatorname{ht}\left(e_{14}\right)=1+2+1+3=7 .
$$

Now, the group $W_{A}=\left\langle s_{1} s_{2} s_{1}, s_{3}\right\rangle$ is a Coxeter group of type A_{2} with simple system $S_{A}=\left\{s_{1} s_{2} s_{1}\right.$, $\left.s_{3}\right\}$, with set of simple roots $\Delta_{A}=\left\{e_{13}, e_{34}\right\}$ and set of positive roots $\Phi_{A}^{+}=\left\{e_{13}, e_{34}, e_{14}\right\}$. The expression $s_{1} s_{2} s_{1} s_{3}$ is a reduced expression of w in W_{A} of length 2, i.e., $\ell_{A}(w)=2$, but it is a reduced expression of length 4 in W. Moreover, since $w \in W_{A}$, it follows by Proposition 2.9 that $N_{A}(w)=N(w) \cap \Phi_{A}=\left\{e_{13}, e_{14}\right\}$. Therefore

$$
\mathscr{L}_{A}(w)=\operatorname{ht}\left(e_{13}\right)+\operatorname{ht}\left(e_{14}\right)=2+3=5,
$$

and we see that $\mathscr{L}(w) \neq \mathscr{L}_{A}(w)$.
For $w \in W$, we denote $\operatorname{Fix}_{w}=\left\{\alpha \in \Phi^{+} \mid w(\alpha)=\alpha\right\}$, the set of positive roots fixed by w, and $\overline{\operatorname{Fix}_{w}}=\Phi^{+} \backslash$ Fix $_{w}$ its complement.

Definition 5.3. An element $w \in W$ is called Susanfe if $N(w)=\overline{\operatorname{Fix}_{w}}$.
Proposition 5.4. There exists a Susanfe reflection in W. In particular, the reflection associated to the highest root $\widetilde{\alpha}$ is a Susanfe reflection.

Proof. Let t be the reflection associated to the highest root, so that $t(\alpha)=\alpha-2 \frac{(\alpha \mid \widetilde{\alpha})}{(\widetilde{\alpha} \mid \widetilde{\alpha})} \widetilde{\alpha}$ for all $\alpha \in \Phi^{+}$. Since Φ is crystallographic, we have $2 \frac{(\alpha \mid \widetilde{\alpha})}{(\widetilde{\alpha} \mid \widetilde{\alpha})} \in \mathbb{Z}$. It is known (see [Bou68, Ch. VI, $\S 1$, Sec. 8$]$) that $\widetilde{\alpha}$ belongs to the fundamental chamber $C_{0}=\{x \in V \mid(x \mid \beta) \geq 0 \forall \beta \in \Delta\}$. Therefore it follows that $2 \frac{(\alpha \mid \widetilde{\alpha})}{(\widetilde{\alpha} \mid \widetilde{\alpha})} \in \mathbb{N}$. We must show that $N(t)=\overline{\mathrm{Fix}_{t}}$. The inclusion $N(t) \subseteq \overline{\mathrm{Fix}_{t}}$ is obvious, because if there were a root $\alpha \in N(t)$ such that $\alpha \in \mathrm{Fix}_{t}$, then we would have $t(\alpha)=\alpha$ and thus $t^{-1}(\alpha)=t(\alpha) \in \Phi^{+}$, which condraticts $\alpha \in N(t)$. Let us now show the reverse inclusion. Let $\alpha \in \overline{\mathrm{Fix}_{t}}$. There are two cases.
(1) If $(\alpha \mid \widetilde{\alpha})=0$ then $t(\alpha)=\alpha$, which shows that $\alpha \in$ Fix $_{t}$. Just as above, this is a contradiction and therefore this situation cannot occur.
 follows that $t(\alpha) \in \Phi^{-}$and thus $\alpha \in N(t)$. Hence $\overline{\mathrm{Fix}_{t}} \subseteq N(t)$.

Proposition 5.5. Let $B \subseteq T$, so that W_{B} is a reflection subgroup of W, let $w \in W_{B}$ and let $t \in T$ be a Susanfe reflection. Consider the reflection subgroup $W_{A}=t W_{B} t$. Then we have $N(t w)=N_{A}\left((t w)_{A}\right) \sqcup\left(N(t) \cap \overline{\Phi_{A}}\right)$.

Proof. One has $N(t w)=\left[N(t w) \cap \Phi_{A}\right] \sqcup\left[N(t w) \cap \overline{\Phi_{A}}\right]$. Using Proposition 2.9 we know that $N(t w) \cap \Phi_{A}=$ $N_{A}\left((t w)_{A}\right)$. Thus $N(t w)=N_{A}\left((t w)_{A}\right) \sqcup\left[N(t w) \cap \overline{\Phi_{A}}\right]$. We consider now the following decomposition:

$$
N(t w) \cap \overline{\Phi_{A}}=N(t w) \cap \overline{\Phi_{A}} \cap \mathrm{Fix}_{t} \sqcup N(t w) \cap \overline{\Phi_{A}} \cap \overline{\mathrm{Fix}_{t}}
$$

Let us look at both terms of the right-hand side separately.

- We claim that $N(t w) \cap \overline{\Phi_{A}} \cap \operatorname{Fix}_{t}=\emptyset$. Let us first show that

$$
\begin{equation*}
\overline{\Phi_{A}} \cap \operatorname{Fix}_{t} \subseteq \overline{\Phi_{B}} \tag{8}
\end{equation*}
$$

Let $\alpha \in \overline{\Phi_{A}} \cap \mathrm{Fix}_{t}$ such that $\alpha \in \Phi_{B}$. Then $t(\alpha) \in t\left(\Phi_{B}\right)$ and we know by Proposition 2.5 that $t\left(\Phi_{B}\right)=\Phi_{A}$. Thus $t(\alpha) \in \Phi_{A}$, and since $\alpha \in \operatorname{Fix}_{t}$ we have $t(\alpha)=\alpha$, which implies that $\alpha \in \Phi_{A}$. This is a contradiction and we indeed obtain (8). Now, assume there exists $\alpha \in N(t w) \cap \bar{\Phi}_{A} \cap \mathrm{Fix}_{t}$. In particular, we have $k(t w, \alpha)=-1$, and $k(t, \alpha)=0$ because $t^{-1}(\alpha)=t(\alpha)=\alpha \in \Phi^{+}$, that is $\alpha \notin N(t)$. Thus, by the formula of Proposition 3.3 we obtain that $-1=k(t w, \alpha)=k(w, \alpha)+k(t, \alpha)=k(w, \alpha)+0$, that is $k(w, \alpha)=-1$. But now by (8), we have $\alpha \in \overline{\Phi_{B}}$. Thus, since $w \in W_{B}$, we can apply Lemma 3.5 and obtain $k(w, \alpha)=0$, which is a contradiction.

- Consider now $N(t w) \cap \overline{\Phi_{A}} \cap \overline{\mathrm{Fix}_{t}}$. Since t is Susanfe, we have $\overline{\mathrm{Fix}_{t}}=N(t)$, and therefore $N(t w) \cap \overline{\Phi_{A}} \cap \overline{\mathrm{Fix}_{t}}=$ $N(t w) \cap \overline{\Phi_{A}} \cap N(t)$. Now, we claim that

$$
\begin{equation*}
N(t) \cap \overline{\Phi_{A}} \subseteq N(t w) \tag{9}
\end{equation*}
$$

So let $\alpha \in N(t) \cap \overline{\Phi_{A}}$, and let us show that $k(t w, \alpha)=-1$. Since $k(t w, \alpha)=k(w, t(\alpha))+k(t, \alpha)$ (by Proposition 3.3) and $k(t, \alpha)=-1$ because $\alpha \in N(t)$, it suffices to show that $k(w, t(\alpha))=0$. Since $\alpha \in \overline{\Phi_{A}}$, we have $t(\alpha) \in \overline{t\left(\Phi_{A}\right)}$ and thus $t(\alpha) \in \overline{\Phi_{B}}$ by Proposition 2.5. Finally, we can use Lemma 3.5 since $w \in W_{B}$, which yields $k(w, t(\alpha))=0$. This proves (9), and we therefore obtain $N(t w) \cap \overline{\Phi_{A}} \cap \overline{\mathrm{Fix}_{t}}=N(t) \cap \overline{\Phi_{A}}$.

In the end, we obtain the desired identity $N(t w)=N_{A}\left((t w)_{A}\right) \sqcup\left(N(t) \cap \overline{\Phi_{A}}\right)$.
From Proposition 5.5 we obtain the following crucial corollary, which will be used in Section 6 . For $A \subseteq T$ and $w \in W$, we denote

$$
\mathscr{L}(w, A)=\sum_{\alpha \in N(w) \cap \overline{\Phi_{A}}} \mathrm{ht}(\alpha),
$$

which corresponds to restraining the computation of the atomic length to roots outside Φ_{A}.
Corollary 5.6. We keep the assumptions of Proposition 5.5. Then

$$
\mathscr{L}(t w)=\mathscr{L}_{A}\left((t w)_{A}\right)+\mathscr{L}(t, A) .
$$

5.2 Some particular Susanfe reflections

In the following, we use the convenient notation introduced in Section 2.2. We still use the conventions of [Bou68] for the labelling of the Dynkin diagrams.

Lemma $5.7\left(\right.$ Type $\left.A_{n}\right)$. Let t be the reflection corresponding to the highest root $\widetilde{\alpha}$ and let $I=\left\{s_{2}, \ldots, s_{n}\right\}$. Then one has the following reduced expressions and properties.
(1) $t=s_{1} s_{2} \ldots s_{n-1} s_{n} s_{n-1} \ldots s_{2} s_{1}$.
(2) $t_{I}=s_{n} s_{n-1} \ldots s_{2}$ and $^{I} t=s_{1} s_{2} \ldots s_{n-1} s_{n}$.
(3) $N(t)=\left\{e_{12}, e_{13}, \ldots, e_{1, n+1}\right\} \cup\left\{e_{2, n+1}, e_{3, n+1}, \ldots, e_{n, n+1}\right\}$.
(4) $N\left({ }^{I} t\right)=\left\{e_{12}, e_{13}, \ldots, e_{1, n+1}\right\}$, in particular $N(t) \cap \overline{\Phi_{I}}=N\left({ }^{I} t\right)$.
(5) $\mathscr{L}(t, I)=\mathscr{L}\left({ }^{I} t\right)=\binom{n+1}{2}$.

Proof. Recall that in type A_{n}, all roots α verify $(\alpha \mid \alpha)=2$, so in particular $\left\langle x, \alpha^{\vee}\right\rangle=(\alpha \mid x)$ for all $x \in V$. This implies that $s_{\alpha}(x)=x-(\alpha \mid x) \alpha$. In particular, we have $\widetilde{\alpha}=e_{1, n+1}$, and $t(x)=x-\left(e_{1, n+1} \mid x\right) e_{1, n+1}$.
(1) We know that for any k, the simple root corresponding to s_{k} is $e_{k, k+1}$. Moreover, In type A_{n}, we know that $\widetilde{\alpha}=e_{1, n+1}$, so $t=s_{e_{1, n+1}}$. On the other hand, $s_{1} s_{2} \ldots s_{n-1} s_{n} s_{n-1} \ldots s_{2} s_{1}=s_{s_{1} s_{2} \ldots s_{n-1}\left(e_{n, n+1}\right)}$, so it suffices to show that $s_{1} s_{2} \ldots s_{n-1}\left(e_{n, n+1}\right)=e_{1, n+1}$. This equality follows directly by iterating from right to left, since $s_{j}\left(e_{j+1, n+1}\right)=e_{j, n+1}$. The fact that this expression of t is reduced will be proved in (2) just below.
(2) We need to show that
(a) $t=\left(s_{n} s_{n-1} \ldots s_{2}\right)\left(s_{1} s_{2} \ldots s_{n-1} s_{n}\right)$,
(b) $s_{n} s_{n-1} \ldots s_{2} \in W_{I}$ and is a reduced expression,
(c) $s_{1} s_{2} \ldots s_{n-1} s_{n} \in{ }^{I} W$ and is a reduced expression.

