
HAL Id: hal-03865931
https://hal.science/hal-03865931v1

Preprint submitted on 22 Nov 2022 (v1), last revised 23 Nov 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New optimization models for optimal classification trees
Zacharie Alès, Valentine Huré, Amélie Lambert

To cite this version:
Zacharie Alès, Valentine Huré, Amélie Lambert. New optimization models for optimal classification
trees. 2022. �hal-03865931v1�

https://hal.science/hal-03865931v1
https://hal.archives-ouvertes.fr

New optimization models for optimal classification trees

Zacharie Ales, Valentine Huré, Amélie Lambert

November 22, 2022

Abstract

Interpretability is a growing concept in Machine Learning. Decision-making algorithms are
more and more used in healthcare, finance or other high stakes contexts. Therefore, the need
for algorithms whose decisions are understandable is of the utmost importance. Intrinsically
interpretable classifiers such as decision trees are often seen as less accurate than black box models
such as neural networks. For decision trees, state-of-the-art methods are recursive heuristics (e.g.
CART) that may fail to find underlying characteristics in datasets. Recently, linear formulations
were introduced to model the problem of the construction of the best decision tree for a given
dataset. Notably, a MIO formulation, introduced by Bertsimas and al., has shown better accuracy
than CART. However this model does not scale up to datasets with more than 1000 data points.
Our work focuses on improvements of MIOs that speed up their resolution in order to handle
larger problems. We present a quadratic formulation of the MIP devised by Bertsimas and al.
as well as its linearization and another that extends a flow-formulation (from binary dataset to
real-value dataset). We prove that our new formulations have stronger continuous relaxation
than the MIP introduced by Bertsimas and al.. Finally, our experiments show that they have
a significantly smaller resolution time than the MIP of Bertsimas and al. while maintaining or
improving performances on test sets.

Keywords: combinatorial optimization, optimal classification trees, mixed binary programming,
quadratic programming, linearizations

1 Introduction

A supervised classification problem considers a dataset (Xi, yi)i∈I such that Xi = (xi,j)j∈J ∈ R|J | is
the features vector of data i ∈ I and yi ∈ K is its associated class. The objective is then to determine
a classification function C : R|J | 7→ K, called a classifier to best predict the class of new data from
their features vectors. To that end, the data are partitioned into two subsets: the training set I used
to train the classifier and the test set It used for the evaluation. The evaluation consists in computing
the percentage of exact predictions over It: |{i∈It | C(Xi)=yi}|

|It| .

The work presented in this article aims to provide classifiers which both have good performances
on the training set and are interpretable. Interpretability is a concept that is increasingly considered
in supervised classification (Carvalho, Pereira, & Cardoso, 2019). Although several definitions of this
concept can be considered, it can be summarised as the ability to explain or to present in under-
standable terms to a human how a classifier works (Doshi-Velez & Kim, 2017). There is currently no
clear metric to measure interpretability but rather a consensus on which models are (or are not) inter-
pretable (J. Zhou, Gandomi, Chen, & Holzinger, 2021). A variety of reasons explain the rising interest
of interpretability. For example, in the General Data Protection Regulation (GDRP), the notion of
a right to explanation was introduced (Goodman & Flaxman, 2017; Wachter, Mittelstadt, & Floridi,
2017). Interpretability may also allow users to have more confidence in the results of a classifier which
is particularly important when taking sensitive decisions (e.g. medical or legal applications).

1

Interpretability and prediction performances are usually conflicting goals as the most efficient clas-
sifiers tend to be very complex (e.g., deep neural networks). This has been amplified by the fact that,
for the last decades, research in supervised classification has mainly focused on performances rather
than interpretability. Two main approaches can generally be considered to bring interpretability in
supervised classification. The first approach, applied to the most complex classifiers, consists in de-
velopping post-hoc models that can, to some extent, explain a classifier predictions. For example, in
LIME (Ribeiro, Singh, & Guestrin, 2016) (Local Interpratable Model-Agnostic Explanation) the clas-
sifier is used to predict the class of data in the neighbourhood of data from the training set. A simpler
classifier is then generated based on these predictions. Counterfactual explanations can also explain
a prediction by giving the smallest change of the features vector Xi that would have changed the
outcome of data i prediction (Wachter, Mittelstadt, & Russell, 2017). The second approach consists
in considering classifiers with a human-understandable decision process, in other words classifiers that
are intrinsically interpretable (Rudin, 2019). This article falls into this second category as we consider
decision tree classifiers. In order to both obtain interpretability and good performances, we focus on
the exact resolution of the training problem.

A decision tree is an oriented binary tree T = (N ∪ L, E) which associates a split function ft :
R|J | → {true, false} to each of its internal node t ∈ N and a class k ∈ K to each of its leaves ℓ ∈ L.
A data i ∈ I is classified by following a path from the root to a leaf. This path is determined by
applying the split functions of each internal node reached to the features vector Xi. Data i follows the
left branch of node t ∈ N if ft(Xi) is true and the right branch otherwise. The class predicted by the
classifier is the one associated with the leaf reached by data i.

The split functions are generally linear functions a⊺Xi < b with a ∈ R|J | and b ∈ R. When the
vectors a are restricted to be binary unit vectors, the tree is said to have axis-aligned splits. Otherwise,
we say that the splits are oblique.

The problem of the construction of an optimal decision tree is NP-complete (Laurent & Rivest,
1976) and the most used approaches are greedy heuristics such as CART (Breiman, Friedman, Olshen,
& Stone, 1984). This algorithm starts by a tree composed only of its root node. At each step one
leaf is transformed into an internal node which split function is determined by optimizing an impurity
measure (e.g., the Gini impurity (Jost, 2006)) over all the training data reaching it. This process is
recursively applied to the two new generated leaves unless the maximum depth is reached, or when
all the data reaching a leaf belong to the same class. This approach is fast but does not provide any
guarantee on the performances of the obtained tree compared to an optimal one.

Recently, exact solution methods for the construction of an optimal decision tree were introduced.
For instance, a dynamic programming algorithm called MurTree that is limited to binary features
vectors (i.e. Xi ∈ {0, 1}|J |) was introduced in (Demirović et al., 2022). Mathematical programs that
build Optimal Classification Trees (OCT) have also been introduced (Bertsimas & Dunn, 2017; Aghaei,
Gomez, & Vayanos, 2020; Verwer & Zhang, 2017). In particular, Bertsimas and al. (Bertsimas & Dunn,
2017) proposed two Mixed Integer Linear Programs (MILP). The first one, that we call (T) in this
paper, considers axis-aligned splits while the second, called here (TH) is an extension to the case of
oblique splits. These two formulations handle datasets with real-valued features (i.e. Xi ∈ R|J |). A
formulation based on flows, that we call (F b), was introduced by Aghaei and al. (Aghaei et al., 2020).
This model only applies to axis-aligned split functions and binary features vectors (i.e. Xi ∈ {0, 1}|J |).
The authors proved that (F b) provides a stronger continuous relaxation than a variant of problem (T)
dedicated to binary features vectors and that it can be solved through a Benders decomposition. For
large datasets, solving these MILPs with standard solvers is still a challenge, thus to support scaling-
up, models (T) and (TH) are actually solved heuristically. Note that all these formulations consider
two conflicting objectives. The first objective corresponds to the number of classification errors on
the training set while the second objective represents the complexity of the tree. This complexity is
represented by the number of internal nodes which perform a split in the axis-aligned case and by the

2

total number of non-zero coefficients in the splits of the tree in the oblique case. A first motivation
to minimize this second objective is that it improves the interpretability of the classifier. It can also
reduce overfitting which occurs when a classifier fits too well to the training set and learns details
that may not extrapolate well to the test set. A similar notion of complexity called sparsity is also
considered for a variant of the classification trees in which the path of the data is stochastic (Blanquero,
Carrizosa, Molero-Río, & Morales, 2020).

We propose in this paper several new formulations of the problem of determining the optimal
decision tree based on formulations (T) and (F b). A first contribution is the introduction of a new way
to count the number of classification errors in (T). For this, we build a quadratic formulation (Q) that
we linearize in two different ways. We obtain two MILPs, (QF) and (QG), which we compare from
the continuous relaxation point of view. In particular, we prove that these two new models provide
better continuous relaxation bounds than (T). We also prove that our models can be easily extended
to the oblique case. Then, we propose an extension (FH) of model (F b) to the oblique case which
is also able to handle non-binary features vectors (i.e. Xi ∈ R|J |). Then, we prove that (FH) has a
stronger relaxation than (TH), and can even provide better optimal solutions. All these formulations
generally have several solution which are optimal for the training set. To select one that will have the
best performances on the test set, we propose a heuristic that locally shifts the split functions as far as
possible from the data. We also provide an algorithm that fits the parameters (e.g. the depth of the
tree or the weight of the second objective) of a formulation by solving less MIPs than the algorithm
proposed by Bertsmias and al. (Bertsimas & Dunn, 2017). Finally, we provide extensive experimental
results.

The paper is organised as follows. In Section 2, we present related works and in particular the
formulations (T) and (F b). In Section 3, we present our new quadratic formulations of (T) together with
two linearizations. Then, in Section 4, we show how to extend model (F b) to real-valued datasets. In
Section 5, we describe how we select an optimal solution and we fit the parameters of our formulations.
Finally, in Section 6, we present computational results where we compare our approaches to state-of-
the-art methods.

2 Related Works

We present in this section formulations (T) and (F b) on which our work is based. Without loss of
generality, we consider that the value of each feature belongs to [0, 1].

2.1 Optimal Classification Tree

Bertsimas et al. (Bertsimas & Dunn, 2017) introduced two models. The first one computes trees where
the split functions, a⊺Xi < b, are axis-aligned splits (i.e. aj ∈ {0, 1} and

∑
j∈J aj = 1) while in the

second oblique splits are allowed (i.e. aj ∈ [−1, 1] and
∑

j∈J |aj | ≤ 1).

2.1.1 The axis-aligned case

The basic idea is to introduce variables that define the structure of the tree. Then, to each leaf is
associated a class k ∈ K. Finally, each data i, is assigned to the leaf it falls in according to its path
in the tree. Formulation (Tα,β,δ) considers three parameters which control the structure of the tree:
δ the depth of the tree, α the penalty that limits the number of splitting nodes, and β the minimal
number of data reaching a leaf. In the following, we denote by r ∈ N the root of the tree, and by a(t)
the direct ancestor of node t ∈ N\{r}. Let Pℓ be the path from r to a leaf ℓ ∈ L, we denote by AL(ℓ)
(AR(ℓ) respectively), the subset of Pℓ whose left (right resp.) child is in Pℓ.

