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ABSTRACT 17 

Simulated free surface transients in periodic urban layouts have been reported to be self-similar in the 18 
space-time domain when averaged on the scale of the building period. Such self-similarity is 19 
incompatible with the head loss model formulae used in most porosity-based shallow water models. 20 
Verifying it experimentally is thus of salient importance. New dam-break flow laboratory experiments 21 
are reported, where two different configurations of idealised periodic buildings layouts are explored. A 22 
space-time analysis of the experimental water level fields validates the self-similar character of the 23 
flow. Simulating the experiment using the two-dimensional shallow water model also yields self-24 
similar period-averaged flow solutions. Then, the Single Porosity (SP), Integral Porosity (IP) and Dual 25 
Integral Porosity (DIP) models are applied. Although all three models behave in a similar fashion when 26 
the storage and connectivity porosities are close to each other, the DIP model is the one that upscales 27 
best the refined 2D solution.  28 

Keywords: Urban floods, scale model, porosity model, flux, source term 29 

1 Introduction 30 

Shallow water models with porosity have arisen over the past two decades as an alternative to 31 

classical two-dimensional shallow water models for the modelling of flows over complex 32 

topography and in complex geometries (Bates, 2000; Defina, 2000). Urban flood modelling has 33 

become a typical application field of such models (Chen et al., 2012; Guinot and Soares-Frazão, 34 

2006; Hervouët et al., 2000; Özgen et al., 2016b; Sanders et al., 2008; Schubert and Sanders, 35 

2012; Soares-Frazão et al., 2008; Viero and Valipour, 2017). Many variations of porosity 36 

models have been presented in the literature. The Single Porosity (SP) model (Bates, 2000; 37 

Defina, 2000; Guinot and Soares-Frazão, 2006; Hervouët et al., 2000) uses a single porosity to 38 

describe the flow storage and connectivity properties of the urban medium. The Integral 39 

Porosity (IP) model (Sanders et al. 2008) uses a storage and a connectivity porosity to 40 

incorporate the effects of urban anisotropy in the governing equations (Kim et al., 2015). 41 

Anisotropic conservation laws may also be defined to account for anisotropy in SP models 42 

(Viero and Valipour, 2017; Viero 2019) via a tensor formulation (Ferrari and Viero, 2020) or 43 

through a binary porosity indicator (Varra et al., 2020). A depth-dependent version is presented 44 
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in Özgen et al. (2016a). The Multiple Porosity model (MP) uses a partition of the urban domain 45 

into several flow regions, with different degrees of connectivity and anisotropy (Guinot, 2012). 46 

The approach bears similarities with the multilayer BCR/CRF approach proposed in Chen et 47 

al. (2012). The Dual Integral Porosity (DIP) model (Guinot et al., 2017) has been proposed as 48 

a variation of the IP model, with improved flux and source term formulae. A model with three 49 

porosity parameters has been proposed recently (Bruwier et al., 2017). Higher-order numerical 50 

schemes are proposed to further increase the accuracy of the results especially in cases with 51 

topographies (Ferrari et al., 2020). 52 

Two key issues arise in the derivation and application of porosity-based shallow 53 

water models. The first is the flux model, the second is the source term model. The flux 54 

model has a direct influence on the wave propagation properties of the flow solutions. Very 55 

different wave propagation speeds are obtained for the SP, IP and DIP models (Guinot et al., 56 

2017). This suggests that experiments featuring wave propagation properties may be 57 

instrumental in discriminating the various porosity models. Many models have been proposed 58 

for the source term arising from building drag, from drag coefficient-based formulae (Sanders 59 

et al., 2008) to drag tensors (Guinot et al., 2017) and generalized tensor formulations 60 

(Velickovic et al., 2017). All these models take the form of Equations Of State (EOS) 61 

involving the flow variables (the water depth, the flow velocity or unit discharge vector) that 62 

can be validated against steady flow experiments (see Velickovic et al., 2017). However, 63 

benchmarking the various available formulations with refined, transient flow simulations 64 

