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Abstract

The most e�cient state-of-the-art methods to build classi�cation trees are greedy heuristics (e.g. CART)
that may fail to �nd underlying characteristics in datasets. Recently, exact linear formulations that have shown
better accuracy were introduced. However they do not scale up to datasets with more than a few thousands data
points. In this paper, we introduce four new formulations for building optimal trees. The �rst one is a quadratic
model based on the well-known formulation of Bertsimas et al. We then propose two di�erent linearizations of
this new quadratic model. The last model is an extension to real-valued datasets of a �ow-formulation limited
to binary datasets (Aghaei et al.). Each model is introduced for both axis-aligned and oblique splits. We further
prove that our new formulations have stronger continuous relaxations than existing models. Finally, we present
computational results on 22 standard datasets with up to thousands of data points. Our exact models have
reduced solution times with learning performances as strong or signi�cantly better than state of the art exact
approaches.

Keywords: combinatorial optimization, optimal classi�cation trees, mixed binary programming, quadratic
programming, linearizations

1 Introduction

1.1 Related works

A supervised classi�cation problem considers a dataset where each data is a pair composed of a feature vector and
a target class. The objective is then to determine a classi�er to best predict the class of data from their feature
vectors. Interpretability is a concept that is increasingly considered in supervised classi�cation see [Carvalho et al.,
2019]. Although several de�nitions of interpretability can be considered, it can be summarised as the ability to
explain or to present in understandable terms to a human how a classi�er works [Doshi-Velez and Kim, 2017]. There
is currently no clear metric to measure interpretability but rather a consensus on which models are (or are not)
interpretables [Zhou et al., 2021]. A variety of reasons explain the rising interest of interpretability. For example,
in the General Data Protection Regulation (GDRP), the notion of a right to explanation was introduced [Goodman
and Flaxman, 2017,Wachter et al., 2016]. Interpretability may also allow users to have more con�dence in the results
of a classi�er which is particularly important when taking sensitive decisions (e.g. medical or legal applications).

Two main approaches can generally be considered to analyze the prediction of a classi�er in supervised classi�-
cation. The �rst approach, applied to the most complex classi�ers, consists in developing post-hoc models that can,
to some extent, explain a classi�er predictions, this is explanability. For example, in [Ribeiro et al., 2016], instead
of training a global surrogate model, the method LIME (Local Interpretable Model-Agnostic Explanation),
focuses on training local surrogate models to explain individual predictions. The second approach consists in con-
sidering classi�ers with a human-understandable decision process. In other words classi�ers that are intrinsically
interpretable [Rudin, 2019]. Note that interpretability and prediction performances are usually con�icting goals as
the most e�cient classi�ers tend to be very complex (e.g., deep neural networks). This has been ampli�ed by the
fact that, for the last decades, research in supervised classi�cation has mainly focused on performances rather than
interpretability. The work presented in this paper aims to obtain good classi�ers that are interpretable, and for
this we focus on the construction of Optimal Classi�cation Trees (OCT).

A classi�cation tree is an oriented binary tree of a maximum given depth that associates a split function to
each of its internal node and a class to each of its leaves. Splitting rules route data to the left or right child of the
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internal nodes and a data is classi�ed by the path it follows from the root to a leaf. The split functions are generally
linear functions. When they only involve a single feature they are axis-aligned (or univariate). Otherwise, they are
oblique (or multivariate).

The problem of the construction of an OCT is NP-complete [Hya�l and Rivest, 1976] and the most used
approaches are greedy heuristics such as CART (Classification And Regression Trees) [Breiman et al., 1984]
that constructs univariate classi�cation trees. The basic idea of CART is to start with a tree composed only of its
root node. Then, at each step one leaf is transformed into an internal node which split function is determined
by optimizing an impurity measure over all the training data reaching it (e.g., the Gini index [Jost, 2006]). This
process is recursively applied to the two new generated nodes until all the data reaching a leaf have the same
class. Additional stopping criterion are usually considered such as a maximal depth or a minimal number of data
reaching each leaf. Further, improved heuristics that use di�erent impurity functions were introduced, such as
ID3 [Quinlan, 1986] or C5.0 [Quinlan, 1993] algorithms, or that are based on statistical tests, such as GUIDE [Loh,
2002,Loh, 2009]. These greedy approaches are fast but do not guarantee the optimality of their solutions. In order to
improve the prediction performances of these heuristics, tree ensemble methods such as Random Forests [Breiman,
2001], TreeBoost [Friedman, 2001] or XGBoost [Chen and Guestrin, 2016] were then proposed. These approaches
clearly improve the performances of the predictions but the fact that several trees are required to classify the data
lead to a loss of interpretability. Other heuristics that use oblique hyperplane splits were then introduced (see for
instance [Brodley and Utgo�, 1995,Murthy et al., 1994,Orsenigo and Vercellis, 2003,Wickramarachchi et al., 2016]).
These approaches allow to obtain smaller trees, but they can be computationally costly.

Recently, exact solution methods for the construction of OCT that are based on Mixed-Integer Linear Program-
ming (MILP) formulations were introduced. For the case of real-valued datasets, the formulation of [Bertsimas and
Dunn, 2017] considers the most general case of oblique splits, with an objective function that is a trade-o� between
minimizing the number of misclassi�cations on the train set and the complexity of the tree in order to preserve
interpretability. The constraints and variables of the formulation can be decomposed in 3 sets: those that de�ne
the structure of the tree, those that follow the path of a data in the tree, and those that count the number of
misclassi�cations. Another MILP formulation, called BinOCT∗, that builds univariate trees was further introduced
in [Verwer and Zhang, 2019]. The main di�erence with the method of [Bertsimas and Dunn, 2017] is that the
variable associated to the coe�cient of a function does not represent its exact value but an interval in which it
can take any value. These two exact methods �nd better solutions than standard greedy heuristic approaches such
as CART, ID3, or C4.5. However, since their sizes depend on the number of data points, they become untractable
for datasets of more than a few thousand points. A way to scale up these formulations is to solve the MILPs
heuristically using methods such as local search (see TAO [Carreira-Perpinan and Tavallali, 2018] or [Dunn, 2018]),
or column generation (see algorithm CGH [Firat et al., 2020]). In a slightly di�erent context, optimal randomized
classi�cation tree [Blanquero et al., 2021] consider a variant of the problem in which the path of a data in the tree is
not deterministic which leads to a less interpretable model. We introduce in this paper a new compact formulation
for OCT where a quadratic formulation of the objective function allows us to remove all the constraints and variables
relative to the counting of the missclassi�cations. The obtained formulation has thus a smaller size than the original
formulation of [Bertsimas and Dunn, 2017]. Then, we propose two di�erent linearizations of the objective function,
leading to two MILP formulations. We �nally compare our new formulations from the continuous relaxation point
of view with the original formulation of [Bertsimas and Dunn, 2017], and we prove that we always have better lower
bounds, allowing us to exactly solve the OCT problem faster.

Several works are also devoted to binary datasets. Exact approaches for solving this speci�c case have been
introduced based either on MILP [Aghaei et al., 2020, Lin et al., 2020], on constraint programming [Aglin et al.,
2020]), or on dynamic programming [Demirovi¢ et al., 2022]. In particular, the work of [Aghaei et al., 2020] uses
the speci�c structure of the binary dataset to model the OCT problem as a maximum �ow problem. This model
has smaller solution times and similar performances than the more general MILP approaches that can be applied
to real-valued datasets. However, a direct extension of this �ow model to the case of real-valued datasets requires
a binary expansion of the features leading, either to information loss, or to a prohibitive number of features. We
introduce in this paper a new maximum �ow formulation that applies on real-valued datasets for both cases of
axis-aligned and oblique splits. In our new model, we keep the characteristics as they are (i.e. real-valued), which
allows us to have a formulation of moderate size. We then prove for both cases that the new formulations lead
to better continuous relaxation bounds than the original formulation of [Bertsimas and Dunn, 2017]. Moreover, a
signi�cant result is that in the oblique case, our new formulation can even compute strictly better integer solutions
than the formulation of [Bertsimas and Dunn, 2017].

All the above-mentioned formulations depend on several parameters, including tree depth and the weight (in
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the objective function) of the term used to control the tree complexity. To compute these parameters, an iterative
learning algorithm was introduced in [Bertsimas and Dunn, 2017] where at each iteration a MILP is solved. In
this work, we propose a new iterative learning algorithm which, by iterating in the reverse order, reduces the total
number of iterations. This leads to a signi�cantly smaller number of MILPs to be solved and further reduces the
total computational time.

1.2 Our Contribution

In this paper, we propose a novel approach to construct Optimal Classi�cation Trees in the sense of [Bertsimas and
Dunn, 2017], using new optimization formulations. Our main contributions are:

1. Four new compact and e�cient formulations to compute Optimal Classi�cation Trees (with axis-aligned or
oblique splits).

2. A theoretical comparison of the introduced formulations with the state-of-the-art.

3. An iterative Compact Tree Training (CTT) algorithm that �ts the parameters of the models in fewer itera-
tions than the algorithm proposed in [Bertsimas and Dunn, 2017].

4. An extensive battery of computational experiments on 22 standard datasets comparing our approaches to
other methods of the literature: OCT, CGH, BinOCT, CART, C5.0, GUIDE and TAO.

The paper is organised as follows. In Section 2, we present in details the formulations our work is based on, in
particular the models (T ) of [Bertsimas and Dunn, 2017] and (F b) of [Aghaei et al., 2020]. Then, in Section 3, we
present our new compact quadratic formulation based on (T ). For this, we introduce a quadratic formulation of the
objective function allowing us to remove all the constraints and variables dedicated to counting misclassi�cations.
We further linearize it in two di�erent ways obtaining two new formulations. We then prove that these linear
programs have a tighter continuous relaxation than (T ). Further, in Section 4, we propose an extension of the
�ow-formulation (F b) from [Aghaei et al., 2020] to real-valued datasets. Here again, we prove that the continuous
relaxation of our new formulation is tighter than that of (T ). We also prove that our model can be extended
to the oblique case and leads to strictly better integer solutions than (T ). All these formulations generally have
several optimal solutions. To select a good one, we propose in Section 5 a heuristic that locally shifts the split
functions as far as possible from the data. We then present our Compact Tree Training (CTT) algorithm that �ts
the parameters of our formulations. This iterative algorithm performs fewer iterations than the original algorithm
proposed in [Bertsimas and Dunn, 2017]. Finally, in Section 6, we provide extensive experimental results on 22
standard datasets comparing our approaches to 7 methods of the literature. We show that our models have reduced
solution times with learning performances as strong or signi�cantly better than state of the art approaches. Section 7
draws as conclusion.

2 Preliminaries

In this section we present in more detail formulations (T ) [Bertsimas and Dunn, 2017] and (F b) [Aghaei et al., 2020]
that compute Optimal Classi�cation Trees. We consider a dataset (Xi, yi)i∈I such that Xi = (xi,j)j∈J ∈ R|J |
is the feature vector of data i ∈ I and yi ∈ K is its associated class. A decision tree is an oriented binary tree
T = (N ∪L, E) which associates a split function ft : R|J | → {true, false} to each of its internal node t ∈ N and a
class k ∈ K to each of its leaves ` ∈ L. We consider linear split functions of the form a>Xi < b with a ∈ R|J | and
b ∈ R. A data i ∈ I is classi�ed by the path it follows from the root to a leaf by applying the split functions to the
feature vector Xi. Data i follows the left branch of node t ∈ N if (a>Xi < b) and the right branch otherwise. The
class predicted by the classi�er is the one associated with the leaf reached by the path of data i.

For a given dataset and a given maximal depth, the structure of an optimal classi�cation tree is unknown.
Consequently, both of these formulations consider a complete binary tree (i.e., each internal node has two child
nodes) and associate a �rst set of binary variables to each of its nodes that indicate whether the node is active (i.e.
if it applies a split) or not in the solution. Another set of variables serves to compute the value of the coe�cients
(a and b) of the split functions, and to determine the class assigned to each leaf. Finally, the last set of variables is
dedicated to follow the path of the data in the tree, in order to count the number of classi�cation errors.
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The main di�erence between formulations (T ) and (F b) is that the latter can only be applied to binary datasets
and only consider axis-aligned split functions. Consequently, explicitly computing the coe�cients (a and b) of the
split function is not required, since the value of the features directly routes the data into the tree (i.e. it follows the
left branch if xi,j = 0, and the right otherwise). Their idea is thus to associate a �ow to each data only if the data is
correctly classi�ed (i.e. if it is routed to a leaf of the correct class). This is not the case in (T ), and additional real
variables are required to calculate the coe�cients a and b of the split functions and the path of a data is modeled
thanks to binary variables indicating which leaf it reaches.

