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Abstract12

Dramatic spatial, temporal and taxonomic variation in biodiversity is ultimately explained by differences in13

speciation and extinction rates. Mammals represent a∼200 My old radiation that resulted in over 6500 extant14

species, with stark temporal, spatial and taxonomic heterogeneity in biodiversity. Throughout their history,15

every mammal lineage is expected to have undergone diversification rates that vary instantaneously in time16

resulting from the complex interplay of context-specific extrinsic factors (e.g., K-Pg mass extinction event,17

rise of angiosperms) with their evolving ecologies (e.g., body size, diet). When studying the diversification18

history of a clade, however, mathematical and computational limitations have hindered inference of such a19

flexible birth-death model where speciation and extinction rates evolve continuously along a phylogenetic20

tree. Here we overcome these challenges by implementing a series of phylogenetic models in which speciation21

and extinction rates are inherited and diffuse following a latent Geometric Brownian motion process. We22

enable full Bayesian inference using data augmentation techniques to sample from the posterior distribution of23

model parameters, including augmented phylogenetic trees and validate using simulations. Using a genome-24

informed time-calibrated tree for over 4000 Mammals species, we are able to estimate a complete and25

fine-grained picture of the variation in diversification rates that captures both global and lineage specific26

effects. We find that, contrary to the idea of a suppressed mammalian diversification before the K-Pg mass27

extinction event (i.e., explosive- or delayed-rise), mammal speciation rates dramatically increased around28

10-20 My before the K-Pg. Our new model opens exciting possibilities in disentangling the drivers behind29

variation in diversification and assaying how small-scale processes scale-up to macroevolutionary dynamics.30
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Introduction31

Understanding the tempo and mode in which lineages diversify is fundamental in explaining the origin and32

maintenance of biodiversity. The rates at which species originate or go extinct result from the interplay33

between their intrinsic traits and their specific abiotic and biotic environment (Benton, 2009). For instance,34

environmental oscillations and landscape heterogeneity are commonly posited as major drivers of diversifica-35

tion by precipitating population dispersal and fragmentation as well as opening new opportunities (Barnosky,36

2001; Jablonski, 2008). Similarly, the evolution of both intrinsic (e.g., species phenotype, their niche, and37

their evolutionary rate) and extrinsic biotic factors (e.g., competition and other inter-specific interactions)38

are thought to affect the pace of evolutionary radiations (Van Valen, 1973; Benton, 2009; Quintero and39

Landis, 2019). Therefore, the interrelation of fluctuating context-specific dynamics with species’ intrinsic40

evolving ecologies are expected to result in lineage-specific diversification rates that themselves evolve and41

can vary at any point in time.42

The mammal radiation started at around 200 Mya (Upham et al., 2019; Álvarez-Carretero et al., 2021) and43

resulted in an estimated present-day diversity of ca. 6450 currently recognized species (Mammal Diversity44

Database, 2022). Distinct mammalian evolutionary routes led to marked differences in ecomorphologies,45

reflected in body size (108 fold differences), generation time, litter size and habitat (aquatic, arboreal,46

terrestial, fossorial, etc.) variation, concomitant with an uneven distribution of richness across clades (Davies47

et al., 2008; Meredith et al., 2011; Grossnickle et al., 2019). Furthermore, throughout their long evolutionary48

history, lineages were differentially impacted by environmental factors such as the radiation of flowering49

plants (i.e., the Cretaceous Terrestrial Revolution), the K-Pg extinction event, the Paleocene-Eocene thermal50

maximum, and other dramatic environmental oscillations, which likely spurred widespread distribution shifts51

and extinctions together with novel ecological opportunities that impacted diversification rates (Meredith52

et al., 2011; Grossnickle et al., 2019; Upham et al., 2021). Indeed, a major unsolved debate in mammalian53

evolution revolves around understanding the timing at which the orders with living representatives originated54

and diversified (Bininda-Emonds et al., 2007; Stadler, 2011a; Meredith et al., 2011; Grossnickle et al., 2019;55

Springer et al., 2019; Upham et al., 2021). Standing hypotheses posit that crown orders increased their56

diversification either before, at or after the K-Pg event, dubbed as ‘early-’, ‘explosive-’ or ‘delayed-’ rise57

of extant mammals, respectively (Meredith et al., 2011; Grossnickle et al., 2019). The complex interplay58

of mammal species-specific ecomorphologies with their particular environments that fluctuate throughout59

lineage’s duration translate into lineage- and time- specific rates of diversification along their evolutionary60

history, that is, a given lineage is expected to undergo diversification rate changes at any moment in time.61

Nonetheless, extreme external events, such as the rise of angiosperms or the K-Pg extinction event, are62

thought to transcend lineage-specific diversification dynamics, and leave a common signature across lineages63

during that particular period (Barnosky, 2001). Therefore, to explore the temporal dynamics that led to64

extant mammal diversity, an idealized model of diversification that enable the reconstruction of overarching65

temporal dynamics while incorporating rates of speciation and extinction that change instantaneously along66

time for any lineage is needed.67

Several phylogenetic approaches have been developed to account for heterogeneity in time or across68
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lineages in characterizing diversification rate variation across taxa. Most available methods that incorporate69

rate heterogeneity across lineages assume a (usually few) number of independent shifts across the tree that70

partition the tree into separate ‘regimes’ (or states) wherein lineages undergo constant rates: ‘BAMM’71

(Rabosky, 2014), ‘birth-death-shift’ process (Höhna et al., 2019), ‘MTBD’ (Barido-Sottani et al., 2020), and72

‘MiSSE’ (Vasconcelos et al., 2022). Instead of identifying large diversification shifts along a phylogenetic73

tree, ‘ClaDS’ assumes that shifts occur at each cladogenetic event, with daughter lineages undergoing rate74

constancy within each lineage (Maliet et al., 2019). The only method we are aware of that allows lineage-75

specific speciation and extinction rates to vary instantaneously through time, ‘QuaSSE’, assumes that this76

variation is completely explained by the evolution of a trait under Brownian motion (FitzJohn, 2010). While77

these methods have proven very useful in reconstructing diversification dynamics on phylogenetic trees, they78

remain restrictive in assuming rate constancy either across ‘regimes’ or along a given branch, and a more79

flexible model is required.80

Here we assess the tempo and mode in which surviving mammal orders originated and diversified by81

applying the first phylogenetic diversification model in which lineage-specific diversification rates vary in-82

stantaneously in time by assuming that speciation and extinction rates follow a Geometric Brownian motion:83

the Birth-Death Diffusion (BDD) model. We show that the BDD and other simpler diffusion models, in-84

cluding no extinction, constant-extinction and constant-turnover, exhibit good statistical properties in most85

scenarios and are identifiable even when restricted to extant taxa alone. Considering that the temporal86

dynamics of mammalian diversification will rely on the accuracy of the phylogenetic tree, we use the latest87

time-calibrated molecular tree for mammals, which incorporated 72 species genomes enhancing the time-88

dating robustness (Álvarez-Carretero et al., 2021). We validate our method and perform Bayesian inference89

of our diffusion models on this mammalian tree using data augmentation techniques. On top of posterior90

probabilities for the main process parameters, our model also returns for free posterior sampled histories of91

diversification across trees with unobserved speciation events enabling post-hoc analyses and visualizations.92

Model93

We assume that, at some time t, each lineage l has an instantaneous rate of producing new species of λl(t)94

(i.e., speciation rate) and an instantaneous rate of going extinct of µl(t) (i.e., extinction rate). This general95

birth-death process generates a bifurcating phylogenetic tree with some lineages dying out and others giving96

rise to daughter species after some time. Probabilistic inference is complicated since, in practice, we do not97

observe the whole process, but rather the evolutionary relationships among those lineages that were able to be98

sampled, that is, the “reconstructed” phylogenetic tree (Nee et al., 1994). Our goal is to perform inference99

on speciation and extinction rates that are inherited and stochastically diffuse through time following a100