(Guinot, 2017; Guinot et al., 2017) indicates that an additional momentum dissipation 65 

mechanism is at work in the presence of positive transients. This momentum dissipation 66 

mechanism makes the wave propagation speeds different depending on whether the flow is 67 

falling or rising (Guinot et al., 2017). This effect had been foreseen in Guinot (2012) to arise 68 

from a particular configuration of the MP model. It cannot be modelled by a momentum 69 

source term in the form of an EOS because it acts directly on the wave propagation speeds of 70 

the transients. In the presence of sharp transients propagating along the preferential directions 71 

of the urban layout, this momentum dissipation term exerts a significant influence on the 72 

simulated flow behaviour (Guinot, 2017). However, to date, no experimental evidence of such 73 

a mechanism has been provided. While successful applications of porosity models against 74 

experimental data sets have been presented in the literature (Kim et al., 2015; Özgen et al., 75 

2016b), the number of building blocks involved is often too small to allow for a conclusive 76 

interpretation of the results. 77 

The present paper serves three objectives. The first is to present a data set for dam-78 

break scale model experiments in idealized urban layouts. This data set is to be used for 79 

model validation and/or benchmarking. The modelled urban layout counts up to 20 building 80 

periods in the longitudinal direction, which, to our best knowledge, is the largest number of 81 

block periods used in transient, scale model experiments. The second objective is to 82 

benchmark the SP, IP and DIP models against these experiments and to assess the validity of 83 

the abovementioned transient momentum dissipation mechanism. The third objective is to 84 

check whether refined 2D shallow water models are accurate enough to reproduce the dam-85 

break experiments reported here and may therefore be used to produce reference solutions for 86 

the benchmarking of porosity models. 87 

Section 2 presents the models used in the benchmarking phase and the theoretical 88 

implications of the source term formulation on solution properties. Section 3 presents the 89 

experimental setup and results. Section 4 is devoted to model benchmarking. Conclusions are 90 

given in Section 5. 91 
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2 Porosity models and solution self-similarity 92 

2.1 Porosity models 93 

The present subsection details the various formulations explored in the present work. Three 94 

different porosity models are considered: the Single Porosity (SP) model, the Integral Porosity 95 

(IP) model, and the Dual Integral Porosity (DIP) model. The analysis is restricted to one-96 

dimensional flow configurations for the sake of consistency with the experiments reported 97 

hereafter. The governing equations for the three models can be written as 98 

    t x    u I M f u s  (1a) 99 
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where u, f and s are respectively the conserved variable, flux and source term vectors, I and 104 

M are respectively the identity and momentum dissipation matrices, CD is the building drag 105 

coefficient per unit depth, g is the gravitational acceleration, h is the water depth, S0 and Sf are 106 

respectively the bottom slope and bottom friction slope, u is the x-flow velocity,   and   107 

are respectively the storage and connectivity porosities, and  is a dimensionless coefficient 108 

between 0 and 1 accounting for momentum dissipation. The shallow water equations are 109 

obtained as a particular case of the SP, IP and DIP models by setting 1     and 110 

0DC    in equations (1a-c). The SP model is a particular case of both the IP and DIP 111 

models with    . The main difference between the three models lies in how the 112 

connectivity porosity   acts on the fluxes. Originally introduced by Sanders et al. (2008), 113 

the connectivity porosity is the fraction of the frontal area available for mass and momentum 114 

transfer. While it is not relevant to the SP model,   exerts a salient influence on the wave 115 

propagation speeds of the IP and DIP models. From a physical point of view, it should be 116 

taken smaller than   in the IP model, so as to account for the effects of building obstruction 117 

on the flow. Using     in the IP model is known to increase the propagation speed of the 118 

waves artificially. In the DIP model, the configuration     is not permissible because it 119 

yields complex-valued wave speeds (Guinot et al., 2017), with the consequence that 120 

hyperbolicity is lost and initial- and boundary-value problems become ill-posed. 121 

Two types of source term models have been proposed so far for porosity models: turbulent 122 

head loss model proportional to the square or another power of the flow velocity (Guinot and 123 

Soares-Frazão, 2006; Özgen et al., 2015; Sanders et al., 2008; Velickovic et al., 2017), and 124 

transient momentum dissipation models, active only when transients involving positive waves 125 

arise (Guinot, 2012; Guinot et al., 2017). In one-dimensional flow configurations, as explored 126 

in the present work, turbulent head loss models can be written as in equation (1d). This type 127 

of model, however, has been shown to be insufficient to reproduce the behaviour of transients 128 

involving positive waves (Guinot et al., 2017; Guinot, 2017). For this reason, the transient 129 
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momentum dissipation model (1a, e) has been proposed in Guinot et al. (2017). This model 130 

was validated against systematic refined 2D simulations of urban dam-break problems in 131 