2.1 A �rst formulation for Optimal Classi�cation Tree [Bertsimas and Dunn, 2017]

Bertsimas et al. [Bertsimas and Dunn, 2017] introduced two models that applies to real-valued datasets. Without
loss of generality, we consider in this section that the value of each feature belongs to [0, 1]. For readability, we
start by the introduction of the simpler model that computes OCT with axis-aligned split functions, (i.e. when
aj ∈ {0, 1} and

∑
j∈J aj = 1). Then, we present its extension to the case of oblique splits (i.e. when aj ∈ [−1, 1]

and
∑
j∈J |aj | ≤ 1).

2.1.1 The axis-aligned case

This formulation considers variables that de�ne the structure of the tree and associate a class k ∈ K to each leaf.
Each data i, is assigned to the class associated with the leaf at the end of its path in the tree. Formulation (Tα,β,δ)
considers three parameters which control the structure of the tree: δ the depth of the tree, α the penalty limiting
the number of splitting nodes, and β the minimal number of data reaching a leaf. In the following, we denote by
r ∈ N the root of the tree, and by a(t) the direct ancestor of node t ∈ N\{r}. Let P` be the path from r to a leaf
` ∈ L, we denote by AL(`) (AR(`) respectively), the subset of P` whose left (right resp.) child is in P`.

Since the structure of an optimal tree of depth δ is not known a priori, (Tα,β,δ) associates variables to each
node of the complete tree (i.e. |N | = 2δ − 1 and |L| = 2δ). The split function of each internal node t ∈ N
is determined by |J | variables aj,t ∈ {0, 1} and one variable bt ∈ [0, 1]. The class predicted by a leaf ` ∈ L is
determined by variables ck,` which are equal to 1 if and only if class k is assigned to leaf `. A data i assigned to
leaf ` has to satisfy

∑
j∈J aj,trxi,j ≥ btr for all tr ∈ AR(`), and

∑
j∈J aj,tlxi,j < btl for all tl ∈ AL(`). To satisfy

the latter strict inequalities, a vector µ ∈ [0, 1]|J | as well as two scalars µ− = minj∈J (µj) and µ+ = maxj∈J (µj)
are introduced. Each µj is the smallest positive interval between values of the training data on feature j (i.e.
µj = min{|xi1,j − xi2,j |, s.t. xi1,j 6= xi2,j , i1, i2 ∈ I2}). To follow the path of Xi ∈ I in the tree, binary variables
zi,` that indicate if Xi reaches leaf ` are introduced.

To avoid over�tting, solutions representing non-complete trees are allowed, i.e. some nodes may not apply a split
if the trade-o� between decreasing misclassi�cations and increasing complexity is not bene�cial. We refer to nodes
that apply a split as active. Variable dt is equal to 1 if and only if node t ∈ N is active. In the model, all data
reaching an inactive node t ∈ N is sent to its right branch by setting aj,t and bt to 0 for all j ∈ J . Thus, some
leaves may not be reached by any data. We denote leaves reached by data as opened. Variable l` is equal to 1 if
and only if leaf ` ∈ L is opened. Let us illustrate these notations by considering a solution in which the variables
dt take the values represented in Figure 1a. Four of the splitting nodes are inactive (3, 5, 6, and 7) and four of the
leaves are closed (10, 12, 13, 14) leading to a decision tree which structure is represented in Figure 1b. Since all the
data reaching an inactive node are sent to its right branch, leaf 3 in Figure 1b will be assigned the class predicted
by node 15 in Figure 1a.
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(a) Value of variables dt. (b) Structure of the corresponding decision tree.

Figure 1: Link between the value of variables dt of (Tα,β,δ) and the structure of the decision tree obtained.

Additional variables are considered to count the number of misclassi�cations. Variable N` is equal to the number
of data reaching leaf ` ∈ L and variable Nk,` is the number of these data whose class is k ∈ K. Finally, variables L`
is equal to the number of misclassi�cations in leaf ` ∈ L.

The objective function is a weighted sum of two criteria. The �rst criterion minimizes the number of misclassi�-
cations weighted by a constant L̂ that corresponds to the number of misclassi�cations for an optimal tree of depth
δ = 0. The second one minimizes the number of active nodes weighted by parameter α ≥ 0, and allows to control
both the classi�er interpretability and the over�tting by penalizing the number of active nodes. Indeed, reducing
the number of split functions make the classi�er easier to understand. Moreover, performing too many splits, may
produce a tree which is very good on the training set but generalizes poorly to the test set. Note that α should be
smaller than 1, otherwise, due to constant L̂, the solution will always be a tree reduced to its root. Model (Tα,β,δ)
is formulated as follows:

(Tα,β,δ)



min
1

L̂

∑
`∈L

L` + α
∑
t∈N

dt

s.t.
∑
j∈J

aj,t = dt t ∈ N (1)

0 ≤ bt ≤ dt t ∈ N (2)

dt ≤ da(t) t ∈ N \ {r} (3)∑
k∈K

ck,` = l` ` ∈ L (4)

∑
i∈I

zi,` ≥ βl` ` ∈ L (5)

zi,` ≤ l` ` ∈ L, i ∈ I (6)∑
`∈L

zi,` = 1 i ∈ I (7)

∑
j∈J

aj,t
(
xi,j + µj − µ−

)
+ µ− ≤ bt + (1 + µ+)(1− zi,`) i ∈ I, ` ∈ L, t ∈ AL(`) (8)

∑
j∈J

aj,txi,j ≥ bt − (1− zi,`) i ∈ I, ` ∈ L, t ∈ AR(`) (9)

Nk,` =
∑

i∈I,yi=k

zi,` ` ∈ L, k ∈ K (10)

N` =
∑
i∈I

zi,` ` ∈ L (11)

L` ≥ N` −Nk,` − |I|(1− ck,`) ` ∈ L, k ∈ K (12)

L` ≤ N` −Nk,` + |I|ck,` ` ∈ L, k ∈ K (13)

L` ≥ 0 ` ∈ L (14)

aj,t ∈ {0, 1}, dt ∈ {0, 1} t ∈ N , j ∈ J (15)

ck,` ∈ {0, 1}, l` ∈ {0, 1}, zi,` ∈ {0, 1} ` ∈ L, k ∈ K, i ∈ I (16)

The �rst sets of constraints �x the structure of the tree. Constraints (1) and (2) ensure that the variables
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de�ning the split function of t ∈ N vanish when t is inactive. Constraints (3) inactivate all descendants of an
inactived node. Constraints (4) ensure that one and only one class is assigned to each opened node. The second
part of the model follows the path of the data in the tree. Constraints (5) and (6) open a leaf only if at least β
data reach it. Constraints (7) ensure that each data is assigned to one and only one leaf, and Constraints (8) - (9)
that the path of each data is consistent with the split functions. The last set of constraints counts the number of
misclassi�cations L` (Constraints (12) and (14)), by �rst �xing the counting variables Nk,` and N` with Constraints
(10) and (11), respectively. Note that since the misclassi�cations are minimized, an optimal solution always assigns
to a leaf ` the most represented class among the data reaching `.

As an example, Figure 2a represents the optimal solution of (T ) for the training set represented in Figure 2b.
Each split function on a feature j ∈ J is represented by a grey line of thickness µj . In this example, we have δ = 3,
α = 0.1 and β = 4, and the optimal tree makes 2 misclassi�cations. Observe that the missclassi�ed red square
could be properly classi�ed by adding a split function on node 2, but this could be seen as over�tting. This solution
is thus cut o� by Constraint (5) since β = 4.

(a) Value of variables a, b, c, and d that are non-zero in the solution.
(b) The training set. For any point in [0, 1]2,
the background color corresponds to the class

predicted by the decision tree.

Figure 2: Optimal tree obtained by (T0.1, 4, 3) on a training set containing 3 classes, 2 features and 34 data.

2.1.2 The oblique case

An extension to the oblique case was also proposed in [Bertsimas and Dunn, 2017] which allows split functions that
use a linear combination of more than one feature. We label the associated model as (THα,β,δ,µ) since oblique splits
are in fact hyperplanes.

We present the di�erences with Formulation (Tα,β,δ). In this extension, variables aj,t are now de�ned in [−1, 1]
rather than in {0, 1}. As in the previous model, a node t ∈ N is inactive if and only if its split function only has
null coe�cients. To model it, the authors use the constraints

∑
j∈J |aj,t| ≤ dt that they linearized with auxiliary

variables âj,t = |aj,t|. Then, the strict inequalities of the split functions are now handled by a new parameter µ ∈ R.
Fixing a relevant value to parameter µ is a di�cult task. If it is too small, in particular smaller than the accuracy of
the solver, it may cause numerical issues. Note that in this formulation, it is not possible to generate split functions
within the interval [bt − µ, bt], so if µ is chosen too large this may a�ect the objective value of an optimal solution.
Finally, since a split function can now involve up to |J | non-zero coe�cients, minimizing the number of active
node is not a relevant second objective anymore. Instead, the authors minimize the number of non-zero coe�cients
{aj,t}j∈J , t∈N using auxiliary binary variables sj,t equal to 1 if and only if aj,t 6= 0. Formulation (THα,β,δ,µ) is the
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following:

(THα,β,δ,µ)



min
1

L̂

∑
`∈L

L` + α
∑

t∈N ,j∈J

sj,t

s.t.(3)− (7), (10)− (14), (16)∑
j∈J

âj,t ≤ dt t ∈ N (17)

−âj,t ≤ aj,t ≤ âj,t j ∈ J , t ∈ N (18)

−sj,t ≤ aj,t ≤ sj,t j ∈ J , t ∈ N (19)

sj,t ≤ dt j ∈ J , t ∈ N (20)∑
j∈J

sj,t ≥ dt t ∈ N (21)

−dt ≤ bt ≤ dt t ∈ N (22)∑
j∈J

aj,txi,j + µ ≤ bt + (2 + µ)(1− zi,`) i ∈ I, ` ∈ L, t ∈ AL(`) (23)

∑
j∈J

aj,txi,j ≥ bt − 2(1− zi,`) i ∈ I, ` ∈ L, t ∈ AR(`) (24)

sj,t ∈ {0, 1}, dt ∈ {0, 1} t ∈ N , j ∈ J (25)

In (THα,β,δ,µ), Constraints (17) and (18) ensure that âj,t = |aj,t|. The de�nition of variables sj,t and their
link with dt are enforced by constraints (19) - (21). Constraints (22) enables variable bt to be non-positive, and
Constraints (23) and (24) de�ne oblique split functions.

Figure 3a represents an optimal solution of (TH) on the training set of Figure 3b (same as in Figure 2b). In
this example, we have µ = 0.02, δ = 3, α = 0.04 and β = 4, and all split functions have a thickness of µ. Observe
that for the same value of parameters δ, α and β, and for µ ≤ minj∈J µj , all the feasible solutions of (Tα,β,δ) are
always feasible for (THα,β,δ,µ).

(a) Value of variables a, b, c, and d that are non-zero in the solution. (b) The training set.

Figure 3: Optimal tree obtained by (TH0.04, 4, 3, 0.02) on a training set containing 3 classes, 2 features and 34 data.

2.1.3 Learning parameters α, β, δ

Formulations (Tα,β,δ) and (TH) depend on 3 parameters: the depth of the tree δ, the minimal number of data in
a leaf β, and the weight α of the second objective that penalizes the complexity of the tree. In [Bertsimas and
Dunn, 2017], the authors propose an algorithm called TreeTraining and represented in Algorithm 1 that �ts the
parameters and allows to train the decision trees. Its input are the considered model M ∈ {(T ), (TH)}, δ the
maximal depth of the tree, and a �xed β (the minimal number of data points per open leaf). The data are split in
3 sets: the training set, the test set and the validation set. Model M is then solved on the training set for di�erent
values of the parameters. Finally, the best parameters are determined through the validation set. Since parameter
α is continuous, the algorithm can not iterate on all its possible values. To overcome this, the authors remove the
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second objective and bound the total number of non-zero coe�cients in the split functions by C ∈ Z+ through one
of the following constraints depending on the type of split functions considered:∑

j,t∈J×N
aj,t ≤ C (26)

∑
j,t∈J×N

sj,t ≤ C (27)

Note that in the oblique case the number of iterations is signi�cantly higher. Indeed, in that case Cδ, the highest
possible value for C, is equal to (2δ − 1)|J | while it is only equal to 2δ − 1 in the axis-aligned case. In Section 5.2
we introduce a new version of this algorithm that enables to reduce the number of iterations.

