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Abstract
CDK8 and CDK19 form a highly conserved cyclin-dependent kinase
subfamily that binds to and inhibits the essential transcription complex,
Mediator, and is thought to also activate gene expression by
phosphorylating the C-terminal domain (CTD) of RNA polymerase II. Cells
lacking either CDK8 or CDK19 are viable and have somewhat limited
transcriptional alterations, but how they regulate expression of different
genes has not been explained, and whether one of the two kinases must
be expressed to allow cell differentiation is unknown. Here, we find that
CDK8 and CDK19 are largely functionally redundant for tissue-specific
gene expression. Genetic deletion of CDK8 in mice does not affect normal
intestinal homeostasis and efficient tumourigenesis, and CDK8 is not
required in vivo in cells lacking the main PolII CTD kinase, CDK7.
Individual knockout of genes encoding CDK8 or CDK19 in intestinal
organoids has only limited effects on gene expression due to their
extensive functional redundancy in control of gene expression.
Surprisingly, although their combined deletion in organoids reduces long-
term proliferative capacity, it is not lethal and allows differentiation.
Nevertheless, either CDK8 or CDK19 is required to maintain expression of
the Cystic Fibrosis Transmembrane conductance Regulator (CFTR)
pathway. In double mutant organoids, the CFTR pathway is
downregulated, leading to mucus accumulation and increased secretion
by goblet cells. Pharmacological inhibition indicates that expression and
function of the CFTR pathway is dependent on CDK8/19 kinase activity.
We conclude that expression of the Mediator kinases is not essential for
cell proliferation and differentiation, but they cooperate to regulate tissue-
specific transcriptional programmes.

CDK8 and CDK19 act 
redundantly to control the 
CFTR pathway in the 
intestinal epithelium
Susana Prieto1,2, Geronimo Dubra1,2, Lucie Angevin1,2, Ana Bella Aznar1,2, Alain 
Camasses1,2, Christina Begon-Pescia1,6, Nelly Pirot4,5, François Gerbe2,3, Philippe 
Jay2,3, Liliana Krasinska1,2 and Daniel Fisher1,2

1IGMM, University of Montpellier, CNRS, Inserm, Montpellier, France.
2Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le Cancer, Paris, France.
3IGF, University of Montpellier, CNRS, Inserm, Montpellier, France.
4IRCM, University of Montpellier, ICM, INSERM, Montpellier, France
5BioCampus, RHEM, University of Montpellier, CNRS, INSERM, Montpellier, France
6Current address: LPHI, University of Montpellier, Montpellier, France