3

Since the structure of an optimal tree of depth δ is not known a priori, (Tα,β,δ) associates variables
to each node of the complete tree (i.e. |N | = 2δ − 1 and |L| = 2δ). The split function of each internal
node t ∈ N is determined by |J | variables aj,t ∈ {0, 1} and one variable bt ∈ [0, 1]. The class predicted
by a leaf ℓ ∈ L is determined by variables ck,ℓ which are equal to 1 if and only if class k is assigned
to leaf ℓ. A data i assigned to leaf ℓ has to satisfy

∑
j∈J aj,trxi,j ≥ btr for all tr ∈ AR(ℓ), and∑

j∈J aj,tlxi,j < btl for all tl ∈ AL(ℓ). To satisfy the latter strict inequalities, a vector µ ∈ R|J | as
well as two scalars µ− = minj∈J (µj) and µ+ = maxj∈J (µj) are introduced. Each µj is the smallest
positive interval between values of the training data on feature j (i.e. µj = min{|xi1,j−xi2,j |, s.t. xi1,j ̸=
xi2,j , i1, i2 ∈ I2}). To follow the path of Xi ∈ I in the tree, binary variables zi,ℓ that indicate if Xi

reaches leaf ℓ are introduced.

To avoid overfitting, solutions representing non-complete trees are allowed, i.e. some nodes may
not apply a split if the trade-off between decreasing classification errors and increasing complexity is
not beneficial. We refer to nodes that apply a split as active. Variable dt is equal to 1 if and only if
node t ∈ N is active. In the model, all data reaching an inactive node t ∈ N is sent to its right branch
by setting aj,t and bt to 0 for all j ∈ J . Thus, some leaves may not be reached by any data. We
denote leaves reached by data as opened. Variable lℓ is equal to 1 if and only if leaf ℓ ∈ L is opened.
Let us illustrate these notations by considering a solution in which the variables dt take the values
represented in Figure 1a. Four of the splitting nodes are inactive (3, 5, 6, and 7) and four of the leaves
are closed (10, 12, 13, 14) leading to a decision tree which structure is represented in Figure 1b. Since
all the data reaching an inactive node are sent to its right branch, leaf 3 in Figure 1b will be assigned
the class predicted by node 15 in Figure 1a.

(a) Value of variables dt.
(b) Structure of the corresponding decision

tree.

Figure 1: Link between the value of variables dt of (Tα,β,δ) and the structure of the decision tree
obtained.

Additional variables are required to count the number of misclassifications. Variable Nℓ is equal
to the number of data reaching leaf ℓ ∈ L and variable Nk,ℓ is the number of these data which class is
k ∈ K. Finally, variables Lℓ is equal to the number of misclassifications in leaf ℓ ∈ L.

The objective function is a weighted sum of two criteria. The first criterion minimizes the number
of misclassifications weighted by a constant L̂ that corresponds to the number of misclassifications
for an optimal tree of depth δ = 0. The second one minimizes the number of active nodes weighted
by parameter α ≥ 0, and allows to control both the classifier interpretability and the overfitting
by penalizing the number of active nodes. Indeed, reducing the number of split functions make the
classifier easier to understand. Moreover, performing too many splits, may produce a tree which is
very good on the training set but generalizes poorly to the test set. Note that α should be smaller
than 1, otherwise, due to constant L̂, the solution will always be a tree reduced to its root. Model

4

(Tα,β,δ) is formulated as follows:

(Tα,β,δ)



min
1

L̂

∑
ℓ∈L

Lℓ + α
∑
t∈N

dt

s.t.
∑
j∈J

aj,t = dt t ∈ N (1)

0 ≤ bt ≤ dt t ∈ N (2)
dt ≤ da(t) t ∈ N \ {r} (3)∑
k∈K

ck,ℓ = lℓ ℓ ∈ L (4)

∑
i∈I

zi,ℓ ≥ βlℓ ℓ ∈ L (5)

zi,ℓ ≤ lℓ ℓ ∈ L, i ∈ I (6)∑
ℓ∈L

zi,ℓ = 1 i ∈ I (7)

∑
j∈J

aj,t

(
xi,j + µj − µ−)+ µ− ≤ bt + (1 + µ+)(1− zi,ℓ) i ∈ I, ℓ ∈ L, t ∈ AL(ℓ) (8)

∑
j∈J

aj,txi,j ≥ bt − (1− zi,ℓ) i ∈ I, ℓ ∈ L, t ∈ AR(ℓ) (9)

Nk,ℓ =
∑

i∈I,yi=k

zi,ℓ ℓ ∈ L, k ∈ K (10)

Nℓ =
∑
i∈I

zi,ℓ ℓ ∈ L (11)

Lℓ ≥ Nℓ −Nk,ℓ − |I|(1− ck,ℓ) ℓ ∈ L, k ∈ K (12)
Lℓ ≤ Nℓ −Nk,ℓ + |I|ck,ℓ ℓ ∈ L, k ∈ K (13)
Lℓ ≥ 0 ℓ ∈ L (14)
aj,t ∈ {0, 1}, dt ∈ {0, 1} t ∈ N , j ∈ J (15)
ck,ℓ ∈ {0, 1}, lℓ ∈ {0, 1}, zi,ℓ ∈ {0, 1} ℓ ∈ L, k ∈ K, i ∈ I (16)

The first sets of constraints fix the structure of the tree. Constraints (1) and (2) ensure that the
variables defining the split function of t ∈ N vanish when t is inactive. Constraints (3) inactivate all
descendants of an inactived node. Constraints (4) ensure that one and only one class is assigned to
each opened node. The second part of the model follows the path of the data in the tree. Constraints
(5) and (6) open a leaf only if at least β data reach it. Constraints (7) ensure that each data is assigned
to one and only one leaf, and Constraints (8) - (9) that the path of each data is consistent with the
split functions. The last set of constraints counts the number of misclassifications Lℓ (Constraints (12)
and (14)), by first fixing the counting variables Nk,ℓ and Nℓ with Constraints (10) and (11), respectively.
Note that since the misclassifications are minimized, an optimal solution always assigns to a leaf ℓ the
most represented class among the data reaching ℓ.

As an example, Figure 2a represents the optimal solution of (T) for the training set represented
in Figure 2b. Each split function on a feature j ∈ J is represented by a grey line of thickness µj . In
this example, we have δ = 3, α = 0.1 and β = 4, and the optimal tree makes 2 classification errors.
Observe that the missclassified red square could be properly classified by adding a split function on
node 2, but this could be seen as overfitting. This solution is thus cut off by Constraint (5) since β = 4.

5

(a) Value of variables a, b, c, and d that are non-zero in the solution.

(b) The training set. For any point in
[0, 1]2, the background color corresponds

to the class predicted by the decision
tree.

Figure 2: Optimal tree obtained by (T0.1, 4, 3) on a training set containing 3 classes, 2 features and 34
data.

2.1.2 The oblique case

An extension to the oblique case was also proposed in (Bertsimas & Dunn, 2017) which allows split
functions that use a linear combination of more than one feature. We label the associated model as
(TH

α,β,δ,µ) since oblique splits are in fact hyperplanes.

We present the differences with Formulation (Tα,β,δ). In this extension, variables aj,t are now
defined in [−1, 1] rather than in {0, 1}. As in the previous model, a node t ∈ N is inactive if and
only if its split function only has null coefficients. To model it, the authors use the constraints∑

j∈J |aj,t| ≤ dt that they linearized with auxiliary variables âj,t = |aj,t|. Then, the strict inequalities
of the split functions are now handled by a new parameter µ ∈ R. Fixing a relevant value to parameter
µ is a difficult task. If it is too small, in particular smaller than the accuracy of the solver, it may cause
numerical issues. Note that in this formulation, it is not possible to generate split functions within
the interval [bt − µ, bt], so if µ is chosen too large this may affect the objective value of an optimal
solution. Finally, since a split function can now involve up to |J | non-zero coefficients, minimizing the
number of active node is not a relevant second objective anymore. Instead, the authors minimize the
number of non-zero coefficients {aj,t}j∈J , t∈N using auxiliary binary variables sj,t equal to 1 if and

6

only if aj,t ̸= 0. Formulation (TH
α,β,δ,µ) is the following:

(TH
α,β,δ,µ)



min
1

L̂

∑
ℓ∈L

Lℓ + α
∑

t∈N ,j∈J

sj,t

s.t.(3) − (7), (10) − (14), (16)∑
j∈J

âj,t ≤ dt t ∈ N (17)

−âj,t ≤ aj,t ≤ âj,t j ∈ J , t ∈ N (18)
−sj,t ≤ aj,t ≤ sj,t j ∈ J , t ∈ N (19)
sj,t ≤ dt j ∈ J , t ∈ N (20)∑
j∈J

sj,t ≥ dt t ∈ N (21)

−dt ≤ bt ≤ dt t ∈ N (22)∑
j∈J

aj,txi,j + µ ≤ bt + (2 + µ)(1− zi,ℓ) i ∈ I, ℓ ∈ L, t ∈ AL(ℓ) (23)

∑
j∈J

aj,txi,j ≥ bt − 2(1− zi,ℓ) i ∈ I, ℓ ∈ L, t ∈ AR(ℓ) (24)

sj,t ∈ {0, 1}, dt ∈ {0, 1} t ∈ N , j ∈ J (25)

In (TH
α,β,δ,µ), Constraints (17) and (18) ensure that âj,t = |aj,t|. The definition of variables sj,t and

their link with dt are enforced by constraints (19) - (21). Constraints (22) enables variable bt to be
non-positive, and Constraints (23) and (24) define oblique split functions.

Figure 3a represents an optimal solution of (TH) on the training set of Figure 3b (same as in
Figure 2b). In this example, we have µ = 0.02, δ = 3, α = 0.04 and β = 4, and all split functions have
a thickness of µ. Observe that for the same value of parameters δ, α and β, and for µ ≤ minj∈J µj ,
all the feasible solutions of (Tα,β,δ) are always feasible for (TH

α,β,δ,µ).

(a) Value of variables a, b, c, and d that are non-zero in the solution. (b) The training set.

Figure 3: Optimal tree obtained by (TH
0.04, 4, 3, 0.02) on a training set containing 3 classes, 2 features

and 34 data.

2.2 A Strong Max-Flow Formulation

We now present an alternative linear program that is based on max-flow formulation (Aghaei et al.,
2020). It only handles binary features vectors (i.e. Xi ∈ {0, 1}J), and axis-aligned split functions. The

7

main idea of this formulation is to associate a unitary flow to each data i that is correctly classified.

The authors first define a flow network G = (V = N ∪ L ∪ {s, w}, E = E ∪ {(s, r), (t, w)t∈N∪L}),
where a source s is connected by an arc (s, r) to the root r of the tree, and a sink w is connected by
an arc (t, w) to all nodes t ∈ N ∪L (see example in Figure 4a). In this model any node t ∈ N ∪L can
predict a class k ∈ K, and the binary variable gk,t indicates if node t is assigned to class k. Then, to
model the split functions, a binary variable hj,t states if the split function of node t ∈ N is performed
on feature j ∈ J . If it is, a data i reaching node t will go to its left child l(t) if xi,j = 0, and to its
right child r(t) if xi,j = 1. Let Pi, be the path of a data i ∈ I in G. A binary flow {ui

v,v′}(v,v′)∈E
is associated to i, and is equal to 1 if and only if i is correctly classified and (v, v′) ∈ Pi. The class
assigned to i being that of the direct ancestor of w in Pi.