Geometric Brownian motion, given that we only observe the reconstructed tree. Because there is no available101

analytical solution to estimate the likelihood, we use Bayesian data augmentation techniques to perform full102

posterior inference on birth-death diffusion models. We start by describing the data augmented approach for103

a simple constant rate birth-death (‘CBD’) model, which we then expand on to enable inference on models104

with rate diffusion.105
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Let Ψ be an ultrametric rooted phylogenetic tree under a general birth-death process that starts at some106

time TΨ (i.e., tree height) in the past and continues to time 0 in the present with n surviving tips and per-107

lineage speciation rate λl(t) and extinction-rate µl(t) for lineage l at time t. Furthermore, each clade c has108

a specific probability for extant lineages to be represented in the observed tree, specified by ρc ∈ [0, 1]. We109

propagate this probability throughout all the branches in the tree by specifying a branch-specific sampling110

fraction ρb for branch b. For terminal branches in clade c we simply assign ρb = ρc ∀b ∈ c. Let ab be the111

number of alive tips descending from branch b in the observed tree, then, for internal branches, we calculate112

ρb = (ad1 + ad2)/(ad1/ρd1 + ad2/ρd2), where d1 and d1 are the daughter branches. Thus, the probability of113

sampling exactly 1 extant species for a terminal branch b is abρb(1− ρb)ab−1 and sampling no extant species114

for internal branch b is (1− ρb)ab , following Maliet and Morlon (2021).115

We use Bayesian data augmentation (DA) to sample unobserved lineages that either went extinct in the116

past or were not sampled at the present during inference. For clarity let Ψo represent only the reconstructed117

(observed) tree, Ψa represent some unobserved speciation and extinction events and let Ψ (= Ψo ∪ Ψa)118

represent the complete tree. Given that we do not observe Ψa, we treat it as a random variable to integrate119

over using Markov Chain Monte Carlo (MCMC).120

Constant rate Birth-Death121

In the CBD model, at any time, all lineages share the same speciation and extinction rate λ and µ, respectively122

(i.e., λl(t) = λ and µl(t) = µ).123

Likelihood The likelihood for a complete unordered crown tree under a CBD process is simply124

`(Ψ|λ, µ) = λs−1µze−(λ+µ)L,

where s is the number of speciation events, z is the number of extinction events, L is the tree length (sum125

of all branches). For a stem tree, we do consider all s speciation events.126

To integrate over Ψ during MCMC, we developed two alternative approaches for data augmentation. A127

first approach samples Ψa directly from its conditional distribution, given Ψo and the model parameters (i.e.,128

Gibbs sampling) using forward simulation. A second approach is based on accept-reject sampling, based on129

proposals of grafting and pruning. Each can be useful on different contexts, but we relied mostly on the130

forward simulation approach, which we describe below, and leave the description of the grafting/pruning131

approach for the Appendix.132

Forward simulation Here we follow Maliet and Morlon (2021) in our forward simulation approach but133

describe it more generally for the CBD process. First, we uniformly sample a branch in the tree and simulate134

a birth-death process forward in time throughout the branch length tb for branch b, given the current model135

parameters. For any branch, if the process becomes extinct before tb, we reject the proposal (i.e., it requires136

that at least 1 species is alive at time tb). Note that for a terminal branch tb is the present. If the branch137

is internal, and there is more than one surviving lineage by tb, we pick one tip at random as the one that138

gave rise to the observed speciation event and continue the simulation in forward fashion for the others. All139
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other unobserved lineages should go extinct before the present or, if there are unobserved data augmented140

lineages at the present, then the proposal is rejected or accepted following the branch’s sampling fraction,141

ρb.142

Let ψb denote the forward simulated tree in branch b, nb(tb) denote the number of lineages alive at time143

tb (i.e., at the end of the branch) and nb(0) denote the number of lineages alive at the present for ψb, then144

the acceptance ratio in the Metropolis-Hastings (MH) step for the proposed forward simulation ψ′b if b is a145

terminal branch is146

a = min

{
1,
`(Ψ′|λ, µ) `(ψb|λ, µ)

`(Ψ|λ, µ) `(ψ′b|λ, µ)
× n′b(0)ρb(1− ρb)n

′
b(0)−1

nb(0)ρb(1− ρb)nb(0)−1

}
,

and if b is an internal branch147

a = min

{
1,
`(Ψ′|λ, µ) `(ψb|λ, µ)

`(Ψ|λ, µ) `(ψ′b|λ, µ)
× 1/nb(tb)

1/n′b(tb)
× (1− ρb)n

′
b(0)−1

(1− ρb)nb(0)−1

}
,

where the 1/nb(tb) factor comes from the proposal density of randomly and uniformly choosing one of the

extant lineages at time tb as the one sampled in the reconstructed tree. Because the full tree likelihood for

the proposal only differs on the specific branch, the acceptance ratio simplifies in terminal branches to

a = min

{
1,
`(ψ′b|λ, µ) `(ψb|λ, µ)

`(ψb|λ, µ) `(ψ′b|λ, µ)
× n′b(0)ρb(1− ρb)n

′
b(0)−1

nb(0)ρb(1− ρb)nb(0)−1

}
= min

{
1,
n′b(0)

nb(0)
(1− ρb)n

′
b(0)−nb(0)

}
(1)

and in internal branches to

a = min

{
1,
λ`(ψ′b|λ, µ) `(ψb|λ, µ) 1/nb(tb) (1− ρb)n

′
b(0)−nb(0)

λ`(ψb|λ, µ) `(ψ′b|λ, µ) 1/nb(tb)′

}
= min

{
1,
nb(tb)

′

nb(tb)
(1− ρb)n

′
b(0)−nb(0)

}
. (2)

The acceptance probability for the sampling fraction is common to all further models, so, for simplicity, we148

suppress it in the rest of the manuscript.149

Conditioning on survival To condition on survival of the process we use the pseudo-marginal principle150

from Andrieu and Roberts (2009). We describe here the approach in a general manner since it applies to all151

models that involve extinction. Assuming crown conditioning, that is, that both crown lineages survive to152

the present and letting `(Ψ|θ) be the likelihood of the tree and p(θ) the prior for parameters θ we target the153

unnormalized density154

q(θ) =
`(Ψ|θ)p(θ)
(1− S(θ))2

where S(θ) is the probability that a lineage at TΨ survives until the present.155

Following Ronquist et al. (2021),

z(θ) =
1

(1− S(θ))2
=
∞∑
K=0

Kg(K|θ)

where g(K|θ) = (1−S(θ)2)K−1S(θ)2. Thus, z(θ) is the expectation of a geometric distribution of parameter156

S(θ)2. We can then sample K from g(K|θ) (for which we do not have an analytical solution: see Appendix),157

by simulating two lineages under θ starting at TΨ and counting the number of attempts until both survive.158

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2022. ; https://doi.org/10.1101/2022.08.09.503355doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.09.503355
http://creativecommons.org/licenses/by-nc-nd/4.0/


To sample from density q(θ) we perform MCMC on the pair of variables (θ,K) targeting instead159

q2(θ,K) = `(Ψ|θ)p(θ)g(K|θ)K

marginally obtaining our target density160

∞∑
K=0

q2(θ,K) = `(Ψ|θ)p(θ)z(θ) = q(θ).

