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» Abstract

13 Dramatic spatial, temporal and taxonomic variation in biodiversity is ultimately explained by differences in
1 speciation and extinction rates. Mammals represent a ~200 My old radiation that resulted in over 6500 extant
15 species, with stark temporal, spatial and taxonomic heterogeneity in biodiversity. Throughout their history,
16 every mammal lineage is expected to have undergone diversification rates that vary instantaneously in time
v resulting from the complex interplay of context-specific extrinsic factors (e.g., K-Pg mass extinction event,
18 rise of angiosperms) with their evolving ecologies (e.g., body size, diet). When studying the diversification
19 history of a clade, however, mathematical and computational limitations have hindered inference of such a
2 flexible birth-death model where speciation and extinction rates evolve continuously along a phylogenetic
xn  tree. Here we overcome these challenges by implementing a series of phylogenetic models in which speciation
» and extinction rates are inherited and diffuse following a latent Geometric Brownian motion process. We
»  enable full Bayesian inference using data augmentation techniques to sample from the posterior distribution of
2 model parameters, including augmented phylogenetic trees and validate using simulations. Using a genome-
» informed time-calibrated tree for over 4000 Mammals species, we are able to estimate a complete and
»% fine-grained picture of the variation in diversification rates that captures both global and lineage specific
s effects. We find that, contrary to the idea of a suppressed mammalian diversification before the K-Pg mass
s extinction event (i.e., explosive- or delayed-rise), mammal speciation rates dramatically increased around
2 10-20 My before the K-Pg. Our new model opens exciting possibilities in disentangling the drivers behind

s variation in diversification and assaying how small-scale processes scale-up to macroevolutionary dynamics.
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+ Introduction

2 Understanding the tempo and mode in which lineages diversify is fundamental in explaining the origin and
;3 maintenance of biodiversity. The rates at which species originate or go extinct result from the interplay
u  between their intrinsic traits and their specific abiotic and biotic environment (Benton, 2009). For instance,
3 environmental oscillations and landscape heterogeneity are commonly posited as major drivers of diversifica-
s tion by precipitating population dispersal and fragmentation as well as opening new opportunities (Barnosky,
s 2001; Jablonski, 2008). Similarly, the evolution of both intrinsic (e.g., species phenotype, their niche, and
s their evolutionary rate) and extrinsic biotic factors (e.g., competition and other inter-specific interactions)
s are thought to affect the pace of evolutionary radiations (Van Valen, 1973; Benton, 2009; Quintero and
w0 Landis, 2019). Therefore, the interrelation of fluctuating context-specific dynamics with species’ intrinsic
s evolving ecologies are expected to result in lineage-specific diversification rates that themselves evolve and
2 can vary at any point in time.

3 The mammal radiation started at around 200 Mya (Upham et al., 2019; Alvarez-Carretero et al., 2021) and
« resulted in an estimated present-day diversity of ca. 6450 currently recognized species (Mammal Diversity
s Database, 2022). Distinct mammalian evolutionary routes led to marked differences in ecomorphologies,
w reflected in body size (108 fold differences), generation time, litter size and habitat (aquatic, arboreal,
w terrestial, fossorial, etc.) variation, concomitant with an uneven distribution of richness across clades (Davies
s et al.; 2008; Meredith et al., 2011; Grossnickle et al., 2019). Furthermore, throughout their long evolutionary
w0 history, lineages were differentially impacted by environmental factors such as the radiation of flowering
so plants (i.e., the Cretaceous Terrestrial Revolution), the K-Pg extinction event, the Paleocene-Eocene thermal
51 maximum, and other dramatic environmental oscillations, which likely spurred widespread distribution shifts
2 and extinctions together with novel ecological opportunities that impacted diversification rates (Meredith
s3 et al., 2011; Grossnickle et al., 2019; Upham et al., 2021). Indeed, a major unsolved debate in mammalian
sa  evolution revolves around understanding the timing at which the orders with living representatives originated
s and diversified (Bininda-Emonds et al., 2007; Stadler, 2011a; Meredith et al., 2011; Grossnickle et al., 2019;
s Springer et al., 2019; Upham et al., 2021). Standing hypotheses posit that crown orders increased their
s7 diversification either before, at or after the K-Pg event, dubbed as ‘early-’, ‘explosive-’ or ‘delayed-’ rise
s of extant mammals, respectively (Meredith et al., 2011; Grossnickle et al., 2019). The complex interplay
s of mammal species-specific ecomorphologies with their particular environments that fluctuate throughout
s lineage’s duration translate into lineage- and time- specific rates of diversification along their evolutionary
o1 history, that is, a given lineage is expected to undergo diversification rate changes at any moment in time.
62 Nonetheless, extreme external events, such as the rise of angiosperms or the K-Pg extinction event, are
63 thought to transcend lineage-specific diversification dynamics, and leave a common signature across lineages
s during that particular period (Barnosky, 2001). Therefore, to explore the temporal dynamics that led to
e extant mammal diversity, an idealized model of diversification that enable the reconstruction of overarching
e temporal dynamics while incorporating rates of speciation and extinction that change instantaneously along
e time for any lineage is needed.

68 Several phylogenetic approaches have been developed to account for heterogeneity in time or across
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e lineages in characterizing diversification rate variation across taxa. Most available methods that incorporate
w0 rate heterogeneity across lineages assume a (usually few) number of independent shifts across the tree that
n  partition the tree into separate ‘regimes’ (or states) wherein lineages undergo constant rates: ‘BAMM’
= (Rabosky, 2014), ‘birth-death-shift’ process (Hohna et al., 2019), ‘MTBD’ (Barido-Sottani et al., 2020), and
7 ‘MiSSE’ (Vasconcelos et al., 2022). Instead of identifying large diversification shifts along a phylogenetic
n  tree, ‘ClaDS’ assumes that shifts occur at each cladogenetic event, with daughter lineages undergoing rate
s constancy within each lineage (Maliet et al., 2019). The only method we are aware of that allows lineage-
7 specific speciation and extinction rates to vary instantaneously through time, ‘QuaSSE’, assumes that this
7 variation is completely explained by the evolution of a trait under Brownian motion (FitzJohn, 2010). While
7 these methods have proven very useful in reconstructing diversification dynamics on phylogenetic trees, they
7 remain restrictive in assuming rate constancy either across ‘regimes’ or along a given branch, and a more
e flexible model is required.

81 Here we assess the tempo and mode in which surviving mammal orders originated and diversified by
& applying the first phylogenetic diversification model in which lineage-specific diversification rates vary in-
s stantaneously in time by assuming that speciation and extinction rates follow a Geometric Brownian motion:
s the Birth-Death Diffusion (BDD) model. We show that the BDD and other simpler diffusion models, in-
s cluding no extinction, constant-extinction and constant-turnover, exhibit good statistical properties in most
s scenarios and are identifiable even when restricted to extant taxa alone. Considering that the temporal
sz dynamics of mammalian diversification will rely on the accuracy of the phylogenetic tree, we use the latest
s time-calibrated molecular tree for mammals, which incorporated 72 species genomes enhancing the time-
s dating robustness (Alvarez—Carretero et al., 2021). We validate our method and perform Bayesian inference
o of our diffusion models on this mammalian tree using data augmentation techniques. On top of posterior
o1 probabilities for the main process parameters, our model also returns for free posterior sampled histories of

oo diversification across trees with unobserved speciation events enabling post-hoc analyses and visualizations.