Algorithm TreeTraining(M,δ,β)
S ← ∅
for δ = 1 to δ do

for C = 1 to Cδ do

T̂ ← a feasible solution for warm starting (given by CART, or set S).
T ← an optimal solution of M with α = 0, Constraint (26) or (27), and T̂ as a warm start.
S ← S ∪ {T}

Remove within S all dominated solutions for M .
T ∗ ← the tree in S that best performs on the validation set.
return T ∗

Algorithm 1: Algorithm TreeTraining of [Bertsimas and Dunn, 2017] to train a tree, originally designed for
models M ∈ {(T ), (TH)}

2.2 A Strong Max-Flow Formulation [Aghaei et al., 2020]

We now present an alternative linear program that is based on max-�ow formulation [Aghaei et al., 2020]. It
only handles binary features vectors (i.e. Xi ∈ {0, 1}J ), and axis-aligned split functions. The main idea of this
formulation is to associate a unitary �ow to each data i that is correctly classi�ed.

The authors �rst de�ne a �ow network G = (V = N ∪L∪ {s, w}, E = E ∪ {(s, r), (t, w)t∈N∪L}), where a source
s is connected by an arc (s, r) to the root r of the tree, and a sink w is connected by an arc (t, w) to all nodes
t ∈ N ∪L (see example in Figure 4a). In this model any node t ∈ N ∪L can predict a class k ∈ K, and the binary
variable gk,t indicates if node t is assigned to class k. Then, to model the split functions, a binary variable hj,t
states if the split function of node t ∈ N is performed on feature j ∈ J . If it is, a data i reaching node t will go to
its left child l(t) if xi,j = 0, and to its right child r(t) if xi,j = 1. Let Pi, be the path of a data i ∈ I in G. A binary
�ow {uiv,v′}(v,v′)∈E is associated to i, and is equal to 1 if and only if i is correctly classi�ed and (v, v′) ∈ Pi. The
class assigned to i being that of the direct ancestor of w in Pi.

The objective function is similar to that of (Tα,β,δ), but the parameter which weights the criterion is a scalar
λ ∈ [0, 1[. As in model (Tα,β,δ), the depth of the tree δ is a parameter of this formulation, but there is no parameter
β controlling the minimal number of data reaching a leaf. Formulation of is as follows:
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(F bδ,λ)



max (1− λ)
∑
i∈I

uis,r − λ
∑
t∈N

∑
j∈J

hj,t

s.t.
∑
j∈J

hj,t +
∑
k∈K

gk,t = 1 t ∈ N (28)

∑
k∈K

gk,` = 1 ` ∈ L (29)

uia(t),t = uit,l(t) + uit,r(t) + uit,w t ∈ N , i ∈ I (30)

uia(`),` = ui`,w ` ∈ L, i ∈ I (31)

uit,l(t) ≤
∑

j∈J :xi,j=0

hj,t t ∈ N , i ∈ I (32)

uit,r(t) ≤
∑

j∈J :xi,j=1

hj,t t ∈ N , i ∈ I (33)

uit,w ≤ gyi,t i ∈ I, t ∈ N ∪ L (34)

hj,t ∈ {0, 1} t ∈ N , j ∈ J (35)

gk,t ∈ {0, 1} t ∈ N ∪ L, k ∈ K (36)

uit,t′ ∈ {0, 1} i ∈ I, (t, t′) ∈ E (37)

Constraints (28) ensure that each node either performs a split or predicts a class, and Constraints (29) that one
and only one class is assigned to each leaf. Constraints (30) and (31) hold for the �ow conservation. Constraints
(32) and (33) ensure the consistency of the split functions. Constraints (34) impose that the �ow of a misclassi�ed
data vanishes. Note that when a node t ∈ N is inactive, any data reaching it necessarily follows the arc (t, w). This
is illustrated in the �ow network represented in Figure 4a. In this solution of (F b), nodes 3 and 5 are inactive and,
consequently, the �ow of the data cannot go through arcs (3, 6), (3, 7), (5, 10) and (5, 11). This leads to a decision
tree which structure is represented in Figure 4b.

(a) The �ow network. Grayed arcs and vertices are not reached by any training
data.

(b) Structure of the corresponding decision
tree.

Figure 4: Link between the �ow of the data in the graph of a solution of Formulation (F b) and the structure of
the decision tree obtained.

In [Aghaei et al., 2020], it is proven that (F bδ,λ) has a stronger relaxation than a restriction of (Tα,β,δ) to the

case of binary feature vectors (i.e. Xi ∈ {0, 1}|J |).
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3 A new quadratic formulation based on (Tα,β,δ)

In this section, we introduce a new compact formulation for OCT where a quadratic formulation of the objective
function allows us to remove all the constraints and variables relative to the counting of the missclassi�cations.
More precisely, since an error of classi�cation comes from the fact that a data reaches a leaf with a di�erent class, it
can be modeled with the product of the binary variable that assigns a class to a leaf by the one that follows the path
of the data in the tree. With this new quadratic writing we do not need the error-counting variables of [Bertsimas
and Dunn, 2017] (i.e. N`, Nk,` and L`) anymore. Then, by considering two distinct linearization techniques, we
deduce two linear reformulations that are stronger than (Tα,β,δ) and (THα,β,δ,µ) from the continuous relaxation point
of view.

3.1 A quadratic formulation for the axis-aligned case

In (Tα,β,δ), variables L` that model the number of misclassi�ed data reaching leaf ` ∈ L, are �xed thanks to N`, the
total number of data reaching leaf `, and Nk,`, the number of data of class k ∈ K reaching leaf `. More formally:

L` = N` −max
k∈K

Nk,` (38)

This equality is true since the class assigned to leaf ` in an optimal solution of (Tα,β,δ) is precisely arg max
k∈K

Nk,`. In

(Tα,β,δ), Equation (38) is linearized thanks to Constraints (10)-(14).

We introduce a new writting of variable L` in order to de�ne a more compact formulation. Recall that variables
ck,` = 1 if class k ∈ K is assigned to leaf ` ∈ L, and variables zi,` = 1 if data i reaches leaf `. For a given k ∈ K, let
Ik be the subset of I restricted to data of class k (i.e., Ik = {i ∈ I | yi = k}). Variable L` can be expressed as:

L` =
∑
k∈K

ck,` (N` −Nk,`) =
∑
k∈K

(ck,`
∑

i∈I\Ik

zi,`) =
∑
k∈K

∑
i∈I\Ik

ck,`zi,` (39)

We propose to use Equation (39) to model the number of misclassi�ed data, which we directly include into the
objective function. Doing this allows us to reduce the size of the formulation by removing variables L`, N`, Nk,`
and Constraints (10)-(14). We obtain the following quadratic formulation:

(Qα,β,δ)


min FL̂,α(c, z, d) =

1

L̂

∑
`∈L

∑
k∈K

∑
i∈I\Ik

ck,`zi,` + α
∑
t∈N

dt

s.t. (1)− (9), (15), (16)

l` ≤ dt ` ∈ L, t ∈ AL(`) (40)

where Constraints (40) are valid inequalities that enable strengthen our formulation. Note that this is not the
case for (Tα,β,δ) since these valid inequalities do not impact the value of its continuous relaxation. The quadratic
objective function FL̂,α of (Qα,β,δ) is a non-convex function which we propose to convexify through two di�erent
approaches: the linearization of Fortet [Fortet, 1960] and that of Glover [Glover, 1975]. Further, we compare the
continuous relaxation of the two corresponding linear programs.

Fortet's linearization [Fortet, 1960] consists in replacing each bi-linear term zi,`ck,` by an auxiliary variable θi,k,`.
The equality θi,k,` = zi,`ck,` is then enforced by the following sets of linear inequalities:

θi,k,` ≤ ck,` i ∈ I\Ik, k ∈ K, ` ∈ L (41)

θi,k,` ≤ zi,` i ∈ I\Ik, k ∈ K, ` ∈ L (42)

θi,k,` ≥ ck,` + zi,` − 1 i ∈ I\Ik, k ∈ K, ` ∈ L (43)

θi,k,` ≥ 0 i ∈ I\Ik, k ∈ K, ` ∈ L (44)

It is easy to verify that inequalities (41)-(44) are equivalent to θi,k,` = zi,`ck,` as zi,` and ck,` are binary variables.
Moreover, since in (Qα,β,δ), the products zi,`ck,` are only involved into the objective function, and are weighted
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with non-negative coe�cients, Constraints (41) and (42) are not necessary to get the equivalence. We �nally obtain
the following linear reformulation of (Qα,β,δ):

(QFα,β,δ)


min FL1

L̂,α
(θ, d) =

1

L̂

∑
`∈L

∑
k∈K

∑
i∈I\Ik

θi,k,` + α
∑
`∈N

d`

s.t. (1)− (9), (15), (16), (40), (43), (44)

To further reduce the size of the formulation, we propose to use Glover's procedure [Glover, 1975] to linearize

the products ck,`
( ∑
i∈I\Ik

zi,`

)
by use of auxiliary variables Θk,`. It is easy to prove that |I\Ik| is a valid upper

bound for
∑

i∈I\Ik

zi,`. Using these bounds and the fact that
∑

i∈I\Ik

zi,` ≥ 0, the equality Θk,` = ck,`

( ∑
i∈I\Ik

zi,`

)
is

then enforced by the following set of linear inequalities:

Θk,` ≤ |I\Ik|ck,` k ∈ K, ` ∈ L (45)

Θk,` ≤
∑

i∈I\Ik

zi,` k ∈ K, ` ∈ L (46)

Θk,` ≥ 0 k ∈ K, ` ∈ L (47)

Θk,` ≥
∑

i∈I\Ik

zi,` − |I\Ik|(1− ck,`) k ∈ K, ` ∈ L (48)

Here again we only need inequalities (47) and (48) to get an equivalent linear reformulation:

(QGα,β,δ)


min FL2

L̂,α
(Θ, d) =

1

L̂

∑
k∈K

∑
`∈L

Θk,` + α
∑
t∈N

dt

s.t. (1)− (9), (15), (16), (40), (47), (48)

We now compare our two linear reformulations of (Qα,β,δ). We �rst observe that the size of (QGα,β,δ) (i.e.
O(|K| × |L|) auxiliary variables and constraints) is reduced by a factor of |I| in comparison to the size of (QFα,β,δ)
(i.e. O(|K| × |L| × |I|) auxiliary variables and constraints). Since |I| is higher than both |K| and |L| in non-trivial
problems, this reduction can be signi�cant. Let us denote by v(P ) the optimal value of a problem (P ), and P the
continuous relaxation of problem P . We prove in Proposition 1 that problem (QFα,β,δ) has a better continuous
relaxation than problem (QGα,β,δ).

Proposition 1. v(QFα,β,δ) ≥ v(QGα,β,δ).

Proof . Let (d∗, a∗, b∗, l∗, c∗, z∗, θ∗) be an optimal solution of (QFα,β,δ). We build a feasible solution (d = d∗, a =

a∗, b = b∗, l = l∗, c = c∗, z = z∗,Θ) of (QGα,β,δ) such that Θk,` =
∑
i∈I\Ik θ

∗
i,k,` for all (`, k) ∈ (L × K). The only

constraints of (QGα,β,δ) which are not obviously satis�ed by this solution are Constraints (48). Let us prove that
they are satis�ed:

Θk,` =
∑
i∈I\Ik θ

∗
i,k,` ≥

∑
i∈I\Ik

(
c∗k,` + z∗i,` − 1

)
≥ |I\Ik|ck,` +

∑
i∈I\Ik z

∗
i,` − |I|+ |Ik|

≥
∑

i∈I\Ik

zi,` − |I\Ik|(1− ck,`)

We now compare the objective values ∆ = FL2
L̂,α

(Θ, d)− FL1
L̂,α

(θ∗, d∗):

∆ =
1

L̂

∑
k∈K

∑
`∈L

Θk,` −
1

L̂

∑
`∈L

∑
k∈K

∑
i∈I\Ik

θ∗i,k,` =
1

L̂

(∑
k∈K

∑
`∈L

∑
i∈I\Ik

θ∗i,k,` −
∑
`∈L

∑
k∈K

∑
i∈I\Ik

θ∗i,k,`

)
= 0
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We want to compare the value of (QGα,β,δ) and (QFα,β,δ) to the value of (Tα,β,δ). To do so, we �rst show that
the value of (Tα,β,δ) is always 0.

Lemma 1. v(Tα,β,δ) = 0

Proof . Since all the variables are positive and weighted by positive constants, necessarily v(Tα,β,δ) ≥ 0. Let `r
denote the right-most leaf of the tree. We build the following solution of value 0:

� aj,t = bt = dt = 0 ∀j ∈ J , t ∈ N ;

� zi,`r = l`r = 1, and zi,` = l` = 0 ∀i ∈ I, ` ∈ L, ` 6= `r;

� N`r = |I|, and N` = 0 ∀` ∈ L, ` 6= `r;

� Nk,`r = |Ik|, and Nk,` = 0 ∀k ∈ K, ` ∈ L, ` 6= `r;

� ck,`r = |Ik|
|I| , and ck,`r = 0 ∀k ∈ K, ` ∈ L, ` 6= `r;

� L` = 0 ∀` ∈ L.