(Guinot, 2017). A salient feature of this model is that it leads to self-similar solutions when 132 

applied to the solution of Riemann problems, a feature that was identified in (Guinot, 2012) 133 

and confirmed in (Guinot, 2017). The next subsection is devoted to the analysis of self-similar 134 

solutions. 135 

2.2 Source term and solution self-similarity 136 

The objective of the present section is to derive the conditions under which the solutions of 137 

the one-dimensional dam-break problem are self-similar when computed using porosity 138 

models in the presence of source terms. A solution u of the governing equations (1a-e) is said 139 

to be self-similar in  ,x t  if it verifies the following condition: 140 

        , / , ,x t x t kx kt x t k   u v u u  (2) 141 

It is inferred from equation (2) that u is constant along any straight line originating from the 142 

origin (0, 0) in the  ,x t  plane (Figure 1).  143 

Consider first equation (1a) without the momentum dissipation matrix M 144 

  t x   u f u s  (3) 145 

The exact expression for the flux function f (SP, IP or DIP in equation (1c)) needs not be 146 

known at this stage. For a periodic one-dimensional building layout, the flux f is a function of 147 

u alone because the porosities can be taken uniform, by setting the averaging domains equal 148 

to one spatial period. Solutions of the one-dimensional, initial value dam-break problem fulfil 149 

equation (3) with the following initial conditions: 150 
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Solution self-similarity is investigated as in Lax (1957). Introducing the variable 152 

change    , ,X T kx kt  where k is an arbitrary constant, using the chain rule, dividing by k 153 

leads to 154 
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In the case 0s , equations (5a-b) are equivalent to equations (3, 4). Consequently, 157 

   , ,X T x tu u  and the self-similarity property (2) is valid. 158 

When the source term s is non-zero, the solutions of the IVP (5a-b) are not 159 

necessarily self-similar. If s obeys an equation of state, that is,  s s u , equation (5a) is not 160 

invariant with respect to the scaling factor k. In contrast, self-similarity is preserved if the 161 

source term takes the form proposed in Guinot et al. (2017): 162 

    x s M u f u  (6) 163 

where M is a matrix, the coefficients of which are functions of u. Self-similarity is proved by 164 

introducing again the variable change     , ,X T k x k t  into Equation (6). The chain rule 165 

x x X XX k       yields the following property for s 166 

        X Xk k   s M u f u M u f u  (7) 167 

Substituting equation (7) into (5a) gives 168 



5 

 

   

 

 
     T X X     u f u M u f u s

 (8) 169 

Equation (8) is identical to Equation (3). The form (6) thus leaves equation (5a) invariant with 170 

respect to the scaling factor k and the self-similarity property (2) is verified. A transient 171 

source term in the form (6) is proposed in the DIP model (Guinot et al., 2017) to account for 172 

the dissipation of momentum originating from positive transients propagating into building 173 

block layouts. Comparisons of DIP model outputs to pore-scale averaged refined shallow 174 

water simulations show that this source term is active only for rising water levels and that 175 

only this form of source term allows the wave propagation properties of transients to be 176 

preserved and accurate solutions to be reproduced (Guinot et al., 2017). Note that this source 177 

term alone is not sufficient to account for all energy losses because it is zero under steady 178 

state conditions, while significant steady state head losses have been reported when the flow 179 

is not aligned with the main street directions (Velickovic et al., 2017). However, it is 180 

predominant in the case of sharp transients propagating along the main street directions. 181 

The self-similar behaviour of the solutions of the Riemann problem, if verified in 182 

reality, may serve as a powerful tool for discriminating between alternative momentum source 183 

term closures in shallow water models with porosity. 184 

3 Experiments 185 

3.1 Experimental set-up 186 

Dam-break flow experiments were conducted at the Hydraulics Laboratory of the Institute of 187 

Mechanics, Materials and Civil Engineering (Université catholique de Louvain, Belgium). 188 

The flume is 29.5 m long and 1 m wide. The bed is horizontal and its Manning friction 189 

coefficient is estimated to be n = 0.011 s m-1/3 from previous experiments (e.g. Soares-Frazão 190 

and Zech 2008, Velickovic et al., 2017). Two periodic block configurations were studied. In 191 