Using the braid relations of type A_{n}, we have

$$
\begin{aligned}
s_{1} s_{2} \ldots s_{n-1} s_{n} s_{n-1} \ldots s_{2} s_{1} & =s_{1} s_{2} \ldots s_{n} s_{n-1} s_{n} \ldots s_{2} s_{1} \\
& =s_{n} s_{1} s_{2} \ldots s_{n-2} s_{n-1} s_{n-2} \ldots s_{2} s_{1} s_{n} \\
& =s_{n} s_{1} s_{2} \ldots s_{n-1} s_{n-2} s_{n-1} \ldots s_{2} s_{1} s_{n} \\
& =s_{n} s_{n-1} s_{1} s_{2} \ldots s_{n-3} s_{n-2} s_{n-3} \ldots s_{2} s_{1} s_{n-1} s_{n} \\
& =\ldots \\
& =s_{n} s_{n-1} s_{n-2} \ldots s_{2} \cdot s_{1} s_{2} \ldots s_{n-2} s_{n-1} s_{n}
\end{aligned}
$$

which proves (a). Moreover, by definition of $I, s_{n} s_{n-1} \ldots s_{2} \in W_{I}$ and it is also clear that this expression is reduced, so we have (b). Finally, it is clear that the expression $s_{1} s_{2} \ldots s_{n-1} s_{n}$ is already reduced and has no reduced expression beginning by a letter in I, implying that $\ell\left(s s_{1} s_{2} \ldots s_{n-1} s_{n}\right)>\ell\left(s_{1} s_{2} \ldots s_{n-1} s_{n}\right)$ for any $s \in I$. This means precisely that $s_{1} s_{2} \ldots s_{n-1} s_{n} \in{ }^{I} W$. Therefore, we have found the I decomposition of t where the two factors are expressed in a reduced form. By Remark 2.4, we are ensured that $\ell(t)=\ell\left(t_{I}\right)+\ell\left({ }^{I} t\right)=2 n-1$. Therefore the expression $t=s_{1} s_{2} \ldots s_{n-1} s_{n} s_{n-1} \ldots s_{2} s_{1}$, which also uses $2 n-1$ generators, is also reduced.
(3) From the formula $t\left(e_{i j}\right)=e_{i j}-\left(e_{i j} \mid e_{1, n+1}\right) e_{1, n+1}$, we see that the set of positive roots that are fixed under t is $\mathrm{Fix}_{t}=\left\{e_{i j} \mid 2 \leq i<j \leq n\right\}$, so that $\overline{\mathrm{Fix}_{t}}=\left\{e_{1 j} \mid 2 \leq j \leq n+1\right\} \cup\left\{e_{i, n+1} \mid 2 \leq i \leq n\right\}$. We conclude by using Proposition 5.4.
(4) Since ${ }^{I} t=s_{1} s_{2} \ldots s_{n-1} s_{n}$ is a reduced expression, we know by Proposition 2.1 that

$$
N\left({ }^{I} t\right)=\left\{\alpha_{1}, s_{1}\left(\alpha_{2}\right), s_{1} s_{2}\left(\alpha_{3}\right), \ldots, s_{1} s_{2} \ldots s_{n-1}\left(\alpha_{n}\right)\right\}
$$

that is

$$
\begin{aligned}
N\left({ }^{I} t\right) & =\left\{e_{12}, s_{1}\left(e_{23}\right), s_{1} s_{2}\left(e_{34}\right), \ldots, s_{1} s_{2} \ldots s_{n-1}\left(e_{n, n+1}\right)\right\} \\
& =\left\{e_{12}, e_{13}, e_{14}, \ldots, e_{1, n+1}\right\}
\end{aligned}
$$

(5) The height of the root $e_{i j}$ is $j-i$. Therefore, using Point (4) above, we obtain

$$
\mathscr{L}\left({ }^{I} t\right)=\sum_{\alpha \in N\left({ }^{I} t\right)} \mathrm{ht}(\alpha)=\sum_{j=2}^{n+1} \mathrm{ht}\left(e_{1 j}\right)=\sum_{j=2}^{n+1}(j-1)=\sum_{j=1}^{n} j=\binom{n+1}{2} .
$$

Example 5.8. Take $n=4$. The highest root is $\widetilde{\alpha}=e_{1,5}$ and its corresponding reflection t has the following reduced expression

$$
t=s_{1} s_{2} s_{3} s_{4} s_{3} s_{2} s_{1}=s_{4} s_{3} s_{2} s_{1} s_{2} s_{3} s_{4}
$$

where the red part is in $W_{I}=\left\langle s_{2}, s_{3}, s_{4}\right\rangle$ and the blue part is in ${ }^{I} W$. A convenient way to see this decomposition is via the Shi vectors. The Shi vector corresponding to t is given in Figure 3 and the I-decomposition of t is given in Figure 4.

Fig. 3: The Shi vector of t in A_{4}. The right triangle gives the coordinates of the Shi vector.

Fig. 4: The I-decomposition of t in terms of Shi vectors in A_{4}.

Lemma 5.9 (Type $\left.B_{n}\right)$. Let t be the reflection of the highest root $\widetilde{\alpha}$ and let $I=\left\{s_{2}, \ldots, s_{n}\right\}$. Then one has the following reduced expressions and properties.
(1) $t=s_{2} s_{3} \ldots s_{n-1} s_{n} s_{n-1} \ldots s_{3} s_{2} \cdot s_{1} \cdot s_{2} s_{3} \ldots s_{n-1} s_{n} s_{n-1} \ldots s_{3} s_{2}$.
(2) $t_{I}=s_{2} s_{3} \ldots s_{n-1} s_{n} s_{n-1} \ldots s_{3} s_{2}$ and ${ }^{I} t=s_{1} s_{2} \ldots s_{n-1} s_{n} s_{n-1} \ldots s_{3} s_{2}$.
(3) $N(t)=\left\{e_{13}, e_{14}, \ldots, e_{1 n}, e_{1}, e^{1 n}, e^{1, n-1}, \ldots, e^{12}\right\} \cup\left\{e_{23}, e_{24}, \ldots, e_{2 n}, e_{2}, e^{2 n}, e^{2, n-1}, \ldots, e^{23}\right\}$.
(4) $N\left({ }^{I} t\right)=\left\{e_{12}, e_{13}, \ldots, e_{1 n}\right\} \sqcup\left\{e_{1}\right\} \sqcup\left\{e^{1 n}, e^{1, n-1}, \ldots, e^{13}\right\}$.
(5) Let $t^{\prime}={ }^{I} t s_{1}$. Then t^{\prime} is a Susanfe reflection that satisfies $N\left(t^{\prime}\right) \cap \overline{\Phi_{I}}=N\left(t^{\prime}\right)$.
(6) $\mathscr{L}\left(t^{\prime}, I\right)=\mathscr{L}\left(t^{\prime}\right)=2 n^{2}-n$.

Proof. In type B_{n} the highest root is given by $\widetilde{\alpha}=e^{12}$, and we have $t(x)=x-\left(e^{12} \mid x\right) e^{12}$.
(1) As in type A_{n}, it suffices to show that $s_{2} s_{3} \ldots s_{n-1} s_{n} s_{n-1} \ldots s_{3} s_{2}\left(\alpha_{1}\right)=e^{12}$. First of all we have $s_{n}\left(e_{1 n}\right)=$ $e_{1}-e_{n}-2\left(e_{1}-e_{n} \mid e_{n}\right) e_{n}=e_{1}+e_{n}=e^{1 n}$. Moreover, the same kind of computations as above shows that $s_{k}\left(e^{1, k+1}\right)=e^{1 k}$ for any $1 \leq k \leq n-1$. Therefore we obtain that:

$$
\begin{aligned}
s_{2} s_{3} \ldots s_{n-1} s_{n} s_{n-1} \ldots s_{3} s_{2}\left(\alpha_{1}\right) & =s_{2} s_{3} \ldots s_{n-1} s_{n} s_{n-1} \ldots s_{3} s_{2}\left(e_{12}\right) \\
& =s_{2} s_{3} \ldots s_{n-1} s_{n} s_{n-1} \ldots s_{3}\left(e_{13}\right) \\
& =\ldots \\
& =s_{2} s_{3} \ldots s_{n-2} s_{n-1} s_{n}\left(e_{1 n}\right) \\
& =s_{2} s_{3} \ldots s_{n-2} s_{n-1}\left(e^{1 n}\right) \\
& =s_{2} s_{3} \ldots s_{n-2}\left(e^{1, n-1}\right) \\
& =\ldots \\
& =s_{2}\left(e^{13}\right) \\
& =e^{12} .
\end{aligned}
$$

The fact that this expression of t is reduced is again proved in (2) below.
(2) It is clear that $s_{2} s_{3} \ldots s_{n-1} s_{n} s_{n-1} \ldots s_{3} s_{2} \in W_{I}$. Further, since $s_{1} s_{2} \ldots s_{n-1} s_{n} s_{n-1} \ldots s_{3} s_{2}$ starts with s_{1} and since s_{1} appears only once, there is no reduced expression of this word beginning with a letter in I, which implies that $\ell\left(s s_{1} s_{2} \ldots s_{n-1} s_{n} s_{n-1} \ldots s_{3} s_{2}\right)>\ell\left(s_{1} s_{2} \ldots s_{n-1} s_{n} s_{n-1} \ldots s_{3} s_{2}\right)$ for any $s \in I$, so $s_{1} s_{2} \ldots s_{n-1} s_{n} s_{n-1} \ldots s_{3} s_{2} \in{ }^{I} W$. Since we obviously have

$$
t=\left(s_{2} s_{3} \ldots s_{n-1} s_{n} s_{n-1} \ldots s_{3} s_{2}\right)\left(s_{1} s_{2} \ldots s_{n-1} s_{n} s_{n-1} \ldots s_{3} s_{2}\right)
$$

by uniqueness of the I-decomposition it follows that we have $t_{I}=s_{2} s_{3} \ldots s_{n-1} s_{n} s_{n-1} \ldots s_{3} s_{2}$ and ${ }^{I} t=$ $s_{1} s_{2} \ldots s_{n-1} s_{n} s_{n-1} \ldots s_{3} s_{2}$. Finally, it is also clear that these two expressions are reduced and therefore the expression given for t is also reduced (by Remark 2.4 again).
(3) Since t is Susanfe by Proposition 5.4, $N(t)=\overline{\mathrm{Fix}_{t}}$, so it suffices to determine the set of positive roots fixed by t. For any $\alpha \in \Phi^{+}$, we have $t(\alpha)=\alpha-\left(e^{12} \mid \alpha\right) e^{12}$, so $\alpha \in \operatorname{Fix}_{t}$ if and only if $\left(e^{12} \mid \alpha\right)=0$, which happends exactly when there are no 1 or 2 appearing in the labels of the roots, except for $\alpha=e_{12}$ (since $\left.\left(e_{12} \mid e^{12}\right)=0\right)$. Therefore $\overline{\operatorname{Fix}_{t}}=N(t)$ is the set of positive roots that have a label 1 or a label 2 with the exception of e_{12}, which is precisely the desired description.
(4) Let us fix $u=s_{1} s_{2} \ldots s_{n-1} s_{n}$ and $v=s_{n} s_{n-1} \ldots s_{3} s_{2}$. Since $s_{1} s_{2} \ldots s_{n-1} s_{n} s_{n-1} \ldots s_{3} s_{2}$ is a reduced expression of ${ }^{I} t$ by Point (2), it follows that u and v are also reduced. Therefore by Proposition 2.1, we have $N\left({ }^{I} t\right)=N(u) \sqcup u N(v)$. Let us compute at first $N(u)$. Since the expression of u is reduced we have again by Proposition 2.1

$$
N(u)=\left\{e_{12}, s_{1}\left(e_{23}\right), \ldots, s_{1} s_{2} \ldots s_{n-1}\left(e_{n}\right)\right\}
$$