The objective function is similar to that of (Tα,β,δ), but the parameter which weights the criterion
is a scalar λ ∈ [0, 1[. As in model (Tα,β,δ), the depth of the tree δ is a parameter of this formulation,
but there is no parameter β controlling the minimal number of data reaching a leaf. Formulation of
is as follows:

(F b
δ,λ)



max (1− λ)
∑
i∈I

ui
s,r − λ

∑
t∈N

∑
j∈J

hj,t

s.t.
∑
j∈J

hj,t +
∑
k∈K

gk,t = 1 t ∈ N (26)

∑
k∈K

gk,ℓ = 1 ℓ ∈ L (27)

ui
a(t),t = ui

t,l(t) + ui
t,r(t) + ui

t,w t ∈ N , i ∈ I (28)

ui
a(ℓ),ℓ = ui

ℓ,w t ∈ L, i ∈ I (29)

ui
t,l(t) ≤

∑
j∈J :xi,j=0

hj,t t ∈ N , i ∈ I (30)

ui
t,r(t) ≤

∑
j∈J :xi,j=1

hj,t t ∈ N , i ∈ I (31)

ui
t,w ≤ gyi,t i ∈ I, t ∈ N ∪ L (32)

hj,t ∈ {0, 1} t ∈ N , j ∈ J (33)
gk,t ∈ {0, 1} t ∈ N ∪ L, k ∈ K (34)
ui
t,t′ ∈ {0, 1} i ∈ I, (t, t′) ∈ E (35)

Constraints (26) ensure that each node either performs a split or predicts a class, and Constraints
(27) that one and only one class is assigned to each leaf. Constraints (28) and (29) hold for the flow
conservation. Constraints (30) and (31) ensure the consistency of the split functions. Constraints (32)
impose that the flow of a misclassified data vanishes. Note that when a node t ∈ N is inactive, any
data reaching it necessarily follows the arc (t, w). This is illustrated in the flow network represented in
Figure 4a. In this solution of (F b), nodes 3 and 5 are inactive and, consequently, the flow of the data
cannot go through arcs (3, 6), (3, 7), (5, 10) and (5, 11). This leads to a decision tree which structure
is represented in Figure 4b.

8

(a) The flow network. Grayed arcs and vertices are not reached by
any training data.

(b) Structure of the corresponding
decision tree.

Figure 4: Link between the flow of the data in the graph of a solution of Formulation (F b) and the
structure of the decision tree obtained.

In (Aghaei et al., 2020), it is proven that (F b
δ,λ) has a stronger relaxation than a restriction of

(Tα,β,δ) to the case of binary feature vectors (i.e. Xi ∈ {0, 1}|J |).

3 A new quadratic formulation based on (Tα,β,δ)

We propose in this section a new non linear modelisation of both problems (Tα,β,δ) and (TH
α,β,δ,µ) by

rewritting some of their constraints in order to reduce their sizes.

3.1 A quadratic formulation for the axis-aligned case

In (Tα,β,δ), variables Lℓ that model the number of misclassified data reaching leaf ℓ ∈ L, are fixed
thanks to Nℓ, the total number of data reaching leaf ℓ, and Nk,ℓ, the number of data of class k ∈ K
reaching leaf ℓ. More formally:

Lℓ = Nℓ −max
k∈K

Nk,ℓ (36)

This equality is true since the class assigned to leaf ℓ in an optimal solution of (Tα,β,δ) is precisely
argmax

k∈K
Nk,ℓ. In (Tα,β,δ), Equation (36) is linearized thanks to Constraints (10)-(14).

We introduce a new writting of variable Lℓ in order to define a more compact formulation. Recall
that variables ck,ℓ = 1 if class k ∈ K is assigned to leaf ℓ ∈ L, and variables zi,ℓ = 1 if data i reaches leaf
ℓ. For a given k ∈ K, let Ik be the subset of I restricted to data of class k (i.e., Ik = {i ∈ I | yi = k}).
Variable Lℓ can be expressed as:

9

Lℓ =
∑
k∈K

ck,ℓ (Nℓ −Nk,ℓ) =
∑
k∈K

(ck,ℓ
∑

i∈I\Ik

zi,ℓ) =
∑
k∈K

∑
i∈I\Ik

ck,ℓzi,ℓ (37)

We propose to use Equation (37) to model the number of misclassified data, which we directly in-
clude into the objective function. Doing this allows us to reduce the size of the formulation by removing
variables Lℓ, Nℓ, Nk,ℓ and Constraints (10)-(14). We obtain the following quadratic formulation:

(Qα,β,δ)


min FL̂,α(c, z, d) =

1

L̂

∑
ℓ∈L

∑
k∈K

∑
i∈I\Ik

ck,ℓzi,ℓ + α
∑
t∈N

dt

s.t. (1)− (9), (15), (16)
lℓ ≤ dt ℓ ∈ L, t ∈ AL(ℓ) (38)

where Constraints (38) are valid inequalities that strengthen our formulation by ensuring that a non
active node does not send the data through its left branch. The quadratic objective function FL̂,α

of (Qα,β,δ) is a non-convex function which we propose to convexify through two different approaches:
the linearization of Fortet (Fortet, 1959) and that of Glover (Glover, 1975). Further, we compare the
continuous relaxation of the two corresponding linear programs.

Fortet’s linearization (Fortet, 1959) consists in replacing each bi-linear term zi,ℓck,ℓ by an auxiliary
variable θi,k,ℓ. The equality θi,k,ℓ = zi,ℓck,ℓ is then enforced by the following sets of linear inequalities:

θi,k,ℓ ≤ ck,ℓ i ∈ I\Ik, k ∈ K, ℓ ∈ L (39)
θi,k,ℓ ≤ zi,ℓ i ∈ I\Ik, k ∈ K, ℓ ∈ L (40)
θi,k,ℓ ≥ ck,ℓ + zi,ℓ − 1 i ∈ I\Ik, k ∈ K, ℓ ∈ L (41)
θi,k,ℓ ≥ 0 i ∈ I\Ik, k ∈ K, ℓ ∈ L (42)

It is easy to verify that inequalities (39)-(42) are equivalent to θi,k,ℓ = zi,ℓck,ℓ as zi,ℓ and ck,ℓ are
binary variables. Moreover, since in (Qα,β,δ), the products zi,ℓck,ℓ are only involved into the objective
function, and are weighted with non-negative coefficients, Constraints (39) and (40) are not necessary
to get the equivalence. We finally obtain the following linear reformulation of (Qα,β,δ):

(QFα,β,δ)

min FL1
L̂,α

(θ, d) = 1
L̂

∑
ℓ∈L

∑
k∈K

∑
i∈I\Ik

θi,k,ℓ + α
∑
ℓ∈N

dℓ

s.t. (1)-(9), (15), (16), (38), (41), (42)

To further reduce the size of the formulation, we propose to use Glover’s procedure (Glover, 1975)
to linearize the products ck,ℓ

(∑
i∈I\Ik

zi,ℓ

)
by use of auxiliary variables Θk,ℓ. It is easy to prove that

|I\Ik| is a valid upper bound for
∑

i∈I\Ik

zi,ℓ. Using these bounds and the fact that
∑

i∈I\Ik

zi,ℓ ≥ 0, the

equality Θk,ℓ = ck,ℓ

(∑
i∈I\Ik

zi,ℓ

)
is then enforced by the following set of linear inequalities:



Θk,ℓ ≤ |I\Ik|ck,ℓ k ∈ K, ℓ ∈ L (43)

Θk,ℓ ≤
∑

i∈I\Ik

zi,ℓ k ∈ K, ℓ ∈ L (44)

Θk,ℓ ≥ 0 k ∈ K, ℓ ∈ L (45)

Θk,ℓ ≥
∑

i∈I\Ik

zi,ℓ − |I\Ik|(1− ck,ℓ) k ∈ K, ℓ ∈ L (46)

10

Here again we only need inequalities (45) and (46) to get an equivalent linear reformulation:

(QGα,β,δ)


min FL2

L̂,α
(Θ, d) =

1

L̂

∑
k∈K

∑
ℓ∈L

Θk,ℓ + α
∑
t∈N

dt

s.t. (1)− (9), (15), (16), (38), (45), (46)

We now compare our two linear reformulations of (Qα,β,δ). We first observe that the size of
(QGα,β,δ) (i.e. O(|K| × |L|) auxiliary variables and constraints) is reduced by a factor of |I| in com-
parison to the size of (QFα,β,δ) (i.e. O(|K|× |L|× |I|) auxiliary variables and constraints). Since |I| is
higher than both |K| and |L| in non-trivial problems, this reduction can be significant. Let us denote
by v(P) the optimal value of a problem (P), and P the continuous relaxation of problem P . We state
in Proposition 1 that problem (QFα,β,δ) has a better continuous relaxation than problem (QGα,β,δ).

Proposition 1. v(QFα,β,δ) ≥ v(QGα,β,δ).

Proof . Let (d∗, a∗, b∗, l∗, c∗, z∗, θ∗) be an optimal solution of (QFα,β,δ). We build a feasible solution
(d = d∗, a = a∗, b = b∗, l = l∗, c = c∗, z = z∗,Θ) of (QGα,β,δ) such that Θk,ℓ =

∑
i∈I\Ik

θ∗i,k,ℓ for all
(ℓ, k) ∈ (L × K). The only constraints of (QGα,β,δ) which are not obviously satisfied by this solution
are Constraints (46). Let us prove that they are satisfied:

Θk,ℓ =
∑

i∈I\Ik
θ∗i,k,ℓ ≥

∑
i∈I\Ik

(
c∗k,ℓ + z∗i,ℓ − 1

)
≥ |I\Ik|ck,ℓ +

∑
i∈I\Ik

z∗i,ℓ − |I|+ |Ik|
≥

∑
i∈I\Ik

zi,ℓ − |I\Ik|(1− ck,ℓ)

We now compare the objective values ∆ = FL2
L̂,α

(Θ, d)− FL1
L̂,α

(θ∗, d∗):

∆ =
1

L̂

∑
k∈K

∑
ℓ∈L

Θk,ℓ −
1

L̂

∑
ℓ∈L

∑
k∈K

∑
i∈I\Ik

θ∗i,k,ℓ =
1

L̂

(∑
k∈K

∑
ℓ∈L

∑
i∈I\Ik

θ∗i,k,ℓ −
∑
ℓ∈L

∑
k∈K

∑
i∈I\Ik

θ∗i,k,ℓ

)
= 0

We want to compare the value of (QGα,β,δ) and (QFα,β,δ) to the value of (Tα,β,δ). To do so, we
first show that the value of (Tα,β,δ) is always 0.