Constraints (1)-(7) and (10)-(14) are obviously satis�ed, and Constraints (8) and (9) are veri�ed since all data
go to the right-most leaf. The value of this solution is 0.

As mentioned before, the valid inequalities (40) do not change the value of the continuous relaxation of (Tα,β,δ).
The solution provided by the proof satis�es (40).

We state in Proposition 2 that our new linear formulations provide better continuous relaxation bounds than
the one of (Tα,β,δ).

Proposition 2. If α > 0, v(QFα,β,δ) ≥ v(QGα,β,δ) > v(Tα,β,δ).

Proof . Considering Lemma 1, it remains to prove that v(QGα,β,δ) > 0. Let us distinguish two cases:

Case 1: If
∑
t∈N

dt > 0, since α is positive, we necessarily have v(QGα,β,δ) > 0.

Case 2: If
∑
t∈N

dt = 0, we have v(QGα,β,δ) = 1
L̂

∑
k∈K

∑
`∈L

Θk,`. Constraints (1) and (2) impose for every node t and

feature j that aj,t = bt = 0. By Constraints (40), we have that for all ` ∈ L \ {`r} the value of zi,` is 0 and

zi,`r = 1. Therefore, l` = 1 if and only if ` = `r, giving us
∑
k∈K

ck,`r = 1.

Since (QGα,β,δ) is a minimisation problem and the coe�cients of θ`,k in FL2 are positive, Constraints (47)
and (48) enforce Θ`,k = 0 ∀` 6= `r. For `r we obtain:

Θ`r,k =
∑

i∈I\Ik

zi,`r − |I\Ik|(1− ck,`r ) = |I\Ik| ck,`r

Thus, v(QGα,β,δ) =
∑
k∈K

|I\Ik|ck,`r > 0 since
∑
k∈K

ck,`r = 1.
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3.2 Handling the oblique case

Equation (39) remains true for oblique split functions, and thus the oblique extension of our three formulations
is straightforward, since the di�erences are the same than those between (Tα,β,δ) and (THα,β,δ,µ). Thus, we build
(QHα,β,δ,µ), (QFHα,β,δ,µ) and (QGHα,β,δ,µ) the oblique extensions of (Qα,β,δ), (QFα,β,δ) and (QGα,β,δ), respectively:

(QHα,β,δ,µ)


min FH

L̂,α
(c, z, s) =

1

L̂

∑
k∈K

∑
`∈L

∑
i∈I\Ik

ck,`zi,` + α
∑
j∈J

∑
t∈N

sj,t

s.t. (3)− (7)(16)− (25)

(QFHα,β,δ,µ)


min FL1H

L̂,α
(θ, s) =

1

L̂

∑
k∈K

∑
`∈L

∑
i∈I\Ik

θi,k,` + α
∑
j∈J

∑
t∈N

sj,t

s.t. (3)− (7)(16)− (25)(43)− (44)

(QGHα,β,δ,µ)


min FL1H

L̂,α
(Θ, s) =

1

L̂

∑
k∈K

∑
`∈L

Θk,` + α
∑
j∈J

∑
t∈N

sj,t

s.t. (3)− (7)(16)− (25)(47)− (48)

Similarly to the axis-aligned case, we compare in Proposition 3 the continuous relaxation values of (QFHα,β,δ,µ),

(QGHα,β,δ,µ), and (THα,β,δ,µ), denoted by (QF
H

α,β,δ,µ), (QG
H

α,β,δ,µ), and (T
H

α,β,δ,µ), respectively. To do so, we show

that the value of (T
H

α,β,δ,µ) is always 0.

Lemma 2. v(T
H

α,β,δ,µ) = 0

Proof . Since all the variables are positive and weighted by positive constants, we have v(T
H

α,β,δ,µ) ≥ 0. Let tr
denote the right-most leaf, we build the following solution of value 0:

� aj,t = âj,t = sj,t = bt = dt = 0 ∀j ∈ J , t ∈ N ;

� zi,`r = l`r = 1, and zi,` = l` = 0 ∀i ∈ I, ` ∈ L, ` 6= `r;

� N`r = |I|, and N` = 0 ∀` ∈ L, ` 6= `r;

� Nk,`r = |Ik|, and Nk,` = 0 ∀k ∈ K, ` ∈ L, ` 6= `r;

� ck,`r = Ik
|I| , and ck,`r = 0 ∀k ∈ K, ` ∈ L, ` 6= `r;

� L` = 0 ∀` ∈ L.

Constraints (3)-(7), (10)-(14), (17)-(22) are obviously satis�ed, and Constraints (23)-(24) are veri�ed since all
data go to the right-most leaf.

We state in Proposition 3 that our new linear formulations provide better continuous relaxation bounds than
the original formulation (THα,β,δ,µ).

Proposition 3. If α > 0, v(QF
H

α,β,δ,µ) ≥ v(QG
H

α,β,δ,µ) > v(T
H

α,β,δ,µ).

Proof . We �rst prove that v(QF
H

α,β,δ,µ) ≥ v(QG
H

α,β,δ,µ).

The proof is similar to that of Proposition 1. Let (d∗, a∗, b∗, l∗, c∗, z∗, s∗, θ∗) be an optimal solution of (QF
H

α,β,δ,µ).

We build a feasible solution to (QG
H

α,β,δ,µ): (d = d∗, a = a∗, b = b∗, l = l∗, c = c∗, z = z∗, s = s∗,Θ), with for
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all (`, k) ∈ (L × K) Θk,` =
∑
i∈I\Ik θ

∗
i,k,`. This solution obviously satis�es all constraints of (QG

H

α,β,δ,µ) and its

objective value is equal to v(QF
H

α,β,δ,µ).

Secondly, we prove that v(QG
H

α,β,δ,µ) > v(T
H

α,β,δ,µ). Considering Lemma 2, it remains to prove that v(QG
H

α,β,δ,µ) >
0. Let us distinguish two cases:

Case 1: If
∑
j∈J

∑
t∈N

sj,t > 0, since α is positive, we necessarily have v(QG
H

α,β,δ,µ) > 0.

Case 2: If
∑
j∈J

∑
t∈N

sj,t = 0, it means that all data are sent to the right-most leaf. With a similar reasoning as the

proof of Proposition 2, we get that v(QG
H

α,β,δ,µ) > 0.

4 Extension of (F b
δ,λ) to the case of real-valued data

Formulation (F bδ,λ) only applies to datasets in which all features are binary (i.e. Xi ∈ {0, 1}|J |) and only consider
axis-aligned split functions. We propose in this section to extend this formulation to the case of real-valued data
(i.e. Xi ∈ [0, 1]|J |) for both the axis-aligned and oblique cases.

4.1 The axis-aligned case

For our extension, we keep the unitary �ow variables uit,t′ that model whether data i is correctly classi�ed and goes
through arc (t, t′). Variables hj,t are not relevant anymore, we replace them by variables aj,t and bt that model the
split functions

∑
j∈J aj,txi,j ≥ bt and

∑
j∈J aj,txi,j < bt. The obtained formulation (Fα,δ) is the following:

(Fα,δ)



min fFL̂,α(u, a) =
1

L̂

(
|I| −

∑
i∈I

uis,r

)
+ α

∑
t∈N

∑
j∈J

aj,t

s.t. (29)− (31), (34), (36), (37)∑
j∈J

aj,t +
∑
k∈K

gk,t = 1 t ∈ N (49)

0 ≤ bt ≤
∑
j∈J

aj,t t ∈ N (50)

∑
j∈J

aj,t
(
xi,j + µj − µ−

)
+ µ− ≤ bt + (1 + µ+)(1− uit,l(t)) t ∈ N , i ∈ I (51)

∑
j∈J

aj,txi,j ≥ bt − (1− uit,r(t)) t ∈ N , i ∈ I (52)

uit,l(t) ≤
∑
j∈J

aj,t i ∈ I, t ∈ N (53)

uit,r(t) ≤
∑
j∈J

aj,t i ∈ I, t ∈ N (54)

aj,t ∈ {0, 1} t ∈ N , j ∈ J (55)

We keep in this extension Constraints (29) which force each leaf to be associated to a class, as well as the �ow
conservation constraints (30)-(31). As in (F bδ,λ), a misclassi�ed data will have a null �ow by Constraints (34). Then,
we adapt the capacity constraints (32)-(33) with Constraints (53)-(54). Note that Constraints (53) are redundant
but are valid inequalities in the linear relaxation. Finally, to model the split functions, we rely on Formulation
(Tα,β,δ) by adapting Constraints (8)-(9) to our case, where the di�erence is that variables zi,` are replaced by
variables uit,`(t) (u

i
t,r(t) respectively) in (51) ((52) resp.). We also adapt Constraints (28) into Constraints (49), that

ensure that a node either predicts a class or performs a split. In this last case, these constraints additionally force

14



∑
j∈J aj,t to be equal to 1. For the objective function, we have chosen to use the same parameters as in (Tα,β,δ),

so we minimize a function weighted by parameters L̂ and α.

Figure 5a represents an optimal solution of (F ), for parameters α = 0.1, and δ = 4, on the same training set
considered in Figures 2 and 3. Note that the missclassi�ed right-most circle in Figure 5b is located on a split
function of thickness µ2 (i.e. xi,2 ∈]0.5 − µ2, 0.5[). This is possible in (F ) since the �ow of any misclassi�ed data
i ∈ I is null which disables the Constraints (51) and (52). Observe that the same split function is not feasible for
(T ) since each data is assigned to a path for which the branching rules must be satis�ed.

(a) Value of variables a, b and g that are non-zero in the solution. (b) The training set.

Figure 5: Optimal tree obtained from (F0.1, 4) on a training set containing 3 classes, 2 features, and 34 data.

The following proposition proves that, in the axis-aligned case, the optimal value of formulations (Tα,β,δ) and
(Fα,δ) are identical.

Proposition 4. If β = 0, v(Tα,β,δ) = v(Fα,δ).

Proof . 1. We �rst prove that v(Tα,β,δ) ≥ v(Fα,δ). We denote by Leaves(t) the set of leaves that can be reached
from t ∈ N and by leaf(t) the right-most leaf in Leaves(t). Let ST = (a∗, b∗, c∗, d∗, l∗, L∗, N∗t , N

∗
k,t, z

∗) be an
optimal solution of (Tα,β,δ). Without loss of generality, let us assume that dt = 1 if and only if node t ∈ N does
split data, i.e. if

∑
i∈I
∑
`∈Leaves(l(t)) zi,` ≥ 1 and

∑
i∈I
∑
`∈Leaves(r(t)) zi,` ≥ 1. This is always possible since if there

exists a node t ∈ N such that either
∑
i∈I
∑
`∈Leaves(l(t)) zi,` = 0 or

∑
i∈I
∑
`∈Leaves(r(t)) zi,` = 0 it is possible to

set dt to 0 without altering the predictions of the data. The solution remains optimal as the objective value cannot
be increased by this transformation. We build a solution SF = (a, b, g, u) of (Fα,δ) as follows:

� aj,t = a∗j,t and bt = b∗t ∀j ∈ J , t ∈ N ;

� uit,t′ is de�ned di�erently depending on (t, t′) ∈ E :

� uis,r =
∑
`∈L

z∗i,`c
∗
yi,` ∀i ∈ I;

� ui`,w = uia(`),` = d∗a(`)z
∗
i,`u

i
s,r ∀` ∈ L, i ∈ I;

� uia(t),t = d∗a(t)u
i
s,r

∑
`∈Leaves(t)

z∗i,` ∀i ∈ I, t ∈ N \ {r};

� uit,w = d∗a(t)(1− d
∗
t )z
∗
i,leaf(t)u

i
s,r ∀i ∈ I, t ∈ N \ {r};
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� uir,w = (1− d∗1)z∗i,leaf(r)u
i
s,r ∀i ∈ I;

� gk,t is de�ned di�erently depending on t ∈ N ∪ L:

� gk,t = (1− d∗t )d∗a(t)c
∗
k,leaf(t) + (1− d∗a(t))1[k = 1] ∀t ∈ N \ {r}, k ∈ K;

� gk,r = (1− d∗1)c∗k,leaf(r) ∀k ∈ K;
� gk,` = d∗a(`)c

∗
k,` + (1− d∗a(`))1[k = 1] ∀` ∈ L.

Let us �rst note that the integrity of ST . Moreover, Constraints (7) ensures the integrity of SF , Constraints (31)
are satis�ed by de�nition, and Constraints (1) and (2) imply Constraints (50).

Constraints (51) and (52). When uit,l(t) is equal to 0, the associated Constraint (49) is necessarily satis�ed.

From its de�nition we know that uit,l(t) = 1 if and only if there exists a leaf ` ∈ Leaves(l(t)) such that z∗i,` = 1. In
such cases Constraints (8) ensure that Constraints (51) are satis�ed. The satisfaction of Constraints (52) can be
proved similarly.