Effectively, our algorithm proposes a new value for θ, θ′ ∼ s(θ, dθ′), and then, given θ′, proposes K ′ by161

drawing from K ′ ∼ g(K ′|θ) and accept this with probability a = min{1, r}, where162

r =
s(θ′, dθ)`(Ψ|θ′)p(θ′)K ′

s(θ, dθ′)`(Ψ|θ)p(θ)K
;

circumventing the need to analytically compute z(θ) while providing exact MCMC inference. Of note, in163

this equation for r, `(Ψ|θ)p(θ)K is an unbiased estimate of q(θ) in the denominator, and similarly for q(θ′) in164

the numerator. Replacing the target by an unbiased stochastic estimate of it in the acceptance ratio, while165

preserving exact MCMC sampling, is the fundamental idea of the pseudo-marginal principle (Andrieu and166

Roberts, 2009). For stem conditioning, the probability of survival of one lineage until the present, we simply167

estimate K as the number of times until a single lineage at time TΨ survives to the present (i.e., z(θ) is the168

expectation of a geometric distribution of parameter S(θ)).169

Mixed Gibbs sampling for λ and µ Given the complete tree, Ψ, λ and µ follow a Poisson distribution170

and thus one can sample (almost) directly from their full conditional posterior via Gibbs sampling. We171

use the conjugate Gamma prior, Γ(κ, ς) for both λ and µ, which results in the following full conditional172

distribution from which we can sample directly173

p(λ|·) ∼ Γ(κ+ s, ς + L),

and similarly with µ but using the number of extinction events. The conditioning on survival, however,174

requires adding a MH step, such that the proposed speciation and extinction rates λ′ and µ′ are accepted175

with probability a = min{1,K ′/K}.176

We validate our data augmentation implementation of the constant rate birth-death by comparing the177

rate posteriors with the analytical solution from (Nee et al., 1994) implemented in a Bayesian framework in178

the ‘diversitree’ package (FitzJohn, 2010) for R (R Core Team, 2022) (see Fig S1).179

Pure-Birth Diffusion180

We now relax the condition that speciation rates are constant through time and across taxa by rather defining181

λl(t) to be the result of a stochastic diffusion process. In other words, we consider the observed phylogenetic182

tree as the outcome of an unobserved latent process of speciation. For simplicity, we start by assuming183

that there is no extinction, and call this model the Pure-Birth Diffusion (‘PBD’). Specifically, we assume184

that speciation rates for lineage l evolve anagenetically following the exponential of a Brownian motion (i.e.,185

Geometric Brownian motion, GBM), such that186

dln(λl(t)) = αdt+ σλdW (t), (3)
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where α represents the drift and σλ the diffusion rate for speciation rates and W (t) is the Wiener process187

(i.e., standard BM). This diffusion rate has units spp
(unit time)3/2

. Under this model, the drift, α, determines188

the median or geometric expectation of the rates, but not its arithmetic mean expectation. That is, if α = 0,189

after some time half of the GBM processes will be lower than the starting rate and the other half will have190

increased. Given the non-negative nature and log-normal expectation, the arithmetic mean of will be larger191

than the median, which is why we perform all rate transformations and aggregations using the geometric192

mean (see below).193

At cladogenesis, the current value for speciation rates are inherited identically, that is, for any cladogenetic194

event at time ts and an ancestral lineage rate of λa(ts), then λd1(ts) = λd2(ts) = λa(ts), where d1 and d2195

represent each of the daughter lineages. At the start of the tree (i.e., time TΨ) λi(TΨ) = λr.196

Note that adding the drift parameter α is important in some contexts to restrain the “run-away species197

selection” that our model and others with inherited speciation rates (Beaulieu and O’Meara, 2015; Maliet198

et al., 2019), produce. Specifically, lineages with higher speciation rates will generate daughters with a higher199

expected rate, which will themselves generate even more daughters, and so on. Including a drift parameter200

and/or extinction constraints allows avoiding such a run-away.201

Data augmentation We use a data augmentation approach to approximate the likelihood of rates that202

follow GBM diffusion (Horvilleur and Lartillot, 2014; Quintero and Landis, 2019). Namely, we generate203

unobserved stochastic paths of GBM for all lineages across the tree to approximate the likelihood of a204

phylogenetic tree generated under Eq. 3. We determine a small time step, δ, such that δi = ti+1 − ti, where205

ti < ti+1, and divide each branch of the tree into m small time steps such that m = btb/δc + 1, where tb206

represents the edge length of branch b. Note that the last time step for branch b is always smaller than δ207

assuming that the probability that tb is a multiple of δt is 0. Thus, for any branch b, we sample the data208

augmented diffusion process at times t = {t1 = 0, t2 = t1 +δ, . . . , tm+1 = tb}, obtaining the stochastic process209

Λb = {λb(t1), . . . , λb(tb)} sampled in a discrete time grid. For clarity and conciseness we denote λl(ti) as λi210

from now on.211

Likelihood For any time step [ti, ti+1], we sample λi and λi+1 at the endpoints. Given a sufficiently small212

time step, δi, a good approximation for the likelihood of no event happening during time [ti, ti+1] is:213

p(no event in[ti, ti+1]|λi, λi+1, σλ,MPBD) = exp
{
−λ̄i,i+1δi

}
× 1

σλ
√

2πδi
exp

{
− (∆λi − αδi)2

2δiσ2
λ

}
where λ̄i,i+1 represents the geometric mean for {λi, λi+1}, ∆λi = ln(λi+1)− ln(λ(ti)), andMPBD represents214

the PBD model given by Eq. 3. The first part of the equation is the probability that there is no speciation215

events during δi and the second part is the probability that the GBM diffused from λi to λi+1. For internal216

branches we then simply multiply the speciation events likelihoods. Given the data augmented stochastic217

diffusion for speciation rates across the tree, Λ, the likelihood for the full tree under the Yule Diffusion218

process can be then straightforwardly approximated by219

p(Ψ|Λ, λr, σλ,MPBD) =
∏
b∈ΨI

λ(tb)
∏
b

m∏
i=1

p(no event in[ti, ti+1]|λi, λi+1, σλ,MPBD), (4)
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where ΨI are the set of internal branches. Note that topology matters, and for an ancestral lineage a with220

daughter branches d1 and d2, we have that λa(tb) = λd1(t1) = λd2(t1).221

Diffusion updates We integrate over possible rate diffusion histories, Λ, using Metropolis-Hastings diffu-222

sion path updates. We use a path diffusion update based on internal nodes that are connected to a ‘triad’223

of branches in Ψ, that is, given a parent and its daughter branches, pr, d1 and d2, respectively. We con-224

sider the following four cases to update the triad diffusion paths Λpr,d1,d2 : i) If all branches are internal225

and the parent is not the root, we make a GBM proposal for the node conditioned on the end points (i.e.,226

λpr(t1), λd1(tb), λd2(tb)) and respective branch lengths. We then propose diffusion paths using Brownian227

bridges for each branch with the new node value as an endpoint. ii) If all branches are internal and the par-228

ent is the root, we make a GBM node proposal conditioned on the daughter end points, from which we then229

backwardly propose a new root value λr. We then use Brownian bridges to sample their respective diffusion230

paths. iii) If one of the daughter branches is terminal, we make a GBM node proposal conditioned on the231

endpoints, from which we propose a new GBM value for the endpoint (i.e., tip) of the terminal branch. We232

then use Brownian bridges to sample their respective diffusion paths. iv) If both of the daughter branches233

are terminal, we simply make a GBM node proposal given the parent branch, and then forwardly simulate234

both terminal daughter diffusion paths. Note that the drift term, α, cancels out when proposing Brownian235

bridges with drift, as it is fully determined by the endpoints and time elapsed.236

Then, the acceptance probability, a, for a new diffusion path proposal, Λ′ is237

a = min

{
1,
p(Λ′|Ψ, α, σλ,MPBD)

p(Λ|Ψ, α, σλ,MPBD)
× p(Λ|α, σλ,MGBM)

p(Λ′|α, σλ,MGBM)