Lemma 1. v(Tα,β,δ) = 0

Proof . Since all the variables are positive and weighted by positive constants, necessarily v(Tα,β,δ) ≥ 0.
Let ℓr denote the right-most leaf of the tree. We build the following solution of value 0:

• aj,t = bt = dt = 0 ∀j ∈ J , t ∈ N ;

• zi,ℓr = lℓr = 1, and zi,ℓ = lℓ = 0 ∀i ∈ I, ℓ ∈ L, ℓ ̸= ℓr;

• Nℓr = |I|, and Nℓ = 0 ∀ℓ ∈ L, ℓ ̸= ℓr;

• Nk,ℓr = |Ik|, and Nk,ℓ = 0 ∀k ∈ K, ℓ ∈ L, ℓ ̸= ℓr;

• ck,ℓr = |Ik|
|I| , and ck,ℓr = 0 ∀k ∈ K, ℓ ∈ L, ℓ ̸= ℓr;

11

• Lℓ = 0 ∀ℓ ∈ L.

Constraints (1)-(7) and (10)-(14) are obviously satisfied, and Constraints (8) and (9) are verified
since all data go to the right-most leaf. The value of this solution is 0.

We state in Proposition 2 that our new linear formulations provide better continuous relaxation
bounds than the one of (Tα,β,δ).

Proposition 2. If α > 0, v(QFα,β,δ) ≥ v(QGα,β,δ) > v(Tα,β,δ).

Proof . Considering Lemma 1, it remains to prove that v(QGα,β,δ) > 0. Let us distinguish two cases:

Case 1: If
∑
t∈N

dt > 0, since α is positive, we necessarily have v(QGα,β,δ) > 0.

Case 2: If
∑
t∈N

dt = 0, we have v(QGα,β,δ) =
1
L̂

∑
k∈K

∑
ℓ∈L

Θk,ℓ. Constraints (1) and (2) impose for every

node t and feature j that aj,t = bt = 0. By Constraints (38), we have that for all ℓ ∈ L \ {ℓr}
the value of zi,ℓ is 0 and zi,ℓr = 1. Therefore, lℓ = 1 if and only if ℓ = ℓr, giving us

∑
k∈K

ck,ℓr = 1.

Since (QGα,β,δ) is a minimisation problem and the coefficients of θℓ,k in FL2 are positive,
Constraints (45) and (46) enforce Θℓ,k = 0 ∀ℓ ̸= ℓr. For ℓr we obtain:

Θℓr,k =
∑

i∈I\Ik

zi,ℓr − |I\Ik|(1− ck,ℓr) = |I\Ik| ck,ℓr

Thus, v(QGα,β,δ) =
∑
k∈K

|I\Ik|ck,ℓr > 0 since
∑
k∈K

ck,ℓr = 1.

3.2 Handling the oblique case

Equation (37) remains true for oblique split functions, and thus the oblique extension of our three
formulations is straightforward, since the differences are the same than those between (Tα,β,δ) and
(TH

α,β,δ,µ). Thus, we build (QH
α,β,δ,µ), (QFH

α,β,δ,µ) and (QGH
α,β,δ,µ) the oblique extensions of (Qα,β,δ),

(QFα,β,δ) and (QGα,β,δ), respectively:

(QH
α,β,δ,µ)


min FH

L̂,α
(c, z, s) =

1

L̂

∑
k∈K

∑
ℓ∈L

∑
i∈I\Ik

ck,ℓzi,ℓ + α
∑
j∈J

∑
t∈N

sj,t

s.t. (3)− (7)(16)− (25)

(QFH
α,β,δ,µ)

min FL1H
L̂,α

(θ, s) = 1
L̂

∑
k∈K

∑
ℓ∈L

∑
i∈I\Ik

θi,k,ℓ + α
∑
j∈J

∑
t∈N

sj,t

s.t. (3)-(7) (16)-(25) (41)-(42)

12

(QGH
α,β,δ,µ)

min FL1H
L̂,α

(Θ, s) = 1
L̂

∑
k∈K

∑
ℓ∈L

Θk,ℓ + α
∑
j∈J

∑
t∈N

sj,t

s.t. (3)-(7) (16)-(25) (45)-(46)

Similarly to the axis-aligned case, we compare in Proposition 3 the continuous relaxation values
of (QFH

α,β,δ,µ), (QGH
α,β,δ,µ), and (TH

α,β,δ,µ), denoted by (QF
H

α,β,δ,µ), (QG
H

α,β,δ,µ), and (T
H

α,β,δ,µ), respec-

tively. To do so, we show that the value of (T
H

α,β,δ,µ) is always 0.

Lemma 2. v(T
H

α,β,δ,µ) = 0

Proof . Since all the variables are positive and weighted by positive constants, we have v(T
H

α,β,δ,µ) ≥ 0.
Let tr denote the right-most leaf, we build the following solution of value 0:

• aj,t = âj,t = sj,t = bt = dt = 0 ∀j ∈ J , t ∈ N ;

• zi,ℓr = lℓr = 1, and zi,ℓ = lℓ = 0 ∀i ∈ I, ℓ ∈ L, ℓ ̸= ℓr;

• Nℓr = |I|, and Nℓ = 0 ∀ℓ ∈ L, ℓ ̸= ℓr;

• Nk,ℓr = |Ik|, and Nk,ℓ = 0 ∀k ∈ K, ℓ ∈ L, ℓ ̸= ℓr;

• ck,ℓr = Ik

|I| , and ck,ℓr = 0 ∀k ∈ K, ℓ ∈ L, ℓ ̸= ℓr;

• Lℓ = 0 ∀ℓ ∈ L.

Constraints (3)-(7), (10)-(14), (17)-(22) are obviously satisfied, and Constraints (23)-(24) are veri-
fied since all data go to the right-most leaf.

We state in Proposition 3 that our new linear formulations provide better continuous relaxation
bounds than the original formulation (TH

α,β,δ,µ).

Proposition 3. If α > 0, v(QF
H

α,β,δ,µ) ≥ v(QG
H

α,β,δ,µ) > v(T
H

α,β,δ,µ).

Proof . We first prove that v(QF
H

α,β,δ,µ) ≥ v(QG
H

α,β,δ,µ).
The proof is similar to that of Proposition 1. Let (d∗, a∗, b∗, l∗, c∗, z∗, s∗, θ∗) be an optimal solution of
(QF

H

α,β,δ,µ). We build a feasible solution to (QG
H

α,β,δ,µ): (d = d∗, a = a∗, b = b∗, l = l∗, c = c∗, z =
z∗, s = s∗,Θ), with for all (ℓ, k) ∈ (L × K) Θk,ℓ =

∑
i∈I\Ik

θ∗i,k,ℓ. This solution obviously satisfies all

constraints of (QG
H

α,β,δ,µ) and its objective value is equal to v(QF
H

α,β,δ,µ).

Secondly, we prove that v(QG
H

α,β,δ,µ) > v(T
H

α,β,δ,µ). Considering Lemma 2, it remains to prove

that v(QG
H

α,β,δ,µ) > 0. Let us distinguish two cases:

Case 1: If
∑
j∈J

∑
t∈N

sj,t > 0, since α is positive, we necessarily have v(QG
H

α,β,δ,µ) > 0.

Case 2: If
∑
j∈J

∑
t∈N

sj,t = 0, it means that all data are sent to the right-most leaf. With a similar

reasoning as the proof of Proposition 2, we get that v(QG
H

α,β,δ,µ) > 0.

13

4 Extension of (F b
δ,λ) to the case of real valued data

Formulation (F b
δ,λ) only applies to datasets in which all features are binary (i.e. Xi ∈ {0, 1}|J |). We

propose in this section to extend this formulation to the case of real valued data (i.e. Xi ∈ R|J |) for
both the axis-aligned and oblique cases.

4.1 The axis-aligned case

For our extension, we keep the unitary flow variables ui
t,t′ that model if data i is correctly classified

and goes through arc (t, t′). Variables hj,t are not relevant anymore, we replace them by variables
aj,t and bt that model the split functions

∑
j∈J aj,txi,j ≥ bt and

∑
j∈J aj,txi,j < bt. The obtained

formulation (Fα,δ) is the following:

(Fα,δ)



min fF
L̂,α(u, a) =

1

L̂

(
|I| −

∑
i∈I

ui
s,r

)
+ α

∑
t∈N

∑
j∈J

aj,t

s.t. (27) − (29), (32), (34), (35)∑
j∈J

aj,t +
∑
k∈K

gk,t = 1 t ∈ N (47)

0 ≤ bt ≤
∑
j∈J

aj,t t ∈ N (48)

∑
j∈J

aj,t

(
xi,j + µj − µ−)+ µ− ≤ bt + (1 + µ+)(1− ui

t,l(t)) t ∈ N , i ∈ I (49)

∑
j∈J

aj,txi,j ≥ bt − (1− ui
t,r(t)) t ∈ N , i ∈ I (50)

ui
t,l(t) ≤

∑
j∈J

aj,t i ∈ I, t ∈ N (51)

ui
t,r(t) ≤

∑
j∈J

aj,t i ∈ I, t ∈ N (52)

aj,t ∈ {0, 1} t ∈ N , j ∈ J (53)

We keep in this extension Constraints (27) which force each leaf to be associated to a class, as well
as the flow conservation constraints (28)-(29). As in (F b

δ,λ), a misclassified data will have a null flow
by Constraints (32). Then, we adapt the capacity constraints (30)-(31) with Constraints (51)-(52).
Note that Constraints (51) are redundant but are valid inequalities in the linear relaxation. Finally,
to model the split functions, we rely on Formulation (Tα,β,δ) by adapting Constraints (8)-(9) to our
case, where the difference is that variables zi,ℓ are replaced by variables ui

t,ℓ(t) (ui
t,r(t) respectively) in

(49) ((50) resp.). We also adapt Constraints (26) into Constraints (47), that ensure that a node either
predicts a class or performs a split. In this last case, these constraints additionally force

∑
j∈J aj,t to

be equal to 1. For the objective function, we have chosen to use the same parameters as in (Tα,β,δ),
so we minimize a function weighted by parameters L̂ and α.

Figure 5a represents an optimal solution of (F), for parameters α = 0.1, and δ = 4, on the same
training set considered in Figures 2 and 3. Note that the missclassified right-most circle in Figure 5b
is located on a split function of thickness µ2 (i.e. xi,2 ∈]0.5 − µ2, 0.5[). This is possible in (F) since
the flow of any misclassified data i ∈ I is null which disables the Constraints (49) and (50). Observe
that the same split function is not feasible for (T) since each data is assigned to a path for which the
branching rules must be satisfied.

14

(a) Value of variables a, b and g that are non-zero in the solution. (b) The training set.

Figure 5: Optimal tree obtained from (F0.1, 4) on a training set containing 3 classes, 2 features, and
34 data.