Moreover the generators s_{1}, \ldots, s_{n-1} are of the same form, and the computation of the first $n-1$ terms straightforward. The only thing to be cautious about is the last element $s_{1} s_{2} \ldots s_{n-1}\left(e_{n}\right)$. An easy calculation shows that $s_{k-1}\left(e_{k}\right)=e_{k-1}$ for any $k=2,3, \ldots, n$. Iterating therefore yields $s_{1} s_{2} \ldots s_{n-1}\left(e_{n}\right)=e_{1}$. Hence

$$
N(u)=\left\{e_{12}, e_{13}, \ldots, e_{1 n}, e_{1}\right\} .
$$

We now compute $u N(v)$. Using Proposition 2.1 again, we obtain $N(v)=\left\{e_{n-1, n}, e_{n-2, n}, \ldots, e_{2 n}\right\}$. A direct inductive computation yields

$$
u N(v)=\left\{e^{1 n}, e^{1, n-1}, \ldots, e^{13}\right\}
$$

Finally we get

$$
N\left({ }^{I} t\right)=N(u) \sqcup u N(v)=\left\{e_{12}, e_{13}, \ldots, e_{1 n}, e_{1}\right\} \sqcup\left\{e^{1 n}, e^{1, n-1}, \ldots, e^{13}\right\} .
$$

(5) The expression ${ }^{I} t s_{1}=s_{1} s_{2} \ldots s_{n-1} s_{n} s_{n-1} \ldots s_{3} s_{2} s_{1}$ is clearly reduced, since there is no relation in the Coxeter group of type B_{n} that can be applied. Note that this means that this is actually the only reduced expression of ${ }^{I} t s_{1}$. Therefore, we can apply Proposition 2.1 and we get

$$
N\left(t^{\prime}\right)=N\left({ }^{I} t s_{1}\right)=N\left({ }^{I} t\right) \sqcup{ }^{I} t N\left(s_{1}\right)=N\left({ }^{I} t\right) \sqcup^{I} t\left(\alpha_{1}\right)
$$

Moreover we have

$$
\begin{aligned}
{ }^{I} t\left(\alpha_{1}\right) & =s_{1} s_{2} \ldots s_{n-1} s_{n} s_{n-1} \ldots s_{3} s_{2}\left(e_{12}\right) \\
& =s_{1} s_{2} \ldots s_{n-1} s_{n} s_{n-1} \ldots s_{3}\left(e_{13}\right) \\
& =\cdots \\
& =s_{1} s_{2} \ldots s_{n-1} s_{n}\left(e_{1 n}\right) \\
& =s_{1} s_{2} \ldots s_{n-1}\left(e^{1 n}\right) \\
& =s_{1} s_{2} \ldots s_{n-2}\left(e^{1, n-1}\right) \\
& =\cdots \\
& =s_{1}\left(e^{12}\right) \\
& =e^{12}
\end{aligned}
$$

Finally we obtain

$$
N\left(t^{\prime}\right)=\left\{e_{12}, e_{13}, \ldots, e_{1 n}, e_{1}\right\} \sqcup\left\{e^{1 n}, e^{1, n-1}, \ldots, e^{13}, e^{12}\right\}
$$

Since $\overline{\Phi_{I}}$ is the set of roots with a label 1 and since all the roots with a label 1 are the ones given in $N\left(t^{\prime}\right)$, it follows that $N\left(t^{\prime}\right)=\overline{\Phi_{I}^{+}}$and thus $N\left(t^{\prime}\right) \cap \overline{\Phi_{I}}=N\left(t^{\prime}\right)$. It remains to show that t^{\prime} is a Susanfe reflection.

Clearly, t^{\prime} is a reflection, since $w s_{n} w^{-1}$ is a reflection for all $w \in W$. Let us prove that $\overline{\operatorname{Fix}_{t^{\prime}}\left(\Phi^{+}\right)}=N\left(t^{\prime}\right)$.
For all $k=1,2, \ldots, n$ we have

$$
s_{k-1}\left(e_{k}\right)=e_{k}-\left(e_{k} \mid e_{k-1}-e_{k}\right)\left(e_{k-1}-e_{k}\right)=e_{k-1}
$$

This implies that $s_{k-1} s_{e_{k}} s_{k-1}=s_{e_{k-1}}$ for any $k=1,2, \ldots, n$. Therefore, it follows by induction that

$$
\begin{aligned}
t^{\prime} & =s_{1} s_{2} \ldots s_{n-2} s_{n-1} s_{e_{n}} s_{n-1} s_{n-2} \ldots s_{2} s_{1} \\
& =s_{1} s_{2} \ldots s_{n-2} s_{e_{n-1}} s_{n-2} \ldots s_{2} s_{1} \\
& =\ldots \\
& =s_{e_{1}} .
\end{aligned}
$$

Thus the roots $\alpha \in \Phi_{I}$ such that $t(\alpha)=\alpha$ are exactly the roots satisfying $\left(e_{1} \mid \alpha\right)=0$, that is to say, the roots with no label 1. We already know that this is Φ_{I}. Therefore $\mathrm{Fix}_{t^{\prime}}=\Phi_{I}^{+}$and then $\overline{\mathrm{Fix}_{t^{\prime}}}=\overline{\Phi_{I}^{+}}=N\left(t^{\prime}\right)$.
(6) We have

$$
\mathscr{L}\left(t^{\prime}\right)=\sum_{\alpha \in N\left(t^{\prime}\right)} h t(\alpha)=\sum_{\alpha \in N\left(t^{\prime}\right) \cap \overline{\Phi_{I}}} \alpha=\mathscr{L}\left(t^{\prime}, I\right) .
$$

since $N\left(t^{\prime}\right) \cap \overline{\Phi_{I}}=N\left(t^{\prime}\right)$ by (5). Now, we know (see [Bou68]) that $h t\left(e_{i j}\right)=j-i, \operatorname{ht}\left(e_{i}\right)=n-i+1$ and $\operatorname{ht}\left(e^{i j}\right)=2(n+1)-(i+j)$ in type B_{n}. Therefore it follows that

$$
\begin{aligned}
\mathscr{L}\left(t^{\prime}\right) & =\sum_{j=2}^{n} \operatorname{ht}\left(e_{1 j}\right)+\operatorname{ht}\left(e_{1}\right)+\sum_{j=2}^{n} \operatorname{ht}\left(e^{1 j}\right)=\sum_{j=2}^{n}(j-1)+n+\sum_{j=2}^{n}[2(n+1)-(1+j)] \\
& =\sum_{j=1}^{n-1} j+n+\sum_{j=2}^{n}[2 n+1-j]=\sum_{j=1}^{n-1} j+n+(n-1)(2 n+1)-\sum_{j=2}^{n} j \\
& =\sum_{j=1}^{n-1} j+n+(n-1)(2 n+1)-\left[\left(\sum_{j=1}^{n-1} j\right)-1+n\right]=n+(n-1)(2 n+1)+1-n \\
& =(n-1)(2 n+1)+1 \\
& =2 n^{2}-n .
\end{aligned}
$$

Example 5.10. Take $n=4$. The highest root is $\widetilde{\alpha}=e^{12}$ and its corresponding reflection t has the following reduced expression

$$
t=s_{2} s_{3} s_{4} s_{3} s_{2} s_{1} s_{2} s_{3} s_{4} s_{3} s_{2}
$$

where the red part is in $W_{I}=\left\langle s_{2}, s_{3}, s_{4}\right\rangle$ and the blue part is in ${ }^{I} W$. The corresponding Shi vector of t is given in Figure 5. and the I-decomposition of t is given in Figure 6.

Fig. 5: The Shi vector of t in B_{4}. The right part gives the coordinates of the Shi vector.
Finally, the Shi vector of the Susanfe reflection t^{\prime} considered in Lemma 5.9 is given in Figure 7.
Lemma 5.11 (Type C_{n}). Let t be the reflection of the highest root $\widetilde{\alpha}$ and let $I=\left\{s_{2}, \ldots, s_{n}\right\}$. Then one has the following reduced expressions and properties.
(1) $t=s_{1} s_{2} \ldots s_{n-1} s_{n} s_{n-1} \ldots s_{2} s_{1}$.
(2) $t_{I}=e$ and ${ }^{I} t=t$. In particular ${ }^{I} t$ is a Susanfe reflection.

Fig. 6: The I-decomposition of t in terms of Shi vectors in B_{4}.

Fig. 7: The Shi vector of t^{\prime} in B_{4}.
(3) $N\left({ }^{I} t\right)=\overline{\mathrm{Fix}_{t}}=\overline{\Phi_{I}^{+}}$. In particular $N(t) \cap \overline{\Phi_{I}}=N\left({ }^{I} t\right)$.
(4) $\mathscr{L}(t, I)=\mathscr{L}\left({ }^{I} t\right)=2 n^{2}-n$.

Proof. In type C_{n} the highest root is $\widetilde{\alpha}=2 e_{1}$.
(1) The strategy is again the same as in type A_{n} and B_{n}, namely showing that $s_{1} s_{2} \ldots s_{n-1}\left(\alpha_{n}\right)=2 e_{1}$ with $\alpha_{n}=2 e_{n}$. The only thing to take care of in this computation is how the reflections in type C_{n} act on the roots. We leave the details to the reader since there is no difficulty. Note that t has the same reduced expression as the element t^{\prime} in Lemma 5.9. By the exact same argument as in that proof, we are ensured that the expression $t=s_{1} s_{2} \ldots s_{n-1} s_{n} s_{n-1} \ldots s_{2} s_{1}$ is reduced (and is in fact the only reduced expression of t).
(2) We have just seen in (1) that $t=s_{1} s_{2} \ldots s_{n-1} s_{n} s_{n-1} \ldots s_{2} s_{1}$ is the unique reduced expression of t. Therefore, for any $s \in I$, we have $\ell(s t)>\ell(t)$, that is to say $t \in{ }^{I} W$.
(3) The first equality comes from Proposition 5.4 and from the equality ${ }^{I} t=t$. With respect to the second equality we first need to see that since $\Phi_{I}=\mathbb{Z}\left\langle e_{23}, e_{34}, \ldots, e_{n-1, n}, 2 e_{n}\right\rangle \cap \Phi$, each root of Φ_{I} does not have a label $i=1$ or $j=1$. Moreover, any root $\alpha=e_{i j}$ or $2 e_{i}$ or $e^{i j}$ that doesn't have a label 1 (i.e. any root in $\left.\Phi_{I}\right)$ satisfies $(\alpha \mid \widetilde{\alpha})=0$ and then $t(\alpha)=\alpha$, that is $\alpha \in \operatorname{Fix}_{t}$ and then $\Phi_{I}=\operatorname{Fix}_{t}$.
(4) In type C_{n} we know (see [Bou68]) that ht $\left(e_{i j}\right)=j-i$ and $\operatorname{ht}\left(2 e_{i}\right)=2(n-i)+1$ and $\operatorname{ht}\left(e^{i j}\right)=2 n+1-(i+j)$. Therefore it follows that:

$$
\begin{aligned}
\mathscr{L}\left({ }^{J} t\right) & =\sum_{j=2}^{n} h t\left(e_{1 j}\right)+\sum_{j=2}^{n} h t\left(e^{1 j}\right)+\operatorname{ht}\left(2 e_{1}\right)=\sum_{j=2}^{n}(j-1)+\sum_{j=2}^{n}[2 n+1-(1+j)]+2 n-1 \\
& =\sum_{j=1}^{n-1} j+\sum_{j=2}^{n}(2 n-j)+2 n-1=\sum_{j=1}^{n-1} j+2 n(n-1)-\sum_{j=2}^{n} j+2 n-1 \\
& =\sum_{j=1}^{n} j-n+2 n(n-1)-\sum_{j=1}^{n} j+1+2 n-1=2 n(n-1)+n \\
& =2 n^{2}-n .
\end{aligned}
$$

Example 5.12. Take $n=4$. The highest root is $\widetilde{\alpha}=2 e_{1}$ and its corresponding reflection t has the following reduced expression

$$
t=e s_{1} s_{2} s_{3} s_{4} s_{3} s_{2} s_{1}
$$

where the red part is in $W_{I}=\left\langle s_{2}, s_{3}, s_{4}\right\rangle$ and the blue part is in ${ }^{I} W$. The corresponding Shi vector of t is given by and the I-decomposition of t is given by

Fig. 8: The Shi vector of t in C_{4}. The right part gives the coordinates of the Shi vector.