» Model

«  We assume that, at some time ¢, each lineage [ has an instantaneous rate of producing new species of \;(t)
s (i.e., speciation rate) and an instantaneous rate of going extinct of y;(t) (i.e., extinction rate). This general
os birth-death process generates a bifurcating phylogenetic tree with some lineages dying out and others giving
or rise to daughter species after some time. Probabilistic inference is complicated since, in practice, we do not
9s observe the whole process, but rather the evolutionary relationships among those lineages that were able to be
o sampled, that is, the “reconstructed” phylogenetic tree (Nee et al., 1994). Our goal is to perform inference
w0 on speciation and extinction rates that are inherited and stochastically diffuse through time following a
w1 Geometric Brownian motion, given that we only observe the reconstructed tree. Because there is no available
102 analytical solution to estimate the likelihood, we use Bayesian data augmentation techniques to perform full
103 posterior inference on birth-death diffusion models. We start by describing the data augmented approach for
e a simple constant rate birth-death (‘CBD’) model, which we then expand on to enable inference on models

s with rate diffusion.
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106 Let ¥ be an ultrametric rooted phylogenetic tree under a general birth-death process that starts at some
w7 time Ty (i.e., tree height) in the past and continues to time 0 in the present with n surviving tips and per-
s lineage speciation rate A;(t) and extinction-rate p;(t) for lineage I at time ¢. Furthermore, each clade ¢ has
100 a specific probability for extant lineages to be represented in the observed tree, specified by p. € [0,1]. We
1o propagate this probability throughout all the branches in the tree by specifying a branch-specific sampling
m  fraction p, for branch b. For terminal branches in clade ¢ we simply assign p, = p. Vb € c. Let ap be the
u2  number of alive tips descending from branch b in the observed tree, then, for internal branches, we calculate
us pp = (ag1 + aq2)/(ad1/pa1 + ada2/paz), where d1 and d1 are the daughter branches. Thus, the probability of
us  sampling exactly 1 extant species for a terminal branch b is aypp(1 — pp)?~* and sampling no extant species
us  for internal branch b is (1 — pp)?, following Maliet and Morlon (2021).

116 We use Bayesian data augmentation (DA) to sample unobserved lineages that either went extinct in the
7 past or were not sampled at the present during inference. For clarity let ¥, represent only the reconstructed
us (observed) tree, ¥, represent some unobserved speciation and extinction events and let ¥ (= ¥, U ¥,)
ne  represent the complete tree. Given that we do not observe ¥,, we treat it as a random variable to integrate
1o over using Markov Chain Monte Carlo (MCMC).

= Constant rate Birth-Death

122 In the CBD model, at any time, all lineages share the same speciation and extinction rate A and u, respectively

123 (i.e., )\l(t) = X and ,ul(t) = u).

124 Likelihood The likelihood for a complete unordered crown tree under a CBD process is simply
L(TIN, p) = N pFem OFmE,

s where s is the number of speciation events, z is the number of extinction events, L is the tree length (sum
126 of all branches). For a stem tree, we do consider all s speciation events.

127 To integrate over ¥ during MCMC, we developed two alternative approaches for data augmentation. A
vs  first approach samples U, directly from its conditional distribution, given ¥, and the model parameters (i.e.,
120 Gibbs sampling) using forward simulation. A second approach is based on accept-reject sampling, based on
1o proposals of grafting and pruning. Each can be useful on different contexts, but we relied mostly on the
w forward simulation approach, which we describe below, and leave the description of the grafting/pruning

12 approach for the Appendix.

13 Forward simulation Here we follow Maliet and Morlon (2021) in our forward simulation approach but
134 describe it more generally for the CBD process. First, we uniformly sample a branch in the tree and simulate
135 a birth-death process forward in time throughout the branch length ¢, for branch b, given the current model
s parameters. For any branch, if the process becomes extinct before ¢;,, we reject the proposal (i.e., it requires
w7 that at least 1 species is alive at time ¢;). Note that for a terminal branch ¢, is the present. If the branch
138 is internal, and there is more than one surviving lineage by t;, we pick one tip at random as the one that

130 gave rise to the observed speciation event and continue the simulation in forward fashion for the others. All
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1o other unobserved lineages should go extinct before the present or, if there are unobserved data augmented
1w lineages at the present, then the proposal is rejected or accepted following the branch’s sampling fraction,
1w Pp.

143 Let 1, denote the forward simulated tree in branch b, ny(¢;) denote the number of lineages alive at time
s 1ty (i.e., at the end of the branch) and n;(0) denote the number of lineages alive at the present for ¢, then
ws  the acceptance ratio in the Metropolis-Hastings (MH) step for the proposed forward simulation 1 if b is a

us terminal branch is

’ / o n/ (0)71
a=min{1, (WA ) ﬁ(w,blA,u) " n,(0)pp(1 — pp)"® L
E(\II|)\, 'u) f(¢b|/\’ M) nb(O)pb(l — Pb)nb( )—

wr and if b is an internal branch

o U | ) L(pp Ay ) 1 mp(ty) (1 — pp) (@1
o mm{l’ QU ) B ) mg(t) (1= py)m(©@T }

where the 1/ny(tp) factor comes from the proposal density of randomly and uniformly choosing one of the
extant lineages at time ¢, as the one sampled in the reconstructed tree. Because the full tree likelihood for

the proposal only differs on the specific branch, the acceptance ratio simplifies in terminal branches to

. LRI 1) L A ) mp(0)pp(1 = pp) @71 n3,(0) n (0)—n4 (0)
“‘mm{l’wbA,me(wm,u)an<o>pb<1—pb>nb<0>1 =i {12 1) b

and in internal branches to

; — pp)"(0)—16(0) !
S G e e B

(1- pb)n;<o>nh<0>} @

us  The acceptance probability for the sampling fraction is common to all further models, so, for simplicity, we

u9 suppress it in the rest of the manuscript.

150 Conditioning on survival To condition on survival of the process we use the pseudo-marginal principle
151 from Andrieu and Roberts (2009). We describe here the approach in a general manner since it applies to all
12 models that involve extinction. Assuming crown conditioning, that is, that both crown lineages survive to
153 the present and letting £(¥]0) be the likelihood of the tree and p(#) the prior for parameters 6 we target the

152 unnormalized density
((v[6)p(0)
0)= ——~—=
1= sm)y

155 where S(6) is the probability that a lineage at Ty survives until the present.
Following Ronquist et al. (2021),

1 o0
2(0) = TS50y = KZ::OKg(KIH)

155 where g(K0) = (1—5(0)?)X~15(0)2. Thus, z(f) is the expectation of a geometric distribution of parameter
157 S(0)2. We can then sample K from g(K|f) (for which we do not have an analytical solution: see Appendix),

18 by simulating two lineages under 0 starting at Ty and counting the number of attempts until both survive.


https://doi.org/10.1101/2022.08.09.503355
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.09.503355; this version posted August 11, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

150 To sample from density ¢(6) we perform MCMC on the pair of variables (0, K) targeting instead
02(0, K) = £L(¥|0)p(0)g(K|0) K

1o marginally obtaining our target density

Y (6, K) = L(¥9)p(6)=(8) = a(f).

K=0
i Effectively, our algorithm proposes a new value for 0, 6 ~ s(6,df’), and then, given €', proposes K’ by
12 drawing from K’ ~ g(K’|f) and accept this with probability a = min{1,r}, where
_s(0,d0) (90" )p(0") K"
s(0,d0Ne(V|0)p(A)K

163 circumventing the need to analytically compute z(6) while providing exact MCMC inference. Of note, in
16« this equation for r, £(¥]0)p(#) K is an unbiased estimate of ¢(#) in the denominator, and similarly for ¢(6’) in
s the numerator. Replacing the target by an unbiased stochastic estimate of it in the acceptance ratio, while
s preserving exact MCMC sampling, is the fundamental idea of the pseudo-marginal principle (Andrieu and
17 Roberts, 2009). For stem conditioning, the probability of survival of one lineage until the present, we simply
s estimate K as the number of times until a single lineage at time Ty survives to the present (i.e., z() is the

e expectation of a geometric distribution of parameter S(6)).