Configuration 1 (Figure 2), the blocks are placed in such a way that 3/4 of the flume section is 192 

obstructed and each block occupies a fraction 6/16 of the plan view area, therefore 62.5 % of 193 

the plan view area is available to water storage, and 25 % of the model width is available to 194 

the flow. This yields    , 0.625,0.25    . In Configuration 2 (Figure 3), the blocks 195 

occupy 30% of the total plan view area, thus making 70 % of the total area available for water 196 

storage, and half of the cross-section is periodically obstructed by the blocks. Consequently,197 

   , 0.7,0.5    . The blocks are made of marine plywood presenting a very smooth 198 

surface, so that no additional friction effects are expected. The water was initially at rest in 199 

the upstream part of the flume, with an initial depth h0 = 0.350 m. In the downstream part, a 200 

thin layer of water was present, with a depth ranging from 5 mm to 1.5 cm depending on the 201 

replicate. Since several experimental replicates were performed, the downstream depth, 202 

stemming from the residual water from the previous replicates, was not exactly the same for 203 

all replicates. The upstream and downstream sections of the flume were separated by a gate 204 

located 9.73 m from the upstream end of the flume. The gate was lifted very quickly (within 205 

less than 0.5 s) to simulate the breaking of a dam. The water level at each gauging point was 206 

measured using ultrasonic probes (Baumer) placed at a fixed distance above the flume. These 207 

probes record the distance to the water surface with an accuracy of 0.1 mm and a maximum 208 

temporal resolution of 0.05 s, depending on the number of simultaneous measurements. In 209 

addition to the probes located in the flume, a probe was placed in front of the gate in order to 210 

identify the starting time of the experiment (t = 0), thus allowing the signals collected from 211 

the other probes to be synchronized. 212 
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The water levels were recorded every 0.2 s using four probes, at 114 and 97 gauging points 213 

for Configurations 1 and 2 respectively, resulting in more than 300 experimental runs. The 214 

time span involved in these plots is [0 s, 30 s], with one block-averaged value every second. 215 

The gauging points are located along the main flow path and inside the cavities between two 216 

successive blocks (see Figure 2 for Configuration 1, Figure 3 for Configuration 2). The 217 

probes are labelled in the following way: PUx_y for a probe located in the upstream part at the 218 

coordinates  ,x y  and PDx_y for a probe located in the downstream part at the coordinates 219 

 ,x y . For example, probe PD1_125 is located in the downstream part, at    , 1,0.125x y   220 

where the coordinates are expressed in m. Sample locations of the probes are given in Table 1 221 

for Configuration 1 and Table 2 for Configuration 2.  222 

The repeatability of the experiments was checked, so that measurements obtained 223 

from different runs could be combined. Indeed, more than 300 experimental runs in total were 224 

needed to cover the whole measurement range, so it is mandatory to check for the 225 

repeatability of the experiments in order to combine the results of the different runs into a 226 

single data set. The repeatability at probe PD2_125 is illustrated in Figure 4 for three different 227 

runs. 228 

3.2 Results 229 

The purpose is to check the self-similar character of the large-scale water depth field. To do 230 

so, it is necessary to devise a procedure to compute the block-averaged, experimental water 231 

depth fields. The block-averaged water depths are computed using all the experiment 232 

replicates: 233 

    av , ,

1 1

1
, ,

R N

i k i k j

j k

h x t w h x t
R  

  , 

1

1
N

k

k

w


  (9) 234 

where , ,i k jh  is the water depth measured by the kth probe in the ith block period during the jth 235 

replicate, N and R are respectively the number of probes per block period and the number of 236 

experiment replicates, and kw  is the weight of the kth probe within a given block period. The 237 

averaging domain is centred around the lateral street, as shown in Figure 5. Figure 5 also 238 

shows the numbering scheme for the probes in Configuration 1. The sensitivity of the 239 

averaging results to the distribution of the weights kw  is assessed by using two strongly 240 

contrasted weight distributions, labelled A and B. The weight distributions for these two 241 

weighting approaches are given in Table 3. Approach A gives equal weight to all probes, 242 

while Approach B gives a 50% weight to the average of the probes within the lateral street, 243 

and 1/4 to each of the probes at the boundary of the averaging domain. Figure 6 shows the 244 

behaviour of avh  obtained for the two weighting approaches. The two curves are very close to 245 

each other, with differences much smaller than the measurement precision of the probes. 246 