The following proposition proves that, in the axis-aligned case, the optimal value of formulations
(Tα,β,δ) and (Fα,δ) are identical.

Proposition 4. If β = 0, v(Tα,β,δ) = v(Fα,δ).

Proof . 1. We first prove that v(Tα,β,δ) ≥ v(Fα,δ). We denote by Leaves(t) the set of leaves that can be
reached from t ∈ N and by leaf(t) the right-most leaf in Leaves(t). Let ST = (a∗, b∗, c∗, d∗, l∗, L∗, N∗

t ,
N∗

k,t, z
∗) be an optimal solution of (Tα,β,δ). Without loss of generality, let us assume that dt = 1 if and

only if node t ∈ N does split data, i.e. if
∑

i∈I
∑

ℓ∈Leaves(l(t)) zi,ℓ ≥ 1 and
∑

i∈I
∑

ℓ∈Leaves(r(t)) zi,ℓ ≥ 1.
This is always possible since if there exists a node t ∈ N such that either

∑
i∈I
∑

ℓ∈Leaves(l(t)) zi,ℓ = 0

or
∑

i∈I
∑

ℓ∈Leaves(r(t)) zi,ℓ = 0 it is possible to set dt to 0 without altering the predictions of the data.
The solution remains optimal as the objective value cannot be increased by this transformation. We
build a solution SF = (a, b, g, u) of (Fα,δ) as follows:

• aj,t = a∗j,t and bt = b∗t ∀j ∈ J , t ∈ N ;

• ui
t,t′ is defined differently depending on (t, t′) ∈ E :

– ui
s,r =

∑
ℓ∈L

z∗i,ℓc
∗
yi,ℓ ∀i ∈ I;

– ui
ℓ,w = ui

a(ℓ),ℓ = d∗a(ℓ)z
∗
i,ℓu

i
s,r ∀ℓ ∈ L, i ∈ I;

– ui
a(t),t = d∗a(t)u

i
s,r

∑
ℓ∈Leaves(t)

z∗i,ℓ ∀i ∈ I, t ∈ N \ {r};

– ui
t,w = d∗a(t)(1− d∗t)z

∗
i,leaf(t)u

i
s,r ∀i ∈ I, t ∈ N \ {r};

– ui
r,w = (1− d∗1)z

∗
i,leaf(r)u

i
s,r ∀i ∈ I;

15

• gk,t is defined differently depending on t ∈ N ∪ L:

– gk,t = (1− d∗t)d
∗
a(t)c

∗
k,leaf(t) + (1− d∗a(t))1[k = 1] ∀t ∈ N \ {r}, k ∈ K;

– gk,r = (1− d∗1)c
∗
k,leaf(r) ∀k ∈ K;

– gk,ℓ = d∗a(ℓ)c
∗
k,ℓ + (1− d∗a(ℓ))1[k = 1] ∀ℓ ∈ L.

Let us first note that the integrity of ST . Moreover, Constraints (7) ensures the integrity of SF ,
Constraints (29) are satisfied by definition, and Constraints (1) and (2) imply Constraints (48).

Constraints (49) and (50). When ui
t,l(t) is equal to 0, the associated Constraint (49) is necessarily

satisfied. From its definition we know that ui
t,l(t) = 1 if and only if there exists a leaf ℓ ∈ Leaves(l(t))

such that z∗i,ℓ = 1. In such cases Constraints (8) ensure that Constraints (49) are satisfied. The
satisfaction of Constraints (50) can be proved similarly.

Constraints (27). By definition of variables gk,ℓ, a Constraint (27) is satisfied if d∗a(ℓ) = 0.
Otherwise, we know by assumption that there exists i ∈ I such that z∗i,ℓ = 1. From Constraints (4)
and (6), we deduce that

∑
k∈K c∗k,ℓ = 1 which leads to the same result.

Constraints (28). By definition of variables ui
t,t′ , a Constraint (28) is satisfied if d∗a(t) = d∗t or

ui
s,r = 0. Otherwise, because of Constraints (3), the only possible case is d∗a(t) = 1, d∗t = 0 and ui

s,r = 1.
By definition of variables ui

t,t′ , the right-hand side of the corresponding Constraint (28) is equal to
z∗i,leaf(t) and because of Constraints (1) and (8), z∗i,leaf(t) =

∑
ℓ∈Leaves(t) z

∗
i,ℓ. As the left-hand side

of the Constraint(28) is equal to
∑

ℓ∈Leaves(t) z
∗
i,ℓ, by definition of variables ui

t,t′ , Constraints (28) are
satisfied.

Constraints (47). For a given t ∈ N , if both d∗a(t) and dt are equal to 1, the associated
Constraint (47) is satisfied as

∑
k∈K gk,t = 0 by definition of gk,t and

∑
j∈J aj,t = 1 from Con-

straints (4) and (6). Otherwise, either d∗a(t) or d∗t is equal to 0 and Constraints (1) and (3) ensure that∑
j∈J aj,t = 0. If d∗a(t) = 0,

∑
k∈K gk,t = 1 by definition of g. If d∗t = 0,

∑
k∈K gk,t =

∑
k∈K c∗k,leaf(t)

which is also equal to 1. Thus, Constraints (47) are satisfied in all cases.

Constraints (51) and (52). If d∗t = 1, Constraints (51) and (52) are satisfied as Constraints (1)
ensure that

∑
j∈J aj,t = 1. These constraints are also satisfied if d∗t = 0 as it implies ui

t,l(t) = ui
t,r(t) = 0

by definition of these variables.

Constraints (32). For any node t ∈ N , these constraints are satisfied by definition of ui
t,w if

either, da(t) = 0, dt = 1, zi,leaf(t) = 0 or ui
s,r = 0. Otherwise, we know by definition of gk,t that

gk,t = c∗k,leaf(t) and by definition of ui
s,r that there exists ℓ ∈ L such that z∗

i,ℓ
= c∗

yi,ℓ
= 1. Since

zi,leaf(t) = 1, we deduce from Constraints (7) that ℓ = leaf(t). The associated Constraint (32) is also
satisfied in that case as this leads to gyi,t = 1. A similar reasoning provides the same result for any
ℓ ∈ L.

We now compare the objective values of ST and SF . Since the second criterion in both objectives
are identical, we only compare the first criterion. For this, we consider the quadratic Equation (37):

L∗
ℓ =

∑
k∈K

c∗k,ℓ
∑

i∈I\Ik

z∗i,ℓ ∀ℓ ∈ L

The two solutions have the same value since:∑
ℓ∈L

L∗
ℓ =

∑
ℓ∈L

∑
k∈K

∑
i∈I

z∗i,ℓc
∗
k,ℓ −

∑
ℓ∈L

∑
k∈K

∑
i∈Ik

z∗i,ℓc
∗
k,ℓ = |I| −

∑
i∈I

∑
ℓ∈L

z∗i,ℓc
∗
yi,ℓ = |I| −

∑
i∈I

ui
s,r

2. We now prove that v(Tα,β,δ) ≤ v(Fα,δ). Let SF = (a∗, b∗, g∗, u∗) be an optimal solution of (Fα,δ).
Without loss of generality, let us assume that

∑
j∈J a∗j,t = 1 if and only if node t ∈ N does split data.

We build ST = (a, b, c, d, l, Lt, Nt, Nk,t, z) a feasible solution to (Tα,β,δ) with the same objective value:

16

• dt =
∏

t′∈A(t)∪{t}

∑
j′∈J

a∗j,t′

, aj,t = dta
∗
j,t and bt = dtb

∗
t ∀t ∈ N , j ∈ J , where A(t) is the set of

nodes on the path from r to t (r included);

• zi,ℓ =
∏

t∈AL(ℓ)

1[
∑
j∈J

aj,txi,j < bt]×
∏

t∈AR(ℓ)

1[
∑
j∈J

aj,txi,j ≥ bt] ∀ℓ ∈ L, i ∈ I ;

• lℓ = maxi∈I zi,ℓ, Nℓ =
∑
i∈I

zi,ℓ, and Nk,ℓ =
∑
i∈Ik

zi,ℓ ∀ℓ ∈ L, k ∈ K;

• ck,ℓ = da(ℓ)g
∗
k,ℓ +

∑
t∈N : leaf(t)=ℓ

Btg
∗
k,t,∀ℓ ∈ L, k ∈ K where Bt = da(t)(1 − dt), if t ̸= r and

Br = (1− dr);

• Lℓ =
∑

k∈K (Nℓ −Nk,ℓ)ck,ℓ ∀ℓ ∈ L.

Let us first note that the integrity of SF ensures the integrity of ST . Constraints (1), (2), (3), (5), (6),
(10), (11) and (14) are satisfied by definition of ST .

Constraints (4). First note that Constraints (3) ensure that variables dt are decreasing from
the root to the leaf of every branch and that by definition of ck,ℓ and Constraints (27), we have∑

k∈K ck,ℓ = da(ℓ) +
∑

t∈N :leaf(t)=ℓ Bt

∑
k∈K gk,t. We consider three cases according to the possible

values of B and d in the sub-branch SB(ℓ) = {t ∈ N : leaf(t) = ℓ} and prove that Constraints (4)
are always satisfied:

• Case 1: Bt = 0 for all t ∈ SB(ℓ) and da(ℓ) = 1.
In that case, dt = 1 for all t ∈ SB(ℓ). Therefore,

∑
k∈K ck,ℓ = 1. Moreover, da(ℓ) = 1 also ensures

that
∑

j∈J a∗j,a(ℓ) = 1 leading with our assumption to the existence of i ∈ I such that zi,ℓ = 1.
Consequently, lℓ is also equal to 1.

• Case 2: Bt = 0 for all t ∈ SB(ℓ) and da(ℓ) = 0.
In that case dt = 0 for all t ∈ SB(ℓ) and r ̸∈ SB(ℓ). By definition of z and since for all t ∈ SB(ℓ)
da(t) is equal to 0, we obtain

∑
i∈I zi,ℓ = 0. Therefore

∑
k∈K ck,ℓ = lℓ =0.

• Case 3: ∃t ∈ SB(ℓ) such that Bt = 1.
Here t is necessarily the first node in sub-branch SB(ℓ) such that dt = 0. By definition of a, we
have

∑
j∈J aj,t = 0. Therefore,

∑
k∈K ck,ℓ =

∑
k∈K gk,t which is equal to 1 from Constraints (47).

From the definitions of a, b, z, our assumption and Constraints (49) and (50), we have lℓ = 1.

Constraints (12) and (13). Because the solution of (Fα,δ) is optimal, a class assigned to a node
t ∈ N ∪L is necessarily one of the most represented among the data reaching t. Therefore ck,ℓ is equal
to argmaxk∈K

∑
i∈Ik

zi,ℓ. By definition of Lℓ, Nℓ and Nk,ℓ, Constraints (12) and (13) are satisfied.