}
,

whereMGBM represents the GBM model. Note that this ratio simplifies because the Brownian motion part238

in the likelihood cancels out with the proposal probability. We specify a uniform prior on the the speciation239

rates at the root, λr.240

α and σλ updates We use a Normal conjugate prior, p(α) ∼ N(ν, τ) to directly sample from the full241

conditional posterior distribution (see Appendix for derivation):242

p(α|Λ, σλ, ν, τ,MPBD) ∼ N

(
(σλτ )2ν +

∑
b(λm+1 − λ1)

(σλτ )2 + L
,

σ2
λ

(σλτ )2 + L

)
, (5)

where L is the tree length. Similarly, we specify the Inverse Gamma conjugate prior p(σ2
λ) ∼ Γ−1(κ, ς), and243

we obtain the following posterior conditional distribution (see Appendix for derivation):244

p(σ2
λ|Λ, α, κ, ς,MPBD) ∼ Γ−1

(
κ+

N

2
, ς +

∑
b

m∑
i=1

(∆λi − αδi)2

2δi

)
, (6)

where N =
∑
b

∑m
i=1 1.245

While the Inverse Gamma prior for σλ is advantageous by allowing full Gibbs sampling, substantially246

enhancing the properties of our MCMC approach, it has some drawbacks, particularly with small phylogenetic247

trees. As expected, small datasets (e.g., 50 tip trees) are particularly affected by the choice of prior: a248

Γ−1(0.05, 0.05), for instance, will enforce very low probabilities to small values (e.g., σλ < 0.1), overestimating249
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the diffusion rate. Conversely, a Γ−1(0.1, 0.001) prior, for instance, will capture small values of σλ but will250

underestimate higher diffusion rates (Fig S2). While the prior choice becomes asymptotically irrelevant as251

more data is included, we emphasize that, for inference, some rationale should be taken for the choice of252

prior (Fig S2).253

Birth-Death Diffusion254

We now relax the condition that extinction rates are non-existent and rather define three diffusion models255

that incorporate extinction: i) constant extinction, µ(t) = µ (‘CED’), ii) constant turnover, µ(t) = ελ(t)256

(‘CTD’), and iii) extinction also being the result of a a stochastic diffusion process, µ(t), (‘BDD’). For257

conciseness, we now describe only the latter, the Birth-Death Diffusion (BDD), which is the most general258

among these models, with straightforward simplifications towards the CED and CTD. Thus, we assume259

that extinction rates for lineage l evolve anagenetically following the exponential of a Brownian Motion (i.e.,260

Geometric Brownian motion, GBM) with no drift, such that261

dln(µl(t)) = σµdW (t), (7)

where σµ represents the diffusion rate for extinction rates and W (t) is the Wiener process (i.e., standard262

BM). At cladogenesis, the current value for extinction rates is inherited identically, in the same manner as263

are speciation rates. At the start of the tree, with time TΨ, λl(TΨ) = λr and µl(TΨ) = µr. Thus, the model264

has three hyper-parameters: α, σλ, and σµ. As we did for λi, we denote µl(ti) as µi for conciseness.265

Likelihood In the same way of the PBD process, for any time step [ti, ti+1], we sample λi, λi+1, µi and266

µi+1 at the endpoints. Given a sufficiently small time step, δi, a good approximation for the likelihood of267

no events during time [ti, ti+1] is:268

p(no event in[ti, ti+1]|λi, λi+1, µi, µi+1, α, σλ, σµ,MBDD) =

exp
{
−(λ̄i,i+1 + µ̄i,i+1)δi

}
× 1

σλ
√

2πδi
exp

{
− (∆λi − αδi)2

2δiσ2
λ

}
× 1

σµ
√

2πδi
exp

{
− (∆µi)

2

2δiσ2
µ

}
where andMBDD represents the Birth-Death Diffusion model given by Eq. 7. The first part of the equation is269

the probability that no speciation or extinction events happen during δi and the second part is the probability270

of the speciation and extinction GBM diffusing from λi to λi+1 and µi to µi+1, respectively. Given the data271

augmented stochastic diffusion for speciation and extinction rates across the tree, Λ and M, respectively, the272

likelihood for the full tree under the BDD process can be then straightforwardly approximated by273

p(Ψ|Λ,M, λr, µr, α, σλ, σµ,MBDD) =∏
b∈ΨI

λtb
∏

b∈ΨTµ

µtb
∏
b

m∏
i=1

p(no event in[ti, ti+1]|λi, λi+1, µl, µi+1, σλ, σµ,MBDD),
(8)

where ΨTµ are the set of terminal extinct branches.274
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Data augmentation and parameter updates To augment the reconstructed tree and obtain complete275

trees, we use forward simulation, as described above. For internal branches, new complications arise given276

the underlying GBM in speciation and extinction. Specifically, once the tree is simulated along a branch277

and one of the tips selected at random as the one that leads to the observed speciation event, both the278

speciation rate instantaneously before speciation λ(tpr)
′ and the extinction rate µ(tpr)

′ do not correspond279

to the initial speciation and extinction rate in the daughter lineages, λd1(t1) and λd2(t1) and µd1(t1) and280

µd2(t1). Thus, we make Brownian bridge proposals on the daughter branches to match the new proposed281

rates at speciation, λ(tpr)
′ and µ(tpr)

′. Figure 1 illustrates our forward simulation proposals. Let Ψ,Λ,M282

represent the topology, the latent speciation GBM and the latent extinction GBM, respectively, then the283

acceptance ratio for this proposal is284

a = min

{
1,
`(Ψ′,Λ′,M′|α, σλ, σµ,MBDD)

`(Ψ,Λ,M|α, σλ, σµ,MBDD)

p(λ(tpr)|λ(td1), λ(td2)) p(µ(tpr)|µ(td1), µ(td2))

p(λ(tpr)′|λ(td1), λ(td2)) p(µ(tpr)′|µ(td1), µ(td2))
×

p(Λ|α, σλ,MGBM) p(M|σµ,MGBM) `(ψ|α, σλ, σµ,MBDD)

p(Λ′|α, σλ,MGBM)) p(M′|σµ,MGBM) `(ψ′|α, σλ, σµ,MBDD)

}
,

which simplifies to

a = min

{
1,
λ(tpr)

′ p(λ(tpr)|λ(td1), λ(td2)) p(µ(tpr)|µ(td1), µ(td2))

λ(tpr) p(λ(tpr)′|λ(td1), λ(td2)) p(µ(tpr)′|µ(td1), µ(td2))
×

`(Λ′d1,d2,M
′
d1,d2|Ψd1,d2, α, σλ, σµ,MBDD)

`(Λd1,d2,Md1,d2|Ψd1,d2, α, σλ, σµ,MBDD)

}
,

where285

p(λ(tpr)|λ(td1), λ(td2)) = λ(tpr) ∼ N

(
td2λ(td1) + td1λ(td2)

td1 + td2
,
td1td2

td1 + td2
σ2
λ

)
,

and similarly for p(µ(tpr)|µ(td1), µ(td2)). If the branch is internal we add the factor nb(tb)
′/nb(tb) as in Eq.286

2. In practice, to make proposals more efficient, we sample the tip that leads to the observed speciation event287

proportional to the probability that it’s rates would yield the currently observed rates at the daughters.288

We use the Eq. 5 to sample α, use Eq. 6 to sample σλ, and to sample σµ we use289

p(σ2
µ|M, κ, ς,MBDD) ∼ Γ−1

(
κ+

N

2
, ς +

∑
b

m∑
i=1

(∆µl)
2

2δi

)
, (9)

where M represents the full diffusion of µ(t) and N =
∑
b

∑m
i=1 1. For λr and µr we use Uniform priors290

of (0, 100). We note that other sort of priors, particularly on extinction, can severely affect the posterior291

distribution when there is not sufficient information in the tree. For the CED and CTD models, we sample292

µ using Gibbs sampling as in the CBD model and ε using standard MH updates and specify a Uniform prior293

of (0, 100).294

Model Behavior295

Simulations We use simulations to explore behavior for each of the four different model assumptions:296

PBD, CED, CTD, and BDD. To simulate under a diffusion model we take advantage of the following297
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approximation. Let V be a random variable for the time of an event and let λi and λi+1, be the event rate298

at time ti and ti+1, respectively, where ti+1 − ti = δ ≥ 0, then we have299

Pr(ti ≤ V < ti+1 | ti ≤ V ) ≈ λ̄i,i+1δ.