Constraints (29). By de�nition of variables gk,`, a Constraint (29) is satis�ed if d∗a(`) = 0. Otherwise, we
know by assumption that there exists i ∈ I such that z∗i,` = 1. From Constraints (4) and (6), we deduce that∑
k∈K c

∗
k,` = 1 which leads to the same result.

Constraints (30). By de�nition of variables uit,t′ , a Constraint (30) is satis�ed if d∗a(t) = d∗t or uis,r = 0.

Otherwise, because of Constraints (3), the only possible case is d∗a(t) = 1, d∗t = 0 and uis,r = 1. By de�nition

of variables uit,t′ , the right-hand side of the corresponding Constraint (30) is equal to z∗i,leaf(t) and because of
Constraints (1) and (8), z∗i,leaf(t) =

∑
`∈Leaves(t) z

∗
i,`. As the left-hand side of the Constraint(30) is equal to∑

`∈Leaves(t) z
∗
i,`, by de�nition of variables uit,t′ , Constraints (30) are satis�ed.

Constraints (49). For a given t ∈ N , if both d∗a(t) and dt are equal to 1, the associated Constraint (47) is
satis�ed as

∑
k∈K gk,t = 0 by de�nition of gk,t and

∑
j∈J aj,t = 1 from Constraints (4) and (6). Otherwise, either

d∗a(t) or d
∗
t is equal to 0 and Constraints (1) and (3) ensure that

∑
j∈J aj,t = 0. If d∗a(t) = 0,

∑
k∈K gk,t = 1 by

de�nition of g. If d∗t = 0,
∑
k∈K gk,t =

∑
k∈K c

∗
k,leaf(t) which is also equal to 1. Thus, Constraints (49) are satis�ed

in all cases.

Constraints (53) and (54). If d∗t = 1, Constraints (53) and (54) are satis�ed as Constraints (1) ensure that∑
j∈J aj,t = 1. These constraints are also satis�ed if d∗t = 0 as it implies uit,l(t) = uit,r(t) = 0 by de�nition of these

variables.

Constraints (34). For any node t ∈ N , these constraints are satis�ed by de�nition of uit,w if either, da(t) = 0,
dt = 1, zi,leaf(t) = 0 or uis,r = 0. Otherwise, we know by de�nition of gk,t that gk,t = c∗k,leaf(t) and by de�nition

of uis,r that there exists ` ∈ L such that z∗
i,`

= c∗
yi,`

= 1. Since zi,leaf(t) = 1, we deduce from Constraints (7)

that ` = leaf(t). The associated Constraint (34) is also satis�ed in that case as this leads to gyi,t = 1. A similar
reasoning provides the same result for any ` ∈ L.

We now compare the objective values of ST and SF . Since the second criterion in both objectives are identical,
we only compare the �rst criterion. For this, we consider the quadratic Equation (39):

L∗` =
∑
k∈K

c∗k,`
∑

i∈I\Ik

z∗i,` ∀` ∈ L

The two solutions have the same value since:∑
`∈L

L∗` =
∑
`∈L

∑
k∈K

∑
i∈I

z∗i,`c
∗
k,` −

∑
`∈L

∑
k∈K

∑
i∈Ik

z∗i,`c
∗
k,` = |I| −

∑
i∈I

∑
`∈L

z∗i,`c
∗
yi,` = |I| −

∑
i∈I

uis,r

2. We now prove that v(Tα,β,δ) ≤ v(Fα,δ). Let SF = (a∗, b∗, g∗, u∗) be an optimal solution of (Fα,δ). Without
loss of generality, let us assume that

∑
j∈J a

∗
j,t = 1 if and only if node t ∈ N does split data. We build ST =

(a, b, c, d, l, Lt, Nt, Nk,t, z) a feasible solution to (Tα,β,δ) with the same objective value:

� dt =
∏

t′∈A(t)∪{t}

∑
j′∈J

a∗j,t′

, aj,t = dta
∗
j,t and bt = dtb

∗
t ∀t ∈ N , j ∈ J , where A(t) is the set of nodes on the

path from r to t (r included);
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� zi,` =
∏

t∈AL(`)

1[
∑
j∈J

aj,txi,j < bt]×
∏

t∈AR(`)

1[
∑
j∈J

aj,txi,j ≥ bt] ∀` ∈ L, i ∈ I ;

� l` = maxi∈I zi,`, N` =
∑
i∈I

zi,`, and Nk,` =
∑
i∈Ik

zi,` ∀` ∈ L, k ∈ K;

� ck,` = da(`)g
∗
k,` +

∑
t∈N : leaf(t)=`

Btg
∗
k,t,∀` ∈ L, k ∈ K where Bt = da(t)(1− dt), if t 6= r and Br = (1− dr);

� L` =
∑
k∈K (N` −Nk,`)ck,` ∀` ∈ L.

Let us �rst note that the integrity of SF ensures the integrity of ST . Constraints (1), (2), (3), (5), (6), (10), (11)
and (14) are satis�ed by de�nition of ST .

Constraints (4). First note that Constraints (3) ensure that variables dt are decreasing from the root
to the leaf of every branch and that by de�nition of ck,` and Constraints (29), we have

∑
k∈K ck,` = da(`) +∑

t∈N :leaf(t)=`Bt
∑
k∈K gk,t. We consider three cases according to the possible values of B and d in the sub-branch

SB(`) = {t ∈ N : leaf(t) = `} and prove that Constraints (4) are always satis�ed:

� Case 1: Bt = 0 for all t ∈ SB(`) and da(`) = 1.
In that case, dt = 1 for all t ∈ SB(`). Therefore,

∑
k∈K ck,` = 1. Moreover, da(`) = 1 also ensures that∑

j∈J a
∗
j,a(`) = 1 leading with our assumption to the existence of i ∈ I such that zi,` = 1. Consequently, l` is

also equal to 1.

� Case 2: Bt = 0 for all t ∈ SB(`) and da(`) = 0.

In that case dt = 0 for all t ∈ SB(`) and r 6∈ SB(`). By de�nition of z and since for all t ∈ SB(`) da(t) is
equal to 0, we obtain

∑
i∈I zi,` = 0. Therefore

∑
k∈K ck,` = l` =0.

� Case 3: ∃t ∈ SB(`) such that Bt = 1.

Here t is necessarily the �rst node in sub-branch SB(`) such that dt = 0. By de�nition of a, we have∑
j∈J aj,t = 0. Therefore,

∑
k∈K ck,` =

∑
k∈K gk,t which is equal to 1 from Constraints (49). From the

de�nitions of a, b, z, our assumption and Constraints (51) and (52), we have l` = 1.

Constraints (12) and (13). Because the solution of (Fα,δ) is optimal, a class assigned to a node t ∈ N ∪ L is
necessarily one of the most represented among the data reaching t. Therefore ck,` is equal to argmaxk∈K

∑
i∈Ik zi,`.

By de�nition of L`, N` and Nk,`, Constraints (12) and (13) are satis�ed.

Constraints (8) and (9). The provided solution may not satisfy all constraints (8) and (9). Indeed, unlike in
(Tα,β,δ), Formulation (Fα,δ) does not follow the path of misclassi�ed data. Consequently, there may exist a data
i ∈ I missclassi�ed by (Fα,δ) such that for a given leaf ` ∈ L and a node t ∈ AL(`), zi,` = 1 and xi,j ∈]bt−µj , bt]. In
that case the associated Constraint (8) is violated. However, it is easy to adjust the value of bt so that Constraint (8)
is satis�ed. More precisely, let j ∈ J be the feature such that aj,t = 1. By construction of µj , xi,j is the only value
of the dataset for feature j in the interval [xi,j , xi,j + µj [. Consequently, the constraint can be satis�ed by setting
the value of bt to xi,j + µj .

By use of Equation (39) it follows that the two solutions have the same values.

We now prove that the continuous relaxation (Tα,β,δ) of (Tα,β,δ) is worse than that of (Fα,δ).

Proposition 5. If α > 0, β > 0, and |K| > 1, v(Fα,δ) > v(Tα,β,δ).

Proof . By Lemma 1, it amounts to prove that v(Fα,δ) > 0. Let us distinguish two cases:

Case 1: If
∑

(j,t)∈J×N

aj,t > 0, since α > 0, the value of the relaxation is necessarily positive.
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Case 2: If
∑

(j,t)∈J×N

aj,t = 0, Constraints (53) and (54) impose that uit,t′ = 0 for any arc (t, t′) such that t 6= s and

t′ 6= w. From the �ow conservation constraints (30), we deduce that for all i ∈ I, uis,r = uir,w. Considering
Constraints (29) and (34), we have that, for any (i1, i2) ∈ I2 such that yi1 6= yi2 :

ui1s,r + ui2s,r = ui1r,w + ui2r,w ≤ gyi1 ,r + gyi2 ,r ≤ 1

Therefore, |I| −
∑
i∈I

uis,r > 0.

4.2 Extension to the oblique case

We now extend Formulation (Fα,δ) to the case of oblique splits. We once more rely on Formulation (THα,β,δ,µ). In
particular, we use variables âj,t = |aj,t|, binary variables sj,t to count the number of aj,t 6= 0, and binary variables dt
that indicate if node t is active, together with constraints (17)-(22) of (THα,β,δ,µ). We also use Constraints (29)-(31),
(34) of (Fα,δ) leading to the following formulation (FHα,δ,µ):

(FHα,δ,µ)



min fFH
L̂,α

(u, s) =
1

L̂

(
|I| −

∑
i∈I

uis,r

)
+ α

∑
t∈N

∑
j∈J

sj,t

s.t.(17)− (22), (25), (29)− (31), (34), (36), (37)

dt +
∑
k∈K

gk,t = 1 t ∈ N (56)∑
j∈J

aj,txi,j + µ ≤ bt + (2 + µ)(1− uit,l(t)) t ∈ N , i ∈ I (57)

∑
j∈J

aj,txi,j ≥ bt − 2(1− uit,r(t)) t ∈ N , i ∈ I (58)

uit,l(t) ≤ dt i ∈ I, t ∈ N (59)

uit,r(t) ≤ dt i ∈ I, t ∈ N (60)

In this formulation
∑
j∈J aj,t has no longer a binary value, we thus adapt Constraints (49), (53), (54) into Con-

straints (56), (59), (60) by use of binary variables dt. Finally, to model the split functions, we rely on Formulation
(THα,β,δ,µ) by adapting Constraints (23)-(24). Variables zi,` are replaced by variables uit,l(t) in (57) and by variables

uit,r(t) in (58). For the objective function, we have chosen to use the same parameters as in (THα,β,δ,µ), so we minimize

a function weighted by parameters L̂ and α.

The following proposition proves that, in the oblique case, the optimal value of formulation (FHα,δ,µ) can be
strictly better than the optimal value of formulation (THα,β,δ,µ).

Proposition 6. For δ > 0, β = 0 and µ > 0, v(FHα,δ,µ) ≤ v(THα,β,δ,µ). There exists datasets for which this inequality
is strict if and only if α < 1.

Proof . Let (a∗, â∗, s∗, b∗, c∗, d∗, l∗, L∗, N∗t , N
∗
k,t, z

∗) be an optimal solution of (THα,β,δ,µ). Without loss of generality,
let us assume that dt = 1 if and only if node t ∈ N does split data. We build (a, â, s, b, d, u, g) a feasible solution of
(FHα,δ,µ):

� aj,t = a∗j,t, âj,t = â∗j,t, sj,t = s̃j,t ∀j ∈ J , t ∈ N ;

� bt = b∗t , dt = d∗t ∀t ∈ N ;

� uit,t′ is de�ned di�erently depending on (t, t′) ∈ E :

� uis,r =
∑
`∈L

z∗i,`c
∗
yi,` ∀i ∈ I;

18



� ui`,w = uia(`),` = d∗a(`)z
∗
i,`u

i
s,r ∀` ∈ L, i ∈ I;

� uia(t),t = d∗a(t)u
i
s,r

∑
`∈Leaves(t)

z∗i,` ∀i ∈ I, t ∈ N \ {r};

� uit,w = d∗a(t)(1− d
∗
t )z
∗
i,leaf(t)u

i
s,r ∀i ∈ I, t ∈ N \ {r};

� uir,w = (1− d∗1)z∗i,leaf(r)u
i
s,r ∀i ∈ I;

� gk,t is de�ned di�erently depending on t ∈ N ∪ L:

� gk,t = (1− d∗t )d∗a(t)c
∗
k,leaf(t) + (1− d∗a(t))1[k = 1] ∀t ∈ N \ {r}, k ∈ K;

� gk,r = (1− d∗1)c∗k,leaf(r) ∀k ∈ K;

� gk,` = d∗a(`)c
∗
k,` + (1− d∗a(`))1[k = 1] ∀` ∈ L.