1w Mixed Gibbs sampling for A and ¢ Given the complete tree, ¥, A and p follow a Poisson distribution
wm  and thus one can sample (almost) directly from their full conditional posterior via Gibbs sampling. We
w2 use the conjugate Gamma prior, I'(k,¢) for both A and p, which results in the following full conditional

173 distribution from which we can sample directly
p(\l) ~T(k+ 5,6+ L),

s and similarly with p but using the number of extinction events. The conditioning on survival, however,
s requires adding a MH step, such that the proposed speciation and extinction rates A’ and p’ are accepted
we  with probability ¢ = min{1, K'/K}.

177 We validate our data augmentation implementation of the constant rate birth-death by comparing the
ws rate posteriors with the analytical solution from (Nee et al., 1994) implemented in a Bayesian framework in

wo  the ‘diversitree’ package (FitzJohn, 2010) for R (R Core Team, 2022) (see Fig S1).

1w Pure-Birth Diffusion

11 We now relax the condition that speciation rates are constant through time and across taxa by rather defining
12 A(t) to be the result of a stochastic diffusion process. In other words, we consider the observed phylogenetic
183 tree as the outcome of an unobserved latent process of speciation. For simplicity, we start by assuming
e that there is no extinction, and call this model the Pure-Birth Diffusion (‘PBD’). Specifically, we assume
15 that speciation rates for lineage ! evolve anagenetically following the exponential of a Brownian motion (i.e.,

s Geometric Brownian motion, GBM), such that

din(\(t)) = adt + oxdW (1), (3)
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w7 where « represents the drift and o the diffusion rate for speciation rates and W (t) is the Wiener process

s (i.e., standard BM). This diffusion rate has units Under this model, the drift, o, determines

19 the median or geometric expectation of the rates, but not its arithmetic mean expectation. That is, if « = 0,
10 after some time half of the GBM processes will be lower than the starting rate and the other half will have
11 increased. Given the non-negative nature and log-normal expectation, the arithmetic mean of will be larger
12 than the median, which is why we perform all rate transformations and aggregations using the geometric
103 mean (see below).

104 At cladogenesis, the current value for speciation rates are inherited identically, that is, for any cladogenetic
s event at time t; and an ancestral lineage rate of Ay (ts), then Ay, (ts) = Aa,(ts) = Aa(ts), where di and dy
s represent each of the daughter lineages. At the start of the tree (i.e., time Ty) \;(Ty) = A,

197 Note that adding the drift parameter « is important in some contexts to restrain the “run-away species
s selection” that our model and others with inherited speciation rates (Beaulieu and O’Meara, 2015; Maliet
wo et al., 2019), produce. Specifically, lineages with higher speciation rates will generate daughters with a higher
a0 expected rate, which will themselves generate even more daughters, and so on. Including a drift parameter

20 and/or extinction constraints allows avoiding such a run-away.

22  Data augmentation We use a data augmentation approach to approximate the likelihood of rates that
23 follow GBM diffusion (Horvilleur and Lartillot, 2014; Quintero and Landis, 2019). Namely, we generate
20 unobserved stochastic paths of GBM for all lineages across the tree to approximate the likelihood of a
205 phylogenetic tree generated under Eq. 3. We determine a small time step, d, such that §; = ¢;41 —t;, where
205 t; < t;y1, and divide each branch of the tree into m small time steps such that m = |t,/d] + 1, where ¢
207 represents the edge length of branch b. Note that the last time step for branch b is always smaller than ¢
20 assuming that the probability that ¢, is a multiple of d¢ is 0. Thus, for any branch b, we sample the data
20 augmented diffusion process at times t = {t; = 0,t3 =t1 49, ..., tmy1 = lp}, obtaining the stochastic process
a0 Ay ={Np(t1),..., M(tp)} sampled in a discrete time grid. For clarity and conciseness we denote \;(¢;) as A;

21 from now on.

a2 Likelihood For any time step [t;,t;11], we sample \; and \;;1 at the endpoints. Given a sufficiently small
213 time step, d;, a good approximation for the likelihood of no event happening during time [t;,;11] is:

(AN — ad;)? }

_ 1
£ infti, 1] A Aists 03 Mppp) = exp { — 10} x ————exp{ —
p(no event inft;, ti11]|Ai, Aig1, 05, Mppp) = exp { =i it16; } poras eXp{ 2607

2 where \; ;41 represents the geometric mean for {\;, \iy1}, AN = In(Ai11) —In(A(¢;)), and Mppp represents
25 the PBD model given by Eq. 3. The first part of the equation is the probability that there is no speciation
26 events during d; and the second part is the probability that the GBM diffused from A; to A;;1. For internal
a7 branches we then simply multiply the speciation events likelihoods. Given the data augmented stochastic
x1  diffusion for speciation rates across the tree, A, the likelihood for the full tree under the Yule Diffusion

a9 process can be then straightforwardly approximated by

P(T[A, A, o, Mpep) = [ Alte) [] [ [ p(no event infti, ti1]|Ai, Xit1, o, MpeD), (4)
bEV; b =1
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20 where Uy are the set of internal branches. Note that topology matters, and for an ancestral lineage a with

a1 daughter branches d; and da, we have that A\, (tp) = Mg, (t1) = Mg, (t1)-

2 Diffusion updates We integrate over possible rate diffusion histories, A, using Metropolis-Hastings diffu-
23 sion path updates. We use a path diffusion update based on internal nodes that are connected to a ‘triad’
24 of branches in W, that is, given a parent and its daughter branches, pr, d; and ds, respectively. We con-
25 sider the following four cases to update the triad diffusion paths A, 4, 4,0 ¢) If all branches are internal
26 and the parent is not the root, we make a GBM proposal for the node conditioned on the end points (i.e.,
21 Apr(t1), Ad, (ts), Aa, (tp)) and respective branch lengths. We then propose diffusion paths using Brownian
28 bridges for each branch with the new node value as an endpoint. ) If all branches are internal and the par-
29 ent is the root, we make a GBM node proposal conditioned on the daughter end points, from which we then
20 backwardly propose a new root value A,.. We then use Brownian bridges to sample their respective diffusion
an paths. 4) If one of the daughter branches is terminal, we make a GBM node proposal conditioned on the
a»  endpoints, from which we propose a new GBM value for the endpoint (i.e., tip) of the terminal branch. We
23 then use Brownian bridges to sample their respective diffusion paths. 4v) If both of the daughter branches
2 are terminal, we simply make a GBM node proposal given the parent branch, and then forwardly simulate
25 both terminal daughter diffusion paths. Note that the drift term, «, cancels out when proposing Brownian
26 bridges with drift, as it is fully determined by the endpoints and time elapsed.

237 Then, the acceptance probability, a, for a new diffusion path proposal, A’ is

o = min {1 p(N|¥, o, 00, MpBD) o p(Ala, oy, Mgem) }
" p(A|¥,a,00, Mpep)  p(N|a, o5, MaBm) |’

28 where Mgpwm represents the GBM model. Note that this ratio simplifies because the Brownian motion part
230 in the likelihood cancels out with the proposal probability. We specify a uniform prior on the the speciation

uo rates at the root, A,.