For each model we simulated 100 trees with 50, 100 and 200 tips by sampling from a range of parameter300

space (see Fig 2). We first made simulations and inference without α = 0, and then simulations with a range301

of values of α around 0 (Fig 2 & 3). To simulate non-biased samples from the model, we started with two302

lineages and made sure both of them survived until the present and followed Stadler (2011b) to sample a tree303

with a determined number of extant species. In total we have 100 simulations for each of the 4 models, each304

with 3 different tree sizes, with and without α, yielding 2400 total simulations. We ran MCMC inference305

on each simulation for 106 iterations, logging every 103 iteration, and discarding the first 2 × 105 samples306

as burn-in. These guaranteed Effective Sample Sizes of at least 300 across all parameters. We used weakly307

informative priors for most parameters. Specifically, we used a uniform U(0, 100) for ln(λr), ln(µr) and ε,308

an Inverse Gamma Γ−1(0.5, 0.1) for σλ, a Gaussian N(0, 10) for α, and a Gamma Γ(1, 1) (i.e., Exp(1)) for309

µ. Initial simulations showed that for trees with less than 100 tips, σµ would largely follow the prior, which,310

given the high variance of our prior, would yield very bad mixing and numerical inaccuracies. Thus, we used311

the stronger prior for σµ of Γ−1(5, 0.5), which concentrates more density on parameter values closer to 0.312

Statistical coverage and accuracy Figure 2 & 3 show the simulation results without and with the drift313

parameter α, respectively. Across all scenarios we have a median coverage of the speciation rates along each314

tree above ca 95% (a coverage of 95% for one simulation indicates that 95% of the true speciation rates315

across the phylogenetic tree are within the 95% Highest Posterior Density (HPD) intervals of the estimated316

speciation rates). Furthermore, the median average relative error (i.e., ln(λtrue(ti))/ln(λinferred(ti)) − 1))317

for the diffusion of speciation rates is close to 0 across most simulations, supporting no strong bias in the318

model’s estimates (Fig 2 & 3). Nonetheless, for CTD we find a small downward bias (i.e., median of 0.2319

relative log units) in speciation rates. Finally, the diffusion coefficient for speciation σλ shows adequate320

accuracy and coverage across all simulations (Fig 2 & 3), taking into account the influence of its prior for321

smaller trees.322

As expected, the influence of the prior is proportional to the amount of data (i.e., tree size): Supple-323

mentary Figure 2 shows the influence of two different Inverse Gamma priors using the same data on the324

posterior distribution of σλ and compares coverage and accuracy across simulations with increasing tree size.325

Overall, σλ is overestimated in values close to 0 of parameter space (i.e., σλ < 0.1) when using an Inverse326

Gamma prior of Γ−1(0.5, 0.1). In this range of parameter space, using an Inverse Gamma prior with higher327

density towards 0 (e.g., Γ−1(0.5, 0.1)) can increase coverage, yet lead to some underestimation when rates328

are very high. While, as with all Bayesian analyses, the choice of prior is important and should be carefully329

considered, the underlying rate estimates do not suffer in statistical coverage nor accuracy, and the prior330

influence dwindles with increasing tree size (Fig S2).331

Without drift, extinction rates for constant-extinction (µ(t) = µ) seem to be underestimated for trees332

with 50 tips, but gradually improve with trees of 100 and 200 tips; still, the 95% HPD coverage across333
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these simulations is of 95% (Fig 2b). For constant turnover (µ(t) = ελ(t)), ε estimates are become more334

accurate and coverage is better as one increases tree size. For the BDD (µ(t)), extinction rates have very335

poor coverage and a underestimation bias, suggesting that, for extant-only small trees (at least to 200 tips),336

extinction diffusion dynamics seem not to be recoverable.337

With drift, we get good estimates and coverage of the drift, α, and the diffusion, σλ, parameters (Fig338

3) across diffusion models (again taking into account the influence of the prior on the diffusion coefficient339

for small tree sizes; Fig S2). For CTD, we find good estimates of turnover rates, ε, with good accuracy340

increasing with tree size. For CED, however, accuracy is low and, at least for the range of tree sizes used,341

does not seem to improve with more data (at least up to trees with 200 tips). HPD coverage of µ remains342

very high since the posterior distribution has high variance. For the BDD model, median extinction diffusion343

coverage is very low and shows a strong downward bias, again suggesting that either more data is needed344

or an impossibility to appropriately recover diffusing extinction rates. Note, however, this does not lead to345

non-identifiablity, but rather to biased estimates in extinction rates. While these results reinforce known346

difficulties of retrieving extinction rates from extant-only trees, particularly in our model with lineage specific347

speciation diffusion with drift, speciation rates continue displaying good statistical behavior.348

Results summaries On top of returning posterior samples for all hyperparameters, our model returns a349

posterior sample of data augmented trees, each with unobserved lineages that went extinct and their latent350

speciation, and in the case of BDD, extinction, rates. We summarize rate patterns in two ways. First,351

to provide posterior speciation and extinction (only in BDD) rate distributions across the tree, we remove352

all unobserved (data augmented) branches from the data augmented trees, and then estimate the posterior353

distribution for each λi in the reconstructed tree. Note that we can only estimate a posterior distribution354

of rates along the branches of the reconstructed tree, since this is the only part that remains fixed across355

the whole MCMC run. For clarity, we dub these estimates “posterior reconstructed rates”, which we can356

summarize at any point along the phylogenetic tree, or take their geometric mean across contemporary357

lineages through time.358

Second, we estimate average rates through time taking into account all data augmented lineages. Here, we359

take each data augmented tree sample and estimate the cross-lineage geometric mean of their rates through360

time. We call these rates “posterior DA rates”.361

Temporal patterns In simulations of our diffusion models, the drift parameter controls whether the me-362

dian speciation rates increase or decrease through time. Nonetheless, we wanted to further test the flexibility363

of our diffusion models in capturing temporal heterogeneity that is neither linear nor constant, making our364

models more useful when applied to empirical data. Thus, we performed a simulation scenario in which spe-365

ciation rates were low, suddenly increased and then decreased, while maintaining branch heterogeneity, and366

with some extinction diffusion, as shown in Figure 4a. We then performed inference on this simulation using367

PBD (Fig 4b), CED (Fig 4c), CTD (Fig 4b), and BDD (Fig 4e,f). Remarkably, we find that all diffusion368

models are able to capture this temporal fluctuation in speciation rates, independent of our assumption on369

extinction rates.370
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Implementation371

We implemented all these diversification methods in the ‘Tapestree’ package for Julia (Bezanson et al.,372

2017), available at https://github.com/ignacioq/Tapestree.jl. The software documentation details the373

simulation, inference and data structures implemented in the package as well as its summary and plotting374

capabilities.375

Mammal Birth-Death Diffusion376

We characterize the across-lineage temporal diversification of mammals using our new diffusion models.377