Since no significant difference is observed between the two approaches, the equal weight 247 

approach is retained for Configuration 2. 248 

 The block-averaged water depth is plotted as a function of /x t  for all block periods 249 

in Figure 7. Note that the time interval used for these plots is [0 s, 11 s] for Configuration 1 250 

and [0 s, 9 s] for Configuration 2. This is because after these times, the dambreak waves are 251 

observed to reach the downstream or upstream end of the flume. The flow pattern at later 252 

times switches from an initial value problem to a boundary value problem and studying 253 

solution self-similarity becomes meaningless. Although the plots in Figure 7 seem to indicate 254 

that the experimental profiles gather along a single S-shaped curve in the  av/ ,x t h plane, a 255 

certain amount of scattering is observed in the experimental data. In the case of a perfectly 256 
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self-similar solution, all experimental points should fall exactly onto a single curve. The 257 

question then arises whether the present scattering can be explained by experimental 258 

uncertainty. 259 

 This question is answered by incorporating the error boxes in the experimental plots. 260 

This is done in Figure 8 for Configuration 1 and Figure 9 for Configuration 2. The reader is 261 

referred to the electronic version of the paper, where the various series are plotted using 262 

different colours to allow for a better identification of the series. The experimental uncertainty 263 

for probe positioning was 1cmx   .  264 

The time resolution of the data logger is less than 1 s. But the uncertainty stemming 265 

from the estimation of the starting time (t = 0), identified using the probe placed in front of 266 

the gate, is estimated as +-2 s. 267 

The uncertainty 1cmh    in the water depth is inferred from the min-max 268 

difference between the individual time series recorded by the probes. Let hav(x, t, j) be the 269 

average water depth obtained at location xi at time t for the jth replicate. The uncertainty in 270 

the water depth is obtained by taking the difference between the maximum and minimum 271 

water depths obtained from the various replicates at the same time and location 272 

       
,

max max , , min , ,
i

av i av i
jx t j

h h x t j h x t j    (10) 273 

This uncertainty is significantly larger than the measurement precision of the probes. It only 274 

illustrates the impossibility of obtaining perfectly replicable experiments. This is due to many 275 

factors. To start with, small time difference in the water depth time series from one replicate 276 

to the other may result in large depth differences because sharp fronts are dealt with. 277 

Moreover, oscillations with an amplitude up to 1.5 cm were observed in the upstream part of 278 

the experimental device during the filling phase, which makes it very difficult to guarantee 279 

that the upstream water level was exactly the same for all replicates. Lastly, a small leakage 280 

was observed across the gate during the filling phase before the replicates. Consequently, the 281 

downstream part of the channel was never completely dry between successive replicates. Also 282 

note that a number of outliers had to be removed from the experimental data set (in some 283 

occasions, initially dry beds were recorded by the probes as having an initial depth of -1.5 284 

cm). As shown in Figure 8, for Configuration 1 it is possible to draw a curve intersecting all 285 

the experimental error boxes, except for a few block periods. The curve is a spline that is 286 

fitted by minimizing the following objective function. 287 

 
, ,, , i j ki j k

J e  (11a) 288 

    , , , , fit fit , ,max 0, , , ,
2 2

i j k i j k i i i j k

h h
e h h x t h x t h

  
     

 
 (11b) 289 

Where ℎfit(𝑥𝑖, 𝑡) is the fitted function. The fitting error ei,j,k is zero if the fitted h lies within 290 

the experimental error box, indicating that the difference between the fitted value and the 291 

experimental one can be explained by the experimental imprecision. If the fitted function 292 

value ℎfit(𝑥𝑖, 𝑡) lies outside the experimental error box, it means that the experimental 293 

imprecision cannot explain fully the difference between the experimental values and the fitted 294 

ones. In this case, the error is taken as the distance between the fitted value and the nearest 295 

bound of the experimental error box. This approach was used in the past to maximize the 296 

plausibility of a model, that is, to determine a unique model setup that best explains the 297 

measurements in the light of the experimental error (see Majdalani et al. (2018) for detailed 298 

considerations on the approach). The series for 1 mx    and 4 mx   are clearly outliers. 299 

For Configuration 2 (Figure 9), the error boxes for the series 2.50 mx   , 1.25 mx   and 300 

2 mx   are not intersected by the fitted curve either. These few series excepted, the fitted 301 

curves are intercepted by the error boxes of all experimental series, which tends to validate 302 

the self-similar behaviour. 303 



8 

 

   

 