1« and o), updates We use a Normal conjugate prior, p(a) ~ N(v,7) to directly sample from the full
22 conditional posterior distribution (see Appendix for derivation):

(2P0 + 5y 0m = M) o3
@p+L @PAL)

p(alA, ox, v, 7, MpBD) NN< (5)

xs where L is the tree length. Similarly, we specify the Inverse Gamma conjugate prior p(o3) ~ I'"!(x,<), and

24 we obtain the following posterior conditional distribution (see Appendix for derivation):

_ N (AN — ad;)?
2 1 7 i
p(O')\‘A,Cv,I{,QMpBD)NF <I€+2, §+zb:;26i>, (6)

us  where N =5, > 1.

26 While the Inverse Gamma prior for o) is advantageous by allowing full Gibbs sampling, substantially
27 enhancing the properties of our MCMC approach, it has some drawbacks, particularly with small phylogenetic
us  trees. As expected, small datasets (e.g., 50 tip trees) are particularly affected by the choice of prior: a

20 1'71(0.05,0.05), for instance, will enforce very low probabilities to small values (e.g., o) < 0.1), overestimating
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»0  the diffusion rate. Conversely, a I =1(0.1,0.001) prior, for instance, will capture small values of o but will
s underestimate higher diffusion rates (Fig S2). While the prior choice becomes asymptotically irrelevant as
» more data is included, we emphasize that, for inference, some rationale should be taken for the choice of

»3 prior (Fig S2).

s  Birth-Death Diffusion

s We now relax the condition that extinction rates are non-existent and rather define three diffusion models
»6  that incorporate extinction: i) constant extinction, p(t) = p (‘CED’), 4) constant turnover, u(t) = eA(¥)
s (‘CTD’), and 4ii) extinction also being the result of a a stochastic diffusion process, p(t), (‘BDD’). For
28 conciseness, we now describe only the latter, the Birth-Death Diffusion (BDD), which is the most general
0 among these models, with straightforward simplifications towards the CED and CTD. Thus, we assume
0 that extinction rates for lineage [ evolve anagenetically following the exponential of a Brownian Motion (i.e.,

s Geometric Brownian motion, GBM) with no drift, such that
dIn(pu (1)) = o,V (1), (")

22 where o, represents the diffusion rate for extinction rates and W (t) is the Wiener process (i.e., standard
3 BM). At cladogenesis, the current value for extinction rates is inherited identically, in the same manner as
e are speciation rates. At the start of the tree, with time Ty, \;(Ty) = A, and p;(Tw) = p,. Thus, the model

25 has three hyper-parameters: «, oy, and 0,,. As we did for A;, we denote y;(¢;) as p; for conciseness.

w6 Likelihood In the same way of the PBD process, for any time step [t;,t;11], we sample \;, A\j11, i; and
w7 41 at the endpoints. Given a sufficiently small time step, d;, a good approximation for the likelihood of

¢ 10 events during time [¢;, t;41] is:

p(no event inft;, ti1]|Ai, Nit1, i, pig1, @, 0, 0, MBDD) =

_ . 1 (AN — ad;)? 1 (Api)?
—(Ni iit1)0if X ———— - -
exp {—(Niis1 + fiit1)0i ) X o exp{ %502 } o eXp{ %507

2% where and Mppp represents the Birth-Death Diffusion model given by Eq. 7. The first part of the equation is

a0 the probability that no speciation or extinction events happen during §; and the second part is the probability
on - of the speciation and extinction GBM diffusing from A; to A\;+1 and p; to w41, respectively. Given the data
. augmented stochastic diffusion for speciation and extinction rates across the tree, A and M, respectively, the

oz likelihood for the full tree under the BDD process can be then straightforwardly approximated by

p(\I}‘A7M7 )\’MMTv Q, O, JuaMBDD) =

m
H At, H iy HHP(HO event in[t;, ti1]|\i, Nit1, ti, fiv1, 0,0, MBDD),
bewy bE\I’T“ b i=1

on where U, are the set of terminal extinct branches.
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25 Data augmentation and parameter updates To augment the reconstructed tree and obtain complete
as trees, we use forward simulation, as described above. For internal branches, new complications arise given
a7 the underlying GBM in speciation and extinction. Specifically, once the tree is simulated along a branch
as  and one of the tips selected at random as the one that leads to the observed speciation event, both the
2 speciation rate instantaneously before speciation A(t,,)" and the extinction rate p(t,.)" do not correspond
20 to the initial speciation and extinction rate in the daughter lineages, Ag1(t1) and Ag2(#1) and pg1(t1) and
s pia2(t1). Thus, we make Brownian bridge proposals on the daughter branches to match the new proposed
22 rates at speciation, A(tp,)" and p(tp,). Figure 1 illustrates our forward simulation proposals. Let ¥, A, M
23 represent the topology, the latent speciation GBM and the latent extinction GBM, respectively, then the

2 acceptance ratio for this proposal is

4w mind 1 L, N M a, o5, 001, Mpp) PA(tpr)|[Atar), Mtaz)) p(p(tpr)|n(tar), p(taz)) y
T (P, A Ml o, o, Mpp) p(M(tpr) [A(ta1), Mtaz)) p(p(tpr)'|1(tar), u(taz))

p(Ala, o, Maem) p(M|oy,, Mapwm) £(|a, ox, op, MBpD)
p(A’\a, O MGBM)) p(M/|UM7 MGBM) E(’(/J/|047 O\, O, MBDD) ’

which simplifies to

aznm{lxmom<pManAwammmwmwnwmg>x

Atpr) PAEpr) [ A(ta1), Ataz)) p(p(tpr) [(tar), p(taz))
/
/

(
(

/ !
Ay aos M1 2|V an,a2, @, 05, o1, Mpp)
Aaia2, Mai1,a2|¥ai1 a2, o, 05, o pt, MBDD)

285 where

tdg)\(tdl) +td1)\(td2) taitae 2>
Aty ) IA(Ear)s AM(Eaz)) = Altyr) ~ N , :
Pt At M) = N(y) (12200 ) it

26 and similarly for p(p(tpr)|p(ta1), 1(ta2)). If the branch is internal we add the factor ny(¢,)"/np(t) as in Eq.
x7 2. In practice, to make proposals more efficient, we sample the tip that leads to the observed speciation event
s proportional to the probability that it’s rates would yield the currently observed rates at the daughters.

289 We use the Eq. 5 to sample o, use Eq. 6 to sample oy, and to sample o, we use

(A
p(ai‘M7’€7§7MBDD)NF7 (/{4—7 §+ZZ ,LL] )’ (9)

20 where M represents the full diffusion of u(t) and N = >, > 1. For A, and p, we use Uniform priors
21 of (0,100). We note that other sort of priors, particularly on extinction, can severely affect the posterior
22 distribution when there is not sufficient information in the tree. For the CED and CTD models, we sample
203 p1 using Gibbs sampling as in the CBD model and € using standard MH updates and specify a Uniform prior
¢ of (0,100).

s Model Behavior

26 Simulations We use simulations to explore behavior for each of the four different model assumptions:

27 PBD, CED, CTD, and BDD. To simulate under a diffusion model we take advantage of the following

10
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28 approximation. Let V be a random variable for the time of an event and let A; and A; 11, be the event rate

29 at time ¢; and ¢;41, respectively, where ¢,41 —t; = § > 0, then we have
PI‘(ti <V« tit1 | t; < V) = Xi}iﬂé.