We used the recent time-calibrated phylogenetic tree integrating phylogenomic data from Álvarez-Carretero378

et al. (2021), which comprises 4705 genetically represented extant lineages. Because many of these tips are379

still considered subspecies, we used only recognized species as tips for taxonomic consistency in the pat-380

terns observed, yielding a tree with 4071 species. We estimated clade-specific sampling fractions for each381

of 16 subclades we identified and which broadly correspond to those divisions used to infer the full mam-382

mal phylogenetic tree in Álvarez-Carretero et al. (2021). For this, we matched current mammals diversity383

following the Mammal Diversity Database (‘MDD’; 2022), which at the time of the analyses (May 2022)384

recognized 6457 total extant mammal species. We matched the species with the taxonomy in the MDD and385

estimated how many species were not represented in the tree to estimate species specific sampling fractions386

to be passed to the diffusion models (subclade specific sampling fractions are shown in Table S1). We ran387

3 MCMC chains on the Maximum Clade Credibility (MCC) mammal phylogeny for 106 iterations, saving388

every 103 and discarding an additional 3×105 as burn-in, for each of the diversification models: PBD, CED,389

CTD and BDD, both with and without the drift parameter. Finally, we added a constant turnover diffusion390

model fixing turnover to 1 (equal rates of speciation and extinction at any given time) following empirical391

paleontological evidence (Marshall, 2017).392

As expected, we find substantial variation across surviving mammals lineages in speciation and extinction393

rates (Fig 5 & 6), with a median posterior diffusion coefficient for speciation rates of σλ = 0.117 spp/My3/2
394

and of extinction rates of σµ = 0.067 spp/My3/2. Indeed, median posterior reconstructed rates of speciation395

range from about 0.01 spp/My and of extinction of up to about 0.025 spp/My. We find that posterior396

reconstructed and DA speciation rates were stable or even slightly decreasing since the origin of extant397

mammals throughout the Jurassic and most of the Cretaceous, but that, during the late Cretaceous (ca. 80398

Mya), there was a dramatic increase in speciation rates (Fig 5a,c). Thereafter, speciation rates remained399

stable until recently where a final surge in speciation rates is evinced, mostly driven by the recent fast400

diversification of rodents. These patterns of speciation rates were congruent across diffusion models, i.e.,401

PBD (Fig S3), CED (Fig S4), CTD (Fig S5) and CTD with turnover fixed to 1 (Fig S6). Finally, diversity402

curves show different patterns across the different diffusion models (Fig 5 & Fig S3-S5), yet, regardless of403

the assumption in extinction, we find an initial slow accumulation of diversity with a sharp increase in the404

Late Cretaceous mirroring the temporal pattern of speciation rates.405
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Discussion406

We developed and implemented new flexible birth-death diffusion models, which allow fast estimation of407

speciation and extinction rates that vary instantaneously and continuously in time and across lineages. Our408

model provides increased resolution than other approaches assuming a few constant regime shifts across the409

tree (Rabosky, 2014; Höhna et al., 2019; Barido-Sottani et al., 2020; Vasconcelos et al., 2022), and even410

‘ClaDS’, which assumes constancy in diversification rates within a branch (Maliet et al., 2019). Indeed, for411

any lineage, for any instantaneous point in time, our model returns a posterior distribution of speciation412

(and extinction) rates. Furthermore, we present four different models with different assumptions about413

extinction, three of which are analogous to ClaDS (i.e., ‘pure-birth’, ‘constant-extinction’ and ‘constant-414

turnover’), and a more flexible one that assumes extinction to also vary according to a GBM, the ‘BDD’415

model. As with the data augmented implementation of ClaDS (Maliet and Morlon, 2021), our inference416

yields a set of data augmented posterior trees, that is, probable histories given the model and data, which417

can be used to estimate diversity through time and average rates (e.g., as we did for mammals in Fig 5 &418

6), avoiding biases for not taking into account the dynamics of unobserved lineages on these estimates. We419

also generalize the data augmentation scheme for phylogenetic birth-death processes and show that it can be420

applied to other models of diversification for which the likelihood has no analytical solution or its calculation421

is computationally costly.422

Our diffusion models assume that diversification rate variation is heritable, accumulates in a gradual423

fashion and in proportion to time. This is consistent with the idea that the interdependence of species424

traits with their environment at any given moment in time will largely govern their diversification rates.425

Heritable traits such as body size, dispersal and generation time, among others, are posited to influence426

rates of speciation and extinction, and result from a gradual, heritable evolutionary process (Heard, 1996).427

Further evidence of the heritability of diversification rates is found in the observed imbalance across empirical428

phylogenetic trees (Heard, 1996), as expected from speciation and extinction rates that evolve through429

time and are transferred into daughter species. However, non-heritable variation, such as environmental430

oscillations, are also thought of influencing diversification rates (Heard, 1996; Barnosky, 2001; Benton, 2009).431

We show that, while not explicitly accounted for, our diffusion models are able to detect overarching temporal432

trends while accounting for fine-grained lineage heterogeneity.433

All diffusion models support the ‘early-rise’ hypothesis for the clades that led to the present-day richness of434

mammals (Bininda-Emonds et al., 2007; Meredith et al., 2011; Springer et al., 2019; Grossnickle et al., 2019).435

Specifically, we find that the origin of the major clades leading to extant mammal diversity results from a436

sharp average increase across contemporary lineages in speciation rates before the K-Pg extinction event (Fig437

5). This refutes the explosive-rise hypothesis wherein mammals were suppressed in their ecomorphological438

and taxonomic diversity during the Cretaceous and experienced a release after the K-Pg extinction event439

(Archibald and Deutschman, 2001). Our results are concordant with findings using previous phylogenetic440

evidence from (Meredith et al., 2011), and are supported by other lines of recent paleontological evidence441

showing that a major ecomorphological diversification in mammal lineages following the rise of angiosperms442

occurred 10-20 My before the K-Pg (Wilson et al., 2012; Grossnickle and Newham, 2016; Halliday and443
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Goswami, 2016; Grossnickle et al., 2019; Upham et al., 2021). Specifically, fossil dental and body size analyses444

reveal an expansion into herbivorous and carnivorous diets and increased body size disparity concomitant445

with taxonomic diversification (Grossnickle and Newham, 2016; Wilson, 2014).446

Before the diversification burst of the Late Cretaceous, our diffusion models that include extinction447

exhibits low speciation rates coupled with high extinction rates rates, leading to a slow initial accumulation448

of mammal diversity (Fig 5c-g). This pattern is also mirrored in paleontological evidence from the Cretaceous449

Terrestrial Revolution that resulted in substantial lineage turnover (Luo, 2007; Grossnickle and Polly, 2013;450

Benson et al., 2013, 2016; Grossnickle et al., 2019). While we do not find support for a delayed-rise only451

scenario of mammals, diversification rates remained high after the K-Pg during most of the Paleogene with452

a sustained increase in diversity (Fig 5c-g). This findings contrast with the results from (Meredith et al.,453

2011), wherein speciation rates increase at ca. 83 Mya but decrease sharply again at ca. 78 Mya, and agrees454

with paleontological evidence of continued ecological and taxonomic diversification (O’Leary et al., 2013;455

Grossnickle et al., 2019). Our results also show no effect of the K-Pg extinction event on diversification rates456

of the surviving mammals lineages but instead show a continued acceleration until the Eocene, concomitant457

with the radiation of many of the crown group members of extant placental orders (Grossnickle et al., 2019).458