That the measurements at a given location depart from the expected self-similar 304 

behaviour may be explained by several factors. A first possible reason is the local invalidity 305 

of the hydrostatic pressure distribution assumption. The self-similar character of the solution 306 

is a direct consequence of the hyperbolic nature of the shallow water model. In the case of 307 

non-negligible vertical accelerations, the shallow water model becomes invalid and corrective 308 

terms, usually dispersive, must be incorporated in the governing equations. The solution of 309 

the Riemann problem for second- and higher-order partial differential equations is not self-310 

similar in  ,x t . This may explain for instance the behaviour of the experimental points 311 

1 mx    in Configuration 1 (Figure 8), because the first block period is located very close to 312 

the gate, in a region where the free surface is steep and vertical accelerations are not 313 

negligible. A second possible reason is a systematic error during probe recording and/or 314 

calibration. A third reason could be a consistent bias introduced by a slightly altered 315 

geometry. It is striking indeed to notice that, for a given block period, the records are 316 

consistently above or below the fitted curve. This seems to indicate a consistent behaviour of 317 

the hydrodynamics of the block period under consideration. That a given block average 318 

departs significantly from the rest of the series might be due to an altered geometry compared 319 

to the ideal layout (e.g. a block slightly shifted or with dimensions slightly different compared 320 

to specifications, etc.). The outlying series in Figures 8 and 9 can be attributed to a 321 

combination of all these reasons. 322 

4 Model results and discussion 323 

4.1 Results 324 

The experiments are simulated using four models: the two-dimensional shallow water model, 325 

the Single Porosity (SP) model, the Integral Porosity (IP) model, and the Dual Integral 326 

Porosity (DIP) model. The 2D shallow water model uses a 1 cm×1 cm square grid, which 327 

results in more than 140,000 elements. The 2D shallow water equations are solved using the 328 

finite volume-based, MUSCL-EVR technique (Soares-Frazão and Guinot, 2007), with a 329 

maximum CFL of unity (see Soares-Frazão and Guinot, (2007) for the derivation of the 330 

stability criterion). The porosity models are one-dimensional. The governing equations for the 331 

three porosity models are not solved numerically but semi-analytically. The first generalized 332 

Riemann invariant (Lax, 1957) is integrated across the rarefaction wave that connects the left 333 

state to the intermediate region of constant state: 334 

 
(1)

1

d
d // across

d

x

t
u K  (12) 335 

Where 
 1

K  and 1  are respectively the first eigenvector and eigenvalue of the Jacobian 336 

matrix of f with respect to u. Owing to the simple structure of the Jacobian matrix, the matrix 337 

of eigenvectors in shallow water models is given by 338 

 
1 2

1 1

 

 
  
 

K  (13) 339 

Consequently, the first generalized Riemann invariant across the pth wave is given by 340 

 2 1 1 1

d
d d across

d

x
u u

t
    (14) 341 

where  1,2ku k   is the kth component of u. The formulae for the wave propagation speeds 342 

in the SP, IP and DIP models are given in (Guinot et al., 2017). While Equation (14) can be 343 

integrated analytically for the SP and IP models, its integration for the DIP model is 344 

performed using an RK2 procedure with a depth increment 1 cmh  .  345 
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All simulations are run using the initial condition  ,L Rh h  = (0.35 m, 0 m). The fine 346 

grid solution computed every 0.1 second by the two-dimensional shallow water model is 347 

averaged over the block periods in order to allow for a comparison with the experimental 348 

results.  349 

The results of the refined 2D shallow water model are compared to the experimental 350 

results in Figure 10. It is noticed that the refined 2D solution also tends to follow an S-shaped 351 

curve. Only do a few points strongly depart from the main trend. Inspecting the period-352 

averaged results shows that these points belong to the block periods in the immediate 353 

neighbourhood to the initial discontinuity. This tends to confirm the finding by Guinot (2017) 354 

that more than one spatial period may be needed to observe the self-similarity of the refined 355 

solution. While the block-averaged refined 2D solution quite closely follows the experimental 356 

data in Configuration 1 (Figure 10, top), it fails to replicate the curvature and the  sudden 357 

steepening of the data cloud near / 0x t   in Configuration 2 (Figure 10, bottom). 358 