300 For each model we simulated 100 trees with 50, 100 and 200 tips by sampling from a range of parameter
s space (see Fig 2). We first made simulations and inference without o = 0, and then simulations with a range
52 of values of o around 0 (Fig 2 & 3). To simulate non-biased samples from the model, we started with two
33 lineages and made sure both of them survived until the present and followed Stadler (2011b) to sample a tree
s with a determined number of extant species. In total we have 100 simulations for each of the 4 models, each
s with 3 different tree sizes, with and without «, yielding 2400 total simulations. We ran MCMC inference
s0s  on each simulation for 10° iterations, logging every 102 iteration, and discarding the first 2 x 10° samples
a7 as burn-in. These guaranteed Effective Sample Sizes of at least 300 across all parameters. We used weakly
38 informative priors for most parameters. Specifically, we used a uniform U(0,100) for In(A,), In(p,) and e,
w0 an Inverse Gamma I'"1(0.5,0.1) for oy, a Gaussian N(0,10) for o, and a Gamma I'(1,1) (i.e., Exp(1)) for
s . Initial simulations showed that for trees with less than 100 tips, o, would largely follow the prior, which,
su given the high variance of our prior, would yield very bad mixing and numerical inaccuracies. Thus, we used

s the stronger prior for o, of I'~1(5,0.5), which concentrates more density on parameter values closer to 0.

a1z Statistical coverage and accuracy Figure 2 & 3 show the simulation results without and with the drift
s parameter «, respectively. Across all scenarios we have a median coverage of the speciation rates along each
a5 tree above ca 95% (a coverage of 95% for one simulation indicates that 95% of the true speciation rates
a6 across the phylogenetic tree are within the 95% Highest Posterior Density (HPD) intervals of the estimated
a7 speciation rates). Furthermore, the median average relative error (i.e., In(Agrue(ti))/In(Nin ferred(ti)) — 1))
as for the diffusion of speciation rates is close to 0 across most simulations, supporting no strong bias in the
sw  model’s estimates (Fig 2 & 3). Nonetheless, for CTD we find a small downward bias (i.e., median of 0.2
a0 relative log units) in speciation rates. Finally, the diffusion coefficient for speciation oy shows adequate
a1 accuracy and coverage across all simulations (Fig 2 & 3), taking into account the influence of its prior for
322 smaller trees.

323 As expected, the influence of the prior is proportional to the amount of data (i.e., tree size): Supple-
24 mentary Figure 2 shows the influence of two different Inverse Gamma priors using the same data on the
s posterior distribution of o) and compares coverage and accuracy across simulations with increasing tree size.
26 Overall, oy is overestimated in values close to 0 of parameter space (i.e., oy < 0.1) when using an Inverse
27 Gamma prior of I'"1(0.5,0.1). In this range of parameter space, using an Inverse Gamma prior with higher
»s  density towards 0 (e.g., [ 7%(0.5,0.1)) can increase coverage, yet lead to some underestimation when rates
9 are very high. While, as with all Bayesian analyses, the choice of prior is important and should be carefully
s considered, the underlying rate estimates do not suffer in statistical coverage nor accuracy, and the prior
s influence dwindles with increasing tree size (Fig S2).

332 Without drift, extinction rates for constant-extinction (u(t) = p) seem to be underestimated for trees

;3 with 50 tips, but gradually improve with trees of 100 and 200 tips; still, the 95% HPD coverage across
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s these simulations is of 95% (Fig 2b). For constant turnover (u(t) = eA(t)), € estimates are become more
a5 accurate and coverage is better as one increases tree size. For the BDD (u(t)), extinction rates have very
16 poor coverage and a underestimation bias, suggesting that, for extant-only small trees (at least to 200 tips),
37 extinction diffusion dynamics seem not to be recoverable.

338 With drift, we get good estimates and coverage of the drift, «, and the diffusion, oy, parameters (Fig
10 3) across diffusion models (again taking into account the influence of the prior on the diffusion coefficient
s for small tree sizes; Fig S2). For CTD, we find good estimates of turnover rates, €, with good accuracy
s increasing with tree size. For CED, however, accuracy is low and, at least for the range of tree sizes used,
s does not seem to improve with more data (at least up to trees with 200 tips). HPD coverage of y remains
a3 very high since the posterior distribution has high variance. For the BDD model, median extinction diffusion
e coverage is very low and shows a strong downward bias, again suggesting that either more data is needed
us  or an impossibility to appropriately recover diffusing extinction rates. Note, however, this does not lead to
us non-identifiablity, but rather to biased estimates in extinction rates. While these results reinforce known
a7 difficulties of retrieving extinction rates from extant-only trees, particularly in our model with lineage specific

g speciation diffusion with drift, speciation rates continue displaying good statistical behavior.

u  Results summaries On top of returning posterior samples for all hyperparameters, our model returns a
0 posterior sample of data augmented trees, each with unobserved lineages that went extinct and their latent
1 speciation, and in the case of BDD, extinction, rates. We summarize rate patterns in two ways. First,
2 to provide posterior speciation and extinction (only in BDD) rate distributions across the tree, we remove
353 all unobserved (data augmented) branches from the data augmented trees, and then estimate the posterior
s distribution for each \; in the reconstructed tree. Note that we can only estimate a posterior distribution
s of rates along the branches of the reconstructed tree, since this is the only part that remains fixed across
36 the whole MCMC run. For clarity, we dub these estimates “posterior reconstructed rates”, which we can
7 summarize at any point along the phylogenetic tree, or take their geometric mean across contemporary
s lineages through time.

350 Second, we estimate average rates through time taking into account all data augmented lineages. Here, we
0 take each data augmented tree sample and estimate the cross-lineage geometric mean of their rates through

1 time. We call these rates “posterior DA rates”.

2 Temporal patterns In simulations of our diffusion models, the drift parameter controls whether the me-
3 dian speciation rates increase or decrease through time. Nonetheless, we wanted to further test the flexibility
3¢ of our diffusion models in capturing temporal heterogeneity that is neither linear nor constant, making our
s models more useful when applied to empirical data. Thus, we performed a simulation scenario in which spe-
w6 clation rates were low, suddenly increased and then decreased, while maintaining branch heterogeneity, and
w7 with some extinction diffusion, as shown in Figure 4a. We then performed inference on this simulation using
ws  PBD (Fig 4b), CED (Fig 4c), CTD (Fig 4b), and BDD (Fig 4e,f). Remarkably, we find that all diffusion
w0 models are able to capture this temporal fluctuation in speciation rates, independent of our assumption on

370 extinction rates.
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s»n  Implementation

sz We implemented all these diversification methods in the ‘Tapestree’ package for Julia (Bezanson et al.,
a3 2017), available at https://github.com/ignacioq/Tapestree. j1. The software documentation details the
s simulation, inference and data structures implemented in the package as well as its summary and plotting

35 capabilities.

+ Mammal Birth-Death Diffusion

s We characterize the across-lineage temporal diversification of mammals using our new diffusion models.
s We used the recent time-calibrated phylogenetic tree integrating phylogenomic data from Alvarez-Carretero
a9 et al. (2021), which comprises 4705 genetically represented extant lineages. Because many of these tips are
a0 still considered subspecies, we used only recognized species as tips for taxonomic consistency in the pat-
s terns observed, yielding a tree with 4071 species. We estimated clade-specific sampling fractions for each
s of 16 subclades we identified and which broadly correspond to those divisions used to infer the full mam-
s mal phylogenetic tree in Alvarez-Carretero et al. (2021). For this, we matched current mammals diversity
s« following the Mammal Diversity Database (‘MDD’; 2022), which at the time of the analyses (May 2022)
s recognized 6457 total extant mammal species. We matched the species with the taxonomy in the MDD and
s estimated how many species were not represented in the tree to estimate species specific sampling fractions
s to be passed to the diffusion models (subclade specific sampling fractions are shown in Table S1). We ran
s 3 MCMC chains on the Maximum Clade Credibility (MCC) mammal phylogeny for 105 iterations, saving
s every 103 and discarding an additional 3 x 10° as burn-in, for each of the diversification models: PBD, CED,
wo CTD and BDD, both with and without the drift parameter. Finally, we added a constant turnover diffusion
s model fixing turnover to 1 (equal rates of speciation and extinction at any given time) following empirical
32 paleontological evidence (Marshall, 2017).