Fig. 9: The I-decomposition of t in terms of Shi vectors in C_{4}.

Lemma 5.13 (Type D_{n}). Let be the reflection of the highest root $\widetilde{\alpha}$ and let $I=\left\{s_{2}, \ldots, s_{n}\right\}$. Then one has the following reduced expressions and properties.
(1) $t=s_{2} s_{3} \ldots s_{n-2} s_{n} s_{n-1} s_{n-2} \ldots s_{3} s_{2} \cdot s_{1} \cdot s_{2} s_{3} \ldots s_{n-2} s_{n-1} s_{n} s_{n-2} \ldots s_{3} s_{2}$.
(2) $t_{I}=s_{2} s_{3} \ldots s_{n-2} s_{n} s_{n-1} s_{n-2} \ldots s_{3} s_{2}$ and ${ }^{I} t=s_{1} t_{I}$.
(3) $N(t)=\left\{e_{13}, e_{14}, \ldots, e_{1 n}, e_{23}, e_{24} \ldots, e_{2 n}\right\} \cup\left\{e^{12}, e^{13} \ldots, e^{1 n}, e^{23}, e^{24}, \ldots, e^{2 n}\right\}$.
(4) $\mathscr{L}(t, I)=2 n^{2}-4 n+1$.

Proof. In type D_{n} the highest root is $\widetilde{\alpha}=e^{12}$.
(1) Once again, we need to show that $s_{2} s_{3} \ldots s_{n-2} s_{n} s_{n-1} \ldots s_{3} s_{2}\left(\alpha_{1}\right)=\widetilde{\alpha}$ with $\widetilde{\alpha}=e^{12}$ and $\alpha_{1}=e_{12}$. Roughly, $s_{2}\left(e_{12}\right)=e_{13}$ and by induction $s_{n-1} \ldots s_{3} s_{2}\left(e_{12}\right)=e_{1 n}$. Then, since $\alpha_{n}=e^{n-1, n}$, it follows that $s_{n}\left(e_{1 n}\right)=e^{1, n-1}$ and $s_{n-2}\left(e^{1, n-1}\right)=e^{1, n-2}$. By induction it follows that $s_{2} s_{3} \ldots s_{n-3}\left(e^{1, n-2}\right)=e^{12}$.
(2) The fact that $t_{I} \in W_{I}$ is clear. Concerning ${ }^{I} t$, it is easy to see that $s_{2} s_{3} \ldots s_{n-1} s_{n} s_{n-2} \ldots s_{3} s_{2}=t_{I}$ since $s_{n-2} s_{n-1} s_{n} s_{n-2}=s_{n-2} s_{n} s_{n-1} s_{n-2}$ (the generators s_{n-1} and s_{n} commute). Therefore we have $t=t_{I} s_{1} t_{I}$. The way to show that $s_{1} t_{I}$ belongs to ${ }^{I} W$ is exactly the same as in types A, B, C and the details are left to the reader. Hence ${ }^{I} t=s_{1} t_{I}$. It is also clear that these two expressions are reduced. Thus the given expression of t is reduced.
(3) Since $t=s^{12}$, the set of its fixed roots is exactly the set of roots having no label 1 and 2 and the special root e_{12} since we have already seen that $\left(e_{12} \mid e^{12}\right)=0$ and thus $s^{12}\left(e_{12}\right)=e_{12}$. Therefore, by Proposition 5.4 one has

$$
N(t)=\overline{\operatorname{Fix}_{t}}=\left\{e_{13}, e_{14}, \ldots, e_{1 n}, e_{23}, e_{24} \ldots, e_{2 n}\right\} \cup\left\{e^{12}, e^{13} \ldots, e^{1 n}, e^{23}, e^{24}, \ldots, e^{2 n}\right\}
$$

(4) From Point (2) it follows that $N(t) \cap \overline{\Phi_{I}}=\left\{e_{13}, e_{14}, \ldots, e_{1 n}\right\} \cup\left\{e^{12}, e^{13} \ldots, e^{1 n}\right\}$. In type D_{n} the height of the roots is given by $\operatorname{ht}\left(e_{i j}\right)=j-i$, $\operatorname{ht}\left(e^{i n}\right)=n-i$ and $\operatorname{ht}\left(e^{i j}\right)=2 n-(i+j)$ for any $1 \leq i<j<n$.

Therefore we have

$$
\begin{aligned}
\mathscr{L}_{\bar{\Phi}_{I}}(t) & =\sum_{\alpha \in N(t) \cap \overline{\Phi_{I}}} \mathrm{ht}(\alpha)=\sum_{j=3}^{n} \mathrm{ht}\left(e_{1 j}\right)+\sum_{j=2}^{n-1} \mathrm{ht}\left(e^{1 j}\right)+\mathrm{ht}\left(e^{1 n}\right) \\
& =\sum_{j=3}^{n}(j-1)+\sum_{j=2}^{n-1}(2 n-(1+j))+n-1 \\
& =\sum_{j=2}^{n-1} j+(n-2)(2 n-1)-\sum_{j=2}^{n-1} j+n-1 \\
& =(n-2)(2 n-1)+n-1 \\
& =2 n^{2}-4 n+1 .
\end{aligned}
$$

6 Surjectivity of the atomic length

In this section, we consider again only finite Weyl groups, which we will again simply denote by W. We prove that the atomic length is surjective by two independent methods, providing different insights. Recall that we have proved in Theorem 4.11 that the element of W realising the largest atomic length is w_{0}, the longest element of W.

Lemma 6.1. The integer $\mathscr{L}\left(w_{0}\right)$ is given by the following formulas.
(1) For the classical types X_{n}, we have

$$
\mathscr{L}\left(w_{0}\right)= \begin{cases}\frac{1}{6} n(n+1)(n+2)=\binom{n+2}{3} & \text { if } X=A \\ \frac{1}{6} n(n+1)(4 n-1) & \text { if } X \in\{B, C\} \\ \frac{1}{3} n(n-1)(2 n-1) & \text { if } X=D .\end{cases}
$$

(2) For the exceptional types, we have the following values.

Type	$\mathscr{L}\left(w_{0}\right)$
E_{6}	156
E_{7}	399
E_{8}	1240
F_{4}	110
G_{2}	16

Proof. By Lemma 4.4, we have $\rho-w_{0}(\rho)=\sum_{\alpha \in N\left(w_{0}\right)} \alpha=\sum_{\alpha \in \Phi^{+}} \alpha=2 \rho$. Therefore, $\mathscr{L}\left(w_{0}\right)=\left\langle 2 \rho, \rho^{\vee}\right\rangle=$ $2\left\langle\rho, \rho^{\vee}\right\rangle$. We can compute this inner product by expressing ρ and ρ^{\vee} as a vector in the canonical basis, and then doing componentwise multiplication. We give these vectors in the following table, which we have recovered from [Bou68], and the reader can check that one gets the desired values of $\mathscr{L}\left(w_{0}\right)$. Recall that $\rho^{\vee}=\rho$ in simply-laced
type.

Type	ρ	ρ^{\vee}
A_{n}	$\left(\frac{n}{2}, \frac{n}{2}-1, \ldots,-\frac{n}{2}+1,-\frac{n}{2}\right)$	same as ρ
B_{n}	$\left(n-\frac{1}{2}, n-\frac{3}{2}, \ldots, \frac{1}{2}\right)$	$(n, n-1, \ldots, 1)$
C_{n}	$(n, n-1, \ldots, 1)$	$\left(n-\frac{1}{2}, n-\frac{3}{2}, \ldots, \frac{1}{2}\right)$
D_{n}	$(n-1, n-2, \ldots, 0)$	same as ρ
E_{6}	$(0,1,2,3,4,-4,-4,4)$	same as ρ
E_{7}	$\left(0,1,2,3,4,5,-\frac{17}{2}, \frac{17}{2}\right)$	same as ρ
E_{8}	$(0,1,2,3,4,5,6,23)$	same as ρ
F_{4}	$\left(\frac{11}{2}, \frac{5}{2}, \frac{3}{2}, \frac{1}{2}\right)$	$(8,3,2,1)$
G_{2}	$(-1,-2,3)$	$\left(-\frac{1}{3},-\frac{4}{3}, \frac{5}{3}\right)$

Theorem 6.2. Let W be a finite Weyl group of rank n. The map $\mathscr{L}: W \rightarrow \llbracket 0, \mathscr{L}\left(w_{0}\right) \rrbracket$ is surjective if and only if $n \neq 2$.

Proof. This is achieved in several steps.
(1) Consider first the small rank cases. In type A_{1}, we have $\mathscr{L}(W)=\{0,1\}$, and for $n=2$ we get the following images by direct computation.

Type	$\mathscr{L}(W)$
A_{2}	$\{0,1,3,4\}$
B_{2} or C_{2}	$\{0,1,3,4,6,7\}$
G_{2}	$\{0,1,3,5,8,11,13,15,16\}$

(2) Consider now the remaining exceptional types E_{6}, E_{7}, E_{8} and F_{4}. One can use the computer algebra softwares Sage and GAP to obtain $\mathscr{L}(W)$. In all cases, we have obtained $\mathscr{L}(W)=\llbracket 0, \mathscr{L}\left(w_{0}\right) \rrbracket$.
(3) Finally, assume that we are in classical type $X_{n}, X \in\{A, B, C, D\}$. We will prove the result by induction on n. To this end, it will be convenient to make the dependence on n appear clearly by using the notation $W=W\left(X_{n}\right), b_{n}=\mathscr{L}\left(w_{0}\right)$ and $\mathscr{L}_{n}=\mathscr{L}: W\left(X_{n}\right) \rightarrow \llbracket 0, b_{n} \rrbracket$.
One checks by a direct computation that \mathscr{L}_{n} is surjective for $n=3$ if $X=A$, for $n \in\{3,4\}$ if $X=B, C$ and for $n \in\{4,5\}$ for $X=D$.
Assume now that \mathscr{L}_{n} is surjective for a fixed n, where $n \geq 3$ if $X=A$, respectively $n \geq 4$ if $X=B, C$, respectively $n \geq 5$ for $X=D$. By Theorem 4.10, it suffices to show that for all $N \in \llbracket 0, b_{n+1} / 2 \rrbracket$, there exists $w \in W\left(X_{n+1}\right)$ such that $\mathscr{L}_{n+1}(w)=N$ to ensure that $\mathscr{L}_{n+1}: W\left(X_{n+1}\right) \rightarrow \llbracket 0, b_{n+1} \rrbracket$ is surjective. In order to do that, let $I=\left\{s_{2}, \ldots, s_{n}\right\}$ and consider the standard parabolic subgroup $W_{I} \leq W\left(X_{n+1}\right)$. By Proposition 5.1, we are ensured that

$$
\mathscr{L}\left(W_{I}\right)=\mathscr{L}_{I}\left(W_{I}\right)=\llbracket 0, b_{n} \rrbracket
$$

where the second identity is the induction hypothesis. Thus, to conclude, it suffices to prove that

$$
\frac{b_{n+1}}{2} \leq b_{n}
$$

We show this by considering the different cases of Lemma 6.1.