The results of the SP, IP and DIP models are plotted together with the experimental 359 

data in Figure 11. For Configuration 1, the combination of porosities    , 0.25,0.625     360 

yields strongly contrasted model responses. The SP model consistently overestimates the 361 

propagation speed of the transient. The IP model fails to reproduce the change in the 362 

curvature of the free surface in the upstream part of the flume (negative /x t  values) but 363 

reconstructs successfully the downstream part. This, however, is regarded as a mere 364 

coincidence in that the refined 2D model (of which the porosity model is supposed to be an 365 

approximation) is not as good as the IP model in this part of the profile.  Of the three porosity 366 

models, the DIP model is the only one that combines a successful reproduction of the 367 

curvature in the upstream part of the flume with a satisfactory approximation of the 368 

experimental behaviour in the downstream part. For Configuration 2, the contrast between the 369 

two porosities    , 0.5,0.7     is much milder and all three models behave in a very 370 

similar fashion. All three fail to reproduce the steepening of the profile near / 0x t  , just as 371 

the refined 2D model does. Nevertheless, the DIP model is the most successful of the three in 372 

upscaling the refined 2D shallow water solution in both configurations. 373 

4.2 Discussion 374 

Besides setting up an experimental database, an objective of the present work was to check 375 

the relevance of incorporating a transient momentum dissipation term in the governing 376 

equations of porosity models. The three model outputs plotted in Figure 11 seems to indicate 377 

that such a momentum dissipation model is of limited interest, at least for the flow 378 

configurations reported here. The reason is that the transient momentum dissipation model 379 

operates only when the free surface is rising (thus only for positive /x t ) and its main effect 380 

is to slow down the propagation of the waves. In Configuration 1, it may allow the 381 

downstream part of the SP profile to be corrected to fit better the experimental results, but it 382 

would have no action on the upstream part of the profile. Correcting the propagation speeds 383 

of the IP and DIP profiles for / 0x t   would only contribute to increase the discrepancy 384 

between these profiles and the experimental points, so introducing dissipation in these two 385 

models is not advisable. In configuration 2, all three models exhibit similar behaviours and fit 386 

the experimental data rather well in the region / 0x t  . Consequently, slowing down the 387 

propagation speeds in this region is of limited interest. The main discrepancy with the 388 

experimental results of Configuration 2 is observed in the upstream part of the flume, a region 389 

over which the free surface is falling, thus cancelling the transient momentum dissipation 390 

term.  391 
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A salient feature of the modelling is that all models, including the refined 2D shallow 392 

water model, fail to reproduce the steep part of the experimental profiles near / 0x t  . This 393 

may be attributed to strong vertical accelerations occurring at the gate at the early times of the 394 

experiment. Such acceleration may modify locally the pressure field compared to the 395 

theoretically hydrostatic pressure distribution. This may result in modified wave propagation 396 

speeds and altered free surface profiles compared to those given by the solution of the shallow 397 

water equations. 398 

As shown in Figures 10 and 11, the water depth profile is much better reproduced by 399 

all models for Configuration 1 than for Configuration 2. This can be explained by a number of 400 

factors. First, the water depth profile is much steeper near x/t = 0 in Configuration 2 than in 401 

Configuration 1. Consequently, vertical accelerations are much stronger in Configuration 2 402 

than in Configuration 1, thus making the hydrostatic pressure distribution assumption more 403 

questionable in the second configuration than in the first, especially in the neighbourhood of 404 

the gate. Second, the ratio /is larger in Configuration 2 than in Configuration 1. 405 

Therefore, the positive and negative waves propagate faster along the main channel in the 406 

second configuration. This entails stronger reflection phenomena against the walls of the 407 

building blocks and within the lateral streets, with the consequence that difference between 408 

the water depths and velocities in the main street and in the lateral ones is larger in 409 

Configuration 2. Almost all porosity models (except for the MP model) being based on the 410 

assumption of a uniform distribution of the water levels and the flow velocity within an 411 

averaging block, the more transient the configuration, the more inaccurate this underlying 412 

assumption. 413 

5 Conclusions 414 

An experimental data set for laboratory scale dam-break experiments in idealized urban 415 

layouts is presented. The experiments are carried out using a scale model of periodic, aligned 416 

building blocks. Two geometric configurations, corresponding to two different storage and 417 

connectivity porosity combinations, are used:    , 0.625,0.25     and 418 

   , 0.7,0.5    . The water levels are recorded as functions of time at 6 points in each 419 

block period. The experimental, block-averaged values are shown to obey a self-similar 420 

behaviour in the  ,x t  space.  421 

The experiment is reproduced satisfactorily using a two-dimensional refined shallow 422 