Genotyping

A

CD
K8

Cdk8 +/+ Cdk8 -/-

B

βC
at

en
in

Br
dU

Pr
ol

ife
ra

tio
n

Ki
-6

7
PC

NA

Cdk8 +/+ Cdk8 -/-

Di
ffe

re
nt

ia
tio

n
Ly

so
zy

m
e

Dc
lk1

O
lfm

4
PA

S

Cdk8 +/+ Cdk8 -/-

Cdk
8 
Lo

x/L
ox

Cdk
8 
-/-

0
20
40
60
80

100

D
cl

k1
 p

os
iti

ve
 c

el
ls

 in
 5

0 
V

ill
i

ns

Cdk8+/+ Cdk8-/-

N
°

D
cl

k1
+ 

ce
lls

in
 5

0 
vi

lli

Crypts in 
Small Intestine

Cdk
8 
Lo

x/L
ox

Cdk
8
 -/

-
0

20
40
60
80

100

%
 o

f p
os

iti
ve

 L
ys

oz
ym

e 
ar

ea

ns

Cdk8+/+ Cdk8-/-%
 L

ys
oz

ym
e+

 a
re

a

Cdk
8 
Lo

x/L
ox

Cdk
8 
-/-

0
20
40
60
80

100

%
 o

f p
os

iti
ve

 P
A

S
 a

re
a

ns

Cdk8+/+ Cdk8-/-

%
 P

AS
+ 

ar
ea

Cdk
8 
Lo

x/L
ox

Cdk
8 
-/-

0
20
40
60
80

100

%
 o

f p
os

iti
ve

 B
rd

U
 a

re
a

ns

Cdk8+/+ Cdk8-/-

%
 B

rd
U

+ 
ar

ea

Cdk
8 
Lo

x/L
ox

Cdk
8
 -/

-
0

20
40
60
80

100

%
 o

f p
os

iti
ve

 K
i-6

7 
ar

ea

ns

Cdk8+/+ Cdk8-/-

%
 K

i-6
7+

 a
re

a

Cdk
8 
Lo

x/L
ox

Cdk
8 
-/-

0
20
40
60
80

100

%
 o

f p
os

iti
ve

 P
C

N
A 

ar
ea

ns

Cdk8+/+ Cdk8-/-%
 P

C
N

A+
 a

re
a

Fig. 2. (A) Immunohistochemical staining of CKD8 in mouse small intestines collected
two months after tamoxifen treatment. (B) Analysis of cell differentiation (left) and
proliferation (right) in the intestine after CDK8 deletion (as in A). Olfm4, Lysozyme, PAS
and Dclk1 staining was used to reveal, respectively, stem, Paneth, goblet and tuft cells. b-
Catenin staining allows detection of cancer cells (cytoplasmic vs nuclear localisation). Cell
proliferation was assessed by PCNA, Ki-67 and BrdU (after 1h pulse) staining. Scatter plots
represent the percentage of the area stained by each antibody (relative to the area
occupied by hematoxylin). For Paneth cells, BrdU, PCNA and Ki67, only crypts were
analysed. For goblet cells, crypts and villi were analysed. For Tuft cells quantification,
Dclk1 positive cells were counted in 50 villi. Colour code depicts small intestine (green),
proximal colon (blue), and distant colon (red). Mean ± SEM is shown. P-value of unpaired
two-tailed t-test is indicated (ns, not significant; p > 0.05). Scale bars, 25µm (Olfm4,
Lysozyme, Dclk1 and b-Catenin) and 50µm (PAS, BrdU, Ki-67 and PCNA).

Fig 1. Mouse Cdk8 conditional knockout by Lox/Cre targeting of exon 2. (A) Left,
scheme representing the control plasmids (a, b, and c) for WT, floxed and recombined
Cdk8 exon 2. Right, genotyping of Cdk8 exon 2 in the mouse intestinal epithelium. All mice
were treated with Tamoxifen to induce recombination of the LoxP sites. The recombined
fragment appears as a 340 bp band in the Cdk8 -/- and Cdk8 +/- mice (VillinCreERT2

recombinase-positive), and is absent in the Cdk8 Lox/+ mouse that does not contain the
VillinCreERT2 gene. (B) WB analysis of mouse intestine epithelium showing the absence of
CDK8 protein 2 months after Tamoxifen feeding. GAPDH protein was used as loading
control.
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Fig 1and 2. CDK8 knockout does not affect adult mouse 
intestine homeostasis
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Fig 3. Effects of CDK8 and CDK7 knockout on RNA pol II CTD phosphorylation. WB
analysis of the indicated proteins in mouse intestinal epithelium (A) or liver (B) samples
from WT and Cdk7 lox/lox, Cdk8 lox/lox, Rpb-Cre-Ert2 KI/KI mice after tamoxifen treatment.
Amido-black staining was used as loading control.
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Fig 3. 
-No critical role for CDK8 in RNA-PolII C-Terminal 
Domain (CTD) phosphorylation. 
-Low levels of CDK7 are sufficient for RNA-PolII CTD-
phosphorylation
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Fig 4. (A) Scheme showing the steps of the AOM/DSS carcinogenesis experiment. (B)
Graphs showing female (left; n=6 in both groups) and male (right; n=5 in both groups)
weight evolution over 21 days following the last DSS treatment. (C) Genotyping after
AOM/DSS treatment confirms the recombination and loss of Cdk8 exon 2 in colon
tumors from Cdk8 -/- mice. Control plasmids (a and b), are described in Fig 1A. (D) WB
with the same colon tumour samples presented in (C). b-actin was used as the loading
control. (E) Quantification of the number of neoplastic lesions (n = 10 for Cdk8 +/+, and n
= 7 for Cdk8 -/- mice). P-value of umpaired t-test is indicated: ns, not significant (p > 0.05).
Mean ± SD is shown. (F) Quantification of the percentage of the colon surface occupied
by tumours. Intestine samples were stained for b-Catenin, and tumour regions with
nuclear b-Catenin localisation were quantified. Two-tailed p-value of unpaired t-test is
indicated; ns, not significant (p > 0.05). Mean ± SD is shown. (G) Example of IHC with b-
Catenin staining of tumour-free regions with membrane b-catenin localization (left) and
tumour regions with nuclear b-catenin localisation (right). Scale bars, 50µm.
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Fig 4. CDK8 loss does not affect chemically-induced 
intestinal carcinogenesis.
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Fig 5. (A) Genotyping confirms the loss of Cdk8 exon 2 in intestine epithelium from
Apc -/-/Cdk8 -/- mice. Control plasmids (a, b and c) are described in Fig 1A. (B) WB with
intestine epithelium samples from mice presented in (A) confirm the absence of CDK8
protein in Cdk8 -/- mice. Amido-black staining was used as loading control. (C) IHC
staining of CDK8 and Ki-67 in small intestine and colon samples from Apc -/-/Cdk8 +/+

and Apc -/-/Cdk8 -/- mice. Scale bars, 100µm. (D) Quantification of the Ki-67 positive
area (% of the total area of the intestine presenting positive staining, quantified using
QuPath and Image J software; mean ± SD) in the Ki-67 IHC shown in (C). Ki-67 (n=16).
Two-tailed p-value of unpaired t-test is indicated: ns, not significant (p > 0.05).
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Fig 5. CDK8 deletion does not prevent Apc-loss-
dependent tumourigenesis in mouse intestine.
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Fig 6. (A) Sequence alignment of Cdk8 (blue) and Cdk19 (green) proteins from:
Homo sapiens, Mus musculus, Xenopus tropicalis, Xenopus laevis, and Danio rerio.
Homologous sequences are black. The consensus (> 80%) is presented below the
alignment. (B) Scheme indicating the fragment of Cdk19 exon 1 removed by CRISPR-
Cas9 (highlighted in red) in intestinal organoids. The arrow indicates the sequence of
the sgRNA used. The sequence trace obtained after gene editing is presented below.
The colour-code in the sequence in the box corresponds to the sequence trace.