- If $X=A$, then $b_{n}=\frac{1}{6} n(n+1)(n+2)$. Therefore

$$
\begin{aligned}
b_{n}-\frac{b_{n+1}}{2} & =\frac{1}{12}(2 n(n+1)(n+2)-(n+1)(n+2)(n+3)) \\
& =\frac{1}{12}(n+1)(n+2)(n-3) \\
& \geq 0
\end{aligned}
$$

since we have assumed $n \geq 3$.

- If $X \in\{B, C\}$, then $b_{n}=\frac{1}{6} n(n+1)(4 n-1)$. Therefore

$$
\begin{aligned}
b_{n}-\frac{b_{n+1}}{2} & =\frac{1}{12}(2 n(n+1)(4 n-1)-(n+1)(n+2)(4 n+3)) \\
& =\frac{1}{12}(n+1)\left(4 n^{2}-13 n-6\right) \\
& \geq 0
\end{aligned}
$$

since the largest root of this polynomial is $\frac{1}{8}(13+\sqrt{265}) \in(3,4)$, and we have assumed $n \geq 4$.

- If $X=D$, then $b_{n}=\frac{1}{3} n(n-1)(2 n-1)$. Therefore

$$
\begin{aligned}
b_{n}-\frac{b_{n+1}}{2} & =\frac{1}{6}(2 n(n-1)(2 n-1)-(n+1) n(2 n+1)) \\
& =\frac{1}{6} n\left(2 n^{2}-9 n+1\right) \\
& \geq 0
\end{aligned}
$$

since the largest root of this polynomial is $\frac{1}{4}(9+\sqrt{73}) \in(4,5)$, and we have assumed $n \geq 5$.

We now give an alternative proof of Theorem 6.2 based on Susanfe theory.
Proof of Theorem 6.2. We have already explained in the previous proof how to treat the exceptional cases using computer algebra. For the classical cases, we will again proceed by induction on the rank n.

Fix $X \in\{A, B, C, D\}$. The small rank cases $n \leq 3$ if $X=A, n \leq 4$ if $X \in\{B, C\}$ and $n \leq 5$ if $X=D$ can be checked individually. Assume the following induction hypothesis: $\mathscr{L}\left(W\left(X_{n}\right)\right)=\llbracket 0, b_{n} \rrbracket$ where $n+1$ is fixed, different from the values above. Here, b_{n} denotes again the image of w_{0} (the longest element of $W\left(X_{n}\right)$) by the function $\mathscr{L}: W\left(X_{n}\right) \rightarrow Z_{\geq 0}$. Recall that we know that w_{0} indeed realises the maximum by Theorem 4.11, and that we gave the formula for b_{n} in Lemma 6.1.
Take now $W=W\left(X_{n+1}\right)$. We will use the same notation as in Section 5, namely $I=\left\{s_{2}, s_{3}, \ldots, s_{n+1}\right\}$. Moreover, we denote by t the reflection corresponding the highest root $\widetilde{\alpha}$ (and $t^{\prime}={ }^{I} t s_{1}$ if $X=B$). Finally, we let $J=t I t$ so that $t W_{J}=W_{I} t$. The idea of the inductive step is to consider the union $\mathscr{L}\left(W_{I}\right) \cup \mathscr{L}\left(W_{I} t\right)$ (respectively $\mathscr{L}\left(W_{I}\right) \cup \mathscr{L}\left(W_{I} t^{\prime}\right)$ if $\left.X=B\right)$. Let us look at these two image sets separately first.

- By definition of I, the subgroup W_{I} verifies $W_{I} \simeq W\left(X_{n}\right)$, so we have $\mathscr{L}_{I}\left(W_{I}\right)=\llbracket 0, b_{n} \rrbracket$ by induction hypothesis. Moreover, since W_{I} is a standard parabolic subgroup of W, by Proposition 5.1 we have $\mathscr{L}_{I}\left(W_{I}\right)=\mathscr{L}\left(W_{I}\right)$ and thus

$$
\begin{equation*}
\mathscr{L}\left(W_{I}\right)=\llbracket 0, b_{n} \rrbracket . \tag{10}
\end{equation*}
$$

- For the second set $\mathscr{L}\left(W_{I} t\right)$, let us use Corollary 5.6 with $B=J$. This yields, for all $w \in W_{J}$,

$$
\begin{equation*}
\mathscr{L}(t w)=\mathscr{L}_{I}\left((t w)_{I}\right)+\mathscr{L}(t, I) . \tag{11}
\end{equation*}
$$

Let us analyse the right-hand side. First, by Proposition 2.7, we know that $\left\{(t w)_{I} \mid w \in W_{J}\right\}=W_{I}$, and by induction hypothesis, $\mathscr{L}_{I}\left(W_{I}\right)=\llbracket 0, b_{n} \rrbracket$. Second, the term $\mathscr{L}(t, I)$ is a non-negative integer depending only on X_{n+1}, which we denote by K_{n+1}. The formulas for K_{n+1} for the different types are given in the lemmas of Section 5. Therefore, (11) implies $\mathscr{L}\left(t W_{J}\right)=\mathscr{L}_{I}\left(W_{I}\right)+\mathscr{L}(t, I)=\llbracket 0, b_{n} \rrbracket+K_{n+1}=\llbracket K_{n+1}, b_{n}+K_{n+1} \rrbracket$, which we can rewrite, since $t W_{J}=W_{I} t$, as

$$
\begin{equation*}
\mathscr{L}\left(W_{I} t\right)=\llbracket K_{n+1}, b_{n}+K_{n+1} \rrbracket . \tag{12}
\end{equation*}
$$

Therefore, combining (10) and (12), we have proved that

$$
\begin{equation*}
\mathscr{L}\left(W_{I}\right) \cup \mathscr{L}\left(W_{I} t\right)=\llbracket 0, b_{n} \rrbracket \cup \llbracket K_{n+1}, b_{n}+K_{n+1} \rrbracket . \tag{13}
\end{equation*}
$$

Obviously, $\mathscr{L}\left(W_{I}\right) \cup \mathscr{L}\left(W_{I} t\right) \subseteq \mathscr{L}(W)$. In order to show that $\mathscr{L}(W)=\llbracket 0, b_{n+1} \rrbracket$, we will prove that
(1) $\mathscr{L}\left(W_{I}\right) \cup \mathscr{L}\left(W_{I} t\right)$ is in fact an interval, by showing for each Dynkin type that $K_{n+1} \leq b_{n}$,
(2) the maximum of this inverval, that is $b_{n}+K_{n+1}$, equals b_{n+1} (respectively $b_{n}+K_{n+1}=b_{n+1}-1$ if $X=D$, which will actually suffice).

Note that in type B_{n}, we need to replace t by t^{\prime} in the above reasoning.

- Assume $X=A$. We have $b_{n}=\binom{n+1}{3}=\frac{(n+1) n(n-1)}{2}$ and $K_{n+1}=\binom{n+1}{2}$. Since $n+1 \geq 4$ by assumption, we have $\binom{n+1}{2}<\binom{n+1}{3}$, hence $K_{n+1}<b_{n}$, proving (1).
Finally, we have the well-known formula $\binom{n+1}{3}+\binom{n+1}{2}=\binom{n+1}{3}$, that is, $b_{n}+K_{n+1}=b_{n+1}$, proving (2).
- Assume $X \in\{B, C\}$. We have $b_{n}=\frac{n(n+1)(4 n-1)}{6}$ and $K_{n+1}=2(n+1)^{2}-(n+1)=2 n^{2}+3 n+1$.

We compute

$$
\frac{n(n+1)(4 n-1)}{6}-\left(2 n^{2}+3 n+1\right)=\frac{1}{6}(n+1)\left(4 n^{2}-13 n-6\right)
$$

We recover twice the polynomial of the previous proof, and we have seen that its largest root y verifies $3<y<4$. Since we have assumed that $n \geq 4$, we are ensured that $K_{n+1}<b_{n}$, proving (1).
Finally, we compute

$$
b_{n}+K_{n+1}=\frac{n(n+1)(4 n-1)}{6}+2(n+1)^{2}-(n+1)=\frac{(n+1)(n+2)(4 n+3)}{6}=b_{n+1}
$$

proving (2).

- Assume $X=D$. We have $b_{n}=\frac{n(n-1)(2 n-1)}{3}$ and $K_{n+1}=2(n+1)^{2}-4(n+1)+1=2 n^{2}-1$.

We compute

$$
\frac{n(n-1)(2 n-1)}{3}-\left(2 n^{2}-1\right)=\frac{1}{3}(2 n+1)\left(n^{2}-5 n+3\right)
$$

The largest root of this polynomial is $\frac{1}{2}(5+\sqrt{13}) \in(4,5)$. Since we have assumed that $n \geq 5$, we are ensured that $K_{n+1}<b_{n}$, proving (1).
Finally, we compute

$$
b_{n}+K_{n+1}=\frac{n(n-1)(2 n-1)}{3}+2 n^{2}-1=\frac{(n+1) n(2 n+1)}{3}-1=b_{n+1}-1
$$

We are missing the value b_{n+1} by this method, but fortunately, we know that $b_{n+1}=\mathscr{L}\left(w_{0}\right) \in \mathscr{L}(W)$, proving (2).

Remark 6.3. In the case of type A_{n}, recall that the atomic length coincides with the statistic invsum, see Remark 2.10. In fact, the previous proof is analogous to the proof of [SU11, Section 2] recalled in Section 1. We see that the results on the entropy of permutations are just a particular case of a more general phenomenon. Moreover, in [SU11, Sections 3 and 4], the authors are able to obtain several interesting properties of the generating function of ninvsum (including product formulas), involving the q-analogues of binomial coefficients. On the other hand, it is well-known that the generating function of the Coxeter length can be described by certain q-binomial coefficients. It would be interesting to study the generating function for the atomic length and look for product formulas.
It is natural to look for a generalisation of Theorem 6.2 by asking, for a fixed $\lambda \in P^{+}$, whether $\mathscr{L}_{\lambda}: W \rightarrow$ $\llbracket 0, \mathscr{L}_{\lambda}\left(w_{0}\right) \rrbracket$ is surjective. Even more ambitious would be the classification of weights $\lambda \in P^{+}$such that \mathscr{L}_{λ} is surjective. This motivates the following definition.

Definition 6.4. Let W be an affine (respectively finite) Weyl group. An element $\lambda \in P^{+}$is called W-ideal if $\mathscr{L}_{\lambda}: W \rightarrow \mathbb{N}$ (respectively $\left.\mathscr{L}_{\lambda}: W \rightarrow \llbracket 0, \mathscr{L}_{\lambda}\left(w_{0}\right) \rrbracket\right)$ is surjective.