water model, except in the close neighbourhood of the initial discontinuity. The block-423 

averaged water depths computed by the refined 2D model are also shown to follow a self-424 

similar behaviour. A theoretical analysis shows that the self-similar behaviour can be 425 

preserved by a pore scale-averaged model only if the momentum source term does not obey 426 

an equation of state but is a function of the momentum flux divergence. This is the case of the 427 

transient momentum dissipation term introduced in the DIP model. Reproducing the 428 

experiments using the SP, IP and DIP models shows that (i) the DIP fluxes outperform the SP 429 

and IP fluxes when the contrast between the connectivity and storage porosities is large (430 

/ 2.5    ), (ii) all three models exhibit very similar behaviours for a ratio / 1.4    , 431 

(iii) all models, including the refined 2D shallow water model, fail in reproducing the steep 432 

part of the water depth profiles near / 0x t   .  433 

Lastly, while satisfactory in theory because it preserves solution self-similarity, the 434 

transient momentum dissipation term proposed in the DIP model (Guinot et al., 2017) is 435 

found useless to reproduce the present experiments. Many reasons may be given for this, such 436 

too small a number of block periods to allow for an accurate upscaling. Further research 437 
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should be directed to enriching the experimental database by exploring a wider range of flow 438 

conditions and geometries. 439 
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Notation 448 

CD = drag coefficient per unit depth (m–1) 449 

f = flux vector 450 

h = water depth (m) 451 

k = scaling factor (-) 452 

M = dissipation matrix 453 

s = source term vector 454 

S0 = bottom slope 455 

Sf = friction slope 456 

T, t = time coordinates (s) 457 

u = conserved variable vector 458 

u, v = x- and y-flow velocities (m s–1) 459 

X, x = longitudinal space coordinates (m) 460 

y = transverse space coordinate (m) 461 

 = momentum dissipation coefficient (–) 462 
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Table 1. Sample probe coordinates for Configuration 1. x-period: 1 m. 532 

Identification x (m) y (m) 

PU85_125 -8.500 0.125 

PU8_125 -8.000 0.125 

PU8_300 -8.000 0.300 

PU8_455 -8.000 0.455 

PU8_600 -8.000 0.600 

PU8_800 -8.000 0.800 

 533 

Table 2. Sample probe coordinates for Configuration 2. x-period: 1.25 m. 534 

Identification x (m) y (m) 

PU875_125 -8.750 0.150 

PU875_375 -8.750 0.375 

PU875_575 -8.750 0.575 

PU875_800 -8.750 0.800 

PU85_250 -8.500 0.250 

PU8125_250 -8.125 0.250 

PU775_250 -7.750 0.250 

 535 

 536 

 537 

Table 3. Probe weights used in the sensitivity analysis of the averaging procedure (Configuration 538 
1). 539 

k wk Approach A wk Approach B 

1 1/7 1/4 

2 1/7 1/10 

3 1/7 1/10 

4 1/7 1/10 

5 1/7 1/10 

6 1/7 1/10 

7 1/7 1/4 

 540 

 541 
Figure 1. Self-similarity of the flow solution in the (x, t) space. The lines u = Const are straight 542 
lines. 543 

 544 

u = Const 

x 

t 
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 545 
Figure 2. Definition sketch and dimensions (m) for Configuration 1 546 

 547 
Figure 3. Definition sketch and dimensions (m) for Configuration 2 548 

 549 
Figure 4. Repeatability of the experiment for Configuration 1, probe PD2_125 550 

 

 
Figure 5. Configuration 1. Probe numbering within a block period. Dashed lines: 

boundaries of the block period. 
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Figure 6. Sensitivity analysis of the averaging approach. hav computed using Approaches A 

and B (Configuration 1). 

 

 

 551 
Figure 7. Block-averaged water depth as a function of x/t. 552 

553 
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 554 

 555 
Figure 8. Configuration 1. Experimental uncertainty and fitted curve for solution self-similarity 556 
assessment. 557 

 558 
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 559 
Figure 9. Configuration 2. Experimental uncertainty and fitted curve for solution self-similarity 560 
assessment. 561 

562 
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 563 

 564 
Figure 10. Comparison of the block-averaged refined 2D shallow water solution and 565 
experimental results. 566 

 567 

 568 
Figure 11. Comparison  of the SP, IP and DIP porosity model solutions and experimental results. 569 