Regardless of the assumption in extinction rates (i.e., no extinction, constant extinction, constant turnover,459

constant turnover of 1 or extinction following a diffusion process), our results suggest that the K-Pg did460

not drive the explosive radiation of present-day mammals (Fig 5,S3-S6). Instead, while the accelerated461

diversification of surviving mammals started before the K-Pg, the aftermath of this extinction event allowed462

most lineages to maintain comparable (or even higher) levels of high rates of diversification up to the present.463

Underlying these overarching processes, our model reveals substantial lineage and time heterogeneity of464

diversification rates across the mammal tree (Fig 6). To illustrate, we find posterior median lineage speciation465

rates that range from almost 0 spp/My in Monotremes, up to more than 0.2 spp/My in some Rodents.466

Concomitant to their high extant diversity, mouse-related Rodents (excluding Ctenohystrica and Sciuridae467

and related clades) exhibit a dramatic surge in their speciation rates from ca. the start of the Miocene (Fig 6).468

Multiple hypotheses, such as developing hypsodonty, colonization of South America, environmental changes469

and extinction of competitors, have been proposed to explain this evolutionary radiation (Fabre et al., 2012).470

Speciation rates in Primates also follow a post-Oligocene increase, yet this was preceded by a sharp decrease471

after the K-Pg up to the Oligocene, coinciding with a terrestrial fauna turnover event from glaciation and472

cooling (Springer et al., 2012). For their part, Marsupials show an increase of speciation rates during the473

Paleocene, correlated with biogeographic dispersal from South America to Australia through Antarctica474

(Nilsson et al., 2004), but then remained stable. These examples of clade specific routes to extant diversity475

demonstrate the strength and flexibility of our birth-death diffusion models in capturing how lineage-specific476

diversification rates evolve in continuous time.477

Our model and results assume that the phylogenetic tree used is the ‘true’ tree of extant mammalian478

evolution, and relies on its specific topology and timing of speciation events. Consequently, we use the most479

up-to-date phylogenetic time-tree of mammals, built with a novel Bayesian framework that incorporated 72480

mammalian genomes and thousands of species genetic data in an integrated framework, with substantial less481

uncertainty in the timing of past cladogenetic events (Álvarez-Carretero et al., 2021). Our diversification482
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results contrast with previous phylogenetic analyses that used different model assumptions and phylogenetic483

trees. Bininda-Emonds et al. (2007) developed the first species-level phylogenetic tree and estimated changes484

in the slope in the Lineage-Through-Time (LTT) plot to show a diversification peak at around 90 Mya, fol-485

lowed by a decrease until the K-Pg, where rates increased again until the very present. Using the same486

phylogenetic tree, Stadler (2011a) demonstrated that using the LTT slope as means to estimate temporal487

changes in diversification rates can lead to biased results, and developed a birth-death model where con-488

temporary lineages experience the same diversification rates (i.e., ‘lineage-homogeneous’), but are allowed489

to shift at different epochs. Using this model, a peak in mammalian diversification rates around 33 Mya was490

inferred, followed by stable high rates until near the present, wherein they declined. Meredith et al. (2011)491

built a family level tree with 169 mammal species and recovered a diversification peak that lasted only during492

ca. 83-78 Mya. Using the same model, but with an updated tree and dating scheme of placental mammals,493

Liu et al. (2017) found an upward shift around 90 Mya followed by a downward shift around 52 Mya, and494

no effect of the K-Pg. Finally, using the tree from Upham et al. (2019), Upham et al. (2021) performed495

temporal diversification analyses under a model of lineage-heterogeneous rates resulting from discrete shifts496

(Rabosky, 2014) (but see Moore et al. (2016) for concerns on this method) and found a burst in speciation497

rates in the Late Cretaceous followed by a steady increase towards the present.498

A more general caveat persists for diversification analyses that are conducted on fixed phylogenetic trees499

(the great majority), which, in turn, were usually inferred using a dating method that does entail explicit500

(typically through constant pure-birth or birth-death priors) or implicit assumptions about the underlying501

diversification process. Ultimately, however, a joint model where co-estimation of divergence times and502

diversification rates would be more appropriate, and has recently been developed for some birth-death503

models with discrete shifts (Kühnert et al., 2016; Höhna et al., 2016; Barido-Sottani et al., 2020). The504

data augmented approaches developed here could be used as priors over divergence times in an integrative505

approach and is an exciting avenue for future research.506

As with most diversification models based on extant-taxa alone, our model and results are susceptible507

to inferential limits, specially as one moves into the deep past. For instance, Louca and Pennell (2020)508

showed that for time-varying lineage-homogeneous speciation and extinction rates and in the absence of509

any constrain on the functional form of the time-varying rate functions, there are an infinite number of510

such functions that return the same likelihood for any extant-only time-tree. Our model overcomes this511

particular non-identifiability issue by incorporating lineage-heterogeneous rates informed by topology by512

means of speciation and extinction rates following a GBM diffusion model. More applicable, however, are513

concerns in reliably estimating extinction rates from extant-only time-trees (Rabosky, 2010; Beaulieu and514

O’Meara, 2015; Louca and Pennell, 2021). Note that our inference model is similar, yet more complex, to the515

simulation model in Beaulieu and O’Meara (2015): they simulated trees with branch-constant rates that are516

inherited with a change proportional to the product of a diffusion rate and the squared root of elapsed time,517

rectifying the time proportionality of the diffusion rates used by Rabosky (2010), who used the product of518

time (rather than squared root of time) with the diffusion rate. Using these simulations, Rabosky (2010)519

and Beaulieu and O’Meara (2015) found that a constant rate birth-death model will overestimate extinction520

and lead to spurious results if the variance in speciation rates was high. Our model explicitly takes into521
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account this type of heritability and thus is immune to this specific across-lineage heterogeneity that could522

lead to inaccurate inferences when assuming a simpler model.523

This is not to say that other sources of variation in diversification could not potentially bias inference.524

From the different extinction assumptions in our diffusion models, the best behavior is achieved for constant-525

turnover (CTD) and constant-extinction (CED), with the extinction diffusion model (BDD) only achieving526

fair accuracy with sufficient data. Nonetheless, we are cautious on over-interpreting what these extinction527

estimates represent, particularly when faced with empirical data. We emphasize that our results reflect528

the diversification dynamics of those mammal lineages under a still simple model of diversification, and,529

using extant-species alone trees could prove insufficient in recovering very high extinction rates in the past530

(Marshall, 2017). For instance, without fossil information the probability of a mammal clade that diversified531

greatly yet went extinct, such as the Cimolodontan multituberculates (Grossnickle et al., 2019), is marginal532

under birth-death models conditioned on surviving taxa and thus is unlikely to be inferred as the main533

diversification history. Furthermore, our model does not account for episodic mass extinction events, which534

could substantially enhance the biological realism of our diversification histories, conditional on having a535

good estimate of the proportion of lineages that went extinct. Our model and implementation renders536

the future incorporation of fossils into the model straightforward and opens an exciting avenue for future537

macroevolutionary research as phylogenetic trees that combine neontological and paleontological data become538

increasingly available.539

One of the main properties of the diffusion models is that speciation (and extinction in the BDD) vary540

continuously and stochastically within any lineage at any moment in time. On one hand, this unlocks a541

new series of possibilities for answering questions about evolutionary radiations. Specifically, it provides542

the foundation in which to test drivers of diversification rates that also vary instantaneously through time543

and across lineages, such as concomitant evolution of species intrinsic traits or abiotic factors, including544

environmental fluctuations, while accounting for independent, stochastic variation. This would be the con-545

tinuous counterpart to the hidden states framework that considers residual variation in State dependent546