With an very similar reasoning as used in the proof of Proposition 4, one can check that this solution satis�es all
constraints of (FHα,δ,µ) and that the two solutions have the same value. Consequently, v(FHα,δ,µ) ≤ v(THα,β,δ,µ).

If α < 1, we now exhibit datasets for which v(FHα,δ,µ) < v(THα,β,δ,µ).

We consider a training set I = {(Xi1 , k1), (Xi2 , k2), (Xi3 , k3), (Xi4 , k3)} composed of three classesK = {k1, k2, k3}
such that:

� xi1,1 = 0, xi2,1 = µ
2 , xi3,1 = µ, xi4,1 = 1;

� xi1,j = xi2,j = xi3,j = xi4,j ∀j ∈ J \{1}.

We prove that data i1 and i3 necessarily reach the same leaf of a tree obtained by (THα,β,δ,µ) while they can be
separated by (FHα,δ,µ).

Let t be the highest node of a decision tree which split function separates i1 and i3. Let us assume without loss
of generality that

∑
j∈J aj,txi1,j is lower than

∑
j∈J aj,txi3,j . Consequently,

∑
j∈J aj,txi1,j < bt ≤

∑
j∈J aj,txi3,j

0 < bt −
∑
j∈J\{1} aj,txi1,j ≤ a1,tµ

(61)

In (THα,β,δ,µ), the Constraint (23) associated with node t and the leaf reached by data i1 leads to

µ ≤ bt −
∑

j∈J\{1}

aj,txi1,j (62)

From inequalities (61) and (62) we deduce that

bt −
∑

j∈J\{1}

aj,txi1,j = µ (63)

Given the features vectors of the data and the fact that t is the highest node which separates nodes i1 and i3,
we deduce that data i2 necessarily reaches node t. Consequently, i2 either reaches the left or the right child of t.
We prove that in both cases Equation (63) can not be satis�ed, thus proving that i1 and i3 can not be separated
in (THα,β,δ,µ).

If i2 reaches l(t), we deduce from the Constraint (23) associated with node t and the leaf reached by i2 that:

∑
j∈J aj,t + µ < bt

a1,t
µ
2 + µ < µ

a1,tµ < 0

which is not possible as a1,t must be greater than 0 according to (61).
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If i2 reaches r(t):

∑
j∈J aj,txi2,j ≥ bt

a1,t
µ
2 ≥ µ

a1,t ≥ 2

which is not either possible as a1,t ≤ 1.

Since the distances between i1 and i2 or i2 and i3 are both lower than the one between i1 and i3, (THα,β,δ,µ) can
not either separate these data. Thus, all three data necessarily reach the same leaf of a tree obtained by (THα,β,δ,µ)
which leads to at least 2 misclassi�cations.

However, i1 and i3 can be separated by a tree obtained with (FHα,δ,µ). Indeed, if i2 is missclassi�ed, its �ow is
equal to 0 and all Constraints (51) and (52) involving this data are satis�ed. A tree with a single split function
x1,t ≤ µ can, thus, be obtained by (FHα,δ,µ) and leads to only one misclassi�cation. Consequently, if α = 0,
v(FHα,δ,µ) < v(THα,β,δ,µ).

If α is in ]0, 1[. Let Tr be the tree reduced to a root node which predicts the most represented class k in the
training set (i.e., k = arg maxk∈K |Ik|). The same reasoning applies for this value of α provided that we can ensure
that Tr is not an optimal tree (otherwise v(FHα,δ,µ) = v(THα,β,δ,µ) = 1). This can be obtained by adding to the
dataset a su�cient number of data equal to (Xi1 , k1) and (Xi4 , k3).

If α ≥ 1, Tr is an optimal tree. Consequently, v(FHα,δ,µ) = v(THα,β,δ,µ).

In terms of value of the linear relaxation, we obtain a result similar to the one of the axis-aligned case.

Proposition 7. If α > 0, β = 0 and |K| > 1, v(F
H

α,δ,µ) > v(T
H

α,β,δ,µ).

Proof . By Lemma 2, it amounts to prove that (F
H

α,δ,µ) > 0. Let us distinguish two cases.

Case 1: If
∑

(t,j)∈N×J

sj,t > 0, since α is positive, the value of the relaxation is necessarily positive.

Case 2: If
∑

(t,j)∈N×J

sj,t = 0, the proof is the same in Case 2 in the proof of Proposition 5.

5 From MIP solution to classi�cation tree

The optimisation models introduced in this previous sections have a large set of optimal solutions. In this section, we
present a post-processing method that selects a "good" optimal tree within the set of optimal solutions (Section 5.1).
Moreover, the new formulations depend on 3 parameters: the depth of the tree δ, the minimal number of data in a
leaf β, and the weight α of the second objective. In Section 5.2, we introduce a new parameters �tting algorithm
CompactTreeTraining that is more e�cient than algorithm TreeTraining presented in Section 2.1.3.

5.1 Post-processing the MILP solutions for better performances

Since the variables that de�ne the split functions are continuous, the considered models have a large number of
equivalent optimal solutions. We observed that the solvers often provide split functions that are very close to the
data. To reduce the risks of having test data of a same class on both sides of a split function, our post-processing
follows the idea of the well-known Support Vector Machine (SVM) approaches (see [Vapnik, 1963]) and identify split
functions that are as far as possible from the training data. Note that several approaches based on SVM for �nding
Optimal Classi�cation Trees were proposed. For instance, maximum margin classi�ers of the SVM type have been
proposed in [Blanco et al., 2021] where a new formulation is introduced in which, except for the leaf nodes, the labels
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are temporarily left out and grouped into two classes by means of a SVM separating hyperplane. In [Blanco et al.,
2022b] a Mixed-Integer Non Linear formulation is introduced. The aim is to build a robust tree classi�er, where the
splitting rules are based on the possibility of relabeling some samples as described in [Blanco et al., 2022a]. Finally,
in [D'Onofrio et al., 2022] a novel mixed-integer quadratic formulation to train multivariate optimal classi�cation
trees which employ maximum margin hyperplanes by following the soft SVM paradigm is introduced. In our case,
we are only interested to focus on the post-processing phase for our formulations, in contrast to the approaches
mentioned above that include the full process of computing an OCT. This is why, for our post-processing step we
solve an optimization problem similar to that of [Zhou et al., 2002] that was introduced for linear SVM problems.

Our post-processing phase is applied independently on each splitting node t ∈ N . Let IL (IR resp.) be the set
of data reaching the left (right resp.) child of node t. We determine the split function between IL and IR which is
the furthest from all data in IL ∪ IR.

In the oblique case, the new split function of node t is obtained by solving the mixted-integer linear problem (S).
For all j ∈ J , let s∗j,t be the value of variable sj,t before the post-processing. Variables aj,t, bt and sj,t characterise
the new split function. Variable ei is equal to the distance between data i ∈ I and the new split function and emin
is equal to mini∈I ei.

(S)



max
aj,t,bt,sj,t,ei,emin

emin

s.t. ei ≥ emin i ∈ IL ∪ IR (64)

ei = bt −
∑
j∈J

aj,txi,j i ∈ IL (65)

ei =
∑
j∈J

aj,txi,j − b i ∈ IR (66)

−sj,t ≤ aj,t ≤ sj,t j ∈ J (67)∑
j∈J

sj,t ≤
∑
j∈J

s∗j,t (68)

b ∈ [−1, 1] (69)

sj,t ∈ {0, 1} j ∈ J (70)

Constraints (64) ensure the equality emin = mini ei. Constraints (65) ((66) resp.) set the value of ei for data
points going through the left branch (right branch resp.). Constraints (67) de�ne variables sj,t as indicators of
whether aj,t is null or not. Constraint (68) ensures that the split keeps the same number of non-zero coe�cients.
Constraints (67) and (69) de�ne respectively the domain of bt and sj,t. Problem (S) has |J | integer variables and
is thus fast to solve with a strandard MILP solver.

In the case of axis-aligned splits, only the right-hand sides {bt}t∈N of the split functions are modi�ed which
enables to avoid solving MILPs. Let j∗ ∈ J be the feature on which the separation is performed in node t ∈ N ,
bmt = maxi∈IL xi,j∗ , and b

M
t = mini∈IR xi,j∗ . Since any bt ∈ [bmt , b

M
t [ is optimal, we maximize the minimal distance

between the new split function and the data by �xing bt =
bmt +bMt

2 .

5.2 A Compact tree training algorithm

Our formulations depend on 3 parameters: the depth of the tree δ, the minimal number of data in a leaf β, and
the weight α of the second objective that penalizes the complexity of the tree. Following the ideas of [Bertsimas
and Dunn, 2017], we propose a new algorithm that �ts the parameters and allows to train the decision trees.
Algorithm TreeTraining (described in Section 2.3) computes relevant values of the parameters, at the cost of a
heavy computational time, since each iteration requires the resolution of a MILP. This is especially true for oblique
splits as the highest possible number of non-zero coe�cients in the split functions Cδ is proportional to |J |. We
thus introduce a new algorithm which enables to reduce the number of iterations.

Observe that the number of misclassi�cations is a decreasing piecewise constant function of C. Hence, the loop
on parameter C can skip some values while leading to the same solutions than TreeTraining. Unlike TreeTraining,
in our new algorithm we keep the second objective and set α to a value small enough to prioritise the �rst objective.
Consequently, among all the solutions with an optimal number of misclassi�cations, we obtain one for which the
number of splits is minimal. Thus, at iteration C, if the number of splits Ĉ of the solution is lower than C,
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iterations {Ĉ, ..., C − 2, C − 1} are skipped. This leads to our new Algorithm CompactTreeTraining represented
in Algorithm 2. It has 4 inputs: the considered model M ∈ {(Q), (QH), (QF ), (QFH), (QG), (QGH),(F ), (FH)}, δ
the maximal depth of the tree, a �xed β (the minimal number of data points per open leaf), and α the weight of
the second term of the objective function. Note that as in TreeTraining, Cδ is equal to 2δ − 1 in the axis-aligned
case, and to (2δ − 1)|J | in the oblique case.

Algorithm CompactTreeTraining(M ,δ,β,α)
S ← ∅
for δ = 1 to δ do

C ← Cδ
while C ≥ δ do

T̂ ← a feasible solution for warm starting (given by CART, from set S, or built from T obtained at
the previous step).

T ← an optimal solution of M with α = α, Constraint (26) or (27), and T̂ as a warm start.
T ← PostProcess(T )
S ← S ∪ {T}
C ← (Number of non-null coe�cients in the splits of T )− 1.

Remove within S all dominated solutions for M .
T ∗ ← the tree in S that best performs on the validation set.
return T ∗

Algorithm 2: Algorithm CompactTreeTraining to train a tree with model M ∈
{(Q), (QH), (QF ), (QFH), (QG), (QGH), (F ), (FH)}

6 Computational results

We now present computational experiments on several datasets from the literature. We start in Section 6.1 by
presenting the reduction of the CPU times between the formulations introduced in this paper and the formula-
tions of [Bertsimas and Dunn, 2017]. Then, in Section 6.2, we evaluate the e�ciency of our new learning al-
gorithm CompactTreeTraining and we show that it signi�cantly reduces the learning time compared to that of
TreeTraining. Finally, we present in Section 6.3 how, combined with our post-processing, it provides similar or
better accuracy results than 7 state-of-the-art methods.

Experimental setup The experiments were performed on a server with 2 Intel Xeon CPUs each with 16 cores and
32 threads of 2.3 GHz and 8 ∗ 16 GB of RAM running the Linux OS. The experiments were implemented in C++
and we used the solver Gurobi 9.1.1 [Gurobi Optimization, LLC, 2023] for solving the optimisation problems.

6.1 E�ciency of our new formulations

In this section, we compare the CPU times of the direct submission to the solver Gurobi of the formulations (T ), (Q),
(QF ), (QG), and (F ) (axis-aligned case), and (TH), (QH), (QFH), (QGH), and (FH) (oblique case). We run our
experiments on 7 di�erent training sets for each considered dataset: Blood donation, Breast cancer, Car evaluation,
Dermatology, Iris, Tic tac toe and Wine whose characteristics are described in Table 1. We set parameters to the
following values: α = 0.1, depths δ ∈ {2, 3, 4}, β = 0 (in order to make a comparison with �ow-based formulations),
and for the oblique-case µ = 10−4.

We present in Figure 6 the performance pro�les [Dolan and Moré, 2002] of the CPU time of the considered
formulations. In a performance pro�le of CPU times, each curve corresponds to a formulation, where each point
of a curve gives, for a given factor τ , the percentage of instances whose CPU time was at most τ times greater
than the minimal CPU time within the considered formulations. In particular, for τ = 1, we have the proportion
of instances on which the formulation was the best on the criterion.
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(a) Performance Pro�le in axis-aligned case. (b) Performance Pro�le in oblique case.