303 As expected, we find substantial variation across surviving mammals lineages in speciation and extinction
s¢  rates (Fig 5 & 6), with a median posterior diffusion coefficient for speciation rates of o) = 0.117 Spp/My?’/2
35 and of extinction rates of o, = 0.067 spp/ My?’/ 2. Indeed, median posterior reconstructed rates of speciation
w6 range from about 0.01 spp/My and of extinction of up to about 0.025 spp/My. We find that posterior
sr  reconstructed and DA speciation rates were stable or even slightly decreasing since the origin of extant
s mammals throughout the Jurassic and most of the Cretaceous, but that, during the late Cretaceous (ca. 80
30 Mya), there was a dramatic increase in speciation rates (Fig 5a,c). Thereafter, speciation rates remained
wo stable until recently where a final surge in speciation rates is evinced, mostly driven by the recent fast
w1 diversification of rodents. These patterns of speciation rates were congruent across diffusion models, i.e.,
w2 PBD (Fig S3), CED (Fig S4), CTD (Fig S5) and CTD with turnover fixed to 1 (Fig S6). Finally, diversity
w3 curves show different patterns across the different diffusion models (Fig 5 & Fig S3-S5), yet, regardless of
ws  the assumption in extinction, we find an initial slow accumulation of diversity with a sharp increase in the

ws Late Cretaceous mirroring the temporal pattern of speciation rates.
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« Discussion

w7 We developed and implemented new flexible birth-death diffusion models, which allow fast estimation of
ws speciation and extinction rates that vary instantaneously and continuously in time and across lineages. Our
w0 model provides increased resolution than other approaches assuming a few constant regime shifts across the
a0 tree (Rabosky, 2014; Hohna et al., 2019; Barido-Sottani et al., 2020; Vasconcelos et al., 2022), and even
a1 ‘ClaDS’; which assumes constancy in diversification rates within a branch (Maliet et al., 2019). Indeed, for
a2 any lineage, for any instantaneous point in time, our model returns a posterior distribution of speciation
a3 (and extinction) rates. Furthermore, we present four different models with different assumptions about
se  extinction, three of which are analogous to ClaDS (i.e., ‘pure-birth’, ‘constant-extinction’ and ‘constant-
a5 turnover’), and a more flexible one that assumes extinction to also vary according to a GBM, the ‘BDD’
a6 model. As with the data augmented implementation of ClaDS (Maliet and Morlon, 2021), our inference
a7 yields a set of data augmented posterior trees, that is, probable histories given the model and data, which
as  can be used to estimate diversity through time and average rates (e.g., as we did for mammals in Fig 5 &
a0 6), avoiding biases for not taking into account the dynamics of unobserved lineages on these estimates. We
a0 also generalize the data augmentation scheme for phylogenetic birth-death processes and show that it can be
a1 applied to other models of diversification for which the likelihood has no analytical solution or its calculation
a2 is computationally costly.

3 Our diffusion models assume that diversification rate variation is heritable, accumulates in a gradual
24 fashion and in proportion to time. This is consistent with the idea that the interdependence of species
w5 traits with their environment at any given moment in time will largely govern their diversification rates.
w6 Heritable traits such as body size, dispersal and generation time, among others, are posited to influence
w7 rates of speciation and extinction, and result from a gradual, heritable evolutionary process (Heard, 1996).
»s  Further evidence of the heritability of diversification rates is found in the observed imbalance across empirical
#9 phylogenetic trees (Heard, 1996), as expected from speciation and extinction rates that evolve through
s time and are transferred into daughter species. However, non-heritable variation, such as environmental
= oscillations, are also thought of influencing diversification rates (Heard, 1996; Barnosky, 2001; Benton, 2009).
a2 We show that, while not explicitly accounted for, our diffusion models are able to detect overarching temporal
a3 trends while accounting for fine-grained lineage heterogeneity.

a3 All diffusion models support the ‘early-rise’ hypothesis for the clades that led to the present-day richness of
s mammals (Bininda-Emonds et al., 2007; Meredith et al., 2011; Springer et al., 2019; Grossnickle et al., 2019).
a6 Specifically, we find that the origin of the major clades leading to extant mammal diversity results from a
s sharp average increase across contemporary lineages in speciation rates before the K-Pg extinction event (Fig
s 5). This refutes the explosive-rise hypothesis wherein mammals were suppressed in their ecomorphological
s and taxonomic diversity during the Cretaceous and experienced a release after the K-Pg extinction event
w0 (Archibald and Deutschman, 2001). Our results are concordant with findings using previous phylogenetic
w  evidence from (Meredith et al., 2011), and are supported by other lines of recent paleontological evidence
w2 showing that a major ecomorphological diversification in mammal lineages following the rise of angiosperms

w3 occurred 10-20 My before the K-Pg (Wilson et al., 2012; Grossnickle and Newham, 2016; Halliday and

14


https://doi.org/10.1101/2022.08.09.503355
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.09.503355; this version posted August 11, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

us  Goswami, 2016; Grossnickle et al., 2019; Upham et al., 2021). Specifically, fossil dental and body size analyses
ws  reveal an expansion into herbivorous and carnivorous diets and increased body size disparity concomitant
ws  with taxonomic diversification (Grossnickle and Newham, 2016; Wilson, 2014).

aa7 Before the diversification burst of the Late Cretaceous, our diffusion models that include extinction
ws  exhibits low speciation rates coupled with high extinction rates rates, leading to a slow initial accumulation
s of mammal diversity (Fig 5c-g). This pattern is also mirrored in paleontological evidence from the Cretaceous
0 Terrestrial Revolution that resulted in substantial lineage turnover (Luo, 2007; Grossnickle and Polly, 2013;
1 Benson et al., 2013, 2016; Grossnickle et al., 2019). While we do not find support for a delayed-rise only
2 scenario of mammals, diversification rates remained high after the K-Pg during most of the Paleogene with
»s3  a sustained increase in diversity (Fig 5c¢-g). This findings contrast with the results from (Meredith et al.,
¢ 2011), wherein speciation rates increase at ca. 83 Mya but decrease sharply again at ca. 78 Mya, and agrees
5 with paleontological evidence of continued ecological and taxonomic diversification (O’Leary et al., 2013;
w6 Grossnickle et al., 2019). Our results also show no effect of the K-Pg extinction event on diversification rates
ss7 - of the surviving mammals lineages but instead show a continued acceleration until the Eocene, concomitant
»ss with the radiation of many of the crown group members of extant placental orders (Grossnickle et al., 2019).
0 Regardless of the assumption in extinction rates (i.e., no extinction, constant extinction, constant turnover,
w0 constant turnover of 1 or extinction following a diffusion process), our results suggest that the K-Pg did
w1 mnot drive the explosive radiation of present-day mammals (Fig 5,53-S6). Instead, while the accelerated
w2 diversification of surviving mammals started before the K-Pg, the aftermath of this extinction event allowed
w3 most lineages to maintain comparable (or even higher) levels of high rates of diversification up to the present.
164 Underlying these overarching processes, our model reveals substantial lineage and time heterogeneity of
w5 diversification rates across the mammal tree (Fig 6). To illustrate, we find posterior median lineage speciation
w6 rates that range from almost 0 spp/My in Monotremes, up to more than 0.2 spp/My in some Rodents.
s Concomitant to their high extant diversity, mouse-related Rodents (excluding Ctenohystrica and Sciuridae
ws and related clades) exhibit a dramatic surge in their speciation rates from ca. the start of the Miocene (Fig 6).
w0 Multiple hypotheses, such as developing hypsodonty, colonization of South America, environmental changes
w0 and extinction of competitors, have been proposed to explain this evolutionary radiation (Fabre et al., 2012).
an Speciation rates in Primates also follow a post-Oligocene increase, yet this was preceded by a sharp decrease
a2 after the K-Pg up to the Oligocene, coinciding with a terrestrial fauna turnover event from glaciation and
a3 cooling (Springer et al., 2012). For their part, Marsupials show an increase of speciation rates during the
au  Paleocene, correlated with biogeographic dispersal from South America to Australia through Antarctica
a5 (Nilsson et al., 2004), but then remained stable. These examples of clade specific routes to extant diversity
as  demonstrate the strength and flexibility of our birth-death diffusion models in capturing how lineage-specific
ar diversification rates evolve in continuous time.