If there is no ambiguity about the group W, we will simply say that $\lambda \in P^{+}$is ideal. We can reformulate Theorem 6.2 by saying that $\bar{\rho}$ is always \bar{W}-ideal except in rank 2 . We will see in the next section two further examples of ideal weights:

- in finite types, the minuscule weights, this will be Theorem 7.6,
- in untwisted affine type A, the weight $\lambda=\Lambda_{0}$, this will be Theorem 7.9, a (very much non trivial) theorem by Granville and Ono.
In fact, in finite types, it is not hard to see that we have the following necessary condition.
Proposition 6.5. Let W be a finite Weyl group and let $\lambda=\sum_{i=1}^{n} m_{i} \omega_{i} \in P^{+}$. If λ is ideal, then there exists $1 \leq i \leq n$ such that $m_{i}=1$.

Proof. By contradiction, assume that $m_{i} \geq 2$ for all $1 \leq i \leq n$. We can use Theorem 4.19 to express the λ-atomic length in terms of the λ-inversion set. Let $w \in W$ and $\underline{w} \in \operatorname{Red}(w)$. Since the elements appearing in $N_{\lambda}(\underline{w})$ are of the form $\beta=m_{i} \underline{w}_{i, k}\left(\alpha_{i}\right)$ for some $\underline{w}_{i, k}\left(\alpha_{i}\right) \in Q$, the condition $m_{i} \geq 2$ implies that ht $(\beta) \geq 2$. In particular, it is impossible to find $w \in W$ verifying $\mathscr{L}_{\lambda}(w)=1$, so $\mathscr{L}_{\lambda}: W \rightarrow \llbracket 0, \mathscr{L}_{\lambda}\left(w_{0}\right) \rrbracket$ is not surjective.

In the search for ideal weights, the previous proposition rules out many possibilities. However, among the remaining weights, it seems complicated to classify those that are ideal, as illustrated in the following example.
Example 6.6. Let W be the Weyl group of type C_{3}. Consider dominants weights $\lambda=m_{1} \omega_{1}+m_{2} \omega_{2}+m_{3} \omega_{3}$.

- If $\left(m_{1}, m_{2}, m_{3}\right)=(2,1,1)$ then $\mathscr{L}_{\lambda}(W)=\llbracket 0,27 \rrbracket$ and λ is ideal.
- If $\left(m_{1}, m_{2}, m_{3}\right)=(1,2,1)$ then

$$
\mathscr{L}_{\lambda}(W)=\{0,1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,19,20,21,22,23,24,25,26,28,29,30\}
$$

and λ is not ideal.

- If $\left(m_{1}, m_{2}, m_{3}\right)=(1,1,2)$ then

$$
\mathscr{L}_{\lambda}(W)=\{0,1,2,3,4,6,7,8,9,10,11,13,14,15,16,17,18,20,21,22,23,24,25,27,28,29,30,31\}
$$

and λ is not ideal.

7 Links with crystal theory

7.1 Atomic length and crystal depth

Consider the affine Kac-Moody algebra \mathfrak{g} introduced in Section 3. For each $\lambda \in P^{+}$, one can construct the corresponding irreducible highest weight module $V(\lambda)$ of \mathfrak{g} already introduced in Remark 4.6. Since this representation is integrable, it comes equipped with a crystal, denoted $B(\lambda)$, see [HK02]. This is an oriented colored graph whose structure mirrors the algebraic structure of $V(\lambda)$. For finite classical types, there are explicit constructions of $B(\lambda)$ relying on tableau combinatorics, see [HK02, Chapters 7 and 8] for details. For affine type A, there are explicit constructions of $B(\lambda)$ given in terms of multipartitions/abaci combinatorics, see [GJ11, Chapter 6]. The crystal $B(\lambda)$ is connected and has a unique source vertex b_{λ} called its highest weight vertex. Moreover, there is a weight function wt : B λ) $\rightarrow P$ defined on the vertices of $B(\lambda)$ and determined by the properties

$$
\begin{align*}
& \mathrm{wt}\left(b_{\lambda}\right)=\lambda, \tag{14}\\
& \mathrm{wt}(b)=\mathrm{wt}\left(b^{\prime}\right)-\alpha_{i} \text { if there is an arrow } b^{\prime} \xrightarrow{i} b \text { in } B(\lambda) . \tag{15}
\end{align*}
$$

Indeed, each vertex $b \in B(\lambda)$ can be obtained from b_{λ} by following a sequence of arrows, so the above formulas suffice to determine wt on the entire $B(\lambda)$. Moreover, one can check that for all $1 \leq i \leq n$ and for all $b \in B(\lambda)$,

$$
\begin{equation*}
\left\langle\mathrm{wt}(b), \alpha_{i}^{\vee}\right\rangle=\varphi_{i}(b)-\varepsilon_{i}(b), \tag{16}
\end{equation*}
$$

where $\varphi_{i}(b)$ (resp. $\varepsilon_{i}(b)$) is the length of the string of i-arrows outgoing (resp. incoming) at vertex b. One recovers for instance the dimensions of the weight spaces of $V(\lambda)$ by counting the number of vertices with the same weight in $B(\lambda)$. Clearly, these all appear at the same depth in $B(\lambda)$.
Now, the Weyl group W acts on $B(\lambda)$ in a particularly simple way. For $0 \leq i \leq n$ fixed, removing all j-arrows with $j \neq i$ as well as all vertices without incoming or outgoing i-arrows yields a disjoint union of i-strings. Then the generator $s_{i} \in W$ acts on vertices by reflecting with respect to the middle of the i-string [BS17, Theorem 11.14]. In the rest of this section, we will be particularly interested in the orbit of the highest weight vertex b_{λ}, which we will denote $\mathcal{O}(\lambda)$.

Example 7.1. The crystal $B(\lambda)$ in type A_{2} for $\lambda=\rho=\omega_{1}+\omega_{2}$ can be constructed using all semistandard tableaux of shape $(2,1)$. This gives the following graph.

In this picture, we have highlighted in gray the elements of $\mathcal{O}(\lambda)$. They are obtained by starting from the highest weight vertex and reflecting along i-strings.

Remark 7.2. In type A_{n} and for any $\lambda \in P^{+}$, there is a simple rule for computing $\mathcal{O}(\lambda)$ recursively: s_{i} acts on a tableau $b \in \mathcal{O}(\lambda)$ by changing all possible entries i to $i+1$ (that is, so that the resulting tableau is still semistandard). From there, one can deduce an explicit description of $\mathcal{O}(\lambda)$, namely $\mathcal{O}(\lambda)$ consists of those tableaux such that each column contains the one to its right, see [LS90]. For results in other classical types, see [San21] and [JL20].

This enables us to interpret the atomic length \mathscr{L}_{λ} in the context of crystals.
Proposition 7.3. Let $b \in \mathcal{O}(\lambda)$, so that $b=w\left(b_{\lambda}\right)$ for some $w \in W$. Then $\mathscr{L}_{\lambda}(w)$ is the depth of b in $B(\lambda)$.
Proof. By (15), the depth of b in $B(\lambda)$ is the number of simple roots substracted to $\mathrm{wt}\left(b_{\lambda}\right)$ to get wt (b), that is, it is the number of simple roots that appear in the decomposition of $\mathrm{wt}\left(b_{\lambda}\right)-\mathrm{wt}(b)$. On the other hand, $\mathscr{L}_{\lambda}(w)=\left\langle\lambda-w(\lambda), \rho^{\vee}\right\rangle$, that is, $\mathscr{L}_{\lambda}(w)$ is the number of simple roots that appear in the decomposition of $\lambda-w(\lambda)$. To conclude, we first use (14) which ensures that $\lambda=\operatorname{wt}\left(b_{\lambda}\right)$. Finally, for all $i \in I$ and for all $a \in B(\lambda)$,

$$
\begin{array}{rlrl}
\mathrm{wt}\left(s_{i}(a)\right) & =\mathrm{wt}(a)-\left(\varphi_{i}(a)-\varepsilon_{i}(a)\right) \alpha_{i} & & \text { by definition of the action of } s_{i} \\
& =\operatorname{wt}(a)-\left\langle\operatorname{wt}(a), \alpha_{i}^{\vee}\right\rangle \alpha_{i} & & \text { by (16) } \\
& =s_{i}(\operatorname{wt}(a)) . &
\end{array}
$$

Therefore $w(\lambda)=w\left(\operatorname{wt}\left(b_{\lambda}\right)\right)=\operatorname{wt}\left(w\left(b_{\lambda}\right)\right)=\mathrm{wt}(b)$.
Example 7.4. Proposition 7.3 enables us to compare Example 4.3 and Example 7.1: we recover the values $0,1,3,4$ as depths in the crystal $B(\rho)$.

Remark 7.5. In finite types, the action of $-w_{0}$ on the simple roots α_{i} induces an involution of the crystal $B(\lambda)$, known as the Schützenberger-Lusztig involution and denoted by η_{λ}. More precisely, recall the involution of the Dynkin diagram θ induced from $-w_{0}$ in Section 4. Then for each path

$$
b_{\lambda} \xrightarrow{i_{1}} \cdots \xrightarrow{i_{r}} b
$$

in $B(\lambda)$, there exists a path

$$
\eta_{\lambda}\left(b_{\lambda}\right) \xrightarrow{\theta\left(i_{1}\right)} \cdots \xrightarrow{\theta\left(i_{r}\right)} \eta_{\lambda}(b)
$$

in $B(\lambda)$, where $\eta_{\lambda}\left(b_{\lambda}\right)$ is the lowest weight vertex of $B(\lambda)$, see [Len05] for more details. In particular, combining this with Proposition 7.3 enables us to recover Theorem 4.10.

With this intepretation at hand, we are now able to show the surjectivity of \mathscr{L}_{λ} for a whole family of dominant weights in finite types. Recall that a weight $\lambda \in P^{+}$is called minuscule if the Weyl group W acts transitively on the set of weights of the module $V(\lambda)$. Equivalently, λ is minuscule if and only if, for all $\alpha \in \Phi,\left\langle\lambda, \alpha^{\vee}\right\rangle \in$ $\{-1,0,1\}$, see for instance [Bou68, Chapter VI, Exercices, $\S 1,24]$. Recall Definition 6.4 introducing the notion of ideal weights.

Theorem 7.6. Let $\lambda \in P^{+}$be minuscule. Then λ is ideal.
Proof. Since λ is minuscule, the set of weights of $V(\lambda)$ equals $W \lambda$, the orbit of λ under the action of W. By general crystal theory, this implies that $B(\lambda)=\mathcal{O}(\lambda)$, that is, every vertex in the crystal graph is in $\mathcal{O}(\lambda)$. In particular, there is an element of $\mathcal{O}(\lambda)$ at every given depth in $B(\lambda)$. By Proposition 7.3, this means that $\mathscr{L}_{\lambda}: W \rightarrow \llbracket 0, \mathscr{L}_{\lambda}\left(w_{0}\right) \rrbracket$ is surjective, that is, λ is ideal.

We recall the classification of minuscule weights in the table below, found in [Bou68, Chapter VI, Exercices, §4, 15]. There is no minuscule weight for types E_{8}, F_{4}, and G_{2}.