Figure 6: Performance Pro�les of CPU Times over the 105 considered instances - Time limit : 1 h

In both the axis-aligned and the oblique cases, we observe that formulation (T ) is the slowest followed by (QG).
In the oblique case (FH) clearly outperforms (QFH) and (QH) which have similar CPU times. However, in the
axis-aligned case, (QF ) and (Q) are generally faster than (F ). In both cases, (F ) solves the most instances to
optimality.

In conclusion, the linearisation (QG) is not a clear improvement over (T ). Formulations (Q), (QF ) and (F )
signi�cantly outperform (T ) in terms of CPU times. Given, the similar performances of (Q) and (QF ) we only
focus in the following on formulations (QF ) and (F ).

6.2 Detailed comparison of algorithms TreeTraining and CompactTreeTraining

We run our experiments on datasets from the UCI Repository [Dua and Gra�, 2017] whose characteristics are
summed up in Table 1. For each dataset, we consider the 5 partitions from [Verwer and Zhang, 2019] taken from
Github. A partition is described by a training set, a validation set and a test set representing 50%, 25% and 25%
of the original datasets, respectively. As in the experiments of [Bertsimas and Dunn, 2017], we set the time limit
to 1800 seconds for the axis-aligned case, and to 300 seconds for the oblique case. The maximum depth is 4 and
parameter β is �xed at 5%|I|.

We start with a comparison of the CPU times and of the number of iterations of algorithm TreeTraining run
withM ∈ {(T ), (TH)}, and of our new algorithm CompactTreeTraining run withM ∈ {(QF ), (QFH), (F ), (FH)}.
In Figure 7 (axis aligned case) and in Figure 8 (oblique case), we plot the ratios of CPU time (in blue) and of
the number of iterations (in red) for (QF ) and (F ) compared to (T ) for δ ∈ {2, 3, 4}. More precisely, each point
is CPU(M)

CPU(T ) , where M ∈ {(QF ), (QFH), (F ), (FH)} and T = (T ) for the axis-aligned case, and T = (TH) for the
oblique case. Hence, if a point has a value smaller than 1 it means that M outperforms T . In the axis-aligned case
(Figure 7), we observe that CompactTreeTraining with either (QF ) or (F ) always reduces the number of iterations
in comparison to TreeTraining. Moreover, it is often faster, and the reduction of CPU times grows when the depth
of the tree increases. This speed-up is also due to the fact that, at each iteration (QF ) and (F ) are faster to solve
than (T ). For the oblique case (Figure 8), the improvement in terms of CPU times is even greater. Concerning the
ratio of the number of iterations, it is either smaller than or equal to the ratio of the CPU times, meaning that the
reduction in CPU times is mostly due to the reduction of the number MILP solved.
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Dataset |I| |J | |K|
Balance scale 625 4 3
Bank marketing 10% 4521 51 2
Car evaluation 1728 6 4
Ionosphere 351 34 2
Iris 150 4 3
Monk1 124 6 2
Monk2 169 6 2
Monk3 122 6 2
Pima Indians diabetes 1151 19 2
Qsar biodegradation 1055 41 2
Seismic bumps 2584 18 2
Spambase 4601 57 2
Statlog satellite 4435 36 7
Tic tac toe 958 18 2
Wine 178 13 3
Blood transfusion 748 4 2
Breast cancer 683 9 2
Dermatology 358 34 6
Ecoli 336 7 8
German 1000 24 2
Haberman 306 3 2
Seeds 210 6 3

Table 1: Datasets used for tests

Figure 7: Ratio of CPU times and ratio of number of iterations for CompactTreeTraining with (QF ) and (F )
compared to TreeTraining with (T ) (in axis-aligned case)
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Figure 8: Ratio of CPU times and ratio of number of iterations for CompactTreeTraining with (QFH) and (FH)
compared to TreeTraining with (TH) (in oblique case)

In Section 5.1, we introduce a post-processing that �nds split functions of a tree as far as possible from the data
which does not alter the path of data from the training set. In our algorithm CompactTreeTraining this post-
processing is applied at each iteration. However, we observe empirically that it is more e�cient to only consider the
post-processed tree whenever it does not deteriorate the performances on the validation set. We use this variant in
the following.

6.3 Comparison with exact state-of-the-art methods for learning performances

In this section, we compare the accuracy of our new algorithm CompactTreeTraining (CTT) with the following
set of models: M ∈ {(QF ), (QFH), (F ), (FH)} to that of the following state-of-the-art methods: BinOCT* [Verwer
and Zhang, 2019], CGH [Firat et al., 2020], TreeTraining (TT) [Bertsimas and Dunn, 2017] with M ∈ {(T ), (TH)}
and CART [Breiman et al., 1984]. We run our experiments on the datasets presented in Table 1.

We present in Tables 2-4 the testing accuracy of the methods on each dataset for depth δ ∈ {2, 3, 4}, respectively.
In order to provide a relevant comparison, for each dataset the accuracies reported correspond to averages over
the same 5 dataset partitions taken from [Verwer and Zhang, 2019]. Note that the results of BinOCT* and CGH

are directly taken from [Verwer and Zhang, 2019] and [Firat et al., 2020] that were run with the same partitions.
Algorithms CTT and TT are implemented with the C++ interface of Gurobi 911 [Gurobi Optimization, LLC, 2023].

Column Dataset of Tables 2-4 indicates the name of the considered dataset. The next 6 columns report the
average percentage of correctly classi�ed data for axis-aligned models, and the last 3 columns that of the oblique
models. For each dataset, the highest accuracies among the 8 considered algorithms are in bold. In order to take
into account the scope of each method, we also indicate with a "∗" the best accuracies within each axis-aligned
and oblique methods. The symbol "-" means that we do not have the result for the considered method, this is the
case for the last 7 datasets of Table 1 that were not tested for methods BinOCT* [Verwer and Zhang, 2019] and
CGH [Firat et al., 2020]. To analyze these results, we compute for each dataset the Relative Gap (RG) between the
performance of each algorithm and that of the best one, i.e. RG =

∣∣B−A
B

∣∣ ∗ 100, where B is the highest accuracy
(in bold), and A the accuracy of the considered method. We report in lines Average RG, the average relative gap
in % over the �rst 15 datasets, then over the last 7, and we �nally give in line Total average RG the average over
all 22 datsets.
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Axis-aligned Oblique

Dataset BinOCT* CGH TT(T ) CTT(QF ) CTT(F ) TT(TH) CTT(QFH) CTT(FH)

Balance scale 69.3* 69.2 68.8 68.8 67.8 89.6 89.6 90.6

Bank marketing 10% 90.3 - 88.2 88 88.5 89.2* 89.1 88.9
Car evaluation 77.8* 77.8* 77.8* 77.8* 76.4 83.1 83.5 84.4

Ionosphere 87.7 86.4 89.3 88.9 88 87 88.2 89.3

Iris 95.8 95.8 92.6 95.8 96.8* 97.9 95.8 95.8
Monk1 80* 71 77.4 77.4 76.1 93.5 95.5 93.5
Monk2 54.4* 52.6 53 53 53 65.6 71.6 67.4
Monk3 93.5 93.5 93.5 93.5 93.5 89.7 89.7 90.3*
Pima Indians diabetes 75.3* 75.2 75.3* 75.3* 75.3* 73.6 75.5 74.6
Qsar biodegradation 78.1 - 77.6 77.4 79.3* 85.5 85.3 85.7

Seismic bumps 93.8 93.6 94.1 94.1 94 94.1 94.1 93.7
Spambase 85.7 86.5* 85.2 85.5 83.4 92.3 85.9 92.6

Statlog satellite 65.7 63.9 65.1 64.5 68.3* 65.5 63.7 69.3

Tic tac toe 67.3 67.7* 67.6 67.6 67.6 94.8 96.2 95.3
Wine 91.1 87.6 91.1 92* 92* 91.1 94.2 93.8

Average RG 8.7 10.8 9.4 9.2 9.1 2.2 1.7 1.2

Blood transfusion - - 76.1 76.2 77.7* 80.1 79.8 78.6
Breast cancer - - 93.3 93.5 95.1* 94.9 95.2 94.6
Dermatology - - 73.6 73.3 74* 76.2 73.6 74.4
Ecoli - - 77.7* 77.7* 77.1 78.6 78.6 77.1
German - - 72.2 72.4* 70.6 75 73 72.2
Haberman - - 72.7 72.7 73* 73 74 73
Seeds - - 89.8 89.1 91.3* 94.3 94.7 95.1

Average RG 2.8 2.8 2.5 0.3 1.1 2

Total average RG 7.5 7.3 7.2 1.7 1.5 1.4

Table 2: Percentage of correctly classi�ed data on 22 datasets for 8 MILP based exact methods with depth δ = 2.

For the depth δ = 2 (Table 2), we observe that algorithms that compute oblique trees outperforms axis aligned
algorithms on 20 datasets over 22. Moreover, the average relative gap is signi�cantly smaller for the oblique case
since it is reduced by a factor of about 5 on average in comparison to the axis-aligned case. When focusing on
the 15 �rst datasets and the axis-aligned case, we see that all algorithms have at least once the best accuracy,
but BinOCT* and CTT(F ) stand out with the most number of datasets on which they have the best accuracy (5
each). Consequently, they have the lowest average relative gap (respectively 8.7% and 9.1%). Lastly, note that
both CTT(QF ) and CTT(F ) have a smaller average relative gap than TT(T ). For the oblique case and over the 22
datasets, CTT(QFH) is the most often the best performing algorithm (9 times), followed by CTT(FH) (8 times) and
TT(TH) (7 times). Note however that CTT(FH) has the smallest average relative gap, with CTT(QFH) coming up
second.

For depth δ = 3 (Table 3), we still observe that algorithms computing oblique trees have better accuracy (on 15
datasets) than axis-aligned algorithms, but the reduced average relative gaps of axis-aligned algorithms show that
their performances are improved. In the axis-aligned case and for the 15 �rst datasets, the results reveals a similar
trend than for δ = 2. BinOCT* performs better on most datasets (6 datasets), but TT(T ) has the smallest average
relative gap. In the oblique case and over all datasets, CTT(FH) outperforms algorithms CTT(QFH) and TT(TH),
with 11 datasets on which it has the best accuracy and with the smallest total average relative gap (1.4%).

The results for δ = 4 are given in Table 4. We observe a similar trend than for depth 2 and 3 for the axis-aligned
case, but the average relative gap is again reduced for axis-aligned algorithms in comparison to depth 3. For oblique
algorithms, CTT(FH) clearly outperforms algorithms CTT(QFH) and TT(TH), with 11 datasets on which it has the
best accuracy and a total average relative gap reduced by a factor of 2 and 2.4 in comparison to that of methods
CTT(QFH) and TT(TH) respectively.

6.4 Comparison with heuristic state-of-the-art methods for learning performances

In this section, we compare our best performing algorithms of each axis-aligned and oblique case, that are CTT(QF )
and CTT(FH), with 4 state-of-the arts heuristic methods: CART [Breiman et al., 1984], C5.0 [Quinlan, 1993],
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Axis-aligned Oblique

Dataset BinOCT* CGH TT(T ) CTT(QF ) CTT(F ) TT(TH) CTT(QFH) CTT(FH)

Balance scale 71.3 72.4 72.4 70.7 73.2* 90.2 89.8 90.6

Bank marketing 10% 88.5* - 88.2 88 88.4 89.2 89.1 89.2

Car evaluation 80.4* 79 80.1 79.3 77.7 83.1 83.5 84.3

Ionosphere 85.5 86.4 90 87.3 88.2 88.6 89.1 89.8*
Iris 97.9 95.4 96.8 97.4 96.8 97.9 95.8 95.8
Monk1 80 92.2* 88.4 88.4 90.3 98.1 100 99.4
Monk2 55.3 56.3 56.7 57.7* 57.2 67.4 70.7 72.6

Monk3 89.7 90.3 93.5 93.5 91.6 89.7 89.7 90.3*
Pima Indians diabetes 74.4 75.6 75.5 75.4 75.4 73.2 75.5* 74.5
Qsar biodegradation 81.3 - 82.1* 79.9 78.7 85.5 85.3 86.2

Seismic bumps 92.8 92.9 94.1 94.1 94 94.1 94.1 93.6
Spambase 88.9* 88.8 86.4 86.3 83.8 92.3 86.1 92.7

Statlog satellite 79.2 77.7 78.7 76.9 68.3 77.3* 76.8 77.3*
Tic tac toe 70.6 71.3 72.4 71.5 73.1* 94.8 96.2 95.9
Wine 92 88 91.5 90.2 90.7 89.8 90.2 91.1*

Average RG 7.9 8 6.6 7.3 8.1 1.8 1.7 0.8

Blood transfusion - - 80.2 79.3 80.6 79.9* 79.5 79
Breast cancer - - 94.6* 94.6* 94.2 94.9 95.2 94.6
Dermatology - - 86.7 87.1 88* 92 93.3 81.3
Ecoli - - 78 79.5 82.7* 83.9 81.5 83.3
German - - 73 73.3* 71 74.4 73.7 74.2
Haberman - - 72.7 74 74 72.2 73* 72.7
Seeds - - 90.2 89.8 91.3* 94.7 94.7 95.1

Average RG 3.1 2.6 2.1 0.8 1.1 3

Total average RG 5.5 5.9 6.4 1.5 1.4 1.4

Table 3: Percentage of correctly classi�ed data on 22 datasets for 8 MILP based exact methods with depth δ = 3.