Constraints (8) and (9). The provided solution may not satisfy all constraints (8) and (9). Indeed,
unlike in (Tα,β,δ), Formulation (Fα,δ) does not follow the path of misclassified data. Consequently,
there may exist a data i ∈ I missclassified by (Fα,δ) such that for a given leaf ℓ ∈ L and a node
t ∈ AL(ℓ), zi,ℓ = 1 and xi,j ∈]bt − µj , bt]. In that case the associated Constraint (8) is violated.
However, it is easy to adjust the value of bt so that Constraint (8) is satisfied. More precisely, let
j ∈ J be the feature such that aj,t = 1. By construction of µj , xi,j is the only value of the dataset for
feature j in the interval [xi,j , xi,j + µj [. Consequently, the constraint can be satisfied by setting the
value of bt to xi,j + µj .

By use of Equation (37) it follows that the two solutions have the same values.

17

We now prove that the continuous relaxation (Tα,β,δ) of (Tα,β,δ) is worse than that of (Fα,δ).

Proposition 5. If α > 0, β > 0, and |K| > 1, v(Fα,δ) > v(Tα,β,δ).

Proof . By Lemma 1, it amounts to prove that v(Fα,δ) > 0. Let us distinguish two cases:

Case 1: If
∑

(j,t)∈J×N

aj,t > 0, since α > 0, the value of the relaxation is necessarily positive.

Case 2: If
∑

(j,t)∈J×N

aj,t = 0, Constraints (51) and (52) impose that ui
t,t′ = 0 for any arc (t, t′) such

that t ̸= s and t′ ̸= w. From the flow conservation constraints (28), we deduce that for all
i ∈ I, ui

s,r = ui
r,w. Considering Constraints (27) and (32), we have that, for any (i1, i2) ∈ I2

such that yi1 ̸= yi2 :
ui1
s,r + ui2

s,r = ui1
r,w + ui2

r,w ≤ gyi1
,r + gyi2

,r ≤ 1

Therefore, |I| −
∑
i∈I

ui
s,r > 0.

4.2 Extension to the oblique case

We now extend Formulation (Fα,δ) to the case of oblique splits. Here again, we rely on Formulation
(TH

α,β,δ,µ). In particular, we use variables âj,t = |aj,t|, binary variables sj,t to count the number of
aj,t ̸= 0, and binary variables dt that indicate if node t is active, together with constraints (17)-(22) of
(TH

α,β,δ,µ). We also use Constraints (27)-(29), (32) of (Fα,δ) leading to the following formulation (FH
α,δ,µ):

(FH
α,δ,µ)



min fFH
L̂,α

(u, s) =
1

L̂

(
|I| −

∑
i∈I

ui
s,r

)
+ α

∑
t∈N

∑
j∈J

sj,t

s.t.(17)− (22), (25), (27)− (29), (32), (34), (35)

dt +
∑
k∈K

gk,t = 1 t ∈ N (54)∑
j∈J

aj,txi,j + µ ≤ bt + (2 + µ)(1− ui
t,l(t)) t ∈ N , i ∈ I (55)

∑
j∈J

aj,txi,j ≥ bt − 2(1− ui
t,r(t)) t ∈ N , i ∈ I (56)

ui
t,l(t) ≤ dt i ∈ I, t ∈ N (57)

ui
t,r(t) ≤ dt i ∈ I, t ∈ N (58)

In this formulation
∑

j∈J aj,t has no longer a binary value, we thus adapt Constraints (47), (51), (52)
into Constraints (54), (57), (58) by use of binary variables dt. Finally, to model the split functions,
we rely on Formulation (TH

α,β,δ,µ) by adapting Constraints (23)-(24). Variables zi,ℓ are replaced by
variables ui

t,l(t) in (55) and by variables ui
t,r(t) in (56).For the objective function, we have chosen to

use the same parameters as in (TH
α,β,δ,µ), so we minimize a function weighted by parameters L̂ and α.

Proposition 6. For δ > 0, β = 0 and µ > 0, v(FH
α,δ,µ) ≤ v(TH

α,β,δ,µ). There exists datasets for which
this inequality is strict if and only if α < 1.

18

Proof . Let (a∗, â∗, s∗, b∗, c∗, d∗, l∗, L∗, N∗
t , N

∗
k,t, z

∗) be an optimal solution of (TH
α,β,δ,µ). Without loss of

generality, let us assume that dt = 1 if and only if node t ∈ N does split data. We build (a, â, s, b, d, u, g)
a feasible solution of (FH

α,δ,µ):

• aj,t = a∗j,t, âj,t = â∗j,t, sj,t = s̃j,t ∀j ∈ J , t ∈ N ;

• bt = b∗t , dt = d∗t ∀t ∈ N ;

• ui
t,t′ is defined differently depending on (t, t′) ∈ E :

– ui
s,r =

∑
ℓ∈L

z∗i,ℓc
∗
yi,ℓ ∀i ∈ I;

– ui
ℓ,w = ui

a(ℓ),ℓ = d∗a(ℓ)z
∗
i,ℓu

i
s,r ∀ℓ ∈ L, i ∈ I;

– ui
a(t),t = d∗a(t)u

i
s,r

∑
ℓ∈Leaves(t)

z∗i,ℓ ∀i ∈ I, t ∈ N \ {r};

– ui
t,w = d∗a(t)(1− d∗t)z

∗
i,leaf(t)u

i
s,r ∀i ∈ I, t ∈ N \ {r};

– ui
r,w = (1− d∗1)z

∗
i,leaf(r)u

i
s,r ∀i ∈ I;

• gk,t is defined differently depending on t ∈ N ∪ L:

– gk,t = (1− d∗t)d
∗
a(t)c

∗
k,leaf(t) + (1− d∗a(t))1[k = 1] ∀t ∈ N \ {r}, k ∈ K;

– gk,r = (1− d∗1)c
∗
k,leaf(r) ∀k ∈ K;

– gk,ℓ = d∗a(ℓ)c
∗
k,ℓ + (1− d∗a(ℓ))1[k = 1] ∀ℓ ∈ L.

With an very similar reasoning as used in the proof of Proposition 4, one can check that this solution
satisfies all constraints of (FH

α,δ,µ) and that the two solutions have the same value. Consequently,
v(FH

α,δ,µ) ≤ v(TH
α,β,δ,µ).

If α < 1, we now exhibit datasets for which v(FH
α,δ,µ) < v(TH

α,β,δ,µ). We consider a training set
I = {(Xi1 , k1), (Xi2 , k2), (Xi3 , k3), (Xi4 , k3)} composed of three classes K = {k1, k2, k3} such that:

• xi1,1 = 0, xi2,1 = µ
2 , xi3,1 = µ, xi4,1 = 1;

• xi1,j = xi2,j = xi3,j = xi4,j ∀j ∈ J \{1}.

We prove that data i1 and i3 necessarily reach the same leaf of a tree obtained by (TH
α,β,δ,µ) while

they can be separated by (FH
α,δ,µ).

Let t be the highest node of a decision tree which split function separates i1 and i3. Let us assume
without loss of generality that

∑
j∈J aj,txi1,j is lower than

∑
j∈J aj,txi3,j . Consequently,

∑
j∈J aj,txi1,j < bt ≤

∑
j∈J aj,txi3,j

0 < bt −
∑

j∈J\{1} aj,txi1,j ≤ a1,tµ
(59)

In (TH
α,β,δ,µ), the Constraint (23) associated with node t and the leaf reached by data i1 leads to

µ ≤ bt −
∑

j∈J\{1}

aj,txi1,j (60)

From inequalities (59) and (60) we deduce that

19

bt −
∑

j∈J\{1}

aj,txi1,j = µ (61)

Given the features vectors of the data and the fact that t is the highest node which separates nodes
i1 and i3, we deduce that data i2 necessarily reaches node t. Consequently, i2 either reaches the left
or the right child of t. We prove that in both cases Equation (61) can not be satisfied, thus proving
that i1 and i3 can not be separated in (TH

α,β,δ,µ).

If i2 reaches l(t), we deduce from the Constraint (23) associated with node t and the leaf reached
by i2 that:

∑
j∈J aj,t + µ < bt

a1,t
µ
2 + µ < µ

a1,tµ < 0

which is not possible as a1,t must be greater than 0 according to (59).

If i2 reaches r(t):

∑
j∈J aj,txi2,j ≥ bt

a1,t
µ
2 ≥ µ

a1,t ≥ 2

which is not either possible as a1,t ≤ 1.

Since the distances between i1 and i2 or i2 and i3 are both lower than the one between i1 and i3,
(TH

α,β,δ,µ) can not either separate these data. Thus, all three data necessarily reach the same leaf of a
tree obtained by (TH

α,β,δ,µ) which leads to at least 2 misclassifications.

However, i1 and i3 can be separated by a tree obtained with (FH
α,δ,µ). Indeed, if i2 is missclassified,

its flow is equal to 0 and all Constraints (49) and (50) involving this data are satisfied. A tree with
a single split function x1,t ≤ µ can, thus, be obtained by (FH

α,δ,µ) and leads to only one classification
error. Consequently, if α = 0, v(FH

α,δ,µ) < v(TH
α,β,δ,µ).

If α is in]0, 1[. Let Tr be the tree reduced to a root node which predicts the most represented class
k in the training set (i.e., k = argmaxk∈K |Ik|). The same reasoning applies for this value of α provided
that we can ensure that Tr is not an optimal tree (otherwise v(FH

α,δ,µ) = v(TH
α,β,δ,µ) = 1). This can be

obtained by adding to the dataset a sufficient number of data equal to (Xi1 , k1) and (Xi4 , k3).

If α ≥ 1, Tr is an optimal tree. Consequently, v(FH
α,δ,µ) = v(TH

α,β,δ,µ).

In terms of value of the linear relaxation, we obtain a result similar to the one of the axis-aligned
case.

Proposition 7. If α > 0, β = 0 and |K| > 1, v(F
H

α,δ,µ) > v(T
H

α,β,δ,µ).

Proof . By Lemma 2, it amounts to prove that (F
H

α,δ,µ) > 0. Let us distinguish two cases.

Case 1: If
∑

(t,j)∈N×J

sj,t > 0, since α is positive, the value of the relaxation is necessarily positive.

20

Case 2: If
∑

(t,j)∈N×J

sj,t = 0, the proof is the same in Case 2 in the proof of Proposition 5.

5 From MIP solution to classification tree

The models presented throughout this paper have a large set of optimal solutions and depend on
several parameters (the depth of the tree δ, the minimal number of data in a leaf β, and the weight
α of the second objective). In this section we present a post-processing method that selects a "good"
optimal for a given value of the parameters (Section 5.1) and an algorithm that fits the parameters to
a specific dataset (Section 5.2).