478 Our model and results assume that the phylogenetic tree used is the ‘true’ tree of extant mammalian
s evolution, and relies on its specific topology and timing of speciation events. Consequently, we use the most
w0 up-to-date phylogenetic time-tree of mammals, built with a novel Bayesian framework that incorporated 72
1 mammalian genomes and thousands of species genetic data in an integrated framework, with substantial less

w2 uncertainty in the timing of past cladogenetic events (Alvarez—Carretero et al., 2021). Our diversification
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w3 results contrast with previous phylogenetic analyses that used different model assumptions and phylogenetic
s trees. Bininda-Emonds et al. (2007) developed the first species-level phylogenetic tree and estimated changes
s in the slope in the Lineage-Through-Time (LTT) plot to show a diversification peak at around 90 Mya, fol-
s lowed by a decrease until the K-Pg, where rates increased again until the very present. Using the same
s phylogenetic tree, Stadler (2011a) demonstrated that using the LTT slope as means to estimate temporal
ws  changes in diversification rates can lead to biased results, and developed a birth-death model where con-
w0 temporary lineages experience the same diversification rates (i.e., ‘lineage-homogeneous’), but are allowed
w0 to shift at different epochs. Using this model, a peak in mammalian diversification rates around 33 Mya was
s inferred, followed by stable high rates until near the present, wherein they declined. Meredith et al. (2011)
sz built a family level tree with 169 mammal species and recovered a diversification peak that lasted only during
w3 ca. 83-78 Mya. Using the same model, but with an updated tree and dating scheme of placental mammals,
w¢  Liu et al. (2017) found an upward shift around 90 Mya followed by a downward shift around 52 Mya, and
w5 no effect of the K-Pg. Finally, using the tree from Upham et al. (2019), Upham et al. (2021) performed
w6 temporal diversification analyses under a model of lineage-heterogeneous rates resulting from discrete shifts
w7 (Rabosky, 2014) (but see Moore et al. (2016) for concerns on this method) and found a burst in speciation
ws rates in the Late Cretaceous followed by a steady increase towards the present.

299 A more general caveat persists for diversification analyses that are conducted on fixed phylogenetic trees
so  (the great majority), which, in turn, were usually inferred using a dating method that does entail explicit
s (typically through constant pure-birth or birth-death priors) or implicit assumptions about the underlying
se  diversification process. Ultimately, however, a joint model where co-estimation of divergence times and
so3  diversification rates would be more appropriate, and has recently been developed for some birth-death
soe  models with discrete shifts (Kiihnert et al., 2016; Hohna et al., 2016; Barido-Sottani et al., 2020). The
sos data augmented approaches developed here could be used as priors over divergence times in an integrative
s approach and is an exciting avenue for future research.

507 As with most diversification models based on extant-taxa alone, our model and results are susceptible
ss  to inferential limits, specially as one moves into the deep past. For instance, Louca and Pennell (2020)
so9  showed that for time-varying lineage-homogeneous speciation and extinction rates and in the absence of
si0 any constrain on the functional form of the time-varying rate functions, there are an infinite number of
s such functions that return the same likelihood for any extant-only time-tree. Our model overcomes this
si2 particular non-identifiability issue by incorporating lineage-heterogeneous rates informed by topology by
sz means of speciation and extinction rates following a GBM diffusion model. More applicable, however, are
s concerns in reliably estimating extinction rates from extant-only time-trees (Rabosky, 2010; Beaulieu and
sis. - O’Meara, 2015; Louca and Pennell, 2021). Note that our inference model is similar, yet more complex, to the
sis simulation model in Beaulieu and O’Meara (2015): they simulated trees with branch-constant rates that are
si7 inherited with a change proportional to the product of a diffusion rate and the squared root of elapsed time,
sis rectifying the time proportionality of the diffusion rates used by Rabosky (2010), who used the product of
si9. time (rather than squared root of time) with the diffusion rate. Using these simulations, Rabosky (2010)
s0 and Beaulieu and O’Meara (2015) found that a constant rate birth-death model will overestimate extinction

s and lead to spurious results if the variance in speciation rates was high. Our model explicitly takes into
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s account this type of heritability and thus is immune to this specific across-lineage heterogeneity that could
s3 lead to inaccurate inferences when assuming a simpler model.

524 This is not to say that other sources of variation in diversification could not potentially bias inference.
ss From the different extinction assumptions in our diffusion models, the best behavior is achieved for constant-
s turnover (CTD) and constant-extinction (CED), with the extinction diffusion model (BDD) only achieving
so7  fair accuracy with sufficient data. Nonetheless, we are cautious on over-interpreting what these extinction
s estimates represent, particularly when faced with empirical data. We emphasize that our results reflect
0 the diversification dynamics of those mammal lineages under a still simple model of diversification, and,
s using extant-species alone trees could prove insufficient in recovering very high extinction rates in the past
sn (Marshall, 2017). For instance, without fossil information the probability of a mammal clade that diversified
s2  greatly yet went extinct, such as the Cimolodontan multituberculates (Grossnickle et al., 2019), is marginal
533 under birth-death models conditioned on surviving taxa and thus is unlikely to be inferred as the main
s diversification history. Furthermore, our model does not account for episodic mass extinction events, which
s could substantially enhance the biological realism of our diversification histories, conditional on having a
s good estimate of the proportion of lineages that went extinct. Our model and implementation renders
ss7 - the future incorporation of fossils into the model straightforward and opens an exciting avenue for future
s macroevolutionary research as phylogenetic trees that combine neontological and paleontological data become
s increasingly available.

540 One of the main properties of the diffusion models is that speciation (and extinction in the BDD) vary
sa - continuously and stochastically within any lineage at any moment in time. On one hand, this unlocks a
s.2 new series of possibilities for answering questions about evolutionary radiations. Specifically, it provides
si3 the foundation in which to test drivers of diversification rates that also vary instantaneously through time
s« and across lineages, such as concomitant evolution of species intrinsic traits or abiotic factors, including
ss  environmental fluctuations, while accounting for independent, stochastic variation. This would be the con-
s6  tinuous counterpart to the hidden states framework that considers residual variation in State dependent
s Speciation and Extinction methods (Beaulieu and O’Meara, 2016), which have proved pivotal in assessing
ss  discrete trait drivers of diversification. ‘QuaSSE’ provides a correlation test between diversification and a
s continuous trait FitzJohn (2010), but, aside of not accounting for residual variation (increasing Type I error),
ss0 uses a numerical method that would not scale-up well with the number of Brownian processes. Conversely,
ss1 we have shown with our data augmented framework that this would not be a major limiting factor. More
2 generally, our framework is analogous to a simple linear regression in having both a deterministic effect (i.e.,
53 slope) together with unexplained variance. This analogy illustrates the strength of such an approach for
ssa it will be contentious to perform inference using only a linear slope to explain the association between two
555 variables. Future advancements in this direction will help in identifying the underlying processes governing
sss  macroevolutionary dynamics.