Fig 6. Amino acid sequence conservation of CDK8 
and its paralogue CDK19 between different 
vertebrates.
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organoids after 7 days of OH-tamoxifen treatment. Control plasmids (a, b and c) are described
in Fig 1A. (B) WB of organoid samples after 7 days of OH-tamoxifen treatment; b-actin was
used as loading control. (C) CDK8/CDK19 KO organoids are counter-selected. WB
indicating the levels of CDK8, CDK19 and phospho-Stat1-S727 in organoids after 14 days of
tamoxifen treatment. Two out of the three Cdk8 -/-/Cdk19 -/- clones (clon 10 and clon 12) show a
reappearance of the CDK8 protein: compare with Fig. 7B where proteins were extracted from
the same samples, but one week earlier. (★) indicates the two clones where CDK8 protein is
detected; this was observed only in organoids where double KO had been induced. (D) Phase
contrast images of organoids before and after 6 days of OH-tamoxifen treatment. Scale bars,
150µm. (E) Quantification of organoid size at day 0 and 6, shown in D (mean + SD are shown).
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Fig 7. Double CDK8/CDK19 knockout intestinal organoids 
show decreased cell proliferation.
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Fig 8. Functional redundancy between CDK8 and CDK19 
in regulation of gene expression
-Significant alteration of genes also modulated in 
intestinal KOs of the Cystic Fibrosis Transmembrane 
conductance Regulator (CFTR) in the Cdk8-/-/Cdk19-/- KO
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Fig. 9. (A) Histological PAS staining of organoids treated for 7 days with OH-tamoxifen. Scale
bar, 50µm. (B) Quantification of PAS signal (% of total organoid area; mean ± SD are shown)
in the four different genotypes presented in (A). Adjusted p-values of ordinary one-way
Anova followed by Tukey’s multiple comparison test are indicated: (***) p-value ≤ 0.001; ns:
not significant (p > 0.05). (C) Representative phase contrast images of organoids at the
indicated time points after 7 days of OH-tamoxifen treatment. Scale bar, 100 µm. (D)
Quantification of the time needed for mucus release (observed as a dark staining in the
center of the organoid; mean ± SD are shown). Adjusted p-values of ordinary one-way
Anova followed by Tukey’s multiple comparison test are indicated: (***) p-value ≤ 0.001; ns:
not significant (p > 0.05); (n= 17 for Wt, n=11 for Cdk8 -/-, n=18 for Cdk19 -/-, n= 12 for Cdk8 -
/-/ Cdk19 -/-). (E) Fluorescence confocal microscopy images of Calcein green–labeled WT and
Cdk8-/-/Cdk19-/- organoids treated with forskolin. Scale bars, 100 μm. (F) Quantification of
forskolin-induced swelling in WT organoids treated for 1hour or 24 hours with 0.1µM, 1µM or
10µM Senexin B (SenB), as indicated, or double KO organoids; DMSO vehicle was used as
control. The surface area of individual organoids at different time points relative to the area at
t = 0 (100%) was measured (mean ± SD, n=8). Linear regression lines are shown. (G) qRT-PCR
analysis of Cftr and Muc3 mRNA levels in WT organoids either not treated (t=0), or treated
with 10µM Senexin B for 2 or 24 hrs.

Fig 9. CDK8 and CDK19 regulate the CFTR pathway in the 
small intestine.

Conclusions

-Our in vivo results support that Cdk8 has neither oncogenic nor strong tumour suppressor activity in the mouse intestine.

-No critical role for CDK8 in RNA-PolII CTD phosphorylation

-Mediator kinases are both functionally redundant and largely dispensable for cell survival, proliferation, and
differentiation, but may be essential for regulation of specific gene sets in particular cell types; in this case, the CFTR pathway
in the intestinal epithelium.

-In the intestinal epithelium, cells devoid of both kinases have an increased tendency to become quiescent, implying that
CDK8 and CDK19 provide a growth advantage.

-Kinase activity of CDK8/19 controls CFTR pathway gene expression. Double knockout organoids showed increased
mucin expression and strong accumulation of mucins in goblet cells, coupled with a precocious secretion of mucus, as
well as a lack of forskolin-induced swelling, which depends on CFTR, indicating that CDK8/19 regulate fluid and/or mucus
homeostasis.

-Since we only observe an inhibition of forskolin induced swelling when the organoids are incubated during 24 hours in the
presence of CDK8/19 inhibitor (Senexin B), and not after 1 hour of incubation, the mechanism of action appears to be due
to transcriptional downregulation of Cftr and not to direct phosphorylation of CFTR.

-Identifying the mechanisms by which CDK8 and CDK19 affect expression of genes in the CFTR pathway will be important to
better understand the pathophysiology of cystic fibrosis.
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