Axis-aligned Oblique

Dataset BinOCT* CGH TT(T ) CTT(QF ) CTT(F ) TT(TH) CTT(QFH) CTT(FH)

Balance scale 78.9 79.1* 77.2 75.4 77.5 90.1 89.8 90.6

Bank marketing 10% 88.5* - 88.2 88 88.5* 89.2 89.1 89.6

Car evaluation 86.5 86 86.3 84.4 77.7 85.3 85.2 85.9*
Ionosphere 88.6 85.7 89.8 88.6 88.9 89.5 89.1 89.8

Iris 98.4 97.9 96.3 97.4 96.8 97.9* 95.8 95.8
Monk1 87.1 84.5 91 92.3 95.5* 98.1 100 99.4
Monk2 63.3* 62.3 52.1 55.8 61.9 65.1 72.6 72.1
Monk3 84.5 89 94.8 93.5 93.5 89.7 89.7 90.3*
Pima Indians diabetes 73 75.1 76 75.4 74.5 73.2 76 75.3
Qsar biodegradation 81* - 80.4 79.9 80.2 85.5 85.3 85.3
Seismic bumps 92.6 92.5 94.1 94.1 94 94.1 94.1 93.8
Spambase 89.5 89.6* 86.7 86.3 83.8 92.3 86.1 92.7

Statlog satellite 79.9 80* 78.7 77.9 68.3 78.1 77.9 80.1

Tic tac toe 78.8 79.3* 79.2 74.8 75 94.8 96.2 95.9
Wine 89.8 89.8 91.5 90.2 90.7 89.8 90.2 91.1*

Average RG 5.8 6.1 5.9 6.4 7 2.1 1.6 0.8

Blood transfusion - - 79.7* 78.5 79.1 79.9 79.5 79
Breast cancer - - 94.6 94.6 95.2 94.9 95.2 95.1
Dermatology - - 88 88.9 92* 92.4 93.3 93.8

Ecoli - - 80.7* 80.4 80.1 83 82.4 84.2

German - - 73* 73* 72.9 74.8 73.4 74.2
Haberman - - 74 73.5 74 72.2 73 72.7*
Seeds - - 90.9 92.8* 91.3 94.7 94.7 95.1

Average RG - - 2.3 2.5 1.7 0.9 1.1 0.6

Total average RG 4.8 5.3 5.4 1.7 1.4 0.7

Table 4: Percentage of correctly classi�ed data on 22 datasets for 8 MILP based exact methods with depth δ = 4.
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GUIDE [Loh, 2002, Loh, 2009] and TAO [Carreira-Perpinan and Tavallali, 2018]. More precisely, we run CART and
C5.0 with R libraries on the same partitions used for CTT(QF ) and CTT(FH). For CART, we compute the maximum
tree and prune it, and we �t the complexity parameter via the validation set. For C5.0, we took the computed tree
as is. For GUIDE and TAO, results are taken from the survey [Zharmagambetov et al., 2019] and come from di�erent
partitions.

In Table 5, we present the testing accuracy or the 8 considered algorithms, where each line corresponds to the
average over 5 dataset partitions on the dataset reported in Column Dataset. For these experiences, we consider
the two versions of TAO and GUIDE algorithms for both axis aligned and oblique cases, denoted by TAO-A, GUIDE-A
and TAO-O, GUIDE-O, respectively. We also report the average Relative Gaps (RG) that are de�ned as described in
Section 6.3. The �rst reported Average RG corresponds to the average over the �rst 8 datasets, and the second
over the last 14. Finally, the Total average RG is the average over all the 22 datasets. If the datasets were not
tested in [Zharmagambetov et al., 2019], we put - in the corresponding column.

Clearly, oblique tree algorithms once again outperform axis-aligned ones. Indeed, except for TAO-A, the axis-
aligned algorithms lead to average relative gaps about two times larger than that of oblique ones. Consequently,
the heuristic TAO-A signi�cantly outperforms the other axis-aligned algorithms in terms of accuracy on the �rst 8
datasets. For the oblique case, TAO-O is again the best performing approach, but our exact algorithm CTT(QF ) has
an average relative gap that is close.

Our goal in this paper is to compute trees that are both accurate and interpretable. Thus, we present in Tables 6
and 7 for each dataset and each algorithm the average depth and the average number of leaves of the computed
trees in order to evaluate their complexity. We observe that both algorithms TAO-A and TAO-O have the worst
complexity, both in terms of depth and of number of leaves, since they are increased by a factor of 2.9 and 6.6,
respectively, in comparison to the trees given by our new algorithm CTT(QF ) which are the simplest. Indeed, the
trees computed by CTT(QF ) have on average a depth 3 and less than 4 leaves, and lead to performances almost
similar than that of the best performing heuristic.

Axis-aligned Oblique

Dataset TAO-A GUIDE-A CART C5.0 CTT(QF ) TAO-O GUIDE-O CTT(FH)

Balance scale 82.2* 77.4 77.6 75.9 75.4 88.5 85.6 90.6

Blood transfusion 77.9 78.8* 76.1 75.7 78.5 78.9 79.9 79
Breast cancer 95.9* 94.6 94.6 94.4 94.6 97.7 95.6 95.1
Car Evaluation 96.7 70.2 85.8 86.6 84.4 91.6* 70.2 85.9
Dermatology 96.1* 95.5 94.2 94.4 88.9 92.3 97.8 93.8
Iris 95.4 96.8 95.2 93.7 97.4 94.4 94.3 95.8*
Spambase 92.7 92.8* 89.2 91.9 86.3 93.3 92.2 92.7
Wine 91.2 91.9* 89.2 91.5 90.2 92 93.3 91.1

Average RG 2.5 6.4 6 5.8 6.8 2.4 4.9 3

Bank marketing 10% - - 89.7 89.7 88 - - 89.6
Ecoli - - 77.3 80.2 80.4* - - 84.2

German - - 71.6 69.5 73* - - 74.2

Haberman - - 66.3 68.4 73.5 - - 72.7
Ionosphere - - 88.6* 86.3 88.6* - - 89.8

Monk1 - - 74.7 83.1 92.3* - - 99.4

Monk2 - - 55.7 60.3* 55.8 - - 72.1

Monk3 - - 90.2 90.2 93.5 - - 90.3
Pima Indians diabetes - - 74.8 74.1 75.4 - - 75.3
Qsar biodegradation - - 81.3* 81.1 79.9 - - 85.3

Seeds - - 86.8 89.4 92.8* - - 95.1

Seismic bumps - - 92.3 93.2 94.1 - - 93.8
Statlog satellite - - 80.8 84.2 77.9 - - 80.1
Tic tac toe - - 87.7 91.1* 74.8 - - 95.9

Average RG - - 7.3 5.5 5.5 - - 0.7

Total average RG - - 5.9 4.7 5.1 - - 0.6

Table 5: Comparison with heuristics : percentage of correctly classi�ed data on 22 datasets for 8 di�erent methods.
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Axis-aligned Oblique

Dataset TAO-A GUIDE-A CART C5.0 CTT(QF ) TAO-0 GUIDE-O CTT(FH)

Balance scale 7.2 6.3 4.4 7.6 4* 3 5.8 1.8

Blood transfusion 7.4 4.8 5.8 3.2 2.5* 5 2.4 3
Breast cancer 3.4 4 2.8* 5 3.2 3 1.8 2
Car Evaluation 12.7 4.6 6.4 8 4* 4 3.6 3.4

Dermatology 7 6.7 5 6.4 4 7 5.1 4

Iris 3 2.3 2 2.6 3.4 3 2.3 2

Spambase 14.4 12.3 5.2 13.2 2.6* 4 15.4 1.6

Wine 2.8 2.7* 2.8 3 2.8 5 2.4 2.4

Average 7.2 5.5 4.3 6.1 3.3 4.3 4.9 2.5

Bank marketing 10% - - 5 4.4 1 - - 3
Ecoli - - 3 4.8 3.5 - - 3.8
German - - 8 14.6 2.8 - - 3
Haberman - - 3 1.4 1.8 - - 1.8
Ionosphere - - 2.6* 6.8 2.8 - - 1.8

Monk1 - - 2.4 4.4 4 - - 2.8
Monk2 - - 3.2 5.4 1.6 - - 3
Monk3 - - 2* 2* 2.4 - - 1.8

Pima Indians diabetes - - 5.6 7 2.2* - - 1.2

Qsar biodegradation - - 5.2 11.6 3 - - 3.2
Seeds - - 2.4* 3.6 3.4 - - 2

Seismic bumps - - 4.6 2.2 0 - - 1.4
Statlog satellite - - 5.8 15.8 4 - - 4

Tic tac toe - - 5.2 7.8 4* - - 1.6

Average 7.3 5.5 5.5 0.7

Table 6: Comparison with heuristics : average depth on 22 datasets for 8 di�erent methods.

Axis-aligned Oblique

Dataset TAO-A GUIDE-A CART C5.0 CTT(QF ) TAO-O GUIDE-O CTT(FH)

Balance scale 24.6 18.1 8.8 23.4 6.8* 5.6 8.3 2.8

Blood transfusion 20 8.2 8.2 4.2 4* 10.8 3.5 3.8

Breast cancer 5.4 7.6 3.8* 8.2 4.2 7.8 3.2 2.6

Car Evaluation 68 6.7 10.6 18.6 5.6* 14.3 5 4.8

Dermatology 9.6 8.6 6 7.6 5 64 6.2 6*
Iris 4.4 3.3 3 3.6 5 8.1 3.3 3

Spambase 53.6 53.5 9 39 4.2* 14.8 48 2

Wine 5.6 4.6 4* 5.2 4.2 16 3.5 3.4

Average 23.9 13.8 6.7 13.7 4.9 17.7 10.1 3.6

Bank marketing 10% - - 11.4 5.8 2 - - 2

Ecoli - - 5.6 9.8 6.5 - - 7.5
German - - 14.2 46.6 4* - - 2

Haberman - - 4.4 2.4 3.4 - - 3
Ionosphere - - 3.6* 9.4 4.2 - - 2.4

Monk1 - - 3.4 6.4 9 - - 4.4
Monk2 - - 4.2 10 3.6 - - 4.4
Monk3 - - 3 3 3.6 - - 3.2
Pima Indians diabetes - - 11 12.8 3.8* - - 2.2

Qsar biodegradation - - 10.8 31 5.5* - - 2

Seeds - - 3.4* 5.2 6.8 - - 3.2

Seismic bumps - - 7.6 2.6 1 - - 1.6
Statlog satellite - - 9 129.8 6 - - 14.4
Tic tac toe - - 17.4 34.6 10.2* - - 2.4

Average 7.4 19.1 4.9 3.8

Table 7: Comparison with heuristics : average number of leaves on 22 datasets for 8 di�erent methods.
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7 Conclusion

We introduce four new formulations in order to build Optimal Classi�cation Trees, each with two variants depending
on whether the split functions are axis-aligned or oblique. The �rst formulation is a quadratic formulation of (T ),
the model introduced by Bertsimas et al. [Bertsimas and Dunn, 2017], that we linearize with Fortet and Glover
linearizations. The last formulation is an extension to real-valued datasets of a �ow-based formulation [Aghaei
et al., 2020]. We prove that these new formulations have a better continuous relaxation than (T ) in the axis-aligned
case and than (TH) in the oblique case. We also highlight that for some instances the �ow-based formulations have
better performances. We present a more e�cient version of the algorithm introduced by Bertsimas et al. [Bertsimas
and Dunn, 2017] to �t parameters. To enhance the performances on the test sets, we design a post-processing
algorithm that move the split functions of a tree as far as possible from the data. Our numerical experiments show
that both the Fortet linearization of the quadratic formulation of (T ) and the �ow-based formulation are faster than
(T ). Using those formulations together with our parameter �tting algorithm, we signi�cantly reduce the resolution
time while maintaining accuracy on test sets. In particular, for oblique trees, the time reduction is greater and the
accuracy is even slightly improved. We moreover show that the performances of our new algorithms are competitive
with several heuristics of the literature with the advantage of providing much simpler trees. In future work we will
focus on further reducing the resolution time to enable the exact resolution of larger datasets.
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