Type	Minuscule weights
A_{n}	$\omega_{i}, 1 \leq i \leq n$
B_{n}	ω_{n}
C_{n}	ω_{1}
D_{n}	$\omega_{1}, \omega_{n-1}, \omega_{n}$
E_{6}	ω_{1}, ω_{6}
E_{7}	ω_{7}

7.2 Affine crystals of type A and the Granville-Ono theorem

We now mention a fundamental particular case, namely that of $\lambda=\Lambda_{0}$ in type $A_{n}^{(1)}$. There is a classical realisation of the corresponding crystal $B\left(\Lambda_{0}\right)$ that dates back to [MM90] and uses the ($n+1$)-regular partitions, that is, partitions where each part is repeated at most n times. More precisely, there is an arrow $b \xrightarrow{i} b^{\prime}$ in $B\left(\Lambda_{0}\right)$ if and only if b^{\prime} is obtained from b by adding its good i-box, see [LLT96] for a definition. This yields the whole crystal graph $B\left(\Lambda_{0}\right)$ by starting from the highest weight vertex \emptyset (the only partition of 0) and adding good boxes recursively, thereby yielding all $(n+1)$-regular partitions. In turn, similarly to the finite case, the elements of $\mathcal{O}\left(\Lambda_{0}\right)$ are obtained recursively from \emptyset by adding all i-boxes at once (for each fixed $0 \leq i \leq n$), which corresponds to the action of s_{i}. The following result is well-known [LLT96], [Las01]. Recall that a partition is called a $(n+1)$-core if it has no removable rim $(n+1)$-hook.

Proposition 7.7. Let $W=W\left(A_{n}^{(1)}\right)$ and $b \in B\left(\Lambda_{0}\right)$. Then $b \in \mathcal{O}\left(\Lambda_{0}\right)$ if and only if b is an $(n+1)$-core. Moreover, the depth of b in $B\left(\Lambda_{0}\right)$ is the size of b (that is, the number of boxes of b).

Note that the second part of the statement is obvious since each arrow in $B\left(\Lambda_{0}\right)$ corresponds to adding a particular box.

Example 7.8. Let $n=2$. The crystal $B\left(\Lambda_{0}\right)$ is realised by 3-regular partitions as shown in Figure 10, and the orbit $\mathcal{O}\left(\Lambda_{0}\right)$ consists precisely of the 3 -cores, which we have highlighted in gray. Looking at depth (or counting boxes), we see that the first values of $\mathscr{L}_{\Lambda_{0}}$ are $0,1,2,4,5$ and that there is no 3 -core of size 3 .

The question of the surjectivity of \mathscr{L}_{λ} has been solved in this case by Granville and Ono [GO96, Theorem 1]. Indeed, they have proved that there exists an $(n+1)$-core of every given size provided $n \geq 3$. Using the interpretation of Proposition 7.3 and using Proposition 7.7, we can rephrase their result as follows.

Theorem 7.9. Let W be the Weyl group of type $A_{n}^{(1)}$. The map $\mathscr{L}_{\Lambda_{0}}: W \rightarrow \mathbb{N}$ is surjective if and only if $n \geq 3$.

Fig. 10: The beginning of the crystal $B\left(\Lambda_{0}\right)$ in type $A_{2}^{(1)}$. The shaded vertices correspond to $\mathcal{O}\left(\Lambda_{0}\right)$, which consists of the 3-core partitions.

Remark 7.10. There are generalisations of this crystal realisation for higher level dominant weights λ, achieved by certain ℓ-partitions generalising the $(n+1)$-regular partitions. These are due to [JMMO91], [FLO ${ }^{+} 99$], see also [GJ11, Chapter 6]. In turn, Jacon and Lecouvey gave in [JL20] a description of the orbit $\mathcal{O}(\lambda)$ resembling that of Remark 7.2 and generalising Proposition 7.7. In particular, the depth of an ℓ-partition b in the crystal $B(\lambda)$ is again given by the number of boxes of b, and it would be very interesting to understand for which weights we can generalise Theorem 7.9.

8 Atomic length in affine Weyl groups

Let \mathfrak{g} be an affine Kac-Moody algebra of untwisted type, see Section 3, so that the Weyl group W writes $W=Q \rtimes \bar{W}$ where \bar{W} is the corresponding finite Weyl group and $Q=\bigoplus_{i=1}^{n} \mathbb{Z} \alpha_{i}$ is the finite weight lattice.
Let $\lambda=\bar{\lambda}+\ell \Lambda_{0}+z \delta \in P^{+}$as in (5). Recall the element $h^{\vee}=\sum_{i=0}^{n} a_{i}^{\vee}$.
Lemma 8.1. Let $\beta \in Q, \bar{w} \in \bar{W}$ and set $w=\tau_{\beta} \bar{w}$. We have

$$
\mathscr{L}_{\lambda}(w)=\mathscr{L}_{\bar{\lambda}}(\bar{w})-\ell \operatorname{ht}(\beta)+h^{\vee}\left(\left(\bar{\lambda} \mid \bar{w}^{-1}(\beta)\right)+\frac{1}{2}|\beta|^{2} \ell\right)
$$

Proof. We write

$$
\mathscr{L}_{\lambda}(w)=\left\langle\lambda-w(\lambda), \rho^{\vee}\right\rangle=\left\langle\lambda, \rho^{\vee}\right\rangle-\left\langle w(\lambda), \rho^{\vee}\right\rangle
$$

and compute both terms. On the one hand, we have

$$
\begin{aligned}
\left\langle\lambda, \rho^{\vee}\right\rangle & =\left\langle\bar{\lambda}+\ell \Lambda_{0}+z \delta, \rho^{\vee}\right\rangle \\
& =\left\langle\bar{\lambda}, \rho^{\vee}\right\rangle+\ell\left\langle\Lambda_{0}, \rho^{\vee}\right\rangle+z\left\langle\delta, \rho^{\vee}\right\rangle
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
\left\langle w(\lambda), \rho^{\vee}\right\rangle & =\left\langle\tau_{\beta} \bar{w}(\lambda), \rho^{\vee}\right\rangle \\
& =\left\langle\tau_{\beta}\left(\bar{w}\left(\bar{\lambda}+\ell \Lambda_{0}+z \delta\right)\right), \rho^{\vee}\right\rangle \\
& =\left\langle\tau_{\beta}\left(\bar{w}(\bar{\lambda})+\ell \Lambda_{0}+z \delta\right), \rho^{\vee}\right\rangle \\
& =\left\langle\bar{w}(\bar{\lambda})+\ell \Lambda_{0}+z \delta+\ell \beta-\left((\bar{w}(\bar{\lambda}) \mid \beta)+\frac{1}{2}|\beta|^{2} \ell\right) \delta, \rho^{\vee}\right\rangle \quad \text { by [Kac84, Formula } 6 \\
& =\left\langle\bar{w}(\bar{\lambda}), \rho^{\vee}\right\rangle+\ell\left\langle\Lambda_{0}, \rho^{\vee}\right\rangle+z\left\langle\delta, \rho^{\vee}\right\rangle+\ell\left\langle\beta, \rho^{\vee}\right\rangle-\left\langle\left(\left(\bar{\lambda} \mid \bar{w}^{-1}(\beta)\right)+\frac{1}{2}|\beta|^{2} \ell\right) \delta, \rho^{\vee}\right\rangle
\end{aligned}
$$

Taking the difference yields

$$
\begin{aligned}
\mathscr{L}_{\lambda}(w) & =\mathscr{L}_{\bar{\lambda}}(\bar{w})-\ell\left\langle\beta, \rho^{\vee}\right\rangle+\left\langle\left(\left(\bar{\lambda} \mid \bar{w}^{-1}(\beta)\right)+\frac{1}{2}|\beta|^{2} \ell\right) \delta, \rho^{\vee}\right\rangle \\
& =\mathscr{L}_{\bar{\lambda}}(\bar{w})-\ell \operatorname{ht}(\beta)+h^{\vee}\left(\left(\bar{\lambda} \mid \bar{w}^{-1}(\beta)\right)+\frac{1}{2}|\beta|^{2} \ell\right) \quad \text { by }(7) .
\end{aligned}
$$

Corollary 8.2. For all $w=\tau_{\beta} \bar{w} \in W$, we have

$$
\mathscr{L}_{\Lambda_{0}}(w)=\frac{h^{\vee}}{2}|\beta|^{2}-\operatorname{ht}(\beta) .
$$

In particular, $\mathscr{L}_{\Lambda_{0}}$ only depends on β.
Proof. We have taken $\lambda=\Lambda_{0}$, so that $\ell=1$ and $\bar{\lambda}=0$. Since $\left(\Lambda_{0} \mid \beta\right)=0$ (see (7)), Lemma 8.1 yields precisely the expected formula.

Remark 8.3. One could have chosen to write $w=\bar{w} \tau_{\gamma}$ instead of $w=\tau_{\beta} \bar{w}$. Clearly, γ and β are related by the formula $\gamma=\bar{w}^{-1}(\beta)$, and since \bar{w} is an isometry, we have $|\gamma|=|\beta|$.
Remark 8.4. Let $W=W_{a}=W\left(A_{n}^{(1)}\right)$, so that $\bar{W}=W\left(A_{n}\right)$. The affine Grassmanian W_{a} / \bar{W} is in bijection with the fundamental chamber C_{0}. Following [Las01], there is a bijection between the $(n+1)$-cores and the paths in C_{0} starting at 0 . These correspond to certain reduced expressions in W whose inverses w are exactly the paths in $\mathcal{O}\left(\Lambda_{0}\right)$ starting at \emptyset.

Example 8.5. Take $W=W\left(A_{2}^{(1)}\right)$, so that $h^{\vee}=h=3$. Let us compute the first value of $\mathscr{L}_{\Lambda_{0}}(w)$ using Corollary 8.2. These are recorded in the table in Figure 11, and we also indicate the decomposition $w=$ $\tau_{\beta} \bar{w}=\bar{w} \tau_{\gamma}$, where we start with elements w with reduced decomposition described in Remark 8.4. The reader interested in working out this example might find it helpful to use the formula $s_{0}=\tau_{\widetilde{\alpha}} s_{\widetilde{\alpha}}$, where $\widetilde{\alpha}=\alpha_{1}+\alpha_{2}$ is the highest root. We can compare this table with Example 7.8, where we computed the first values of $\mathscr{L}_{\Lambda_{0}}$ using crystals.