557 With our new model, there are now three different paradigms for modeling lineage-specific variation in
sss  diversification rates: rare discrete anagenetic shifts (e.g., ‘BAMM’, ‘MiSSE’, and related; Rabosky, 2014;
s0  Hohna et al., 2019; Vasconcelos et al., 2022), discrete cladogenetic shifts (i.e., ‘ClaDS’; Maliet et al., 2019),

s0  and, with our models, continuous anagenetic diffusion. The level at which diversification rates change in a
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s1  few discrete bouts or gradually is unknown, and probably both types of events have contributed in generating
s diversification rate variance (Barnosky, 2001; Benton, 2009; Maliet et al., 2019). Arguably, even those novel
3 traits thought of substantially impacting lineage diversification rates (e.g., ‘key’ innovations) do not appear
s ‘instantaneously’ in time, but take some time to evolve, even if brief (Mayr, 1963; Heard and Hauser, 1995;
ss  Hunter, 1998). Similarly, it remains an open and intriguing question whether changes in diversification
ses  rates occur mostly at cladogenesis, a likely prediction under punctuated equilibrium with trait dependence
sov  of diversification rates (Gould and Eldredge, 1972; Maliet et al., 2019), or evolve throughout a lineage’s
s lifetime. We are only aware of one phylogenetic study that compared BAMM, a model of few discrete shifts
s0  (Rabosky, 2014), with ClaDS, a model with many branch specific shifts (Maliet et al., 2019), and found
s higher Bayesian support for the latter across some empirical trees, supporting the idea that most variation
sn in diversification rates are accumulated through frequent small-scale variation (Ronquist et al., 2021). Given
s2 that all these processes could be present to some degree in empirical datasets, comparing models with
sz exclusive processes may not be particularly meaningful. A promising and exciting perspective of the data
s augmentation methods introduced here is that they can easily be recruited to develop models that would
s combine those hitherto disconnected processes into a joint model, where their respective contributions could
s be directly estimated.

577 Our new model development uncovered a clear signal of an early-rise of modern mammals, refuting the
s idea that suppression before the K-Pg was limiting the diversification of those mammal lineages that survived
so - to the present, but rather suggest the angiosperm radiation opened substantial ecological opportunities for
s these lineages to diversify in the Late Cretaceous and up to the present. These results derive from inferring
ss1 rates of speciation and extinction that can vary at any time for any lineage, as theoretically expected from
sz the interplay of intrinsic and extrinsic factors acting at a given time on species, and opens new modeling

sss  and computational possibilities in the study of macroevolutionary dynamics.
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Figure 1: Tree BDD data augmentation. a) A phylogenetic tree is divided by a discrete time grid every
d unit times (or less) with underlying speciation A(¢) (blue) and extinction u(t) rates (red). b) To make a
new subtree proposal for branch b, we simulate the process with the current configuration of parameters for
the duration of the branch. Here, two tips were simulated for this duration, so we picked one at random to
be the one leading to the observed speciation event and we continue the simulation for the rest (here the
other tip went extinct). ¢) Since the new proposal in branch b has different speciation and extinction rates
at the tip than the current subtree of branch b (A\(¢) and pu(t) thin dashed lines), we also propose rates in
the daughters that match the proposal rates configuration (A(¢) and u(t) solid lines), and accept or reject
according to the MH acceptance ratio. d) An example reconstructed tree. e) A given data augmented
MCMC sample when running the BDD method on the tree from d). f) Median posterior reconstructed ()
from the BDD model across the tree. Color gradient represents lineage-specific variation in speciation rates

along the tree, with warmer colors specifying higher rates.
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Figure 2: Validation of diffusion model without drift. Comparison between simulated and estimated
values for a) pure-birth diffusion (‘PBD’: u(t) = 0), b) constant-extinction diffusion (‘CED’: u(t) = u), c)
constant-turnover diffusion (‘CTD”: u(t) = eA(t)), and d) extinction-diffusion (‘BDD’: u(t)), for 50, 100 and
200 tip simulations. For oy, u, and €, we show the running means across simulations for the median estimates
and the 95% HPD for each of the tree sizes, respectively, and the 1:1 line (black dashed). In the upper left
corner we show the coverage for those parameters. For A(t) (and, when applicable, u(t)) we estimate the
percentage average relative error across a series of fixed time points along the tree. Similarly, we calculate
the coverage by counting the number of true values that fall within the 95% HPD in the estimates across

those same fixed time points.
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Figure 4: Common temporal patterns through time. a) Simulated tree (left) with dramatic temporal
variation in speciation rates affecting all lineages simultaneously (right: geometric average A\(t) across lineages
and 95% quantiles), small inter-lineage variance oy = 0.1 and a constant extinction rate of 0.2. b-f) Show
inferred patterns given the simulated tree. For each, Left: Median posterior reconstructed rates across the
tree (speciation for ‘b-e’ and extinction for ‘f”); Upper right: posterior DA rates and 95% Credible Intervals
(CI) across all data augmented trees; Bottom right: posterior median and 95% CI reconstructed rates.
Inferred models are: b) PBD (i.e., u(t) = 0), ¢) CED (i.e., u(t) = u), d) CTD (i.e., u(t) = eA(t)), and BDD

(i.e., pu(t)) e) speciation and f) extinction rates.
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Figure 5: Birth-Death Diffusion for surviving mammals: overarching patterns a) Posterior DA
average speciation rates and b) extinction rates across all lineages across augmented tree samples. Solid line
shows the median, darker orange the 50% CI, lighter orange the 95% CI across all data augmented trees. c)
Posterior reconstructed speciation rates and d) extinction rates for median posterior tree (orange shading
showing median and 50% quantiles across the lineages’ median posterior rates), and for 2.5% and 97.5% CI
trees (purple shading showing median and 50% quantiles across the lineages’ 2.5% and 97.5% posterior rates,
respectively). e) Distribution through time of the number of mammals lineages in the data augmented trees
(solid line shows the median, darker purple the 50% CI, lighter purple the 95% CI). The lower dotted line
shows the lineages in the reconstructed tree only. f) Posterior distributions (95 %, 50 % and median HPD)

for BDD hyperparameters: drift «, diffusion in speciation rates o and in extinction rates o,,.
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Figure 6: Birth-Death Diffusion for surviving mammals: lineage heterogeneity a) Median pos-
terior reconstructed speciation rates A(¢) and extinction rates u(t) across the reconstructed mammals tree
according to the Birth-Death Diffusion model (note that this are the same model results of Fig 5). Sur-
rounding colors identify 16 mammal clades with en embedded species silhouette and roman numerals for
identification. b) Posterior DA average speciation rates and c¢) extinction rates the 16 major clades high-
lighted in ‘a)’. Solid white line shows the median, while the darker shade the 50% CI across all data
augmented trees. Silhouettes identify some focal clade patters. d) Posterior reconstructed speciation rates
and e) extinction rates for median posterior tree (solid lines shows the median and light shading shows the

50% quantiles across the lineages’ median posterior rates).
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