5.1 Post-processing for better performances

All the considered models have an infinite number of optimal solutions since the left-hand side bt of
any split is continuous. Consequently, bt can take an infinite number of values without altering the
path of the data. We observed experimentally that the optimal solutions often provide split functions
which are very close to the data. However, similarly to the well-known SVM models (Vapnik, 1963),
we want to maximize these distances to reduce the risk of having test data of a same class on both
sides of a split function. For this, we propose a post-processing algorithm in which the splits of a
given tree are shifted. The post-processing solves an optimization problem similar to that of Zhou et
al. (W. Zhou, Zhang, & Jiao, 2002) introduced for linear SVM problems.

The post-processing is applied independently on each splitting node t ∈ N . Let IL (IR resp.) be
the set of data reaching the left (right resp.) child of node t. The point is to determine the split between
IL and IR which is the furthest from all data in IL ∪IR. Note that in flow based formulations, we do
not take into account missclassified for the post-processing since they are not used by the formulation
to fix the coefficients of the split functions.

In the oblique case, the new split function of node t is obtained by solving a MILP. For all j ∈ J ,
let s∗j,t be the value of variable sj,t before the post-processing. Variables aj,t, bt and sj,t characterise
the shifted split function. Variable ei is equal to the distance between data i ∈ I and the new split
function and emin is equal to mini∈I ei.

(A)



max
aj,t,bt,sj,t,ei,emin

emin

s.t. ei ≥ emin i ∈ IL ∪ IR(62)
ei = bt −

∑
j∈J aj,txi,j i ∈ IL(63)

ei =
∑

j∈J aj,txi,j − b i ∈ IR(64)
-sj,t ≤ aj,t ≤ sj,t j ∈ J (65)∑
j∈J

sj,t ≤
∑
j∈J

s∗j,t (66)

b∈ [−1, 1] (67)
sj,t ∈ {0, 1} j ∈ J (68)

Constraints (62) ensure emin = mini ei. Constraints (63) ((64) resp.) set the value of ei for data
points going through the left branch (right branch resp.). Constraints (65) define variables sj,t as

21

indicators of whether aj,t is null or not. Constraint (66) ensures that the split keeps the same number
of non-zero coefficients. Constraints (65) and (67) define respectively the domain of bt and sj,t. This
approach is fast as it only requires to solve for each node t ∈ N a MILP with |J | integer variables.

In the case of axis-aligned splits, the new split function can be obtained more easily. The values
of variables aj,t are not modified. It remains to determine the value of bt that maximizes the distance
to the closest data in IR, and IL. Let j∗ ∈ J be the feature on which the separation is performed
in node t, bmt be the highest value of feature j∗ in IL and bMt be the lowest value of feature j∗ in
IR (i.e., bmt = maxi∈IL

xi,j∗ and bMt = mini∈IR
xi,j∗). Any value of bt in [bmt , bMt [could be selected

without altering the path of the data. In order to maximize the minimal distance between the new
split function and the data, bt is set to bmt +bMt

2 .

Algorithm 1 corresponds to the post-processing applied to a solution Sol.

Algorithm Post-processing(Sol)
T ← T ∗ (where T ∗ is the tree given by Sol)
for t ∈ N do

if t is applying a split then
Compute IL (IR resp.) subset of data points going through the left branch (right
branch resp.) of t

Coefficient (aj,t)j∈J , bt of T ← values from resolution of (A)

return T

Algorithm 1: Post-processing algorithm

5.2 Fitting parameters

In (Bertsimas & Dunn, 2017), Bertsimas and al. consider Algorithm 2 to select the value of parameters
α and δ for a given dataset. In this algorithm, the data are split in three sets: the training set, the
test set and the validation set. The algorithm iteratively creates trees which are optimal for the train
set, and selects the best one for the validation set. Eventually, the performance of the selected tree is
assessed over the test set. Since α is a continuous parameter, the algorithm can not iterate on all its
possible values. To overcome this, the authors remove the second objective and add a new constraint
that bounds the number of splits allowed in the tree by C ∈ Z+:∑

j,t∈J×N
aj,t ≤ C (69)

in the axis-aligned case, and ∑
j,t∈J×N

sj,t ≤ C (70)

in the oblique case.

Algorithm 2 TreeTraining(M, δMAX , β) iterates by varying the values of C and δ within their
respective ranges. The input M is the considered formulation, δ is the maximal depth, and β is the
minimal number of data points per open leaf. Parameter Cδ is equal to 2δ− 1 in the axis-aligned case,
and (2δ−1)|J | in the oblique case. Note that the value of β is set to 0.05×|I| in (Bertsimas & Dunn,
2017), but its value could also be fitted by adding a loop on its value.

22

Algorithm TreeTraining(M,δ,β)
S ← ∅
for δ = 1 to δ do

for C = 1 to Cδ do
T̂ ← a feasible solution for warm starting (given by CART, or from set S).
T ← an optimal solution of M with α = 0 and (69) (axis-aligned), or (70) (oblique)
using T̂ .
S ← S ∪ {T}

Remove within S all dominated solutions for M .
T ∗ ← the tree in S that best performs on the validation set.
return T ∗

Algorithm 2: Algorithm of (Bertsimas & Dunn, 2017) to train a tree

Algorithm 2 determines relevant values of the parameters, at the cost of a heavy computational
time, since each iteration requires the resolution of a MIO. This is especially true for oblique splits as
the range of C is proportional to |J |. We design Algorithm 3 which enables to reduce the number
of iterations. Since the number of misclassifications is a decreasing piecewise constant function of C,
instead of iterating on every possible pair (δ, C), the loop on the value of C may skip some values while
leading to the same solutions than Algorithm 1. To do so, we keep the second objective and we set α to
a value α small enough to prioritise the first objective. Consequently, among all the solutions with an
optimal number of misclassifications, we obtain one for which the number of splits is minimal. Thus,
at iteration C, the number of splits Ĉ of the solution may be lower than C, and therefore iterations
{C − 1, C − 2, ..., Ĉ} can be skipped.

Since the loop on C is backwards, unlike Algorithm 2, the tree obtained at the previous iteration
can not directly be used as a warm start. To make this tree feasible, we set to 0 its coefficient a that
least increases the number of missclassifications.

Algorithm CompactTreeTraining(M,δ,β)
S ← ∅
for δ = 1 to δ do

C ← Cδ

while C ≥ δ do
T̂ ← a feasible solution for warm starting (given by CART, from set S, or from T
obtained at the previous step).
T ← an optimal solution of M with α = α, (69) (axis-aligned), or (70) (oblique) and
using T̂ .
Ĉ ←

∑
j,t∈J×N

sj,t (axis-aligned), or
∑

j,t∈J×N
aj,t (oblique)

Algorithm 1 is applied to T
S ← S ∪ {T}
C ← Ĉ − 1

Remove within S all dominated solutions for M .
T ∗ ← the tree in S that best performs on the validation set.
return T ∗

Algorithm 3: Training a tree

Note that in Section 6.2.2. we discuss the use of Algorithm 1, therefore we do not always apply
the post-proccesing in Algorithm 3.

23

6 Computational results

In this section, we evaluate numerically all the formulations considered in Sections 2, 3, 4 and 5
summarized in Table 1. We first identify the most efficient ones and then evaluate the learning
performances of our new models through Algorithm 3.

Axis-aligned splits
Formulation Type of program

(T) PLNE
(Q) QP
(QF) PLNE
(QG) PLNE
(F) PLNE

Oblique splits
Formulation Type of program

(TH) PLNE
(QH) QP
(QFH) PLNE
(QGH) PLNE
(FH) PLNE

Table 1: Summary of all formulations

To carry out our tests, datasets were selected from the UCI Repository (Dua & Graff, 2017). Their
characteristics are specified in Table 2.

Datasets I |J | |K|
Iris 150 4 3
Wine 178 13 3
Dermatology 366 34 6
Breast Cancer 699 9 2
Blood Trans 748 4 2

Table 2: Datasets used for tests

Experimental environment The experiments were performed on a server with 2 Intel Xeon CPUs
each with 16 cores and 32 threads of 2.3 GHz and 8 ∗ 16 GB of RAM running the Linux OS. The
experiments were implemented in Julia and C++ and we used the solver Gurobi 9.1.1 (?, ?) for
solving the formulations of Table 1.

6.1 Comparison of the CPU times and final gaps of the formulations

In order to evaluate the quality of the new formulations from the CPU time point of view, we start by
performing tests with fixed parameters. Experiments were carried out on 10 different training sets for
each dataset of Table 2. The training sets were a random selection of 80% of the original dataset. We
used the following set of paramaters:

• the arbitrary value 0.2 for α,

• depths δ ∈ {2, 3, 4},

• β = 0, enable a comparison of flow-based formulations (F) and (FH) (that do not have a
parameter β) with the formulations based on (T),

• for oblique formulations, µ = 10−4.

We set the time limit to one hour.

24

We present in Figures 6–7 the performance profiles of the considered formulations on 2 criteria:
CPU times and final gaps. A performance profile plots one curve for each formulation. Each point of
a curve gives, for a given factor τ , the percentage of instances whose criterion was at most τ times
greater than the minimal value. In particular, for τ = 1, we have the proportion of instances on which
the formulation was the best on the criterion.

(a) Performance Profile of CPU times. (b) Performance Profile of final gap.

Figure 6: Performance Profiles in axis-aligned case - All datasets - Time limit : 1 h

Figure 6a presents the performance profile of CPU times for the axis-aligned case. We observe
that that (Q) and (QF) have similar CPU times, which indicates that Gurobi probably solves (Q)
through a Fortet linearization. We also see that (QG) is significantly slower than (QF). Moreover,
(F) is efficient on all datasets except for the blood transfusion one, for which it is not able to solve
any instance. Lastly, (T) is clearly slower than (Q), (QF), and (QG).

Figure 6b shows the performance profile of final gaps. Here, by final gap we mean UB−LB
UB ∗ 100,

where UB (LB resp.) is the best feasible solution (lower bound resp.) found by the formulation
within the time limit. For τ = 1 we have the percentage of instances for which the formulation had
the smallest gap which includes the percentage of instances solved optimally. The percentage given by
the maximum value of τ corresponds to all the instances for which the formulation found a solution
within the time limit and the proportion of instances to which no formulation found a solution. This
highlights the fact that (T) and (F) were the more likely formulations not to find a solution within
the time limit while others did. However we see a difference in the curves of (T) and (F): (T) is, for
most values of τ under (F) meaning that when both formulation do not find an optimal solution, (F)
is more likely to have a smaller gap.

25

(a) Performance Profile of CPU times. (b) Performance Profile of final gap.

Figure 7: Performance Profiles in oblique case - All datasets - Time limit : 1 h

We present in Figure 7a the performance profile of CPU times for the oblique case. The results
reveal a similar trend for formulations (QH) and (QFH). However, (FH) is the fastest and solves much
more instances than the other formulations within the time limit. Formulations (QFH) and (QH) are
still faster than (TH), but they solve almost the same number of instances within one hour. Finally,
(QGH) is the slowest formulation and it solves less than half of the considered instances.