Combining Lemma 8.1 and Corollary 8.2 yields the following theorem. Recall the relationship $\beta=\bar{w}(\gamma)$ explained in Remark 8.3.
Theorem 8.6. For all $w=\bar{w} \tau_{\gamma} \in W$, we have

$$
\mathscr{L}_{\lambda}(w)=\mathscr{L}_{\bar{\lambda}}(\bar{\beta})+\ell \mathscr{L}_{\Lambda_{0}}(w)+h^{\vee}(\bar{\lambda} \mid \gamma) .
$$

Theorem 8.6 is interesting because it expresses the affine atomic length in terms of:

- its finite counterpart $\mathscr{L}_{\bar{\lambda}}$, which depends only on \bar{w}, and which we can control in some cases by Theorem 6.2, Theorem 7.6 and Proposition 6.5,
- the Λ_{0}-atomic length, which depends only on β, and which we understand by Theorem 7.9,
- the map $w \rightarrow h^{\vee}(\bar{\lambda} \mid \gamma)$, which depends only on γ. Write $\gamma=\sum_{i=1}^{n} c_{i} \alpha_{i}$ and $\bar{\lambda}=\sum_{i=1}^{n} m_{i} \lambda_{i}$. Then using the formulas of Section 3, one checks that the linear form

$$
\varphi:\left(c_{1}, \ldots, c_{n}\right) \mapsto \sum_{i=1}^{n} \frac{a_{i}^{\vee}}{a_{i}} m_{i} c_{i}
$$

in the variables c_{i} verifies $\varphi\left(c_{1}, \ldots, c_{n}\right)=(\bar{\lambda} \mid \gamma)$. Understanding which integers are representable by the linear form φ seems reasonable. For instance, solutions to the "coin problem" give some control over φ in the case where the c_{i} 's are nonnegative.
We believe that the decomposition of Theorem 8.6 will help in the search for affine ideal weights.

reduced expression of w	reduced expression of \bar{w}	β	γ	$\mathscr{L}_{\Lambda_{0}}(w)$
e	e	0	0	0
s_{0}	$s_{2} s_{1} s_{2}$	$\alpha_{1}+\alpha_{2}$	$-\alpha_{1}-\alpha_{2}$	1
$s_{1} s_{0}$	$s_{2} s_{1}$	α_{2}	$-\alpha_{1}-\alpha_{2}$	2
$s_{2} s_{0}$	$s_{1} s_{2}$	α_{1}	$-\alpha_{1}-\alpha_{2}$	2
$s_{2} s_{1} s_{0}$	s_{1}	$-\alpha_{2}$	$-\alpha_{1}-\alpha_{2}$	4
$s_{1} s_{2} s_{0}$	s_{2}	$-\alpha_{1}$	$-\alpha_{1}-\alpha_{2}$	4
$s_{2} s_{1} s_{2} s_{0}$	e	$-\alpha_{1}-\alpha_{2}$	$-\alpha_{1}-\alpha_{2}$	5
$s_{0} s_{2} s_{1} s_{0}$	$s_{1} s_{2}$	$2 \alpha_{1}+\alpha_{2}$	$-\alpha_{1}-2 \alpha_{2}$	6
$s_{0} s_{1} s_{2} s_{0}$	$s_{2} s_{1}$	$2 \alpha_{1}+2 \alpha_{2}$	$-\alpha_{2}-2 \alpha_{1}$	6
$s_{0} s_{2} s_{1} s_{2} s_{0}$	$s_{1} s_{2} s_{1}$	$\alpha_{2}-\alpha_{1}$	$-\alpha_{1}-2 \alpha_{2}$	8
$s_{1} s_{0} s_{2} s_{1} s_{0}$	s_{2}	$\alpha_{1}-\alpha_{2}$	$-2 \alpha_{1}-\alpha_{2}$	9
$s_{2} s_{0} s_{1} s_{2} s_{0}$	s_{1}			9

Fig. 11: The first values of $\mathscr{L}_{\Lambda_{0}}$ in type $A_{2}^{(1)}$, computed by determining $\beta \in Q$ and using Corollary 8.2.

Acknowledgements

We thank Cédric Lecouvey and Emily Norton for many stimulating conversations. We are grateful to Meinolf Geck, Gerhard Hiss and Frank Lübeck for useful discussions regarding the exceptional cases of Theorem 6.2 and the use of computer algebra softwares. Finally, we thank Max Alekseyev for pointing out the reference [SU11].

References

[Bou68] N. Bourbaki. Éléments de mathématique. Groupes et algèbres de Lie. Chapitres IV-VI. Hermann, Paris, 1968. 6, 7, 17, 18, 21, 22, 24, 30
[BS17] Daniel Bump and Anne Schilling. Crystal Bases: Representations And Combinatorics. World Scientific, 2017. 28
[Car72] Roger Carter. Conjugacy classes in the weyl group. Compositio Mathematica, 25(1):1-59, 1972. 1
[CL20] Nathan Chapelier-Laget. Shi variety corresponding to an affine Weyl group. 2020. arXiv: 2010.04310. 9
[CS13] John Conway and Neil Sloane. Sphere packings, lattices and groups, volume 290. Springer Science \& Business Media, 2013. 4
[DG77] Persi Diaconis and Ronald L Graham. Spearman's footrule as a measure of disarray. Journal of the Royal Statistical Society: Series B (Methodological), 39(2):262-268, 1977. 3
[DH16] Matthew Dyer and Christophe Hohlweg. Small roots, low elements, and the weak order in Coxeter groups. Adv. Math., 301:739-784, 2016. 5, 6, 16
[Dye90] Matthew Dyer. Reflection subgroups of Coxeter systems. J. Algebra, 135(1):57-73, 1990. 5
[Dye91] Matthew Dyer. On the "Bruhat graph" of a Coxeter system. Compositio Math., 78(2):185-191, 1991.
[Dye93] Matthew Dyer. Hecke algebras and shellings of Bruhat intervals II; twisted Bruhat orders. Contemporary Mathematics, 139:141-141, 1993. 1
[Dye01] Matthew Dyer. On minimal lengths of expressions of Coxeter group elements as products of reflections. Proc. Amer. Math. Soc., 129:2591-2595, 2001. 1
[Dye10] Matthew Dyer. On parabolic closures in Coxeter groups. J. Group Theory, 13(3):441-446, 2010. 5
[Edg07] Tom Edgar. Sets of reflections defining twisted Bruhat orders. Journal of Algebraic Combinatorics, 26(3):357-362, 2007. 1
[EH18] John Engbers and Adam Hammett. On comparability of bigrassmannian permutations. Australasian J. Comb., 71(1):121-152, 2018. 3
[EL96] Kimmo Eriksson and Svante Linusson. Combinatorics of Fulton's essential set. Duke Mathematical Journal, 85(1):61-76, 1996. 3
[ELM $\left.{ }^{+} 22\right]$ Jennifer Elder, Nadia Lafrenière, Erin McNicholas, Jessica Striker, and Amanda Welch. Homomesies on permutations-an analysis of maps and statistics in the findstat database. 2022. arXiv:2206.13409. 2
[Fay19] Matthew Fayers. Simultaneous core multipartitions. European J. Combinatorics, 76:138-158, 2019. 2
[FLO $\left.{ }^{+} 99\right]$ Omar Foda, Bernard Leclerc, Masato Okado, Jean-Yves Thibon, and Trevor Welsh. Branching functions of $A_{n-1}^{(1)}$ and Jantzen-Seitz problem for Ariki-Koike algebras. Adv. Math., 141:322-365, 1999. 31
[GJ11] Meinolf Geck and Nicolas Jacon. Representations of Hecke Algebras at Roots of Unity. Springer, 2011. 28, 31
[GK97] Meinolf Geck and Sungsoon Kim. Bases for the bruhat-chevalley order on all finite coxeter groups. Journal of Algebra, 197(1):278-310, 1997. 3
[GO96] Andrew Granville and Ken Ono. Defect zero p-blocks for finite simple groups. Trans. AMS, 348:331-347, 1996. 2, 30
[GP00] Meinolf Geck and Götz Pfeiffer. Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras. Oxford University Press, 2000. 1
[HK02] Jin Hong and Seok-Jin Kang. Introduction to Quantum Groups and Crystal Bases. American Mathematical Society, 2002. 12, 28
[HL16] Christophe Hohlweg and Jean-Philippe Labbé. On inversion sets and the weak order in Coxeter groups. European J. Combin., 55:1-19, 2016. 5
[Hum90] James E. Humphreys. Reflection groups and Coxeter groups, volume 29 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1990. 6
[IRRT18] Osamu Iyama, Nathan Reading, Idun Reiten, and Hugh Thomas. Lattice structure of weyl groups via representation theory of preprojective algebras. Compositio Mathematica, 154(6):1269-1305, 2018. 3
[JL20] Nicolas Jacon and Cédric Lecouvey. Keys and Demazure crystals for Kac-Moody algebras. Journal Comb. Alg., 4(4):325-358, 2020. 29, 31
[JL21] Nicolas Jacon and Cédric Lecouvey. Cores of Ariki-Koike algebras. Documenta Math., 26:103-124, 2021. 2
[JMMO91] Michio Jimbo, Kailash C. Misra, Tetsuji Miwa, and Masato Okado. Combinatorics of representations of $U_{q}(\widehat{s l(n)})$ at $q=0$. Comm. Math. Phys., 136(3):543-566, 1991. 31
[Kac84] Victor G. Kac. Infinite Dimensional Lie Algebras. Birkhäuser, 1984. 1, 7, 8, 32
[KMM21] Hankyung Ko, Volodymyr Mazorchuk, and Rafael Mrđen. Bigrassmannian permutations and Verma modules. Selecta Mathematica, 27(4):1-24, 2021. 3
[Kob10] Masato Kobayashi. Bijection between bigrassmannian permutations maximal below a permutation and its essential set. The Electronic Journal of Combinatorics, 17(1), 2010. 3
[Kob11] Masato Kobayashi. Enumeration of bigrassmannian permutations below a permutation in bruhat order. Order, 28(1):131-137, 2011. 3
[Las01] Alain Lascoux. Ordering the affine symmetric group. Algebraic Combinatorics and Applications, 01 2001. 30, 32
[Len05] Cristian Lenart. On the Combinatorics of Crystal Graphs, I. Lusztig's Involution. Advances in Mathematics, 211, 10 2005. 30
[LLT96] Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon. Hecke algebras at roots of unity and crystal bases of quantum affine algebras. Comm. Math. Phys., 181:205-263, 1996. 30
[LMPS19] Joel Brewster Lewis, Jon McCammond, T. Kyle Petersen, and Petra Schwer. Computing reflection length in an affine Coxeter group. Trans. Amer. Math. Soc., 371:4097-4127, 2019. 1
[LS90] Alain Lascoux and Marcel-Paul Schützenberger. Keys and standard bases. IMA Vol. Math. Appl., 19:125-144, 1990. 29
[LS96] Alain Lascoux and Marcel-Paul Schützenberger. Treillis et bases des groupes de coxeter. The Electronic Journal of Combinatorics, pages R27-R27, 1996. 3
[Lus03] George Lusztig. Hecke algebras with unequal parameters, volume 18. American Mathematical Soc., 2003. 1
[MM90] Kailash C. Misra and Tetsuji Miwa. Crystal base of the basic representation of $U_{q}\left(\widehat{s l_{n}}\right)$. Comm. Math. Phys., 134:79-88, 1990. 30
[PHD20] Vincent Pilaud, Christophe Hohlweg, and Aram Dermenjian. The facial weak order in finite coxeter groups. Discrete Mathematics \S Theoretical Computer Science, 2020. 4
[Rea02] Nathan Reading. Order dimension, strong bruhat order and lattice properties for posets. Order, 19(1):73-100, 2002. 3
[RWY11] Victor Reiner, Alexander Woo, and Alexander Yong. Presenting the cohomology of a schubert variety. Transactions of the American Mathematical Society, 363(1):521-543, 2011. 3
[San21] João Miguel Santos. Symplectic Keys and Demazure Atoms in Type C. Electronic. J. Comb., 28(2), 2021. Article \#P2.29. 29
[Shi87] Jian Yi Shi. Alcoves corresponding to an affine Weyl group. J. London Math. Soc. (2), 35(1):42-55, 1987. 9
[SU11] Joshua Sack and Henning Úlfarsson. Refined inversion statistics on permutations . Elec. Journal Comb., 19(1), 2011. 2, 3, 16, 27, 33

[^0]: *Institut Denis Poisson, Université de Tours, CNRS, Parc de Grandmont, 37200 Tours, France. Email address: nathan.chapelier@gmail.com
 \dagger École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland. Supported by the Ambizione grant PZ00P2_180120 of the Swiss National Science Foundation. Email address: thomas.gerber@epfl.ch

[^1]: ${ }^{1}$ The permutation w_{0} is the longest element of S_{n} in the Coxeter, see Section 2, which justifies the notation.

[^2]: ${ }^{2}$ The geometric representation of (W, S) gives a standard way to define root systems for any Coxeter system, see for example [DH16, Section 2.3].

[^3]: ${ }^{3}$ Point (2) is well-known but we find it useful to give the proof again.