Speciation and Extinction methods (Beaulieu and O’Meara, 2016), which have proved pivotal in assessing547

discrete trait drivers of diversification. ‘QuaSSE’ provides a correlation test between diversification and a548

continuous trait FitzJohn (2010), but, aside of not accounting for residual variation (increasing Type I error),549

uses a numerical method that would not scale-up well with the number of Brownian processes. Conversely,550

we have shown with our data augmented framework that this would not be a major limiting factor. More551

generally, our framework is analogous to a simple linear regression in having both a deterministic effect (i.e.,552

slope) together with unexplained variance. This analogy illustrates the strength of such an approach for553

it will be contentious to perform inference using only a linear slope to explain the association between two554

variables. Future advancements in this direction will help in identifying the underlying processes governing555

macroevolutionary dynamics.556

With our new model, there are now three different paradigms for modeling lineage-specific variation in557

diversification rates: rare discrete anagenetic shifts (e.g., ‘BAMM’, ‘MiSSE’, and related; Rabosky, 2014;558

Höhna et al., 2019; Vasconcelos et al., 2022), discrete cladogenetic shifts (i.e., ‘ClaDS’; Maliet et al., 2019),559

and, with our models, continuous anagenetic diffusion. The level at which diversification rates change in a560
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few discrete bouts or gradually is unknown, and probably both types of events have contributed in generating561

diversification rate variance (Barnosky, 2001; Benton, 2009; Maliet et al., 2019). Arguably, even those novel562

traits thought of substantially impacting lineage diversification rates (e.g., ‘key’ innovations) do not appear563

‘instantaneously’ in time, but take some time to evolve, even if brief (Mayr, 1963; Heard and Hauser, 1995;564

Hunter, 1998). Similarly, it remains an open and intriguing question whether changes in diversification565

rates occur mostly at cladogenesis, a likely prediction under punctuated equilibrium with trait dependence566

of diversification rates (Gould and Eldredge, 1972; Maliet et al., 2019), or evolve throughout a lineage’s567

lifetime. We are only aware of one phylogenetic study that compared BAMM, a model of few discrete shifts568

(Rabosky, 2014), with ClaDS, a model with many branch specific shifts (Maliet et al., 2019), and found569

higher Bayesian support for the latter across some empirical trees, supporting the idea that most variation570

in diversification rates are accumulated through frequent small-scale variation (Ronquist et al., 2021). Given571

that all these processes could be present to some degree in empirical datasets, comparing models with572

exclusive processes may not be particularly meaningful. A promising and exciting perspective of the data573

augmentation methods introduced here is that they can easily be recruited to develop models that would574

combine those hitherto disconnected processes into a joint model, where their respective contributions could575

be directly estimated.576

Our new model development uncovered a clear signal of an early-rise of modern mammals, refuting the577

idea that suppression before the K-Pg was limiting the diversification of those mammal lineages that survived578

to the present, but rather suggest the angiosperm radiation opened substantial ecological opportunities for579

these lineages to diversify in the Late Cretaceous and up to the present. These results derive from inferring580

rates of speciation and extinction that can vary at any time for any lineage, as theoretically expected from581

the interplay of intrinsic and extrinsic factors acting at a given time on species, and opens new modeling582

and computational possibilities in the study of macroevolutionary dynamics.583
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Figure 1: Tree BDD data augmentation. a) A phylogenetic tree is divided by a discrete time grid every

δ unit times (or less) with underlying speciation λ(t) (blue) and extinction µ(t) rates (red). b) To make a

new subtree proposal for branch b, we simulate the process with the current configuration of parameters for

the duration of the branch. Here, two tips were simulated for this duration, so we picked one at random to

be the one leading to the observed speciation event and we continue the simulation for the rest (here the

other tip went extinct). c) Since the new proposal in branch b has different speciation and extinction rates

at the tip than the current subtree of branch b (λ(t) and µ(t) thin dashed lines), we also propose rates in

the daughters that match the proposal rates configuration (λ(t) and µ(t) solid lines), and accept or reject

according to the MH acceptance ratio. d) An example reconstructed tree. e) A given data augmented

MCMC sample when running the BDD method on the tree from d). f) Median posterior reconstructed λ(t)

from the BDD model across the tree. Color gradient represents lineage-specific variation in speciation rates

along the tree, with warmer colors specifying higher rates.
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Figure 2: Validation of diffusion model without drift. Comparison between simulated and estimated

values for a) pure-birth diffusion (‘PBD’: µ(t) = 0), b) constant-extinction diffusion (‘CED’: µ(t) = µ), c)

constant-turnover diffusion (‘CTD’: µ(t) = ελ(t)), and d) extinction-diffusion (‘BDD’: µ(t)), for 50, 100 and

200 tip simulations. For σλ, µ, and ε, we show the running means across simulations for the median estimates

and the 95% HPD for each of the tree sizes, respectively, and the 1:1 line (black dashed). In the upper left

corner we show the coverage for those parameters. For λ(t) (and, when applicable, µ(t)) we estimate the

percentage average relative error across a series of fixed time points along the tree. Similarly, we calculate

the coverage by counting the number of true values that fall within the 95% HPD in the estimates across

those same fixed time points.
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Figure 3: Validation of diffusion model with drift. Comparison between simulated and estimated

values when including the drift parameter α for a) PBD, b) CED, c) CTD and d) BDD, for 50, 100 and

200 tip simulations. Plot details as in Figure 2.
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Figure 4: Common temporal patterns through time. a) Simulated tree (left) with dramatic temporal

variation in speciation rates affecting all lineages simultaneously (right : geometric average λ(t) across lineages

and 95% quantiles), small inter-lineage variance σλ = 0.1 and a constant extinction rate of 0.2. b-f) Show

inferred patterns given the simulated tree. For each, Left : Median posterior reconstructed rates across the

tree (speciation for ‘b-e’ and extinction for ‘f’); Upper right : posterior DA rates and 95% Credible Intervals

(CI) across all data augmented trees; Bottom right : posterior median and 95% CI reconstructed rates.

Inferred models are: b) PBD (i.e., µ(t) = 0), c) CED (i.e., µ(t) = µ), d) CTD (i.e., µ(t) = ελ(t)), and BDD

(i.e., µ(t)) e) speciation and f) extinction rates.
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Figure 5: Birth-Death Diffusion for surviving mammals: overarching patterns a) Posterior DA

average speciation rates and b) extinction rates across all lineages across augmented tree samples. Solid line

shows the median, darker orange the 50% CI, lighter orange the 95% CI across all data augmented trees. c)

Posterior reconstructed speciation rates and d) extinction rates for median posterior tree (orange shading

showing median and 50% quantiles across the lineages’ median posterior rates), and for 2.5% and 97.5% CI

trees (purple shading showing median and 50% quantiles across the lineages’ 2.5% and 97.5% posterior rates,

respectively). e) Distribution through time of the number of mammals lineages in the data augmented trees

(solid line shows the median, darker purple the 50% CI, lighter purple the 95% CI). The lower dotted line

shows the lineages in the reconstructed tree only. f) Posterior distributions (95 %, 50 % and median HPD)

for BDD hyperparameters: drift α, diffusion in speciation rates σλ and in extinction rates σµ.
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Figure 6: Birth-Death Diffusion for surviving mammals: lineage heterogeneity a) Median pos-

terior reconstructed speciation rates λ(t) and extinction rates µ(t) across the reconstructed mammals tree

according to the Birth-Death Diffusion model (note that this are the same model results of Fig 5). Sur-

rounding colors identify 16 mammal clades with en embedded species silhouette and roman numerals for

identification. b) Posterior DA average speciation rates and c) extinction rates the 16 major clades high-

lighted in ‘a)’. Solid white line shows the median, while the darker shade the 50% CI across all data

augmented trees. Silhouettes identify some focal clade patters. d) Posterior reconstructed speciation rates

and e) extinction rates for median posterior tree (solid lines shows the median and light shading shows the

50% quantiles across the lineages’ median posterior rates).
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