To complete the evaluation of the quality of the oblique formulations, we present in Figure 7b the
performance profile of the final gaps. We see that (QGH) is definitely the worst formulation since it is
the most likely not to find a solution while others do. We also see that even if (TH) solves the same
amount of solution as other formulations (except (QGH)), its gaps tends to be higher than the others
(except (QGH)).

We make the following observations:

• Performances of (Q) and (QF) are very similar, it seems the solver, Gurobi, systematically uses
the Fortet linearization for our instances;

• (QG) is not a clear improvement over (T) unlike (QF);

• (Q), (QF) and (F) are a clear improvement over (T) in terms of CPU times.

Moving forward, we do not use formulations (Q) and (QG) since (Q) is extremely similar to (QF)
and (QG) is the least efficient of all the models.

6.2 Impact of fitting algorithms

We present here results regarding the fitting algorithm i.e. Algorithms 2 and 3. We use Algorithm 2
with formulations (T) and (TH) and Algorithm 3 with formulations (QF), (QFH), (F) and (FH).

As in Bertsimas and al. (Bertsimas & Dunn, 2017), tests were carried out on 5 different partition
of the considered datasets. Each dataset was divided in 3 parts: the training set (50% of the original

26

dataset), the validation set (25%) and the test set (25%). Each formulation had a time limit of 30
minutes for the axis-aligned case and of 5 minutes for the oblique case. The maximum depth is 4 and
parameter β is fixed at 5%|I|.

6.2.1 CPU Time

Table 3 presents the CPU times for each dataset and formulations averaged on the 5 different partitions
considered. The best formulation is in bold while, for the CPU Time column, the worst is in gray. We
observe that (T) is very often the worst and that (QF) is the best in terms of CPU time. The CPU
time difference between Algorithm 3 with new formulations and Algorithm 2 with (T) is significant.
The reduction even reaches 95% for the blood trans dataset in the oblique case.

CPU Time
(in seconds)

Ratio of the CPU Time
to the CPU Time of (T)

Algorithm 2 Algorithm 3 Algorithm 3Dataset Splits
(T) (QF) (F) (QF) (F)

Iris Axis-aligned 4741 781 224 0.8 0.3
Iris Oblique 1000 285 255 1.22 0.76
Wine Axis-aligned 80 46 197 0.61 2.24
Wine Oblique 1183 141 266 0.29 0.5
Blood Tr. Axis-aligned 29414 4027 13871 0.14 0.47
Blood Tr. Oblique 64697 3078 4192 0.05 0.06
Breast C. Axis-aligned 30309 6284 19220 0.21 0.63
Breats C. Oblique 28259 3083 5017 0.11 0.18

Table 3: Average CPU time of learning algorithms - Maximum depth of tree β = 4

In Table 4, we highlight that both the new algorithm and the new formulations contribute to the
improvement of the CPU times. We present two different indicators: the average number of MIPs (i.e.
the number of iterations in the loop of Algorithm 3 that were not skipped) and the average number
of MIPs that were solved to optimality (i.e. whose resolution time was inferior to 30 minutes for the
axis-aligned case and 5 minutes for the oblique case). In parenthesis we represent the percentage of
MIPs solved optimally.

Nb. of MIPs computed Nb. of MIPs solved optimally
Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3Dataset Splits

(T) (QF) (F) (T) (QF) (F)
Iris Axis-aligned 20 5 5 18 (89%) 4 (96%) 5 (100%)
Iris Oblique 98 6 6 96 (98%) 6 (95%) 6 (93%)
Wine Axis-aligned 20 5 5 20 (100%) 5 (100%) 5 (100%)
Wine Oblique 332 7 7 331 (100%) 7 (100%) 7 (96%)
Blood Tr. Axis-aligned 20 5 13 4 (20%) 2 (43%) 3 (20%)
Blood Tr. Oblique 98 11 17 4 (4%) 1 (9%) 1 (8%)
Breast C. Axis-aligned 20 4 12 4 (21%) 2 (48%) 5 (41%)
Breats C. Oblique 228 15 19 14 (6%) 5 (32%) 5 (28%)

Table 4: Number of MIP considered and optimally solved by Algorithms 2 and 3

We can see in Table 4 that a significant amount of iterations were skipped with Algorithm 3 in
comparison to Algorithm 2. But we can also see that there is a greater proportion of MIPs solved to

27

optimality by the new formulations e.g. for the breast cancer dataset in the oblique case, (TH) solved
optimally about 3 times more MIPs but it had to solve 12 to 15 times more MIPs, therefore (QF)
and (F) solve a greater proportion of the computed MIPs to optimality. This shows that the new
formulations also contribute to the decrease in the time it takes to build a tree.

6.2.2 Impact of the post-processing

In Algorithm 3 the post-processing is applied at each iteration. To assess its impact, we consider two
variants. In the first variant the post-processing is never applied, while in the second variant, the
post-processing is applied but the post-processed tree is only kept if its performances on the validation
set are at least as good as the one of the original tree.

We apply these variants on all datasets, partitions of the data and formulations (QF), (QFH), (F),
and (FH). In 65% of the cases, the three approaches lead to the same results. Algorithm 3 is the best
in 24% of the cases while the first variant is only the best in 11% of the cases. The second variant
enables to reach 25% which is a slight improvement. In this variant, the post-processed tree is chosen
in 84% of the cases. It improves the results in 22% of the cases and deteriorate them in 6%.

In the following, the results presented for Algorithm 3 corresponds to this second variant which
appears to be more efficient.

6.2.3 Performances on test sets

Table 5 shows the average percentage of error on test sets for Algorithm 2 with Formulation (T),
Algorithm 3 with Formulation (QF) and Algorithm 3 with Formulation (F). The best performing
algorithm is in bold and the worst in gray.

Mean error (in %)

Dataset Split Algorithm 2
with (T)

Algorithm 3
with (QF)

Algorithm 3
with (F)

Iris Axis-aligned 5.79 5.79 6.32
Iris Oblique 7.37 5.79 5.79
Wine Axis-aligned 9.33 7.100 8.44
Wine Oblique 12.89 10.67 9.78
Blood Transfusion Axis-aligned 20.21 19.57 19.14
Blood Transfusion Oblique 19.57 19.68 19.79
Breast Cancer Axis-aligned 5.38 5.61 5.73
Breast Cancer Oblique 5.15 5.38 4.44

Table 5: Mean percentage of error on test sets for Algorithms 2 and 3

We see that when Algorithm 2 with Formulation (T) is the best, Algorithm 3 with both formulations
is often less than 1% higher. However, when Algorithm 2 with formulation (T) is the worst, Algorithm 3
is often more than 1% lower. That is to say Algorithm 3 with (QF) or (F) has similar or better
performances on the test set.

7 Conclusion

We introduce four new formulations, each with two variants depending on whether the splits are axis-
aligned or oblique. The first formulation is a quadratic formulation of (T), the model introduced by

28

Bertsimas et al. (Bertsimas & Dunn, 2017), that we linearize with Fortet and Glover linearizations.
The last formulation is an extension to real-valued data of a flow-based formulation (Aghaei et al.,
2020). We prove that these new formulations have a better continuous relaxation than (T) in the
axis-aligned case and than (TH) in the oblique case. We also highlight that for some instances the
flow-based formulations have better performances.

We present a more efficient version of the algorithm introduced by Bertsimas et al. (Bertsimas
& Dunn, 2017) to fit parameters. To enhance the performances on the test sets, we design a post-
processing algorithm that shifts the split functions of a tree as far as possible from the data.

Our numerical experiments show that both the Fortet linearization of the quadratic formulation
of (T) and the flow-based formulation are faster than (T). Using those formulations together with
our parameter fitting algorithm, we significantly reduce the resolution time while maintaining or even
improving the performance on the test set.

In future work we will focus on further reducing the resolution time to enable the exact resolution
of larger datasets.

References

Aghaei, S., Gomez, A., & Vayanos, P. (2020). Learning optimal classification trees: Strong max-flow
formulations. arXiv preprint arXiv:2002.09142 .

Bertsimas, D., & Dunn, J. (2017). Optimal classification trees. Machine Learning , 106 (7), 1039–1082.
Blanquero, R., Carrizosa, E., Molero-Río, C., & Morales, D. R. (2020). Sparsity in optimal randomized

classification trees. European Journal of Operational Research, 284 (1), 255–272.
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees.
Carvalho, D. V., Pereira, E. M., & Cardoso, J. S. (2019). Machine learning interpretability: A survey

on methods and metrics. Electronics, 8 (8), 832.
Demirović, E., Lukina, A., Hebrard, E., Chan, J., Bailey, J., Leckie, C., . . . Stuckey, P. J. (2022).

Murtree: Optimal decision trees via dynamic programming and search. Journal of Machine
Learning Research, 23 (26), 1–47.

Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv
preprint arXiv:1702.08608 .

Dua, D., & Graff, C. (2017). UCI machine learning repository. Retrieved from
http://archive.ics.uci.edu/ml

Fortet, R. (1959). L’algèbre de Boole et ses applications en recherche opérationnelle. Cahiers du
Centre d’Études de Recherche Opérationnelle, 4 , 5–36.

Glover, F. (1975). Improved linear integer programming formulations of nonlinear integer problems.
Management Science, 22 , 455-460.

Goodman, B., & Flaxman, S. (2017, Oct.). European union regulations on algorith-
mic decision-making and a “right to explanation”. AI Magazine, 38 (3), 50-57. Re-
trieved from https://ojs.aaai.org/index.php/aimagazine/article/view/2741 doi:
10.1609/aimag.v38i3.2741

Jost, L. (2006). Entropy and diversity. Oikos, 113 (2), 363–375.
Laurent, H., & Rivest, R. L. (1976). Constructing optimal binary decision trees is np-complete.

Information processing letters, 5 (1), 15–17.
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). " why should i trust you?" explaining the predictions

of any classifier. In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining (pp. 1135–1144).

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead. Nature Machine Intelligence, 1 (5), 206–215.

29

Vapnik, V. (1963). Pattern recognition using generalized portrait method. Automation and remote
control , 24 , 774–780.

Verwer, S., & Zhang, Y. (2017). Learning decision trees with flexible constraints and objectives
using integer optimization. In International conference on ai and or techniques in constraint
programming for combinatorial optimization problems (pp. 94–103).

Wachter, S., Mittelstadt, B., & Floridi, L. (2017). Why a right to explanation of automated decision-
making does not exist in the general data protection regulation. International Data Privacy Law ,
7 (2), 76–99.

Wachter, S., Mittelstadt, B., & Russell, C. (2017). Counterfactual explanations without opening the
black box: Automated decisions and the gdpr. Harv. JL & Tech., 31 , 841.

Zhou, J., Gandomi, A. H., Chen, F., & Holzinger, A. (2021). Evaluating the quality of machine
learning explanations: A survey on methods and metrics. Electronics, 10 (5), 593.

Zhou, W., Zhang, L., & Jiao, L. (2002). Linear programming support vector machines. Pattern
recognition, 35 (12), 2927–2936.

30

